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Abstract

Dietary DNA metabarcoding enables researchers to identify and characterize trophic interactions
with a high degree of taxonomic precision. It is also sensitive to sources of bias and contamination
in the field and lab. One of the earliest and most common strategies for dealing with such
sensitivities has been to remove low-abundance sequences and conduct ecological analyses based
on the presence or absence of food taxa. Although this step is now often perceived to be necessary,
evidence of its sufficiency is lacking and more attention to the risk of introducing other errors is
needed. Using computer simulations, we demonstrate that common strategies to remove low-
abundance sequences can erroneously eliminate true dietary sequences in ways that impact
downstream inferences. Using real data from well-studied wildlife populations in Yellowstone
National Park, we further show how these strategies can markedly alter the composition of dietary
profiles in ways that scale-up to obscure ecological interpretations about dietary generalism,
specialism, and composition. Although the practice of removing low-abundance sequences may
continue to be a useful strategy to address research questions that focus on a subset of relatively
abundant foods, its continued widespread use risks generating misleading perceptions about the
structure of trophic networks. Researchers working with dietary DNA metabarcoding data—or
similar data such as environmental DNA, microbiomes, or pathobiomes—should be aware of

drawbacks and consider alternative bioinformatic, experimental, and statistical solutions.
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1. Introduction

Advances in dietary DNA metabarcoding have revolutionized our ability to address some of the
most fundamental goals in ecology: to quantify the diversity of species and understand how they
interact. Myriad technical developments in molecular ecology have improved our ability to
identify foods, assess dietary diversity and overlap, and measure the relative abundance of taxa in
the diets of wild animals, livestock, and humans (Deagle et al., 2009; Mata et al., 2019; Pegard et
al., 2009; Reese et al., 2019; Valentini et al., 2009). Yet the utility of dietary DNA metabarcoding
methods has occasionally come under scrutiny over doubts about the accuracy of a particular step
in the bioinformatic pipelines that ultimately determine how we interpret the data.

Among the most controversial decisions about how to analyze dietary DNA has been how
to convert sequence count data into dietary profiles. Early research primarily aimed to validate
DNA metabarcoding as a method to generate accurate and precise lists of food species (Shehzad et
al., 2012; Soininen et al., 2009; Valentini et al., 2009; Zeale et al., 2011). Researchers quickly
became aware that contamination, PCR and sequencing errors, tag jumps, and biological and
technical biases can complicate this aim (Pompanon et al., 2012). High-throughput sequencing
technologies generate thousands of low-quality and erroneous sequences with each run. Since
most errors occur at low relative abundances, truncating the long tail of the sequence abundance
distribution clearly removes many such errors. Because eliminating errors is desirable, and
because the goal of generating a list of food species can be accomplished using presence/absence
data, an apparently simple solution was to eliminate low-abundance sequences and conclude that
the rest were ‘present’ in a sample. Yet despite the focus on presence/absence data, diet datasets
often retained biologically meaningful signals of sequence relative read abundance (RRA) that
could be corroborated by feeding trials (Deagle et al., 2009; Willerslev et al., 2014), stable-
isotopes analysis (Kartzinel et al., 2015), and microhistology (Soininen et al., 2009), albeit often
with the need for correction factors (Thomas et al., 2016) or the lumping of sequences into
operational taxonomic units (Clarke et al., 2014). Observations like these established awareness of
the need to balance the aims of quantifying both the presence and relative read abundance of ‘true’
food species against the risk of including errors.

Researchers continue to emphasize the occurrence of relatively abundant taxa because of
the legacy of the early literature on presence/absence data, because it is an apparently simple
solution to the risk of including errors, and because of the assumption that the most ecologically

and nutritiously important foods are abundant. A common strategy is simply to remove taxa from
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a sample that do not exceed a minimum threshold. Dietary analyses may rely on minimum overall
count thresholds (e.g., Valentini et al., 2009) or, more often in recent studies, sample-wise RRA
thresholds (Ait Baamrane et al., 2012; Kartzinel et al., 2015; Pompanon et al., 2012). Since
removing sequences with low overall or sample-wise RRA can eliminate low-abundance errors, it
is often characterized as a ‘conservative’ option that minimizes the risk of including false-positive
sequences (Alberdi et al., 2018; Ando et al., 2020). Crucial drawbacks to this strategy, however,
include the often arbitrary and subjective selection of thresholds, the inability to eliminate errors
that exceed whatever threshold is selected, and the risk of inadvertently excluding true dietary taxa
while inflating the apparent importance of the taxa that remain (Deagle et al., 2019; Kelly et al.,
2019). There is thus much confusion about how to employ this strategy, and evidence of its
efficacy is lacking, creating a need to focus on appropriate interpretations of rare taxa (Ando et al.,
2020).

What does it mean to be ‘conservative’ with dietary DNA metabarcoding data? The answer
to this question must be evaluated in the context of the goals of a particular study. More than a
decade ago when the predominant goal in this field was to evaluate whether a particular taxon was
present in a sample, it may have been prudent to discard low-abundance sequences as putative
contaminants in order to avoid including spurious taxa. On the other hand, there is a risk in
removing low-abundance sequences that could represent rare food taxa and provide information
about animal nutrition, foraging behavior, and the structure of food webs. Understanding the
ecology and evolution of dietary specialization, for example, requires differentiation of dietary
specialists that concentrate on one or a few resources from dietary generalists that utilize a more
even array of resources (Aratijo et al., 2011; Bolnick et al., 2003). Understanding how individual
feeding interactions scale-up to establish the links and nodes of complex trophic networks requires
determination of interaction strengths, and whether ‘weak’ links are as important to the network as
they are often theorized to be (Pringle & Hutchinson, 2020). Real sources of variation in dietary
breadth and interaction strength will necessarily translate into variation in the number of rare
dietary DNA sequences that appear in data, and this in turn ensures that any bioinformatic
decision about how to treat low-abundance sequences will differentially impact the dietary profiles
of animals with broad versus narrow diets. Awareness of how common strategies for analyzing
low-abundance sequences distort dietary profiles and alter ecological interpretations is critical for

the appropriate treatment of data.
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2. Differential impacts of data filtering on simulated diets

Although abundance-filtering is common in DNA metabarcoding pipelines, the RRA cutoff used
to determine which taxa count as ‘present’ varies widely among studies (Alberdi et al., 2018;
Pompanon et al., 2012). (Deagle et al., 2019) suggested that a 1% RRA threshold may be suitable
for many dietary studies, but values in the range of 0-5% are not uncommon (e.g., Alberdi et al.,

2018; Bohmann et al., 2018; Kartzinel et al., 2019; Komura et al., 2018; ter Schure et al., 2021).

2.1. Dietary profile simulations

Consider variation in both the richness and rank-abundance distribution of animal diets. Diets are
generally characterized by skewed distributions that are concentrated on a small number of
predominant resources but also include many rare resources (Forister et al., 2015). These heavy-
tailed distributions can be approximated by a power law function known as the Pareto distribution
(Appendix S1 provides detailed simulation methods). Dietary specialists, such as the koala
(Phascolarctos cinereus), usually consume a very small number of food taxa, and this type of
dietary profile can be represented by a highly-skewed distribution (e.g., Figure 1). In contrast,
dietary generalists, such as the racoon (Procyon lotor), tend to consume a wide variety of
resources that can be represented by a more even distribution (e.g., Figure 1). The skewness of a
Pareto distribution is denoted by a shape parameter, a (Figure S1).

To develop theoretical intuition, we simulated diet profiles of generalist and specialist
consumers (Appendix S1). In our simulations, we considered a set of three hypothetical consumers
with access to an identical food base comprising 100 potentially suitable taxa. We assumed that
each consumer differed only in the specificity with which it consumed food taxa. This reflects the
aims of many empirical studies to characterize feeding specializations, food preferences, foraging
behaviors, competition, or other ecological factors that influence the composition of diets and the
structure of trophic networks (Figure 1a-c; Appendix S1). For each consumer, the probability that
each of the 100 food taxa would be selected was calculated using the R package “Pareto” v.2.3.0
(Riegel, 2018). To generate diet profiles that differed in their degree of specialism, we defined
probability distributions using skew values to represent specialist (o = 0.20), intermediate (o =
0.35), and generalist (a. = 1.00) diets (Appendix S1, Figure S2). From each of these probability
distributions, we made 25,000 draws to simulate a common number of DNA metabarcoding
sequence-reads obtained per sample with an I[llumina MiSeq. The resulting diets are thus

theoretically free of any differences in sampling, contamination, technical bias, and error—they
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represent an ideal dataset in which draws of taxa are made in proportion to their true abundance.
The specialist’s diet profile comprised a much narrower subset of the 100 available resources

compared to the intermediate and generalist feeder (Figure 1a-c).

2.2 Skewed diet profiles are differentially impacted by the same thresholds

To evaluate the theoretical impact of removing low-abundance taxa from the three simulated diet
profiles, we incrementally filtered taxa that did not exceed thresholds of 0-5% RRA (Appendix
S1). We found that abundance-filtering differentially impacted the relatively skewed diet profiles
of specialist and intermediate feeders compared to the relatively even diet profile of the generalist
(Figure 1). Incrementally removing taxa resulted in a large decrease in richness for each sample,
but an immediate 75-80% loss of dietary richness occurred after applying only a mild 0.2% filter
to the specialist and intermediate diet profiles, respectively (Figure 1d-e). In contrast, the
generalist diet profile did not exhibit any reduction in richness until more stringent thresholds
were applied (Figure 1d-e). Then, at an intermediate threshold of 2.8%, diet profiles converged to
generate the incorrect impression that all samples had similar richness (Figure 1d; grey dashed
line). At this level, there was a >95% reduction in the inferred richness of the intermediate and
generalist diets (Figure le; grey dashed line). All else equal, these simulations reveal how any
threshold can have a qualitative impact on the apparent richness and composition of a sample in

ways that differ depending on its true composition.

3. Differential impacts of data filtering on well-studied wildlife diets

We sought to illustrate how abundance-filtering can qualitatively alter interpretations of real
dietary DNA metabarcoding data by testing predictions about (i) seasonality and (ii) trait-based
differences in the diets of large herbivores from Yellowstone National Park (Appendix S2
provides detailed methods for wildlife diet analysis). Following a well-established annual
migration, Yellowstone bison (Bison bison) and bighorn sheep (Ovis canadensis) follow
springtime plant green-up from their lower elevation winter range to higher elevation meadows.
We predicted both species would exhibit greater dietary richness in summer compared to winter
because: both species graze on graminoids year round; both have access to a larger number of
plant species in summer; both incorporate species-rich suites of forbs into summer diets; and both
incorporate species-poor shrubs into winter diets (Bergmann et al., 2015; Craine, 2021; Geist,

1971; Peden et al., 1974; Schroeder, 2020; Wagner & Peek, 2006). We further predicted that bison
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would have greater dietary richness than bighorn sheep because although both species have
ruminant digestive systems, bison are much larger (~625 vs. 75 kg body mass), have wider
muzzles, and have larger home ranges. Thus, all else equal, bison should exhibit greater dietary
richness because each individual will encounter and/or be able to consume a greater variety of
available forage (Clauss et al., 2013). Yet despite firmly established allometric differences in
digestive physiology that support our hypothesis, recent studies of African ungulates have reported
a lack of correlation between dietary richness and body size (Kartzinel et al., 2015; Kartzinel &
Pringle, 2020). The taxonomic precision of DNA metabarcoding could help reconcile such cases
where established allometric and foraging ecology theories appear to diverge from data, and our
results will show how crucial it is to consider the effects of abundance-filtering on these types of
downstream ecological interpretations.

Our illustrative analyses of bison and bighorn sheep diets are based on 35 samples from
winter and summer (median = 10 per species per season) analyzed by sequencing the P6 loop of
the chloroplast trnL(UAA) intron and using publicly available plant reference data (Appendix S2).
We required a 100% match between a dietary sequence and a reference sequence that was present
in the library to include a plant taxon in our analysis, thereby minimizing the risk of introducing
sequencing errors and chimeras. This mapping strategy is reasonable when researchers have
access to an extensive reference library of potential food sequences—enabling accurate sequence
identification and efficient error elimination—although it may not be as appropriate for studies
involving markers and/or taxa with poor reference coverage compared to what is available for
trnL-P6 (Pompanon et al., 2012). Overall, 91.1% of high-quality sequence reads were mapped to
the reference library across all 35 samples (1,071,130 of 1,175,453 sequences), whilst a median of
93.2% of reads mapped to the reference library on a per sample basis. From these mapped reads,
we initially characterized 357 plant sequences and retained a subset of 355 sequences after
rarefying samples to equal sequencing depth (Dryad DOI: 10.5061/dryad.kwh70rz4s), with 88%
identified to family (312 of 355 sequences), 55% to genus (196 of 355), and 23% to species (82 of
355). Because the resulting diet profiles comprise only those taxa that match a reference plant
sequence, they could represent an underestimate of the true plant richness in a sample given that:
(7) a subset of available plant species may not yet be included in public data and/or (i) the trnL-P6
marker has a limited ability to differentiate among certain closely related species (Taberlet et al.,

2007). Importantly, if these diet profiles underestimate the true dietary richness, it will be due to

This article is protected by copyright. All rights reserved



179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

limitations inherent to the marker and available reference data rather than an artifact arising from
data-filtering decisions.

Following the same procedure that we applied to simulated diets, we filtered taxa from
samples using 0-5% RRA thresholds (Appendix S2). We compared differences in the inferred
dietary richness within and between species based on individual samples, based on the average
richness across samples, and based on the total richness of each population after accounting for
differences in sample size. We observed that thresholds can: (7) alter the rank-order of inferred
richness values, (if) obscure patterns of seasonal variation within and among species, and (ii7)

obscure differences in the overall dietary breadth of species.

3.1 Thresholds alter rank-order of dietary richness

Detailed comparisons of four representative samples show both intra- and inter-specific variation
in the shape of diet profiles (Figure 2a-d). Differences in richness and evenness led to changes in
the inferred rank-order of samples as low-abundance taxa were removed (Figure 2e), just as they
did in the simulation study. The dietary richness of each sample decreased by >51% with a mild
threshold of 0.2%. The sample with the lowest initial richness exhibited the largest apparent
decline in richness (80% loss; Figure 2f). A larger threshold of 4% resulted in the conversion of
both dietary richness and the percent loss of initial richness across all samples, regardless of the
consumer species (grey dashed lines in Figure 2e-f). Thus, applying bioinformatic thresholds to
real data reproduced the patterns observed in theoretical simulations and obscured ecologically
meaningful differences in the shape of diet profiles: (i) a mild threshold led to a precipitous drop
in richness for diet profiles with relatively narrow breadth, (if) a more stringent threshold led to
convergence in apparent richness between broad and narrow profiles, and (ii7) different thresholds

altered the rank-order of dietary richness that was inferred for this set of consumers.

3.2 Thresholds obscure seasonal patterns dietary richness

Incrementally removing low-abundance taxa eroded the apparent increase in mean dietary richness
across samples from winter to summer. The mean richness of bighorn sheep and bison diets was
greater based on the totality of the sequence data in summer vs. winter, but this seasonal
difference disappeared when low-abundance taxa were removed and only the subset of dominant
dietary taxa remained (Figure 3a). With each threshold, there was a “dropout” of low-abundance

grasses (family Poaceae), buckwheats (Polygonaceae), evening primroses (Onagraceae), and roses
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(Rosaceae) in the diets of both species, in both summer and winter (Datasets S2-S3). In summer,
however, there was a disproportionate loss of taxonomically diverse sequences: bighorn sheep
samples lost sequences representing mustards (Brassicaceae) and legumes (Fabaceae; Dataset S2),
while bison lost many sedges (Cyperaceae) and willows (Salicaceae; Dataset S3). Sequences
remaining following the most stringent thresholds included a subset of common foods for both
bighorn sheep (e.g., grasses, geraniums (Geraniaceae), and roses; Dataset S2) and bison (e.g.,
sedges and grasses; Dataset S3). Thus, although using thresholds in this way may help researchers
identify the ‘core’ resources present, it can also generate the false impression that consumers have
narrow diets, disproportionately exclude taxa from species-rich groups (e.g., grasses, forbs), and

generate artificially simple trophic networks.

3.3 Thresholds obscure population-level differences in overall dietary breadth

The removal of low-abundance taxa differentially influenced each species’ total dietary richness.
As above, incremental removal of taxa resulted in a large decrease in total richness inferred for
both bighorn sheep and bison (Figures 3b, Dataset S4-S5). Dietary richness apparently increased
from winter to summer for bighorn sheep, regardless of threshold. In contrast, seasonal differences
in dietary richness were apparently reversed for bison, depending on threshold: total richness
appeared greater in summer when no threshold was applied, but it appeared greater in winter
whenever low-abundance taxa were removed (Figure 3b). This drop in summer dietary richness
for bison was driven by the removal of a large number of taxa, each occurring at low relative
abundance: asters, evening primroses, broomrapes (Orobanchaceae), and buttercups
(Ranunculaceae; Dataset S5). A purported benefit of population-level analyses is the ability to
‘average out’ sampling stochasticity, since a resource that is erroneously excluded from one
sample may still be registered in another for downstream analyses (Deagle et al., 2019; Kartzinel
& Pringle, 2020). Our results illustrate the risk of presuming this outcome when consumers eat

many food taxa that each represent a relatively small proportion of the diet.

3.4 Ecological interpretations

Apparent declines in richness with each threshold had the potential to alter support for our
hypotheses. We predicted dietary richness would be maximized in summer for both species and
found strong support for this prediction in the complete dataset (Figure 3). Abundance-filtering,

however, eroded this seasonal pattern and, in the case of bison, reversed it (Figure 3). Similarly,
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we predicted bison would have greater dietary richness than bighorn sheep; we observed this
difference with the complete dataset, but abundance-filtering eroded or eliminated it (Figure 3).
Evaluating bioinformatic strategies in light of natural history can guide interpretation.
Ideally, information from comprehensive DNA barcode libraries would support taxonomic
inference and facilitate error-filtering (Pompanon et al., 2012). Although we do not yet have a
comprehensive library for the flora of Yellowstone, every sequence in our complete dataset was a
100% match to publicly available sequence data and represented a realistic food for the animals
we studied. Tracking taxa that dropped out of the dataset with each threshold enabled us to
evaluate patterns (Datasets S2-S5). For example, wind-dispersed pollen deposition is thought to be
a common source of low-abundance sequence contamination (Ando et al., 2018). However, we
observed dropout of some wind-dispersed taxa that are palatable to these herbivores using a mild
threshold (e.g., some grasses, sedges) while other wind-dispersed taxa from less palatable groups
exceeded high thresholds (e.g., pine trees, Pinaceae). We observed this in summer when plants
reproduce, and pollen contamination is likely, as well as in winter when plants are reproductively
dormant. Although we cannot say definitively for any given sample whether a sequence represents
a food that was deliberately eaten by the animal, we can use the observed variation in sequence
representation to guide ecological interpretations. Indeed, quantifying this variation is a

fundamental goal of dietary DNA metabarcoding research.

4. Strategies for improvement

There is nothing inherently wrong with excluding low-abundance taxa under at least two
conditions: (7) the objective is to identify a subset of ‘core’ taxa that occur above a threshold or (i)
the rare sequences represent errors that persist in the data despite experimental controls and other
bioinformatic strategies. Although DNA metabarcoding is useful for identifying core dietary taxa
(scenario 7), most studies aim to elucidate more complete diets and trophic networks (Ando et al.,
2020). There is thus a need to ensure that any suite of rare sequences to be analyzed are as free of
error as possible, although this can be difficult to verify (scenario ii). Because there have been
many improvements to sampling strategies and laboratory protocols that reduce the incidence of
contamination (e.g., Alberdi et al., 2018; Ando et al., 2020; Creer et al., 2016; Mata et al., 2019;
Mclnnes et al., 2017), we will focus on promising and transparent analytical strategies to account

for low-abundance taxa.

This article is protected by copyright. All rights reserved



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

4.1 Computational and mathematical alternatives to arbitrary thresholds

Promising strategies provide alternatives to relying on arbitrary abundance thresholds. For
example, the flexible simulation strategy we demonstrated above may be generally useful for
evaluating the effects of analytical options on downstream ecological interpretations. This could
include power analyses to assess the probability of detecting an effect or sensitivity analyses that
evaluate any qualitative changes to the conclusion of a study that would result from different
filtering strategies (Kartzinel et al., 2015; Kartzinel & Pringle, 2020). Related algorithms
developed specifically for dietary DNA metabarcoding have potential to address drawbacks of
arbitrary thresholds directly. For example, Bayesian strategies can be used to assess underlying
uncertainties in the identification of ‘true’ sequences in a food web rather than assuming the
suitability of a fixed cutoff (Cirtwill & Hamback, 2021).

Even without using RRA filters to purge rare sequences from analysis, it is possible to
manage their impact on interpretations. For example, Hill numbers are a mathematically unified
family of diversity indices that quantify diversity in units of effective number of species (Hill,
1973), enabling researchers to upweight or downweight rare taxa using the scaling parameter ¢
(Jost, 2006). The larger the g value, the greater the importance attributed to abundant taxa. The
lowest g value is 0, which is equivalent to species richness (all taxa are counted equally).
Increasing to ¢ = 1 yields a value equivalent to the exponential of Shannon entropy (taxa are
weighted in proportion to abundance without disproportionately favoring either rare or abundant
ones). Finally, g =2 equals the inverse of Simpson concentration, which upweights abundant taxa
and discounts rare ones (Chao et al., 2014). Hill exponents can, therefore, be considered as the
richness of all species (g°), the diversity of ‘typical’ species (g'), or the diversity of dominant
species (¢2). When rare taxa are considered to be of low importance, regardless of whether they are
thought to be real or errors, researchers can use higher ¢ values to downweight them (Alberdi &
Gilbert, 2019). In contrast, if rare taxa are considered essential for proper understanding,
researchers may rely on exact counts of taxa present (Alberdi & Gilbert, 2019).

To illustrate similarities and differences in using Hill numbers to downweight rare taxa
compared to using thresholds to exclude them, we applied this method to our simulations and our
Yellowstone data (Appendix S2). When downweighting emphasis on rare taxa from ¢ to ¢, the
apparent diversity of food taxa converged asymptotically towards a low value (Figure 4). This
familiar pattern is superficially similar to applying incremental thresholds to the data. In contrast

to thresholds, however, Hill numbers had the desirable quality of retaining the rank-order of
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samples. This contrast is especially evident in comparisons of simulated diet profiles with known
dietary breadth, since the rank-order of the theoretical generalists and specialists was retained

across all values of ¢ but was inverted by the application of RRA thresholds (Figures le, 4a).

4.2 Multiple datastreams can corroborate and contextualize

Comparing independent datastreams can support inferences in dietary studies (Nielsen et al.,
2018). Ideally, researchers would qualitatively corroborate conclusions in light of strengths and
weaknesses inherent to each method. Prior studies, for example, have combined DNA
metabarcoding with direct feeding observations or experiments (Deagle et al., 2010; Thomas et al.,
2014; Willerslev et al., 2014), stable-isotope analysis (Craine et al., 2015; Kartzinel et al., 2015),
and gut-content analysis or microhistology (King & Schoenecker, 2019; Newmaster et al., 2013;
Soininen et al., 2009).

To help contextualize our results for bison and bighorn sheep, we compared dietary
diversity indices obtained from DNA metabarcoding with corresponding microhistology data.
Microhistology is a method involving the visual examination of fecal material on slides (Appendix
S2). An advantage of microhistology is the opportunity to identify taxa that may not be covered by
the #7nL-P6 marker we used in this study, such as lichens, mosses, and fungi. However,
microhistology is so labor intensive that it is common to: (i) only identify taxa to higher
taxonomic classifications (e.g., our analysis aimed to identify plant fragments to genus); (if) group
species into broad taxonomic or functional groups (Garnick et al., 2018; Mayes & Dove, 2000);
(i#ff) underestimate the proportion of digestible forbs (King & Schoenecker, 2019; Shrestha &
Wegge, 2006); and (iv) lump fecal deposits into ‘representative’ samples rather than analyzing
each individually.

Dietary DNA metabarcoding was better able to differentiate closely related food taxa than
microhistology and thus revealed a greater diversity of foods. Consider the 58 grass genera known
to occur in Yellowstone (Whipple, 2001). Microhistology identified only 9 grass taxa with genus-
level precision across all samples and seasons (Dataset S6, Figure S4), but DNA metabarcoding
revealed between 22 and 40 grass DNA sequences [representing from 5 to 9 grass genera] across
each species, depending on season (Dataset S4-S5). In principle, this means that up to 49 grass
genera could be lumped into the ‘unknown Poaceae’ category of our microhistology data. While
microhistology provides a reasonable estimate of overall ‘grass’ contributions to diets, it masks

the contribution of each constituent grass species to diversity. Microhistology suggested that bison
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had greater year-round dietary richness (¢”) compared to bighorn sheep, although there was no
significant difference in the number of typical (¢') or dominant (¢) plant taxa (Figure 5). In
contrast, DNA further illuminated a significant effect of species and season on the typical (¢') and
dominant (¢°) number of plant taxa consumed by bison and bighorn sheep (Figure 5). Importantly,
results obtained from both methods aligned closely when we used Hill numbers to downweight
rare taxa (Figure 5). Taken together, these results support the interpretation that many rare taxa
were present in the dietary DNA and accounting for them provided a finer level of detail that

would not otherwise be possible.

4.3 Transparency and reproducibility

Awareness of how data manipulations influence downstream analyses is vital to ensuring
transparency and reproducibility. Given that different decisions about whether and how to use
RRA-based filters in bioinformatic pipelines has the potential to alter ecological patterns,
transparency will be crucial for high-resolution dietary data to accumulate in ways that make it a
useful scientific resource. To ensure transparencys, it is helpful to differentiate between the
bioinformatic steps that are initially used to filter a dataset of errors from any subsequent
summaries of the data or statistical analyses. In the literature, RRA-based filters have been used
both for both purposes—to purportedly eliminate low-abundance contaminants and to summarize
the relatively abundant ‘core’ resources—which complicates comparisons. Whereas many journal
polices stipulate that DNA metabarcoding studies should publish tables of sequence read data, a
review by (Ando et al., 2020) revealed that 46% of studies omitted them. Providing a quality- and
contaminant-filtered count table of sequence data that has not otherwise been transformed,
rarefied, or filtered to remove low-abundance sequences can help reviewers and other researchers
evaluate interpretations that may be sensitive to the presence of rare sequences. Such tables are
needed to enable further analyses, including those based on statistical frameworks designed
specifically for sequence count data (e.g., DESeq2; Love et al., 2014). However, the literature may
often give the impression that such datasets are filtered incompletely and potentially wrong.
Complicating matters, researchers are increasingly able to work with commercial laboratories to
generate dietary DNA profiles and need to be aware that these services often apply low-abundance
filters by default. Good communication between purveyors and practitioners is critical, especially

when detection of minor dietary components is needed (Scasta et al., 2019). Providing access to
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more complete datasets does not preclude researchers from generating, analyzing, and sharing

filtered versions of the data—but it does offer the advantage of transparency.

S. Discussion

The precautionary principle emphasizes caution and review before acting in the absence of
conclusive evidence to support a decision (Van Der Sluijs et al., 2005). In the context of DNA
metabarcoding, researchers face a dilemma: all else equal, will it tend to be better to include or
exclude rare DNA sequences from analysis? Researchers initially suggested that prudence dictates
a need to gather more evidence before including low-abundance sequences in analysis—excluding
such sequences has thus often been framed as conservative (Brown et al., 2015; Pompanon et al.,
2012). We argue that it may often be prudent to retain rare sequences and weigh them
appropriately based on relative abundance rather than risk obscuring real patterns in the data—that
the rarity of a sequence alone is insufficient evidence of an error or otherwise unimportant trophic
link to justify its removal. Advances in conceptual and methodological approaches for DNA
metabarcoding now offer alternatives to abundance-filtering that could help researchers better
balance these risks and support more robust ecological interpretations.

Prior empirical evaluations of abundance-filtering in dietary and environmental DNA
studies have shown that many contaminants (but not all) tend to occur at low relative abundance
(Alberdi et al., 2018; Ando et al., 2018). By quantifying plant DNA contamination in samples
from herbivores fed controlled diets, for example, (Ando et al., 2018) noted that removing
sequences below 1% RRA reduced the probability of incorporating contaminants. There are at
least two ways to reconcile experimental results like this with the issues we illustrated here: (i)
researchers may benefit from obtaining empirical estimates of contamination rates and sources
that they can use as evidence to support decisions about what sequences to exclude; (ii) since
contaminants rarely rise to high relative abundance, they represent a source of error that can be
managed by using appropriate statistics and by weighing sequences based on RRA. Importantly,
although a certain threshold may be shown to reduce the probability of including contaminants in
one study, it does not necessarily follow that it is a procedure that eliminates all contaminants or
retains all relevant sequences. Similar thresholds could be inappropriate in other studies since
contamination rates vary among target taxa, environments, barcode regions, and methods (Ando et

al., 2020). Hence, focus on how to appropriately account for rare sequences is warranted.
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We began this paper by asking when and whether using thresholds to remove low-
abundance sequences makes sense, noting the importance of addressing this question with respect
to a particular research objective. If the aim is to determine whether the DNA of a particular taxon
is definitively present in a sample, then it might be appropriate to remove low-abundance
sequences. If, however, the goal is to compare dietary profiles or infer the topology of trophic
networks, then it is risky to abundance-filter data in light of the evidence that removing low-
abundance taxa can distort comparisons of interest. In particular, removing rare taxa from the diet
profiles of species with a relatively high degree of individual diet specialization—including
predators and phytophagous insects (Bolnick et al., 2007; Codron et al., 2016)—is liable to
artificially accentuate the inferred level of inter-individual variation by omitting overlapping food
sources from a subset of diet profiles. In contrast, the effect on diet profiles from populations with
less inter-individual variation—such as large mammalian herbivores that tend to have broader and
more even diet profiles (Codron et al., 2016)—could be to eliminate sources of variation in ways
that artificially homogenize the group.

Accounting for rare food taxa can be integral to understanding animal diets. Wild species
are often observed consuming unexpected food items, which can inspire fascination and challenge
long-standing dogma (Burton, 2018). For example, many species are unable to obtain vital trace
elements through ‘normal’ diets (Pringle & Hutchinson, 2020). Crocodilians are generally
assumed to be obligate carnivores incapable of digesting plant proteins and polysaccharides, but
yet they regularly consume fruits to supplement an otherwise carnivorous diet (Platt et al., 2013).
Many ungulates in contrast are thought to be obligate herbivores but yet surprising examples of
protein-rich food sources are regularly documented, including deer eating songbirds (Pietz &
Granfors, 2000) and warthogs hunting antelope (Roberts, 2012). Large mammalian herbivores are
able to feed on a broad array of food plants, but nevertheless feed preferentially on a subset of
available plant species while avoiding others (Owen-Smith & Novellie, 1982). Animals may
rarely eat desirable foods if they benefit from diversifying their diets to dilute taxon-specific
defense compounds (Freeland & Janzen, 1974), if they feed in ways that suppress the local
availability of preferred foods (Bryant et al., 1991; Kartzinel & Pringle, 2020; Spiller & Schoener,
1998), or if they experience competitive displacement (Pringle et al., 2019). For all of these
reasons, important dietary taxa may only register in diets at low relative abundances and

improving our ability to account for them is a major research priority.
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Knowing that many important foods can occur at low relative abundances poses a
challenge for dietary DNA metabarcoding research. These rare foods need to be documented in
order to understand food webs and foraging behaviors, but common bioinformatic procedures can
eliminate them from analysis. Continuing to exclude them may only serve to reinforce
preconceived notions about what animals eat and inhibit new understanding of how ecology
works. To fulfill the promise of dietary DNA metabarcoding by using cutting-edge technology to

characterize diets with precision requires us to overcome this challenge.
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Figure 1. Different impacts of RRA thresholds on simulated specialist and generalist diets. The
dietary profiles of a (a) specialist, (b) intermediate, and (c) generalist feeder as simulated using
Pareto distributions. When the shape parameter (o) and total number of food taxa (Taxa,) are low,
there is a large skew in the rank-abundance distribution (i.e., few food taxa with high relative
abundance); increasing these values increases the richness and evenness of the dietary profile (i.e.,
many food taxa, each with lower relative abundance). In each stacked barplot, the color of each
segment represents the relative abundance of each simulated taxon in the diet profile. Increasing
the threshold from 0% to 5% for each diet profile resulted in differential impacts on the (d)
inferred dietary richness and (e) % loss of initial dietary richness from each sample. A 2.8%
threshold (grey dashed lines in d and e) results in similar levels of inferred dietary richness and %

losses of taxa across samples.
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Figure 2. RRA thresholds differentially impact samples that vary in evenness, altering the inferred
rank-order of dietary richness. Stacked barplots show four representative dietary DNA
metabarcoding profiles from (a, b) bighorn sheep and (c, d) bison in summer. The color of each
segment represents the relative abundance of a taxon prior to abundance-based filtering.
Increasing the minimal RRA threshold from 0% to 5% for each dietary profile resulted in different
impacts on (e) the inferred level and rank-order of dietary richness across samples as well as (f)
the % loss of dietary richness. A 4% threshold (grey dashed lines in e and f) resulted in similar

levels of inferred richness and % losses of taxa across samples.
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Figure 3. Thresholds alter ecological patterns in dietary DNA metabarcoding data. We compared
(a) mean dietary richness and (b) total population-level dietary richness of bighorn sheep and
bison in summer and winter. Total population-level dietary richness was estimated for winter and
summer based on extrapolation to double the minimum seasonal sample size for each species (N =
8 bighorn sheep; N = 20 bison). Error bars represent (a) standard deviations and (b) 95% upper

and lower confidence intervals. In all plots, lines connect mean dietary richness for winter and
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667  Figure 4. Hill numbers applied to both simulated and real dietary DNA metabarcoding data. All
668  curves show a decline in apparent dietary diversity with increasing g due to increasing emphasis
669 on abundant taxa. Curves show how sensitive each set of diet profiles is to increasing g based on
670  (a) simulated dietary profiles based on different Pareto distributions (Figure 1), (b) a set of

671  representative samples from Yellowstone (Figure 2), (¢) the average population-level values from
672 Yellowstone (Figure 3a), and (d) the total population-level estimated values from Yellowstone
673  (Figure 3b). In contrast to the effect of applying RRA thresholds to the same data, these curves
674  convey more information about the relative abundance of both common and rare taxa while

675  retaining clearer rank-order of samples.
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Figure 5. Seasonal changes in dietary diversity based on DNA metabarcoding and microhistology.
For both bighorn sheep and bison, we compare log-transformed (a) dietary richness (g°), (b) the
number of “typical” (¢'), and (¢) the number of dominant (¢) plant taxa identified in DNA
metabarcoding data (dark solid lines) and microhistology data (light dashed lines). Lines connect
the mean values with error bars that represent standard deviations. For microhistological analysis,
when multiple samples were collected per herd per season, these samples were pooled into a

composite scan of fecal material.
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