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1 Abstract

2 Dietary DNA metabarcoding enables researchers to identify and characterize trophic interactions 

3 with a high degree of taxonomic precision. It is also sensitive to sources of bias and contamination 

4 in the field and lab. One of the earliest and most common strategies for dealing with such 

5 sensitivities has been to remove low-abundance sequences and conduct ecological analyses based 

6 on the presence or absence of food taxa. Although this step is now often perceived to be necessary, 

7 evidence of its sufficiency is lacking and more attention to the risk of introducing other errors is 

8 needed. Using computer simulations, we demonstrate that common strategies to remove low-

9 abundance sequences can erroneously eliminate true dietary sequences in ways that impact 

10 downstream inferences. Using real data from well-studied wildlife populations in Yellowstone 

11 National Park, we further show how these strategies can markedly alter the composition of dietary 

12 profiles in ways that scale-up to obscure ecological interpretations about dietary generalism, 

13 specialism, and composition. Although the practice of removing low-abundance sequences may 

14 continue to be a useful strategy to address research questions that focus on a subset of relatively 

15 abundant foods, its continued widespread use risks generating misleading perceptions about the 

16 structure of trophic networks. Researchers working with dietary DNA metabarcoding data—or 

17 similar data such as environmental DNA, microbiomes, or pathobiomes—should be aware of 

18 drawbacks and consider alternative bioinformatic, experimental, and statistical solutions.
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20 1. Introduction

21 Advances in dietary DNA metabarcoding have revolutionized our ability to address some of the 

22 most fundamental goals in ecology: to quantify the diversity of species and understand how they 

23 interact. Myriad technical developments in molecular ecology have improved our ability to 

24 identify foods, assess dietary diversity and overlap, and measure the relative abundance of taxa in 

25 the diets of wild animals, livestock, and humans (Deagle et al., 2009; Mata et al., 2019; Pegard et 

26 al., 2009; Reese et al., 2019; Valentini et al., 2009). Yet the utility of dietary DNA metabarcoding 

27 methods has occasionally come under scrutiny over doubts about the accuracy of a particular step 

28 in the bioinformatic pipelines that ultimately determine how we interpret the data.

29 Among the most controversial decisions about how to analyze dietary DNA has been how 

30 to convert sequence count data into dietary profiles. Early research primarily aimed to validate 

31 DNA metabarcoding as a method to generate accurate and precise lists of food species (Shehzad et 

32 al., 2012; Soininen et al., 2009; Valentini et al., 2009; Zeale et al., 2011). Researchers quickly 

33 became aware that contamination, PCR and sequencing errors, tag jumps, and biological and 

34 technical biases can complicate this aim (Pompanon et al., 2012). High-throughput sequencing 

35 technologies generate thousands of low-quality and erroneous sequences with each run. Since 

36 most errors occur at low relative abundances, truncating the long tail of the sequence abundance 

37 distribution clearly removes many such errors. Because eliminating errors is desirable, and 

38 because the goal of generating a list of food species can be accomplished using presence/absence 

39 data, an apparently simple solution was to eliminate low-abundance sequences and conclude that 

40 the rest were ‘present’ in a sample. Yet despite the focus on presence/absence data, diet datasets 

41 often retained biologically meaningful signals of sequence relative read abundance (RRA) that 

42 could be corroborated by feeding trials (Deagle et al., 2009; Willerslev et al., 2014), stable-

43 isotopes analysis (Kartzinel et al., 2015), and microhistology (Soininen et al., 2009), albeit often 

44 with the need for correction factors (Thomas et al., 2016) or the lumping of sequences into 

45 operational taxonomic units (Clarke et al., 2014). Observations like these established awareness of 

46 the need to balance the aims of quantifying both the presence and relative read abundance of ‘true’ 

47 food species against the risk of including errors.

48 Researchers continue to emphasize the occurrence of relatively abundant taxa because of 

49 the legacy of the early literature on presence/absence data, because it is an apparently simple 

50 solution to the risk of including errors, and because of the assumption that the most ecologically 

51 and nutritiously important foods are abundant. A common strategy is simply to remove taxa from A
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52 a sample that do not exceed a minimum threshold. Dietary analyses may rely on minimum overall 

53 count thresholds (e.g., Valentini et al., 2009) or, more often in recent studies, sample-wise RRA 

54 thresholds (Ait Baamrane et al., 2012; Kartzinel et al., 2015; Pompanon et al., 2012). Since 

55 removing sequences with low overall or sample-wise RRA can eliminate low-abundance errors, it 

56 is often characterized as a ‘conservative’ option that minimizes the risk of including false-positive 

57 sequences (Alberdi et al., 2018; Ando et al., 2020). Crucial drawbacks to this strategy, however, 

58 include the often arbitrary and subjective selection of thresholds, the inability to eliminate errors 

59 that exceed whatever threshold is selected, and the risk of inadvertently excluding true dietary taxa 

60 while inflating the apparent importance of the taxa that remain (Deagle et al., 2019; Kelly et al., 

61 2019). There is thus much confusion about how to employ this strategy, and evidence of its 

62 efficacy is lacking, creating a need to focus on appropriate interpretations of rare taxa (Ando et al., 

63 2020).

64 What does it mean to be ‘conservative’ with dietary DNA metabarcoding data? The answer 

65 to this question must be evaluated in the context of the goals of a particular study. More than a 

66 decade ago when the predominant goal in this field was to evaluate whether a particular taxon was 

67 present in a sample, it may have been prudent to discard low-abundance sequences as putative 

68 contaminants in order to avoid including spurious taxa. On the other hand, there is a risk in 

69 removing low-abundance sequences that could represent rare food taxa and provide information 

70 about animal nutrition, foraging behavior, and the structure of food webs. Understanding the 

71 ecology and evolution of dietary specialization, for example, requires differentiation of dietary 

72 specialists that concentrate on one or a few resources from dietary generalists that utilize a more 

73 even array of resources (Araújo et al., 2011; Bolnick et al., 2003). Understanding how individual 

74 feeding interactions scale-up to establish the links and nodes of complex trophic networks requires 

75 determination of interaction strengths, and whether ‘weak’ links are as important to the network as 

76 they are often theorized to be (Pringle & Hutchinson, 2020). Real sources of variation in dietary 

77 breadth and interaction strength will necessarily translate into variation in the number of rare 

78 dietary DNA sequences that appear in data, and this in turn ensures that any bioinformatic 

79 decision about how to treat low-abundance sequences will differentially impact the dietary profiles 

80 of animals with broad versus narrow diets. Awareness of how common strategies for analyzing 

81 low-abundance sequences distort dietary profiles and alter ecological interpretations is critical for 

82 the appropriate treatment of data.
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84 2. Differential impacts of data filtering on simulated diets

85 Although abundance-filtering is common in DNA metabarcoding pipelines, the RRA cutoff used 

86 to determine which taxa count as ‘present’ varies widely among studies (Alberdi et al., 2018; 

87 Pompanon et al., 2012). (Deagle et al., 2019) suggested that a 1% RRA threshold may be suitable 

88 for many dietary studies, but values in the range of 0-5% are not uncommon (e.g., Alberdi et al., 

89 2018; Bohmann et al., 2018; Kartzinel et al., 2019; Komura et al., 2018; ter Schure et al., 2021). 

90

91 2.1. Dietary profile simulations

92 Consider variation in both the richness and rank-abundance distribution of animal diets. Diets are 

93 generally characterized by skewed distributions that are concentrated on a small number of 

94 predominant resources but also include many rare resources (Forister et al., 2015). These heavy-

95 tailed distributions can be approximated by a power law function known as the Pareto distribution 

96 (Appendix S1 provides detailed simulation methods). Dietary specialists, such as the koala 

97 (Phascolarctos cinereus), usually consume a very small number of food taxa, and this type of 

98 dietary profile can be represented by a highly-skewed distribution (e.g., Figure 1). In contrast, 

99 dietary generalists, such as the racoon (Procyon lotor), tend to consume a wide variety of 

100 resources that can be represented by a more even distribution (e.g., Figure 1). The skewness of a 

101 Pareto distribution is denoted by a shape parameter, α (Figure S1).

102 To develop theoretical intuition, we simulated diet profiles of generalist and specialist 

103 consumers (Appendix S1). In our simulations, we considered a set of three hypothetical consumers 

104 with access to an identical food base comprising 100 potentially suitable taxa. We assumed that 

105 each consumer differed only in the specificity with which it consumed food taxa. This reflects the 

106 aims of many empirical studies to characterize feeding specializations, food preferences, foraging 

107 behaviors, competition, or other ecological factors that influence the composition of diets and the 

108 structure of trophic networks (Figure 1a-c; Appendix S1). For each consumer, the probability that 

109 each of the 100 food taxa would be selected was calculated using the R package “Pareto” v.2.3.0 

110 (Riegel, 2018). To generate diet profiles that differed in their degree of specialism, we defined 

111 probability distributions using skew values to represent specialist (α = 0.20), intermediate (α = 

112 0.35), and generalist (α = 1.00) diets (Appendix S1, Figure S2). From each of these probability 

113 distributions, we made 25,000 draws to simulate a common number of DNA metabarcoding 

114 sequence-reads obtained per sample with an Illumina MiSeq. The resulting diets are thus 

115 theoretically free of any differences in sampling, contamination, technical bias, and error—they A
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116 represent an ideal dataset in which draws of taxa are made in proportion to their true abundance. 

117 The specialist’s diet profile comprised a much narrower subset of the 100 available resources 

118 compared to the intermediate and generalist feeder (Figure 1a-c). 

119

120 2.2 Skewed diet profiles are differentially impacted by the same thresholds

121 To evaluate the theoretical impact of removing low-abundance taxa from the three simulated diet 

122 profiles, we incrementally filtered taxa that did not exceed thresholds of 0-5% RRA (Appendix 

123 S1). We found that abundance-filtering differentially impacted the relatively skewed diet profiles 

124 of specialist and intermediate feeders compared to the relatively even diet profile of the generalist 

125 (Figure 1). Incrementally removing taxa resulted in a large decrease in richness for each sample, 

126 but an immediate 75-80% loss of dietary richness occurred after applying only a mild 0.2% filter 

127 to the specialist and intermediate diet profiles, respectively (Figure 1d-e). In contrast, the 

128 generalist diet profile did not exhibit any reduction in richness until more stringent thresholds 

129 were applied (Figure 1d-e). Then, at an intermediate threshold of 2.8%, diet profiles converged to 

130 generate the incorrect impression that all samples had similar richness (Figure 1d; grey dashed 

131 line). At this level, there was a >95% reduction in the inferred richness of the intermediate and 

132 generalist diets (Figure 1e; grey dashed line). All else equal, these simulations reveal how any 

133 threshold can have a qualitative impact on the apparent richness and composition of a sample in 

134 ways that differ depending on its true composition.

135

136 3. Differential impacts of data filtering on well-studied wildlife diets

137 We sought to illustrate how abundance-filtering can qualitatively alter interpretations of real 

138 dietary DNA metabarcoding data by testing predictions about (i) seasonality and (ii) trait-based 

139 differences in the diets of large herbivores from Yellowstone National Park (Appendix S2 

140 provides detailed methods for wildlife diet analysis). Following a well-established annual 

141 migration, Yellowstone bison (Bison bison) and bighorn sheep (Ovis canadensis) follow 

142 springtime plant green-up from their lower elevation winter range to higher elevation meadows. 

143 We predicted both species would exhibit greater dietary richness in summer compared to winter 

144 because: both species graze on graminoids year round; both have access to a larger number of 

145 plant species in summer; both incorporate species-rich suites of forbs into summer diets; and both 

146 incorporate species-poor shrubs into winter diets (Bergmann et al., 2015; Craine, 2021; Geist, 

147 1971; Peden et al., 1974; Schroeder, 2020; Wagner & Peek, 2006). We further predicted that bison A
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148 would have greater dietary richness than bighorn sheep because although both species have 

149 ruminant digestive systems, bison are much larger (~625 vs. 75 kg body mass), have wider 

150 muzzles, and have larger home ranges. Thus, all else equal, bison should exhibit greater dietary 

151 richness because each individual will encounter and/or be able to consume a greater variety of 

152 available forage (Clauss et al., 2013). Yet despite firmly established allometric differences in 

153 digestive physiology that support our hypothesis, recent studies of African ungulates have reported 

154 a lack of correlation between dietary richness and body size (Kartzinel et al., 2015; Kartzinel & 

155 Pringle, 2020). The taxonomic precision of DNA metabarcoding could help reconcile such cases 

156 where established allometric and foraging ecology theories appear to diverge from data, and our 

157 results will show how crucial it is to consider the effects of abundance-filtering on these types of 

158 downstream ecological interpretations.

159 Our illustrative analyses of bison and bighorn sheep diets are based on 35 samples from 

160 winter and summer (median = 10 per species per season) analyzed by sequencing the P6 loop of 

161 the chloroplast trnL(UAA) intron and using publicly available plant reference data (Appendix S2). 

162 We required a 100% match between a dietary sequence and a reference sequence that was present 

163 in the library to include a plant taxon in our analysis, thereby minimizing the risk of introducing 

164 sequencing errors and chimeras. This mapping strategy is reasonable when researchers have 

165 access to an extensive reference library of potential food sequences—enabling accurate sequence 

166 identification and efficient error elimination—although it may not be as appropriate for studies 

167 involving markers and/or taxa with poor reference coverage compared to what is available for 

168 trnL-P6 (Pompanon et al., 2012). Overall, 91.1% of high-quality sequence reads were mapped to 

169 the reference library across all 35 samples (1,071,130 of 1,175,453 sequences), whilst a median of 

170 93.2% of reads mapped to the reference library on a per sample basis. From these mapped reads, 

171 we initially characterized 357 plant sequences and retained a subset of 355 sequences after 

172 rarefying samples to equal sequencing depth (Dryad DOI: 10.5061/dryad.kwh70rz4s), with 88% 

173 identified to family (312 of 355 sequences), 55% to genus (196 of 355), and 23% to species (82 of 

174 355). Because the resulting diet profiles comprise only those taxa that match a reference plant 

175 sequence, they could represent an underestimate of the true plant richness in a sample given that: 

176 (i) a subset of available plant species may not yet be included in public data and/or (ii) the trnL-P6 

177 marker has a limited ability to differentiate among certain closely related species (Taberlet et al., 

178 2007). Importantly, if these diet profiles underestimate the true dietary richness, it will be due to A
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179 limitations inherent to the marker and available reference data rather than an artifact arising from 

180 data-filtering decisions. 

181 Following the same procedure that we applied to simulated diets, we filtered taxa from 

182 samples using 0-5% RRA thresholds (Appendix S2). We compared differences in the inferred 

183 dietary richness within and between species based on individual samples, based on the average 

184 richness across samples, and based on the total richness of each population after accounting for 

185 differences in sample size. We observed that thresholds can: (i) alter the rank-order of inferred 

186 richness values, (ii) obscure patterns of seasonal variation within and among species, and (iii) 

187 obscure differences in the overall dietary breadth of species.

188

189 3.1 Thresholds alter rank-order of dietary richness

190 Detailed comparisons of four representative samples show both intra- and inter-specific variation 

191 in the shape of diet profiles (Figure 2a-d). Differences in richness and evenness led to changes in 

192 the inferred rank-order of samples as low-abundance taxa were removed (Figure 2e), just as they 

193 did in the simulation study. The dietary richness of each sample decreased by ≥51% with a mild 

194 threshold of 0.2%. The sample with the lowest initial richness exhibited the largest apparent 

195 decline in richness (80% loss; Figure 2f). A larger threshold of 4% resulted in the conversion of 

196 both dietary richness and the percent loss of initial richness across all samples, regardless of the 

197 consumer species (grey dashed lines in Figure 2e-f). Thus, applying bioinformatic thresholds to 

198 real data reproduced the patterns observed in theoretical simulations and obscured ecologically 

199 meaningful differences in the shape of diet profiles: (i) a mild threshold led to a precipitous drop 

200 in richness for diet profiles with relatively narrow breadth, (ii) a more stringent threshold led to 

201 convergence in apparent richness between broad and narrow profiles, and (iii) different thresholds 

202 altered the rank-order of dietary richness that was inferred for this set of consumers. 

203

204 3.2 Thresholds obscure seasonal patterns dietary richness

205 Incrementally removing low-abundance taxa eroded the apparent increase in mean dietary richness 

206 across samples from winter to summer. The mean richness of bighorn sheep and bison diets was 

207 greater based on the totality of the sequence data in summer vs. winter, but this seasonal 

208 difference disappeared when low-abundance taxa were removed and only the subset of dominant 

209 dietary taxa remained (Figure 3a). With each threshold, there was a “dropout” of low-abundance 

210 grasses (family Poaceae), buckwheats (Polygonaceae), evening primroses (Onagraceae), and roses A
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211 (Rosaceae) in the diets of both species, in both summer and winter (Datasets S2-S3). In summer, 

212 however, there was a disproportionate loss of taxonomically diverse sequences: bighorn sheep 

213 samples lost sequences representing mustards (Brassicaceae) and legumes (Fabaceae; Dataset S2), 

214 while bison lost many sedges (Cyperaceae) and willows (Salicaceae; Dataset S3). Sequences 

215 remaining following the most stringent thresholds included a subset of common foods for both 

216 bighorn sheep (e.g., grasses, geraniums (Geraniaceae), and roses; Dataset S2) and bison (e.g., 

217 sedges and grasses; Dataset S3). Thus, although using thresholds in this way may help researchers 

218 identify the ‘core’ resources present, it can also generate the false impression that consumers have 

219 narrow diets, disproportionately exclude taxa from species-rich groups (e.g., grasses, forbs), and 

220 generate artificially simple trophic networks.

221

222 3.3 Thresholds obscure population-level differences in overall dietary breadth

223 The removal of low-abundance taxa differentially influenced each species’ total dietary richness. 

224 As above, incremental removal of taxa resulted in a large decrease in total richness inferred for 

225 both bighorn sheep and bison (Figures 3b, Dataset S4-S5). Dietary richness apparently increased 

226 from winter to summer for bighorn sheep, regardless of threshold. In contrast, seasonal differences 

227 in dietary richness were apparently reversed for bison, depending on threshold: total richness 

228 appeared greater in summer when no threshold was applied, but it appeared greater in winter 

229 whenever low-abundance taxa were removed (Figure 3b). This drop in summer dietary richness 

230 for bison was driven by the removal of a large number of taxa, each occurring at low relative 

231 abundance: asters, evening primroses, broomrapes (Orobanchaceae), and buttercups 

232 (Ranunculaceae; Dataset S5). A purported benefit of population-level analyses is the ability to 

233 ‘average out’ sampling stochasticity, since a resource that is erroneously excluded from one 

234 sample may still be registered in another for downstream analyses (Deagle et al., 2019; Kartzinel 

235 & Pringle, 2020). Our results illustrate the risk of presuming this outcome when consumers eat 

236 many food taxa that each represent a relatively small proportion of the diet. 

237

238 3.4 Ecological interpretations 

239 Apparent declines in richness with each threshold had the potential to alter support for our 

240 hypotheses. We predicted dietary richness would be maximized in summer for both species and 

241 found strong support for this prediction in the complete dataset (Figure 3). Abundance-filtering, 

242 however, eroded this seasonal pattern and, in the case of bison, reversed it (Figure 3). Similarly, A
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243 we predicted bison would have greater dietary richness than bighorn sheep; we observed this 

244 difference with the complete dataset, but abundance-filtering eroded or eliminated it (Figure 3). 

245 Evaluating bioinformatic strategies in light of natural history can guide interpretation. 

246 Ideally, information from comprehensive DNA barcode libraries would support taxonomic 

247 inference and facilitate error-filtering (Pompanon et al., 2012). Although we do not yet have a 

248 comprehensive library for the flora of Yellowstone, every sequence in our complete dataset was a 

249 100% match to publicly available sequence data and represented a realistic food for the animals 

250 we studied. Tracking taxa that dropped out of the dataset with each threshold enabled us to 

251 evaluate patterns (Datasets S2-S5). For example, wind-dispersed pollen deposition is thought to be 

252 a common source of low-abundance sequence contamination (Ando et al., 2018). However, we 

253 observed dropout of some wind-dispersed taxa that are palatable to these herbivores using a mild 

254 threshold (e.g., some grasses, sedges) while other wind-dispersed taxa from less palatable groups 

255 exceeded high thresholds (e.g., pine trees, Pinaceae). We observed this in summer when plants 

256 reproduce, and pollen contamination is likely, as well as in winter when plants are reproductively 

257 dormant. Although we cannot say definitively for any given sample whether a sequence represents 

258 a food that was deliberately eaten by the animal, we can use the observed variation in sequence 

259 representation to guide ecological interpretations. Indeed, quantifying this variation is a 

260 fundamental goal of dietary DNA metabarcoding research.

261

262 4. Strategies for improvement

263 There is nothing inherently wrong with excluding low-abundance taxa under at least two 

264 conditions: (i) the objective is to identify a subset of ‘core’ taxa that occur above a threshold or (ii) 

265 the rare sequences represent errors that persist in the data despite experimental controls and other 

266 bioinformatic strategies. Although DNA metabarcoding is useful for identifying core dietary taxa 

267 (scenario i), most studies aim to elucidate more complete diets and trophic networks (Ando et al., 

268 2020). There is thus a need to ensure that any suite of rare sequences to be analyzed are as free of 

269 error as possible, although this can be difficult to verify (scenario ii). Because there have been 

270 many improvements to sampling strategies and laboratory protocols that reduce the incidence of 

271 contamination (e.g., Alberdi et al., 2018; Ando et al., 2020; Creer et al., 2016; Mata et al., 2019; 

272 McInnes et al., 2017), we will focus on promising and transparent analytical strategies to account 

273 for low-abundance taxa.

274 A
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275 4.1 Computational and mathematical alternatives to arbitrary thresholds

276 Promising strategies provide alternatives to relying on arbitrary abundance thresholds. For 

277 example, the flexible simulation strategy we demonstrated above may be generally useful for 

278 evaluating the effects of analytical options on downstream ecological interpretations. This could 

279 include power analyses to assess the probability of detecting an effect or sensitivity analyses that 

280 evaluate any qualitative changes to the conclusion of a study that would result from different 

281 filtering strategies (Kartzinel et al., 2015; Kartzinel & Pringle, 2020). Related algorithms 

282 developed specifically for dietary DNA metabarcoding have potential to address drawbacks of 

283 arbitrary thresholds directly. For example, Bayesian strategies can be used to assess underlying 

284 uncertainties in the identification of ‘true’ sequences in a food web rather than assuming the 

285 suitability of a fixed cutoff (Cirtwill & Hambäck, 2021). 

286 Even without using RRA filters to purge rare sequences from analysis, it is possible to 

287 manage their impact on interpretations. For example, Hill numbers are a mathematically unified 

288 family of diversity indices that quantify diversity in units of effective number of species (Hill, 

289 1973), enabling researchers to upweight or downweight rare taxa using the scaling parameter q 

290 (Jost, 2006). The larger the q value, the greater the importance attributed to abundant taxa. The 

291 lowest q value is 0, which is equivalent to species richness (all taxa are counted equally). 

292 Increasing to q = 1 yields a value equivalent to the exponential of Shannon entropy (taxa are 

293 weighted in proportion to abundance without disproportionately favoring either rare or abundant 

294 ones). Finally, q = 2 equals the inverse of Simpson concentration, which upweights abundant taxa 

295 and discounts rare ones (Chao et al., 2014). Hill exponents can, therefore, be considered as the 

296 richness of all species (q0), the diversity of ‘typical’ species (q1), or the diversity of dominant 

297 species (q2). When rare taxa are considered to be of low importance, regardless of whether they are 

298 thought to be real or errors, researchers can use higher q values to downweight them (Alberdi & 

299 Gilbert, 2019). In contrast, if rare taxa are considered essential for proper understanding, 

300 researchers may rely on exact counts of taxa present (Alberdi & Gilbert, 2019).

301 To illustrate similarities and differences in using Hill numbers to downweight rare taxa 

302 compared to using thresholds to exclude them, we applied this method to our simulations and our 

303 Yellowstone data (Appendix S2). When downweighting emphasis on rare taxa from q0 to q2, the 

304 apparent diversity of food taxa converged asymptotically towards a low value (Figure 4). This 

305 familiar pattern is superficially similar to applying incremental thresholds to the data. In contrast 

306 to thresholds, however, Hill numbers had the desirable quality of retaining the rank-order of A
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307 samples. This contrast is especially evident in comparisons of simulated diet profiles with known 

308 dietary breadth, since the rank-order of the theoretical generalists and specialists was retained 

309 across all values of q but was inverted by the application of RRA thresholds (Figures 1e, 4a).

310

311 4.2 Multiple datastreams can corroborate and contextualize

312 Comparing independent datastreams can support inferences in dietary studies (Nielsen et al., 

313 2018). Ideally, researchers would qualitatively corroborate conclusions in light of strengths and 

314 weaknesses inherent to each method. Prior studies, for example, have combined DNA 

315 metabarcoding with direct feeding observations or experiments (Deagle et al., 2010; Thomas et al., 

316 2014; Willerslev et al., 2014), stable-isotope analysis (Craine et al., 2015; Kartzinel et al., 2015), 

317 and gut-content analysis or microhistology (King & Schoenecker, 2019; Newmaster et al., 2013; 

318 Soininen et al., 2009). 

319  To help contextualize our results for bison and bighorn sheep, we compared dietary 

320 diversity indices obtained from DNA metabarcoding with corresponding microhistology data. 

321 Microhistology is a method involving the visual examination of fecal material on slides (Appendix 

322 S2). An advantage of microhistology is the opportunity to identify taxa that may not be covered by 

323 the trnL-P6 marker we used in this study, such as lichens, mosses, and fungi. However, 

324 microhistology is so labor intensive that it is common to: (i) only identify taxa to higher 

325 taxonomic classifications (e.g., our analysis aimed to identify plant fragments to genus); (ii) group 

326 species into broad taxonomic or functional groups (Garnick et al., 2018; Mayes & Dove, 2000); 

327 (iii) underestimate the proportion of digestible forbs (King & Schoenecker, 2019; Shrestha & 

328 Wegge, 2006); and (iv) lump fecal deposits into ‘representative’ samples rather than analyzing 

329 each individually. 

330 Dietary DNA metabarcoding was better able to differentiate closely related food taxa than 

331 microhistology and thus revealed a greater diversity of foods. Consider the 58 grass genera known 

332 to occur in Yellowstone (Whipple, 2001). Microhistology identified only 9 grass taxa with genus-

333 level precision across all samples and seasons (Dataset S6, Figure S4), but DNA metabarcoding 

334 revealed between 22 and 40 grass DNA sequences [representing from 5 to 9 grass genera] across 

335 each species, depending on season (Dataset S4-S5). In principle, this means that up to 49 grass 

336 genera could be lumped into the ‘unknown Poaceae’ category of our microhistology data. While 

337 microhistology provides a reasonable estimate of overall ‘grass’ contributions to diets, it masks 

338 the contribution of each constituent grass species to diversity. Microhistology suggested that bison A
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339 had greater year-round dietary richness (q0) compared to bighorn sheep, although there was no 

340 significant difference in the number of typical (q1) or dominant (q2) plant taxa (Figure 5). In 

341 contrast, DNA further illuminated a significant effect of species and season on the typical (q1) and 

342 dominant (q2) number of plant taxa consumed by bison and bighorn sheep (Figure 5). Importantly, 

343 results obtained from both methods aligned closely when we used Hill numbers to downweight 

344 rare taxa (Figure 5). Taken together, these results support the interpretation that many rare taxa 

345 were present in the dietary DNA and accounting for them provided a finer level of detail that 

346 would not otherwise be possible. 

347

348 4.3 Transparency and reproducibility

349 Awareness of how data manipulations influence downstream analyses is vital to ensuring 

350 transparency and reproducibility. Given that different decisions about whether and how to use 

351 RRA-based filters in bioinformatic pipelines has the potential to alter ecological patterns, 

352 transparency will be crucial for high-resolution dietary data to accumulate in ways that make it a 

353 useful scientific resource. To ensure transparency, it is helpful to differentiate between the 

354 bioinformatic steps that are initially used to filter a dataset of errors from any subsequent 

355 summaries of the data or statistical analyses. In the literature, RRA-based filters have been used 

356 both for both purposes—to purportedly eliminate low-abundance contaminants and to summarize 

357 the relatively abundant ‘core’ resources—which complicates comparisons. Whereas many journal 

358 polices stipulate that DNA metabarcoding studies should publish tables of sequence read data, a 

359 review by (Ando et al., 2020) revealed that 46% of studies omitted them. Providing a quality- and 

360 contaminant-filtered count table of sequence data that has not otherwise been transformed, 

361 rarefied, or filtered to remove low-abundance sequences can help reviewers and other researchers 

362 evaluate interpretations that may be sensitive to the presence of rare sequences. Such tables are 

363 needed to enable further analyses, including those based on statistical frameworks designed 

364 specifically for sequence count data (e.g., DESeq2; Love et al., 2014). However, the literature may 

365 often give the impression that such datasets are filtered incompletely and potentially wrong. 

366 Complicating matters, researchers are increasingly able to work with commercial laboratories to 

367 generate dietary DNA profiles and need to be aware that these services often apply low-abundance 

368 filters by default. Good communication between purveyors and practitioners is critical, especially 

369 when detection of minor dietary components is needed (Scasta et al., 2019). Providing access to A
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370 more complete datasets does not preclude researchers from generating, analyzing, and sharing 

371 filtered versions of the data—but it does offer the advantage of transparency. 

372

373 5. Discussion 

374 The precautionary principle emphasizes caution and review before acting in the absence of 

375 conclusive evidence to support a decision (Van Der Sluijs et al., 2005). In the context of DNA 

376 metabarcoding, researchers face a dilemma: all else equal, will it tend to be better to include or 

377 exclude rare DNA sequences from analysis? Researchers initially suggested that prudence dictates 

378 a need to gather more evidence before including low-abundance sequences in analysis—excluding 

379 such sequences has thus often been framed as conservative (Brown et al., 2015; Pompanon et al., 

380 2012). We argue that it may often be prudent to retain rare sequences and weigh them 

381 appropriately based on relative abundance rather than risk obscuring real patterns in the data—that 

382 the rarity of a sequence alone is insufficient evidence of an error or otherwise unimportant trophic 

383 link to justify its removal. Advances in conceptual and methodological approaches for DNA 

384 metabarcoding now offer alternatives to abundance-filtering that could help researchers better 

385 balance these risks and support more robust ecological interpretations.

386 Prior empirical evaluations of abundance-filtering in dietary and environmental DNA 

387 studies have shown that many contaminants (but not all) tend to occur at low relative abundance 

388 (Alberdi et al., 2018; Ando et al., 2018). By quantifying plant DNA contamination in samples 

389 from herbivores fed controlled diets, for example, (Ando et al., 2018) noted that removing 

390 sequences below 1% RRA reduced the probability of incorporating contaminants. There are at 

391 least two ways to reconcile experimental results like this with the issues we illustrated here: (i) 

392 researchers may benefit from obtaining empirical estimates of contamination rates and sources 

393 that they can use as evidence to support decisions about what sequences to exclude; (ii) since 

394 contaminants rarely rise to high relative abundance, they represent a source of error that can be 

395 managed by using appropriate statistics and by weighing sequences based on RRA. Importantly, 

396 although a certain threshold may be shown to reduce the probability of including contaminants in 

397 one study, it does not necessarily follow that it is a procedure that eliminates all contaminants or 

398 retains all relevant sequences. Similar thresholds could be inappropriate in other studies since 

399 contamination rates vary among target taxa, environments, barcode regions, and methods (Ando et 

400 al., 2020). Hence, focus on how to appropriately account for rare sequences is warranted.A
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401 We began this paper by asking when and whether using thresholds to remove low-

402 abundance sequences makes sense, noting the importance of addressing this question with respect 

403 to a particular research objective. If the aim is to determine whether the DNA of a particular taxon 

404 is definitively present in a sample, then it might be appropriate to remove low-abundance 

405 sequences. If, however, the goal is to compare dietary profiles or infer the topology of trophic 

406 networks, then it is risky to abundance-filter data in light of the evidence that removing low-

407 abundance taxa can distort comparisons of interest. In particular, removing rare taxa from the diet 

408 profiles of species with a relatively high degree of individual diet specialization—including 

409 predators and phytophagous insects (Bolnick et al., 2007; Codron et al., 2016)—is liable to 

410 artificially accentuate the inferred level of inter-individual variation by omitting overlapping food 

411 sources from a subset of diet profiles. In contrast, the effect on diet profiles from populations with 

412 less inter-individual variation—such as large mammalian herbivores that tend to have broader and 

413 more even diet profiles (Codron et al., 2016)—could be to eliminate sources of variation in ways 

414 that artificially homogenize the group.

415 Accounting for rare food taxa can be integral to understanding animal diets. Wild species 

416 are often observed consuming unexpected food items, which can inspire fascination and challenge 

417 long-standing dogma (Burton, 2018). For example, many species are unable to obtain vital trace 

418 elements through ‘normal’ diets (Pringle & Hutchinson, 2020). Crocodilians are generally 

419 assumed to be obligate carnivores incapable of digesting plant proteins and polysaccharides, but 

420 yet they regularly consume fruits to supplement an otherwise carnivorous diet (Platt et al., 2013). 

421 Many ungulates in contrast are thought to be obligate herbivores but yet surprising examples of 

422 protein-rich food sources are regularly documented, including deer eating songbirds (Pietz & 

423 Granfors, 2000) and warthogs hunting antelope (Roberts, 2012). Large mammalian herbivores are 

424 able to feed on a broad array of food plants, but nevertheless feed preferentially on a subset of 

425 available plant species while avoiding others (Owen-Smith & Novellie, 1982). Animals may 

426 rarely eat desirable foods if they benefit from diversifying their diets to dilute taxon-specific 

427 defense compounds (Freeland & Janzen, 1974), if they feed in ways that suppress the local 

428 availability of preferred foods (Bryant et al., 1991; Kartzinel & Pringle, 2020; Spiller & Schoener, 

429 1998), or if they experience competitive displacement (Pringle et al., 2019). For all of these 

430 reasons, important dietary taxa may only register in diets at low relative abundances and 

431 improving our ability to account for them is a major research priority.A
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432 Knowing that many important foods can occur at low relative abundances poses a 

433 challenge for dietary DNA metabarcoding research. These rare foods need to be documented in 

434 order to understand food webs and foraging behaviors, but common bioinformatic procedures can 

435 eliminate them from analysis. Continuing to exclude them may only serve to reinforce 

436 preconceived notions about what animals eat and inhibit new understanding of how ecology 

437 works. To fulfill the promise of dietary DNA metabarcoding by using cutting-edge technology to 

438 characterize diets with precision requires us to overcome this challenge.

439
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637
638 Figure 1. Different impacts of RRA thresholds on simulated specialist and generalist diets. The 

639 dietary profiles of a (a) specialist, (b) intermediate, and (c) generalist feeder as simulated using 

640 Pareto distributions. When the shape parameter (α) and total number of food taxa (Taxan) are low, 

641 there is a large skew in the rank-abundance distribution (i.e., few food taxa with high relative 

642 abundance); increasing these values increases the richness and evenness of the dietary profile (i.e., 

643 many food taxa, each with lower relative abundance). In each stacked barplot, the color of each 

644 segment represents the relative abundance of each simulated taxon in the diet profile. Increasing 

645 the threshold from 0% to 5% for each diet profile resulted in differential impacts on the (d) 

646 inferred dietary richness and (e) % loss of initial dietary richness from each sample. A 2.8% 

647 threshold (grey dashed lines in d and e) results in similar levels of inferred dietary richness and % 

648 losses of taxa across samples.
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649
650 Figure 2. RRA thresholds differentially impact samples that vary in evenness, altering the inferred 

651 rank-order of dietary richness. Stacked barplots show four representative dietary DNA 

652 metabarcoding profiles from (a, b) bighorn sheep and (c, d) bison in summer. The color of each 

653 segment represents the relative abundance of a taxon prior to abundance-based filtering. 

654 Increasing the minimal RRA threshold from 0% to 5% for each dietary profile resulted in different 

655 impacts on (e) the inferred level and rank-order of dietary richness across samples as well as (f) 

656 the % loss of dietary richness. A 4% threshold (grey dashed lines in e and f) resulted in similar 

657 levels of inferred richness and % losses of taxa across samples.
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658
659 Figure 3. Thresholds alter ecological patterns in dietary DNA metabarcoding data. We compared 

660 (a) mean dietary richness and (b) total population-level dietary richness of bighorn sheep and 

661 bison in summer and winter. Total population-level dietary richness was estimated for winter and 

662 summer based on extrapolation to double the minimum seasonal sample size for each species (N = 

663 8 bighorn sheep; N = 20 bison). Error bars represent (a) standard deviations and (b) 95% upper 

664 and lower confidence intervals. In all plots, lines connect mean dietary richness for winter and 

665 summer at each relative threshold.
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666
667 Figure 4. Hill numbers applied to both simulated and real dietary DNA metabarcoding data. All 

668 curves show a decline in apparent dietary diversity with increasing q due to increasing emphasis 

669 on abundant taxa. Curves show how sensitive each set of diet profiles is to increasing q based on 

670 (a) simulated dietary profiles based on different Pareto distributions (Figure 1), (b) a set of 

671 representative samples from Yellowstone (Figure 2), (c) the average population-level values from 

672 Yellowstone (Figure 3a), and (d) the total population-level estimated values from Yellowstone 

673 (Figure 3b). In contrast to the effect of applying RRA thresholds to the same data, these curves 

674 convey more information about the relative abundance of both common and rare taxa while 

675 retaining clearer rank-order of samples.
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676
677 Figure 5. Seasonal changes in dietary diversity based on DNA metabarcoding and microhistology. 

678 For both bighorn sheep and bison, we compare log-transformed (a) dietary richness (q0), (b) the 

679 number of “typical” (q1), and (c) the number of dominant (q2) plant taxa identified in DNA 

680 metabarcoding data (dark solid lines) and microhistology data (light dashed lines). Lines connect 

681 the mean values with error bars that represent standard deviations. For microhistological analysis, 

682 when multiple samples were collected per herd per season, these samples were pooled into a 

683 composite scan of fecal material. 
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