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Abstract—For the popular second-order conic program
(SOCP) formulation of AC optimal power flow (OPF) in a
radial network, this paper first shows that it does not have
the strong duality property in general. Then, through a series
of restrictive reformulations, we derive a set of closed-form
sufficient conditions on network parameters that ensure its
strong duality. Numerical studies on IEEE 33-bus, 69-bus test
networks and two real-world distribution systems confirm that
non-negligible duality gaps do exist in this SOCP formulation,
and also demonstrate the validity of the proposed sufficient
conditions on closing the duality gap. Our results provide an
analytical tool to ensure the strong duality of the SOCP power
flow formulation and to support algorithm developments for its
complex extensions.

Index Terms—AC optimal power flow, strong duality, second-
order conic program, radial network.

I. INTRODUCTION

THE AC optimal power flow (OPF) model is a funda-
mental tool for analytical studies of power systems. It

is originally nonconvex. Relaxing an AC OPF model into a
canonical convex program, e.g., second-order cone program
(SOCP) or a semi-definite program (SDP) [1]–[6], enables us
to make use of well-developed convex optimization results and
algorithms to address this very challenging model. Generally,
these convex relaxations can be computed to produce high-
quality solutions. Under some sufficient conditions, [6]–[9],
they are global optimal or can be used to recover global
optimal solutions of the original non-convex AC OPF model.
The SOCP formulation is particularly attractive as its computa-
tion burden is comparable to that of the vastly adopted linear
programming (LP) based DC power flow formulation. Con-
sequently, fast commercial mixed integer SOCP solvers have
been used to solve practical instances of SOCP formulation
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and its more sophisticated extensions in planning, operation,
and security analysis, e.g., [10]–[14].

A great advantage of the conventional LP formulation is its
strong duality property, i.e., it (the primal problem) shares the
same optimal value as its dual problem, which is also an LP,
when both are feasible. This property has a great significance
and provides a substantial support to more advanced studies,
including developing fast decomposition algorithms for large-
scale power grids, e.g., Benders decomposition and column-
and-constraint generation (C&CG) methods, deriving electric-
ity market oriented decisions, and performing vulnerability
analysis to identify the critical contingencies. Naturally, it is
desired to carry out similar studies using the dual problem
of SOCP model, which is also an SOCP, to produce more
accurate or realistic results for cases where that the primal
model captures the underlying problem better than an LP
counterpart.

Indeed, we have noted several existing publications that
were developed upon the dual of SOCP formulation. Ref [10]
developed a Benders decomposition method with SOCP sub-
problems that captured the nonlinear power flow formulations.
The dual problems of those SOCP subproblems were solved
to generate Benders cuts. In Ref [11], a bilinear Benders
decomposition was adopted to address a distribution network
expansion planning (DNEP) problem with stochastic and
chance constrained program reformulation. Similar algorithm
framework was applied in distributed generation planning [12],
energy storage planning [13], and the load restoration deci-
sions for active distribution networks [14]. Besides, Ref [15]
designed and implemented a conic-duality based decompo-
sition approach to evaluate the total supply capability of a
reconfigurable distribution network. Ref [16] utilized the dual
of SOCP in a reactive power management problem to compute
the subgradient for a stochastic approximation method.

Additionally, the duality of SOCP plays a central role
in simplifying bilevel or trilevel programs, e.g., some sub-
structures of the popular two-stage robust optimization (RO).
Ref [17] presented a bilevel model to identify the worst
contingency considering the AC OPF represented in an SOCP,
which was then converted into a single-level formulation by
taking the dual of lower-level SOCP. In Ref [18], a bilevel
optimization model was proposed for transmission expansion
planning (TEP) problem by using the conic duality to incor-
porate the market clearing decisions in the lower-level prob-
lems. Ref [19] implemented the C&CG algorithm to compute
a two-stage RO model for the topology reconfiguration of
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active distribution networks, where the conic duality of AC
OPF subproblems was employed. Ref [20] proposed a two-
stage RO formulation with mixed-integer SOCP recourse to
optimize the routing decisions of mobile de-icing devices for
a transmission network (subject to disruptions by ice storms).
In this study, a nested C&CG algorithm was adopted, which
again relied on the strong duality of SOCP formulation to
guarantee the convergence of inner iterations. The dual of
SOCP was also involved in Refs [21]–[25] to support their
C&CG customizations for two-stage RO problems dealing
with flexible operation, multi-energy coordination, and the
resilience issues in power systems.

Regardless that many studies assume and depend on the
strong duality property of SOCP, we would like to highlight
that the strong duality of an SOCP formulation does not hold
in general, i.e., there may exist a non-zero gap between the
primal and dual problems, as demonstrated in optimization
literature (e.g., [26], [27]). In the context of power systems,
our numerical studies (as in Section III and in Section V-B)
actually reveal that the duality gap of some radial power
networks could be non-negligible. For example, a 7.96%
relative duality gap has been observed between the primal and
dual SOCPs of AC OPF formulation for a real-world 56-bus
distribution network.

Theoretically speaking, if the strong conic duality cannot be
guaranteed, results obtained based on the dual of SOCP formu-
lation can only be treated as heuristic ones. As demonstrated in
our max-min bilevel optimization model with an SOCP based
AC OPF in the lower level, the existence of duality gap has
caused a 9.12% difference between the actual optimal value
and the value derived by assuming strong duality. Accordingly,
the worst case or contingency analysis result based on the
strong duality assumption is misleading as it is not the actual
one.

Hence, in this paper, to gain a deep understanding regarding
SOCP power flow formulation and promote its applications,
we present a study on its strong duality in radial power
networks. Specifically, through a series of restrictive reformu-
lations, we derive a set of closed form conditions (i.e., C1-C3)
on network’s physical parameters that guarantee the strong
duality of the SOCP formulation for AC OPF model. These
conditions can be verified prior to problem solving. Then, in
our numerical studies on popular testing systems (including the
IEEE test networks and two real-world distribution systems),
we observe several instances that fail to have the strong duality.
Nevertheless, when modified to satisfy the derived sufficient
conditions, the strong conic duality of these OPF formulations
can be achieved.

Our major contributions can be summarized as two-fold:
1) Through experiments on typical IEEE test beds and real

world distribution systems, we numerically verify the
existence of duality gaps between the primal and dual
formulations of the SOCP-based OPF model. It indicates
that, unless we can ensure the strong duality property,
solutions derived based that dual formulation might not
be exact. Actually, the gap can be significant.

2) We also theoretically derive a set of closed-form suf-
ficient conditions (i.e., C1-C3) as well as a linear in-

Fig. 1. Demonstration of Radial Power Network

equality system on network’s physical parameters, which
guarantees the strong duality of such SOCP formula-
tion. We note that those sufficient conditions have been
adopted for algorithm development in Refs [28]–[30],
which justify the importance of our results.

The remainder of this paper is organized as below. Section
II outlines the SOCP formulation for AC OPF model in radial
networks. One simple example and one bilevel optimization
example of that formulation are presented in Section III to
demonstrate the impact of nonzero duality gaps. Section IV
presents the theoretical derivations for our sufficient con-
ditions. The derived conditions are numerically verified in
Section V. Finally, conclusions are drawn in Section VI.

II. CONIC AC OPTIMAL POWER FLOW MODEL

Consider a power network with radial topology, i.e., a span-
ning tree network structure, as depicted in Fig. 1. We represent
such a radial network as (N ,E). Let N = {0}∪{N +} denote
the set of nodes such that the substation is node 0 and the rest
nodes are i = 1,2, . . . , n ∈ N +. Because of the spanning tree
structure with node 0 being the root, we denote the unique
parent node of node i by j, and consequently, can identify the
unique path from node 0 to i, which is denoted by Γi. Also,
the children nodes of node i are denoted by k (through path
k → i). Let E denote the set of branches such that (i, j) ∈ E .
Since branch (i, j) is uniquely defined by node i, we use the
indices i and (i, j) interchangeably in the rest of this paper.

In the following, we present a branch flow model (BFM)
based AC OPF formulation as in (1)-(8). The objective func-
tion in (1) is to minimize the operational costs associated with
the variables, e.g., nodal power generation and current flows.
For this formulation, unless explicitly stated, the objective
function f is convex without any special structure. Note that
the basic form of this formulation (i.e., (1)-(8)) has been
proposed in [31], [32] and many variants have been adopted
for different applications, e.g., [12]–[15], [21]–[23].

OPF ∶ min f(`,s,v,S) (1)
s.t. si = Sij − ∑

k∶k→i

(Ski − zki`ki), ∀i ∈ N + (2)

s0 = − ∑
k∶k→0

(Sk0 − zk0`k0) (3)

vi − vj = 2Re(z̄ijSij) − ∣zij ∣2`ij , ∀(i, j) ∈ E (4)

`ij =
∣Sij ∣2
vi

, ∀(i, j) ∈ E (5)

0 ≤ `ij ≤ `ij , ∀(i, j) ∈ E (6)
vi ≤ vi ≤ vi, ∀i ∈ N + (7)
si ≤ si ≤ si, ∀i ∈ N + (8)
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Note that the bold type in (1) is to represent the vector of
variables, e.g., ` = {`ij}(i,j)∈E . Variable `ij(= I2

ij) denotes the
squared magnitude of current on branch (i, j) ∈ E , which is
bounded by a positive parameter `ij(= I

2

ij) as in (6). Variable
vi(= U2

i ) denotes the squared magnitude of voltage at node
i ∈ N + , whose upper and lower bounds are denoted by vi(=
U

2

i ) and vi(= U2
i ) as in (7). Variable si = pi+ iqi is the power

injection at node i ∈ N +, where pi and qi denote the active
and reactive power injections. Similarly, Sij = Pij + iQij is
the power flow though branch (i, j) ∈ E , where Pij and Qij

denote the active and reactive power flows. The connection
between nodal power injections and power flows is defined by
the branch flow equations (2)-(5). Parameter zij = rij + ixij is
the impedance of branch (i, j) ∈ E , where rij and xij denoting
the line resistance and reactance. We also mention that the
power injection at the substation node, i.e., node 0, are denoted
by s0 = p0 + iq0, and the associated square of the reference
voltage level is fixed to a constant v0(= U2

0 ).
As mentioned in [9], the bounding for a complex variable

applies to both its real and imaginary parts, e.g., s < s denotes
Re(s) < Re(s) and Im(s) < Im(s). Accordingly, the upper and
lower bounds of si are represented by si = pi+iqi and si = pi+
iq

i
respectively as in (8). Note that parameters (p

i
, pi, qi, qi)

could be either positive or negative depending on the category
of node i, e.g., the node that integrating distributed energy
resources (DERs), Var compensators, or flexible loads [9].

Remark 1. Due to the nonlinear equality constraint (5), OPF
in (1)-(8) is nonconvex. To convexify this formulation, (5) is
relaxed to the following second-order conic inequality [7]–[9]
(i.e., the rotated form):

`ij ≥
∣Sij ∣2
vi

, ∀(i, j) ∈ E (9)

As a result, we obtain a convex relaxation of OPF with affine
and SOCP constraints, which includes (1)-(4), (6)-(8), and
(9). We denote this relaxation by OPF-Cr. In particular, if the
objective function f is affine or convex quadratic, OPF-Cr is
an SOCP formulation (denoted by OPF-SOCP), which, under
some sufficient conditions [7]–[9], is exact and guarantees an
optimal solution to the original OPF model.

We mention that OPF-SOCP is computationally friendly
and can be readily solved by a few commercial solvers, e.g.,
GUROBI, CPLEX, and MOSEK. Together with its stronger
modeling accuracy over the classical linear programming
based DC optimal power flow model, OPF-SOCP has been
adopted to support many system design and operational stud-
ies, e.g., in [12]–[15], [21]–[23]. However, it probably does
not have the strong duality property in general, which is very
different from the classical LP based formulation. Next, we
present two examples to illustrate the duality gap issue.

III. NONZERO DUALITY GAP OF SOCP-BASED OPTIMAL
POWER FLOW FORMULATION: EXAMPLES

A. Example 1: An SOCP Instance with Duality Gap
To demonstrate that nonzero duality gap could occur on

OPF-SOCP, we consider the example of IEEE 33-bus distri-
bution network, a popular test system adopted in many studies,

TABLE I
POWER OUTPUTS OF NODAL DEVICES: EXEMPLARY SYSTEM

Node 1 13 21 24 32

PV Panels 0 0.640MW 0.427MW 1.067MW 0.854MW
Var Generator 0.30Mvar 0.60Mvar 0.60Mvar 0.60Mvar 0.60Mvar

e.g., [10], [19], [22], [23]. We consider an objective function
f that minimizes the total network losses as in [31]–[33], i.e.,

Jp =min ∑
(i,j)∈E

rij`ij (10)

Hence, the dual form of OPF-SOCP can be written as:

Jd =max ∑
i∈N+
(viγui − viγli) + ∑

(i,j)∈E
`ijρij

+ ∑
i∈N+
(piφui − piφ

l
i + qiϕu

i − qiϕ
l
i) (11)

s.t. πi + φui − φli = 0, ∀i ∈ N + (12)
τi +ϕu

i −ϕl
i = 0, ∀i ∈ N + (13)

π0 = 0 (14)
τ0 = 0 (15)
πj − πi − 2rijθij + σij = 0, ∀(i, j) ∈ E (16)
τj − τi − 2xijθij + ςij = 0, ∀(i, j) ∈ E (17)
θij − ∑

k∶k→i

θki + γui − γli − κij + ωij ≤ 0, ∀i ∈ N + (18)

−(rijπj + xijτj) + (r2
ij + x2

ij) θij + ρij + κij + ωij ≤ rij ,
∀(i, j) ∈ E (19)

XXXXXXXXXXXXXXXXX

σij

ςij

κij

XXXXXXXXXXXXXXXXX2

≤ ωij , ∀(i, j) ∈ E (20)

where πi, τi, π0, τ0, θij , ρij , (γli, γui ), (φli, φui ), and (ϕl
i, ϕ

u
i )

denote the dual variables associated with affine constraints
(2)-(4) and (6)-(8), while σij , ςij , κij , and ωij are the dual
variables of conic constraint (9). The detailed procedure to
derive the dual OPF-SOCP can be found in Appendix A.

For the sake of illustration, we modify the standard 33-
bus system by integrating photovoltaic (PV) panels and Var
generators at node 1, 13, 21, 24, and 32 respectively. The
nodal active/reactive power outputs are presented as in Table I.
Also, we set U i = 0.95U0 and U i = 1.05U0, where U0 = 10kV,
and I = 250A. Given such conditions, the primal and dual
objectives of OPF-SOCP are optimized as Jp = 1.188509 and
Jd = 1.161750 respectively. So, the absolute duality gap is

Jp − Jd = 1.188509 − 1.161750 = 0.026759 MW,

and the relative duality gap is

Jp − Jd

Jp
= 1.188509 − 1.161750

1.188509
= 0.0225.

Note that this gap is much larger than the default optimality
tolerance of our solver. Obviously, such significant gap is not
due to that numerical tolerance. Hence, this instance fails to
have the strong duality property.
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B. Example 2: A Max-Min Bilevel Conic Optimization with
Nonzero Duality Gap

To further investigate the impact of non-zero duality gap
on real applications of SOCP-based AC OPF formulation, we
consider a max-min extension embedding this formulation,
i.e., a bilevel conic model based on (2)-(4), (6)-(9), and (10).
Given a set of candidate siting sets over which PV units could
be installed, we are evaluating their impact, under the worst
case, on the network losses, which mathematically is expressed
as:

Γbilevel = max
u∈U

min
(`,v,s,S)∈Ξ

∑
(i,j)∈E

rij`ij (21)

s.t. U = {u ∈ {0,1}∣N
+∣ ∶ ∑

i∈N+
ui ≤K} (22)

Ξ = {`,v,s,S ∈ Rm
+ ×Rn ∶ (2) − (4), (6) − (9) (23)

pi = p∗i + uig̃, ∀i ∈ N + (24)
p
i
= p∗

i
+ uig̃, ∀i ∈ N +} (25)

where ui is the binary indicator variable for PV siting status.
The total number of integration sites is up to K. Note that
the upper/lower bounds of nodal power injection are modified
according to the PV siting status (in this instance, the energy
curtailment is not allowed). Parameter g̃ denotes the real-time
power generation of PV units.

If the strong duality holds, the bilevel optimization problem
in (21)-(25) can be equivalently converted into a monolithic
form by taking the dual of lower-level OPF problem. We have

Γsingle−level = max ∑
i∈N+
(viγui − viγli) + ∑

(i,j)∈E
`ijρij

+ ∑
i∈N+
[p∗i φui − p∗i φ

l
i + q∗i ϕu

i − q∗i ϕ
l
i + g̃ui (φui − φli)] (26)

s.t. (12) − (20) (27)

For this dual-SOCP based single-level equivalence in (26)-
(27), considering the test conditions in Section III-A and set-
ting K = 1 and g̃ = 53.35KW, the professional solver GUROBI
reports that the optimal value Γsingle−level is 1.855702MW,
and the PV unit is installed at node 20 (i.e., u20 = 1 while
ui∣i≠20 = 0).

Nevertheless, that optimal value is not the actual optimal
value for the original bilevel optimization model. By enu-
merating all i ∈ N + over the siting set U (which is finite
and discrete) and directly computing the primal formulation
in the lower level problem, we observe that the worst one
(i.e., the highest one) is with Γbilevel = 2.024936MW, 9.12%
larger than Γsingle−level. Clearly, the single-level reformulation
fails to identify the worst PV integration site at node 22 (i.e.,
u22 = 1 while ui∣i≠22 = 0).

Together with our observations in Section III-A, we can
conclude that the strong duality does not hold in general for
OPF-SOCP, and the duality gap could be nontrivial. As a
direct consequence, unless the strong duality can be proven,
computational methods relying on its dual formulation could
lead to inexact or misleading solutions.

IV. SUFFICIENT CONDITIONS ENSURING STRONG
DUALITY

Before our theoretical derivation on sufficient conditions to
ensure the strong duality of OPF-Cr (including OPF-SOCP
as a special case), we first make a few rather non-restrictive
assumptions:

A1. The objective function f is bounded from below.
A2. The bounds on squared magnitudes of voltages are

strictly positive and they satisfy vi > v0 > vi > 0
for all i ∈ N +. This is reasonable since they are
practically set within a small deviation around v0,
e.g., vi = (0.95)2v0, vi = (1.05)2v0.

A3. The line resistance and reactance are strictly positive,
i.e., rij > 0 and xij > 0 for all (i, j) ∈ E .

A. OPF-Cr Reformulations with Restrictions

To develop sufficient conditions on strong duality, we con-
struct two auxiliary SOCPs by reformulating constraints in (2)-
(4) and (6)-(9). First, by introducing new variables τij , βij ∈ R
for all (i, j) ∈ E , we restrict our attention to a set of solutions
of OPF-Cr (denoted by Ŝ, ˆ̀, ŝ, v̂) that are represented as
linear combinations of τij and βij . Specifically,

Ŝij =
zij(τij − βij)
∣zij ∣2

, ∀(i, j) ∈ E (28)

ˆ̀
ij =

τij

∣zij ∣2
, ∀(i, j) ∈ E (29)

Plugging (28)-(29) into equalities (2) and (3), variables ŝi and
ŝ0 can be rewritten as

ŝi =
zij

∣zij ∣2
(τij − βij) + ∑

k∶k→i

zki
∣zki∣2

βki, ∀i ∈ N + (30)

ŝ0 = ∑
k∶k→0

zk0

∣zk0∣2
βk0. (31)

Similarly, equality (4) can be converted into

v̂i − v̂j = τij − 2βij , ∀(i, j) ∈ E . (32)

Moreover, because the nodal voltage v̂i in (32) can be uniquely
re-defined by summing the right-hand-side (RHS) expressions
over the connected path Γi, v̂i can be rewritten as

v̂i = v0 + ∑
(m,n)∈Γi

(τmn − 2βmn), ∀i ∈ N +. (33)

In addition to (2)-(4), inequalities (6)-(9) should also be
satisfied to ensure feasibility. Plugging (28)-(31) and (33) into
conic constraint (9) and affine constraints (6)-(8), we have the
first auxiliary SOCP (i.e., OPF-SOCP1) as in (34)-(38).

v0 + ∑
(m,n)∈Γi

(τmn − 2βmn) ≥
(τij − βij)2

τij
, ∀(i, j) ∈ E (34)

0 ≤ τij ≤ ∣zij ∣2`ij , ∀(i, j) ∈ E (35)
vi − v0 ≤ ∑

(m,n)∈Γi

(τmn − 2βmn) ≤ vi − v0, ∀i ∈ N + (36)

p
i
≤ rij

∣zij ∣2
(τij − βij) + ∑

k∶k→i

rki
∣zki∣2

βki ≤ pi, ∀i ∈ N + (37)

q
i
≤ xij

∣zij ∣2
(τij − βij) + ∑

k∶k→i

xki
∣zki∣2

βki ≤ qi, ∀i ∈ N + (38)
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Actually, by using the lower bound in (7) as well as as-
sumption A2, we can derive a further restriction on inequality
(34) (note that τij ≥ 0 because of (35)) as in the following:

(τij − βij)2 ≤ viτij , ∀(i, j) ∈ E (39)

With (39) being a conic inequality, our second auxiliary SOCP
(i.e., OPF-SOCP2) is defined by (35)-(38) and (39).

Remark 2. As mentioned, auxiliary problems OPF-SOCP1

and OPF-SOCP2 define the restricted solution spaces of OPF-
Cr. We also note that OPF-SOCP2 is a restriction to OPF-
SOCP1. Hence, the feasible sets of OPF-Cr, OPF-SOCP1

and OPF-SOCP2 (denoted by XOPF−Cr, XOPF−SOCP1 and
XOPF−SOCP2 ) satisfy the following relationship:

XOPF−SOCP2 ⊂ XOPF−SOCP1 ⊂ XOPF−Cr. (40)

B. Strong Duality of Reformulations and OPF-Cr
Following Slater’s Condition, the strong duality holds for

a general SOCP problem if either its primal problem or dual
problem is bounded and strictly feasible, i.e., the problem is
feasible and all the non-affine (conic) inequality constraints
hold with strict inequalities [34], [35]. Hence, the OPF-
Cr and our auxiliary SOCPs, which are bounded because
of assumption A1, have the strong duality as long as they
are (essentially) strictly feasible. Next, we consider the strict
feasibility of OPF-SOCP2.

Lemma 1. OPF-SOCP2 is strictly feasible and thus has the
strong duality if any of the following conditions is satisfied:

C1. For every i ∈ N +, the bounds of its power injection
satisfy either (i) p

i
≤ 0 ≤ pi, qi < 0 < qi; or (ii) p

i
<

0 < pi, qi ≤ 0 ≤ qi; or (iii) p
i
< 0 ≤ pi, qi < 0 ≤ qi;

or (iv) p
i
≤ 0 < pi, qi ≤ 0 < qi.

C2. rij/xij ≥ rki/xki for all (i, j), (k, i) ∈ E; and p
i
≤

0 ≤ pi, qi ≤ 0 < qi for all i ∈ N +.
C3. rij/xij ≤ rki/xki for all (i, j), (k, i) ∈ E; and p

i
≤

0 < pi, qi ≤ 0 ≤ qi for all i ∈ N +.

Proof. We make use of two new variables µ ∈ R+ and λij ∈ R
to simplify the constraints over τij and βij for all (i, j) ∈ E .
Specifically, we have

τij =
∣zij ∣2`ij
µ

, ∀(i, j) ∈ E (41)

βij = λijτij , ∀(i, j) ∈ E (42)

Because of inequality (35), we have µ ≥ 1. Then, plugging
(41) and (42) into the strict version of inequality of (39) as
well as affine inequalities (36)-(38), we have

(1 − λij)2
µ

< vi
∣zij ∣2`ij

, ∀(i, j) ∈ E (43)

vi − v0 ≤ ∑
(m,n)∈Γi

∣zmn∣2`mn
1 − 2λmn

µ
≤ vi − v0,

∀i ∈ N + (44)

p
i
≤ rij`ij

1 − λij
µ

+ 1

µ
∑

k∶k→i

rki`kiλki ≤ pi, ∀i ∈ N + (45)

q
i
≤ xij`ij

1 − λij
µ

+ 1

µ
∑

k∶k→i

xki`kiλki ≤ qi, ∀i ∈ N + (46)

Clearly, with a finite λij and µ → +∞, the strict inequality
in (43) can be easily achieved given that the left-hand-side of
(43) approaches to 0+ while its RHS is a positive constant
following assumptions A2-A3. Also, through assumption A2,
we have vi − v0 < 0 < vi − v0. When µ→ +∞, inequality (44)
holds as its middle term approaches to 0.

Similarly, the feasibility of inequalities (45) and (46) can
be ensured by properly setting the bounds of power injections,
i.e., pi/pi and qi/qi. let δpij , δ

q
ij ∈ R be such that

δpij = 1 − λij +
∑k∶k→i λkirki`ki

rij`ij
, ∀(i, j) ∈ E (47)

δqij = 1 − λij +
∑k∶k→i λkixki`ki

xij`ij
, ∀(i, j) ∈ E (48)

Accordingly, inequalities (45) and (46) are equivalent to:

p
i
≤
rij`ijδ

p
ij

µ
≤ pi, ∀i ∈ N + (49)

q
i
≤
xij`ijδ

q
ij

µ
≤ qi, ∀i ∈ N + (50)

Note that if δpij = 0 (or δqij = 0), the middle term of (49) or
(50) will be zero so that it requires p

i
≤ 0 ≤ pi (or q

i
≤ 0 ≤ qi)

to ensure its feasibility; if δpij < 0 (or δqij < 0) and let µ→ +∞,
the middle term of (49) or (50) will approach to 0−, which
requires p

i
< 0 ≤ pi (or q

i
< 0 ≤ qi) to ensure its feasibility; if

δpij > 0 (or δqij > 0), it requires p
i
≤ 0 < pi (or q

i
≤ 0 < qi) to

ensure its feasibility. For undetermined δpij and δqij , constraints
(49)-(50) are feasible as long as p

i
< 0 < pi and q

i
< 0 < qi.

Considering the spanning tree structure of (N ,E), λki
corresponds to the downstream branches of node i, while λij
corresponds to its unique upstream branch. Hence, for a group
of λki with arbitrary values, either δpij or δqij can be specified
by picking up a proper λij , and then it dominates the value
of the other. So we can always find a λij to satisfy either
(a) δpij = 0, or (b) δqij = 0, or (c) max{δpij , δ

q
ij} ≤ 0, or (d)

min{δpij , δ
q
ij} ≥ 0 for every (i, j) ∈ E , which corresponds to

(i)-(iv) in condition C1 that ensure the strict feasibility and
thus the strong duality of OPF-SOCP2.

Moreover, some alternative conditions of C1 can be derived
under special network parameters. For instance, if rij/xij ≥
rki/xki and let λij > 0 for all (i, j), (k, i) ∈ E , then we have

rij

xij
≥ rki
xki
⇔ ∑k∶k→i λkirki`ki

∑k∶k→i λkixki`ki
⋅ xij`ij
rij`ij

≤ 1

⇔ ∑k∶k→i λkirki`ki

rij`ij
≤ ∑k∶k→i λkixki`ki

xij`ij
⇔ δpij ≤ δ

q
ij (51)

Hence, there always exists a λij ∈ R+ for every (i, j) ∈ E such
that δqij ≥ δ

p
ij = 0. Then, it requires p

i
≤ 0 ≤ pi, qi ≤ 0 < qi as

in C2 to guarantee the strong duality of OPF-SOCP2.
Similarly, when rij/xij ≤ rki/xki, there exits a λij ∈ R+

for every (i, j) ∈ E such that δpij ≥ δ
q
ij = 0, which requires

p
i
≤ 0 < pi, qi ≤ 0 ≤ qi as in C3 to ensure the strong duality.
This completes the proof. ∎
Based on Lemma 1, and the relationship among OPF-

SOCP2, OPF-SOCP1 and OPF-Cr (including the special case
OPF-SOCP) stated in Remark 2, we have:
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Theorem 1. OPF-SOCP1 and OPF-Cr are strictly feasible
and thus have the strong duality when either of the conditions
C1-C3 is satisfied.

Corollary 1. The strong duality of OPF-SOCP holds when
either of the conditions C1-C3 is satisfied.

Additionally, by using (43) and µ ≥ 1, we derive another
extension of auxiliary SOCP (43)-(46), which is to generalize
a linear inequality system (denoted by LIS) as follows:

∣1 − λij ∣ ≤
¿
ÁÁÀ ṽi
∣zij ∣2`ij

, ∀(i, j) ∈ E (52)

(vi − v0)µ ≤ ∑
(m,n)∈Γi

∣zmn∣2`mn(1 − 2λmn) ≤ (vi − v0)µ,

∀i ∈ N + (53)
p
i
µ ≤ rij`ij(1 − λij) + ∑

k∶k→i

rki`kiλki ≤ piµ, ∀i ∈ N + (54)

q
i
µ ≤ xij`ij(1 − λij) + ∑

k∶k→i

xki`kiλki ≤ qiµ, ∀i ∈ N + (55)

µ ≥ 1 (56)

Let ṽi = vi − ε, where ε is a sufficiently small and positive
number. Clearly, LIS is a restriction to (43)-(46) as well as
OPF-SOCP2. Denote the feasible set of LIS as XLIS and
together with (40), we have

XLIS ⊂ XOPF−SOCP2 ⊂ XOPF−SOCP1 ⊂ XOPF−Cr (57)

As implied by (57), the feasibility of (52)-(56) ensures the
strict feasibility and thus the strong duality of OPF-Cr.

Corollary 2. The strong duality of OPF-SOCP holds when
the linear inequality system (52)-(56) is feasible.

Remark 3. Note that the feasibility of LIS only depends on
the input parameters of an OPF problem, which can be readily
checked to identify the instances that have the strong duality.

C. A Special OPF-SOCP Formulation with Strong Duality

In practical situations, the nodal power injection is usually
expressed as si = sgi −s̃di , where sgi and s̃di denote the adjustable
generation (i.e., a complex variable) and load demand (i.e., a
nonnegative constant) at node i ∈ N +. Moreover, if the load
curtailment (denoted by sci = pci + iqci ) is allowed, OPF-Cr can
be modified as:

MOPF −Cr ∶ min f(`,sg,v) + h(sc) (58)
s.t. si = sgi − (s̃

d
i − sci), ∀i ∈ N + (59)

pg
i
≤ Re(sgi ) ≤ p

g
i , q

g

i
≤ Im(sgi ) ≤ q

g
i , ∀i ∈ N + (60)

0 ≤ Re(sci) ≤ pci , 0 ≤ Im(sci) ≤ qci , ∀i ∈ N + (61)
Eqs. (2) − (4), (6), (7), (9) (62)

where h is the convex penalty function on curtailment variable
sc, whose real and imaginary parts are restricted by upper
bounds pci and qci respectively. Moreover, the upper and lower
bounds of nodal generation are represented by pgi /pgi and qgi /qgi
respectively. Following the ideas in Ref [9], the boundaries of
reactive power generation can be defined as:

qgi = z̃
v
i q

v,max
i , qg

i
= 0, ∀i ∈ N + (63)

where parameters qv,max
i and z̃vi denote the rated capacity and

the commitment status of Var compensators (e.g., the shunt
capacitors [9]) at node i.

Also, without loss of generality, we have

pgi = z̃
g
i p

g,max
i , pg

i
= z̃gi p

g,min
i , ∀i ∈ N + (64)

where pg,max
i and pg,min

i denote the rated capacity and min-
imum output of active power generators, while z̃gi is a pre-
specified parameter that describes their availability status. Note
that z̃gi = 0 indicates that the generating units are offline (or not
deployed) such that pgi = pgi = 0. Otherwise, when z̃gi = 1, the
nodal generation will be activated, then we have pgi ≥ pgi ≥ 0.

Corollary 3. The strong duality of MOPF-Cr holds if (i) the
upper bounds of load curtailment variable sc are positive and
sufficiently large, and (ii) for every i ∈ N +, either z̃gi = 0 or
pg,min
i ≤ Re(s̃di ).

Proof. Because of (59)-(64), the nodal injection variable si
satisfies (65)-(66) for all i ∈ N +:

z̃gi p
g,min
i −Re(s̃di ) ≤ Re(si) ≤ z̃gi p

g,max
i + pci −Re(s̃di ) (65)

−Im(s̃di ) ≤ Im(si) ≤ z̃vi qv,max
i + qci − Im(s̃di ) (66)

Clearly, we have pi, qi > 0 if pci and qci are sufficiently large.
We also have q

i
= −Im(s̃di ) ≤ 0 based on (63). Moreover, the

second statement in Corollary 3 deduces z̃gi p
g,min
i −Re(s̃di ) ≤

0. Thus it follows condition C1-(iv) that (58)-(62) is strictly
feasible, which ensures the strong duality of MOPF-Cr. ∎
Remark 4. Note that a large bound could rarely lead to irra-
tional load curtailment (i.e., the amount of curtailment exceeds
the nominal load capacity) whenever MOPF-Cr achieves its
global optimum. That is because: (a) the penalty factor for
load curtailment is usually very large; (b) a unified penalty
factor is typically applied for every node. Furthermore, if the
objective function (1) is affine or convex quadratic while both
conditions in Corollary 3 can be satisfied, we denote this
version of MOPF-Cr as MOPF-SOCP.

Corollary 4. The modified OPF formulation in MOPF-SOCP
has the strong duality.

V. NUMERICAL VERIFICATION

Numerical evaluations are conducted on IEEE 33-bus, 69-
bus test networks and SCE 47-, 56-bus networks (i.e., two real-
world distribution systems served by the Southern California
Edison (SCE) company). We aim to verify that: 1) non-
negligible duality gaps exist in the standard SOCP formula-
tions for AC OPF in both the test networks and real-world
systems; and 2) the modifications based on the proposed
sufficient conditions C1-C3 lead to the strong conic duality.

A. Test Systems

Similar to those in Section III, the test distribution networks
(originally without power sources) are upgraded by adding the
PV panels and shunt capacitors (or static Var generators) as
active and reactive power sources. Fig. 2 presents the modi-
fied system structures of IEEE 33-bus and 69-bus networks.
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(a) IEEE 33-Bus Network

(b) 69-Bus Network

Fig. 2. Test Radial Power Networks

Detailed network parameters are available in [36]. Also, the
parameters of SCE distribution systems can be referred to [9].
Note that the variability of PV generation and load profiles are
represented by a large set of scenarios (including more than
12,000 instances). Following the ideas in Ref [37], the random
scenarios are produced using Latin Hypercube sampling (LHS)
technique based on the historical solar and load profiles. By
fitting the sampling data into (65)-(66), we derive a cluster of
power boundary parameters, i.e., [p

i
, pi] and [q

i
, qi].

Additionally, we mention that every OPF models (including
their primal and dual forms) are computed by GUROBI with
an optimality tolerance for termination as 1.00E-04 and the
time restriction to 600 seconds. All experiments are performed
in the MATLAB environment on a personal computer with
Intel Core i7-7820HQ 2.90GHZ processor and 32GB RAM.

B. Existence of Duality Gaps

The primal/dual OPF-SOCPs of the IEEE test networks
and SCE systems are computed to derive the relative duality
gaps. Table II presents the results of strong duality test under
different instances of PV outputs and load demands. The
average gaps and the maximum gaps are recorded in columns
“Avg-G” and “G+” respectively. Let ε denote the acceptable
relative gap for strong duality, which means that the instance
with a relative duality gap less than ε can be considered to
hold the strong duality. Then, we record the number and ratio
of instances that fail the strong duality test (i.e., weak duality
instances) in columns “N WD” and “R WD” with respect to
different acceptable relative gap, i.e., ε = 1%, ε = 0.1%, and
ε = 0.01%. Correspondingly, the ratio of instances that have
the strong duality is given in column “R SD”. In addition,
we record the average run time (as in column Avg-T) and the
maximum run time (as in column T+) to validate the solution
status. The solution time is counted in seconds (secs).

As can be seen from Table II, all instances are computed to
optimality within the time limit of 600 secs. The average time
and the maximum time to compute the OPF-SOCP of original
systems are 8.63 secs and 63.27 secs (as reported by a 69-bus
test instance) respectively. That means, the difference between
the actual global optimal solution and the solution reported by
GUROBI is no more than 1.00E-4. Nevertheless, we observe
the non-negligible duality gaps (i.e., larger than pre-specified
gap tolerance) in the results of almost all test systems. The
largest duality gap occurs in some instance of SCE 56-bus
system and reaches 7.96%. So, such a large gap clearly
cannot be attributed to numerical error or computational time
restriction, and therefore fails the strong duality test.

Next, we discuss our test results in details.

1) When ε = 1%, although we can claim that most instances
have the strong duality, there still exist 20 out of 12,765
instances failing our test. The worst case occurs on the
SCE 56-bus system, where 0.45% of the instances report
a duality gap larger than 1%.

2) When ε = 0.1%, the number of instances that fail
our test has significantly increased from 20 to 206.
Correspondingly, the ratio of strong duality instances
drops. For example, when ε = 1%, all of the instances
in 69-bus network can be claimed to have the strong
duality. This ratio decreases to 98.07% when ε = 0.1%.
Similar observations can be obtained from the results of
other three test systems.

3) When ε = 0.01%, the number of instances that fail
our test has reached 423. Indeed, more than 2.40% of
the instances of 33-bus, 69-bus, and 56-bus distribution
networks are observed to have a duality gap larger
than 0.01%. By applying such standard, there will be
8.65% of the weak duality instances for SCE 47-bus
system. The dual solution of these instances may not be
applicable for practical use.

Overall, 3.31% of all instances in test systems demonstrate a
duality gap larger than 0.01%, which is a nontrivial proportion.
Hence, we may conclude that the strong duality property does
not hold in general for the OPF-SOCP formulation.

C. Verification of Conditions C1-C3

The proposed conditions C1-C3 can be satisfied through the
following strategies:

1) Strategy for C1: By using the strategy in Section IV-C,
MOPF-SOCP is adopted to satisfy C1.

2) Strategy for C2: The first part of C2 can be satisfied by
adjusting the physical parameters of radial network (i.e.,
modifying either the resistance or the reactance to make
their ratios non-increasing along the paths from the root
node to leaf nodes), while its second part requires for a
sufficiently large bound on reactive load curtailment.

3) Strategy for C3: The realization of C3 is similar to C2
except that the bound on active load curtailment should
be very large, while the ratios of resistance to reactance
are required to be non-decreasing along the paths from
the root node to leaf nodes.
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TABLE II
STRONG DUALITY TEST ON ORIGINAL SYSTEMS

Test Systems Avg-G G+
1.00% 0.10% 0.01% Avg-T T+

N WD R WD R SD N WD R WD R SD N WD R WD R SD /sec /sec

IEEE 33-Bus 0.0026 0.0396 4 0.13% 99.87% 29 0.93% 99.07% 80 2.57% 97.43% 1.67 2.02

69-Bus Network 0.0019 0.0049 0 0 100.00% 100 1.93% 98.07% 129 2.49% 97.51% 18.96 63.27

SCE 47-Bus 0.0014 0.0176 3 0.19% 99.81% 38 2.45% 97.55% 134 8.65% 91.35% 1.84 29.70

SCE 56-Bus 0.0056 0.0796 13 0.45% 99.55% 39 1.34% 98.66% 80 2.75% 97.25% 1.28 1.47

TABLE III
STRONG DUALITY TEST ON MODIFIED SYSTEMS

Test Conditions Avg-G G+ R WD R SD Avg-T/sec T+/sec

IEEE 33-Bus
Modified by C1 1.688E-06 5.182E-05 0% 100.0% 2.47 7.11
Modified by C2 3.923E-07 1.294E-06 0% 100.0% 2.42 7.17
Modified by C3 4.627E-07 3.616E-06 0% 100.0% 2.43 7.14

69-Bus Network
Modified by C1 1.956E-06 2.475E-05 0% 100.0% 25.89 63.86
Modified by C2 1.627E-06 3.869E-06 0% 100.0% 2.29 3.88
Modified by C3 7.689E-06 2.684E-05 0% 100.0% 2.30 3.80

SCE 47-Bus
Modified by C1 8.366E-06 9.606E-05 0% 100.0% 1.69 19.19
Modified by C2 8.022E-07 2.268E-06 0% 100.0% 1.35 2.25
Modified by C3 5.706E-07 3.499E-06 0% 100.0% 1.36 3.44

SCE 56-Bus
Modified by C1 4.474E-07 2.111E-06 0% 100.0% 1.30 3.77
Modified by C2 8.927E-07 2.927E-06 0% 100.0% 1.27 2.11
Modified by C3 4.900E-07 1.667E-06 0% 100.0% 1.31 3.64

The aforementioned strategies are applied to modify our test
systems, and their primal and dual instances are computed to
optimality as presented in Table III. Also, if we assume that
the strong duality holds if the relative gap between optimal
values of the primal and dual problems is less than or equal
to 0.01% (i.e., ε = 0.01%), we report the proportions of weak-
duality and strong-duality instances in columns “R WD” and
“R SD” respectively.

As indicated by Table III, the computation time for modified
OPF-SOCPs is comparable to the original ones. The average
time and the maximum time to solve the OPF problem of
modified systems are 5.20 secs and 63.86 secs respectively.
Hence, those modified instances can be easily computed to
optimality. Also, their duality gap are less than 1.00E-4
(mostly below 1.00E-5). For instances of the 56-bus system,
which have the largest duality gap, their modified instances are
with a maximum duality gap as 2.927E-06. It is reduced by
orders of magnitude. The aforementioned results thus support
our derivation on those sufficient conditions as the optimal
value difference between the primal and dual problems are
numerically negligible.

VI. CONCLUSION

This paper has demonstrated that the popular SOCP for-
mulation for AC OPF in a radial network does not have the
strong duality property in general. Nevertheless, it is proved
that the strong duality holds if either of conditions C1-C3 can
be met. In particular, some of these sufficient conditions can
be easily satisfied through minor modifications. In addition to
theoretical reasoning, our numerical studies confirm that non-
negligible duality gaps do exist in SOCP formulations for AC

OPF of IEEE 33-bus, 69-bus test networks and two real-world
distribution systems. By applying some modifications based on
C1-C3 in those systems, we then observe the strong duality
in all of their test instances, which validates our proposed
sufficient conditions. We expect that the presented results
provide a substantial support to many SOCP related AC OPF
studies, and pave the way to address the strong duality issue
in other network structures.

APPENDIX A
DERIVATION OF DUAL OPF-SOCP PROBLEM

The dual formulation of OPF-SOCP can be derived through
the following procedure.

1) Step 1: We first reformulate constraints (2)-(4), (6)-(8),
and (9) to a group of real-valued inequalities. Let si = pi+ iqi,
Sij = Pij + iQij , zij = rij + ixij , which separate all those
complex-form constraints, the primal OPF-SOCP can thus be
rewritten as:

OPF − SOCP ∶ Jp =min ∑
(i,j)∈E

rij`ij (67)

s.t. pi = Pij − ∑
k∶k→i

(Pki − rki`ki), ∀i ∈ N + (68)

qi = Qij − ∑
k∶k→i

(Qki − xki`ki), ∀i ∈ N + (69)

p0 = − ∑
k∶k→0

(Pk0 − rk0`k0) (70)

q0 = − ∑
k∶k→0

(Qk0 − xk0`k0) (71)

vi − vj = 2(rijPij + xijQij) − (r2
ij + x2

ij)`ij ,∀(i, j) ∈ E (72)

0 ≤ `ij ≤ `ij , ∀(i, j) ∈ E (73)
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vi ≤ vi ≤ vi, ∀i ∈ N + (74)
p
i
≤ pi ≤ pi, ∀i ∈ N + (75)

q
i
≤ qi ≤ qi, ∀i ∈ N + (76)

XXXXXXXXXXXXX

2Pij

2Qij

`ij − vi

XXXXXXXXXXXXX2
≤ `ij + vi, ∀(i, j) ∈ E (77)

where (77) is the standard form of SOCP constraint (9). Let
Yij = [Y a

ij Y b
ij Y c

ij]
T = [2Pij 2Qij `ij − vi]T and yij =

`ij + vi for all (i, j) ∈ E , the conic inequality (77) can be
equivalently expressed as the following constraints:

∥Yij∥2 ≤ yij , ∀(i, j) ∈ E (78)
Y a
ij = 2Pij , ∀(i, j) ∈ E (79)

Y b
ij = 2Qij , ∀(i, j) ∈ E (80)
Y c
ij = `ij − vi, ∀(i, j) ∈ E (81)
yij = `ij + vi, ∀(i, j) ∈ E (82)

where Y a
ij , Y b

ij , and Y c
ij denote the components of vector Yij .

2) Step 2: Let πi, τi, π0, τ0, θij , ρij , (γli, γui ), (φli, φui ),
(ϕl

i, ϕ
u
i ), αij , σij , ςij , κij , and ωij denote the dual variables

associated with constraints (68)-(76) and (78)-(82), we develop
the Lagrangian function (i.e., L) for OPF-SOCP and reorga-
nize it with respect to the primal variables:

inf
p,q,P ,Q,v,`

L =min ∑
i∈N+
(viγui − viγli) + ∑

(i,j)∈E
`ijρij

+ ∑
i∈N+
(piφui − piφ

l
i + qiϕu

i − qiϕ
l
i)

+ ∑
i∈N+
[pi (−πi + φli − φui ) + qi (−τi +ϕl

i −ϕu
i )]

+p0(−π0) + q0(−π0)
+ ∑
(i,j)∈E

Pij (πi − πj + 2rijθij − σij)

+ ∑
(i,j)∈E

Qij (τi − τj + 2xijθij − ςij)

+ ∑
i∈N+

vi (−θij + ∑
k∶k→i

θki + γli − γui + κij − ωij)

+ ∑
(i,j)∈E

`ij[rij + rijπj + xijτj − (r2
ij + x2

ij)θij

−ρij − κij − ωij]
+ ∑
(i,j)∈E

yij (ωij − αij)

+ ∑
(i,j)∈E

(αij ∥Yij∥2 + ν
T
ijYij) (83)

where we define a vector ν that is composed of dual variables
corresponding to (79)-(81), such that

νij = [σij ςij κij]T , ∀(i, j) ∈ E (84)

3) Step 3: An essential step of constructing the dual form
of OPF-SOCP is to minimize the Lagrangian function L.
To achieve this target, we first consider the infimum of
αij ∥Yij∥2 + ν

T
ijYij following the ideas in [35].

Proposition 1. For any Yij that minimizes L, we have

inf
Yij

αij ∥Yij∥2 + ν
T
ijYij = {

0 ∥νij∥2 ≤ αij

−∞ otherwise

for all (i, j) ∈ E .

According to Proposition 1 (which follows the Cauchy-
Schwarz inequality), when ∥νij∥2 ≤ αij , the rest part of L (as
denoted by L̃) becomes an unconstrained LP, whose optimality
condition can be expressed as:

∇L̃(x)∣x=p,q,P ,Q,v,` = 0 (85)

4) Step 4: By maximizing the infimum of L, we derive the
dual OPF-SOCP as in the following:

Jd = max
π,θ,ρ,γ,φ,σ,ς,ω

inf
p,q,P ,Q,v,`

L

=max ∑
i∈N+
(viγui − viγli) + ∑

(i,j)∈E
`ijρij

+ ∑
i∈N+
(piφui − piφ

l
i + qiϕu

i − qiϕ
l
i) (86)

s.t. πi + φui − φli = 0, ∀i ∈ N + (87)
τi +ϕu

i −ϕl
i = 0, ∀i ∈ N + (88)

π0 = 0 (89)
τ0 = 0 (90)
πj − πi − 2rijθij + σij = 0, ∀(i, j) ∈ E (91)
τj − τi − 2xijθij + ςij = 0, ∀(i, j) ∈ E (92)
θij − ∑

k∶k→i

θki + γui − γli − κij + ωij ≤ 0, ∀i ∈ N + (93)

−(rijπj + xijτj) + (r2
ij + x2

ij)θij + ρij + κij + ωij ≤ rij ,
∀(i, j) ∈ E (94)

XXXXXXXXXXXXX

σij
ςij
κij

XXXXXXXXXXXXX2
≤ ωij , ∀(i, j) ∈ E (95)

Note that ∑(i,j)∈E yij (ωij − αij) is minimized if and only if
αij = ωij for all (i, j) ∈ E . So the optimality condition in
Proposition 1 is equivalent to ∥νij∥2 ≤ ωij . Together with
(84), we have the dual SOCP constraints as in (95).
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