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A B S T R A C T

‘‘Viscosity is the most ubiquitous dissipative mechanical behavior’’ (Maugin, 1999). Despite its
ubiquity, even for those systems where the mechanisms causing viscous and other forms of
dissipation are known there are only a few quantitative models that extract the macroscopic
rheological response from these microscopic mechanisms. One such mechanism is the stochastic
breaking and forming of bonds which is present in polymer networks with transient cross-links,
strong inter-layer bonding between graphene sheets, and sliding dry friction. In this paper we
utilize a simple yet flexible model to show analytically how stochastic bonds can induce an array
of rheological behaviors at the macroscale. We find that varying the bond interactions induces
a Maxwell-type macroscopic material behavior with Newtonian viscosity, shear thinning, shear
thickening, or solid like friction when subjected to shear at constant rates. When bond rupture
is independent of the force applied, Newtonian viscosity is the predominant behavior. When
bond breaking is accelerated by the applied force, a shear thinning response becomes most
prevalent. Further connections of the macroscopic response to the interaction potential and rates
of bonding and unbonding are illustrated through phase diagrams and analysis of limiting cases.
Finally, we apply this model to polymer networks and to experimental data on ‘‘solid bridges’’
in polydisperse granular media. We imagine possible applications to material design through
engineering bonds with specific interactions to bring about a desired macroscopic behavior.

1. Introduction

The rheology of both natural and man-made materials has long been an active field of study (Larson, 1999; Chen et al., 2010).
ork has been done both at the continuum scale and the microscopic scale for a number of material systems including granular
edia (Goddard, 2014; Goddard and Kamrin, 2019), biological materials (Holzapfel et al., 2002), polymers (Knauss and Emri, 1981;

Doi and Edwards, 1988; Reese and Govindjee, 1998) and hydrogels (Koetting et al., 2015) among many others (Crocker et al., 2000;
Waigh, 2016; Edera et al., 2017). However, connecting macroscopic rheology to the microscopic features of a particular system
remains a challenge because many different mechanisms can induce a particular macroscopic response, and scale bridging away
from equilibrium remains notoriously difficult (Doi and Edwards, 1988; Oakley et al., 1998; Lee et al., 2013; Chaudhuri, 2017). In
his paper, we explore precisely this connection in the context of stochastic formation and breaking of bonds on the microscopic
cale. These stochastic bonds are shown to induce a wide range of macroscopic material behavior such as solid friction, viscous
low, and shear thinning and thickening viscoelastic response.
Stochastic breaking and formation of bonds is a feature of many mechanical processes/systems including polymer networks

ith transient cross-links (Smeulders and Govindjee, 1999; Broedersz et al., 2010; Vernerey et al., 2017), strong interlayer forces
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within graphene (Telling et al., 2003; Wen and Tadmor, 2019) and even muscle contraction (Huxley, 1957) and motor protein
function (Tawada and Sekimoto, 1991). In the case of polymer networks, the breaking of transient cross-links allows the otherwise
elastic network to flow under slow loading rates (Broedersz et al., 2010; Vernerey et al., 2017), while the reversibility of bonding
allows many polymeric materials to be self-healing (Blaiszik et al., 2010). Additionally, stochastic unbonding plays a key role in
explaining the enhanced or restricted diffusion of macromolecules embedded in transient networks (Sridhar et al., 2021), as well
as rate dependent fracture in polymers (Hui et al., 2004; Yang et al., 2020; Song et al., 2021), fiber networks (Abhilash et al.,
2012), and at polymer-glass interfaces (Chaudhury, 1999). Examples involving stochastic bonding and unbonding are not restricted
to polymers, however. In Barel et al. (2010), the authors model contact between an Atomic Force Microscopy (AFM) cantilever and
crystalline surface using thermally activated bonds, and show how the temperature dependence of the bonding and unbonding
ates explains the experimentally observed peak in the kinetic friction coefficient as a function of temperature.
The works mentioned above highlight the usefulness and success of analyzing stochastic bonding and unbonding to reveal the

rigin of complex mechanical behavior. These models, however, are either tailored to a specific system of interest, or they do not
xplore the full range of possible material behaviors which stochastic bonds are capable of producing. Our aim is to demonstrate how
hanging bond interactions (the potential) and rates of bonding and unbonding (the kinetics) can significantly alter how the system
issipates energy on the macroscopic scale. To achieve this aim, we focus on extending a relatively simple model (one originally
roposed by Huxley (1957) and Schallamach (1963) independently to model muscle contraction and sliding friction between rubber
nd hard surfaces, respectively) to understand the impact of time dependent unbonding rates and complex bond interaction on the
esulting macroscopic material behavior. In particular, we use tools from probability to provide (a) an explicit formula for computing
he dissipation rate per bond in steady state as a function of the bond interaction and kinetic parameters for both force independent
nd force-dependent unbonding rates, (b) phase diagrams for macroscopic material behavior as a function of shear velocity (or shear
ate) and bond stiffness for multiple, common interaction potentials, and (c) some general bounds on the dissipation rate for the
imiting cases of high and low shear velocities. Finally, we apply this model to study dissipation in polymer networks with transient
ross-links and ‘‘solid bridges’’ that arise in polydisperse granular media (Seiphoori et al., 2020). These examples highlight the fact
hat despite the model’s simplicity, one can use it to model real systems. They are also broad in scope. Indeed, actin networks
ith transient cross-links are used by cells to perform vital functions (Broedersz et al., 2010) and transient cross-links are also an
mportant toughening mechanism in polymer hydrogels (Vernerey et al., 2017). For its part, transient inter-grain bonds control the
tability and strength of granular assemblies manifested in various geological, biological, and industrial systems. The microscopic
hysics of particle–particle interaction in such systems is not fully understood, and transferring models derived from particle-scale
ynamics to macroscopic scales is far from implementation (Jerolmack and Daniels, 2019; Mueller et al., 2017).
To show how we proceed, we describe first the system of Huxley (1957) and Schallamach (1963), further adapted by Tawada

and Sekimoto (1991), who used it to study ‘‘protein friction’’ between dynien and microtubules. In this model, elastic dynien heads
are connected to a solid surface and can bond with a microtubule as it slides past (see Fig. 1(a)). Once bonded, the dynien elastically
stores energy as it is stretched until the bond breaks and the energy is dissipated. Considering a system with 𝑁 dynien heads, of
which a fraction 𝜌on are bonded at any given time, and remain bonded for time 𝜏on on average, one deduces that the dynien form
bonds with frequency 𝜌on∕𝜏on and the system (of dynein and microtubules) dissipates energy at a rate 𝐷̇ = 𝑁 𝜌on

𝜏on
1
2𝐾(𝜏on𝑉 )2, where 𝐾

s the elastic modulus of the dynien and 𝑉 is the velocity of the microtubule. The result is a viscous-like material behavior which the
uthors termed ‘‘protein friction’’. As we will show, this simple model when generalized to include arbitrary bond interactions and
orce dependent bonding kinetics retains enough simplicity to allow for analytical results and enough flexibility to help elucidate
he role of stochastic bonds in non-trivial systems.
The rest of this paper is organized as follows. We begin with a formal statement of the model of study (which we will refer

o as the stochastic bond model) in Section 2.1, followed by a description of the mathematical result underlying our findings in
ection 2.2. In Sections 3.1 and 3.2 , we derive and discuss the connection between bond potential and macroscopic dissipation for
force independent and force-dependent bond dissociation, respectively. Finally, Section 4 applies and connects the stochastic bond
odel to the aforementioned transient polymer networks and solid bridges, and we give some concluding remarks in Section 5.

. Background

.1. Description of the model

Consider two plates that lay parallel to each other (Fig. 1(a)). One plate is held fixed while the other is sheared past it at
onstant velocity 𝑉 . A fixed number of bonding sites are distributed on the bottom plate. At a bonding site, a stochastic bond can
orm between the site and the opposite plate directly above. Once formed, bonds can stretch to resist shearing. Different bonds are
aken to be independent, and bonds are assumed to be independent of their own bonding history. This means that the macroscopic
ehavior of a system composed of a large number of bonds is completely described by the behavior of a single bond. For this reason,
he behavior and mechanics of a single bond will be the focus of our analysis, and the macroscopic system behavior will be extracted
rom averages of the behavior of a single bond.
The kinetic properties of the bonds are stochastic and are described by two probability densities. The time between an unbonding

nd the next bonding (the time spent unbonded) is given by the probability density 𝑝off(𝑡off), and the time between a bonding and the
ext unbonding (the time spent bonded) by a density 𝑝on(𝑡on). Throughout, 𝑝off(𝑡off) will be taken to be an exponential distribution
off(𝑡off) ∶= 𝜅on exp(−𝜅on𝑡off) so that the rate of bond formation, 𝜅on, is always constant. On the other hand, the unbonding rate,
2

off(𝑡on), and hence the density of times spent bonded 𝑝on(𝑡on), will in general depend on the bond interaction as well as the velocity
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(or shear rate). The bonding and unbonding times will form inhomogeneous Poisson point processes (which becomes homogeneous
in the case that 𝑝on(𝑡on) is also exponential and 𝜅off = 𝜅on).

The energy stored in a bond is given by a bonding energy 𝜙(𝑥), which depends on the bond’s length 𝑥. We make the following
assumptions: (a) the energy only depends on the deviation from the natural length of the bond 𝑥𝑏 (i.e., 𝜙(𝑥) = 𝜙(|𝑥− 𝑥𝑏|)), (b) both
𝑥𝑏 = 0 and 𝜙(0) = 0 for simplicity, (c) bonds form at their natural length 𝑥 = 𝑥𝑏 = 0, and (d) bonds are stretched parallel to the two
plates as a result of the shearing. Thus, if a bond lasts for time 𝑡on, it stretched a distance 𝑉 𝑡on, and had energy 𝜙(𝑉 𝑡on) at rupture.
Dissipation, then, arises due to the breaking of bonds as the energy stored is instantaneously released. We assume that dissipated
energy is lost to the environment and does not impact future bonding and unbonding events.

Further assumptions on the system will be made throughout the paper. Although some will be explained in more detail later, we
will state these assumptions here to make them easy for the reader to find. Some of the assumptions simplify the analysis without
much loss of detail, and could be dropped without need of further techniques beyond those given here. Others are more fundamental
and cannot be discarded without requiring additional mathematical techniques.

As stated above, we assume a constant rate of bonding, 𝜅on. For many systems, this is not appropriate when, for example, bonds
may form under some applied force (Lieou et al., 2013), or when the molecules forming the bond must travel some distance before
bonding can occur (Stukalin et al., 2013). However, for the stochastic bond model presented here the distance between plates is
assumed to remain fixed, and bonds always form at the same length (their natural length). Thus, a constant rate of bonding is
justified. The methods presented in this paper are equipped to handle non-constant bonding rates in an analogous fashion to a
non-constant rate of unbonding. All that is needed is an expression for the probability density of times spent unbonded 𝑝off(𝑡off).

When we consider the case of force dependent unbonding, we assume that the force dependence is reasonably well approximated
using the Bell model (see Section 3.2 for details). This greatly simplifies the computation of the density of times spent bonded,
𝑝on(𝑡on), while still capturing qualitative details. As with the times spent unbonded, one can repeat the analysis presented here using
a more complex and accurate model of the force dependence so long as it is possible to calculate 𝑝on(𝑡on).

An implicit assumption of the stochastic bond model is the infinite extent of the two plates which ensures that the system
converges to a steady state. Assuming the plates have finite length could, for example, lead to a changing number of total bonds in
the system and hence invalidate the steady state assumption. However, the parallel plate geometry which we analyze here is not
essential. All mathematical results are derived at the bond level, and are then applied to the system as a whole under the assumption
that it has reached a steady state. It is equally possible to apply the same analysis as presented here to other geometries which lead
to steady state (say two rotating disks) so long as the bonding energy and distributions of times spent bonded and unbonded are
adjusted accordingly. We use this fact in our final example of solid bridges.

It is also worth noting that allowing for a distribution of bond lengths at the time of bonding (i.e., allowing bonds to form such
that they immediately exert a force on the top plate either to the left or to the right with some probability) can lead to additional
physics. Using a similar model, initial bond stretching has been shown to enhance or suppress diffusion of the moving plate (Sridhar
et al., 2021). The primary focus of this paper is characterizing the possible viscous and friction like forces induced by the transient
bonding, and so these effects will be ignored for now. However, in future work it would be interesting to study the stochastic bond
model when both dissipative mechanisms are present.

2.2. Steady state dissipation rate

We now intend to articulate some of the basic tools of probability theory and give a heuristic argument for the equation relating
the steady state dissipation rate of the model system to bonding energy and the bonding/unbonding rates (full proofs can be found
in Appendix C). Let 𝑡off and {𝑡2𝑖−1}∞𝑖=1 be independent and identically distributed (iid) bonding times drawn from the distribution
𝑝off(𝑡) = 𝜅on exp(−𝜅on𝑡) and let 𝑡on and {𝑡2𝑖}∞𝑖=1 be iid unbonding times with distribution 𝑝on(𝑡). The impact of bond interaction will
enter through this unbonding time distribution as well as through the equation for the dissipation. Let 𝑇𝑛 ∶=

∑𝑛
𝑖=1 𝑡𝑛 be the time of

the 𝑛th event, and 𝑇0, 𝑡0 ∶= 0. The collection of times {𝑡𝑛}∞𝑛=0 describes the complete bonding history of a single bond (see Fig. 1(b)).
The bond is initially assumed to be unbonded at time 𝑡0 = 0. It spends time 𝑡1 unbonded and bonds at time 𝑇1 = 𝑡1. Then it waits
time 𝑡2 before unbonding again at time 𝑇2 = 𝑡1 + 𝑡2. The remaining times in the sequence {𝑇𝑛}∞𝑛=0 are labeled similarly.

The dissipation of a single bond after 𝑛 events (i.e., after time 𝑇𝑛) is then given by

𝐷𝑛 =
⌊𝑛∕2⌋
∑

𝑖=1
𝜙(𝑉 𝑡2𝑖),

where ⌊𝑥⌋ is the largest integer less than 𝑥, as the dissipation only occurs during unbonding (even-indexed times). In order to
investigate the dissipation after a given total time 𝑇 , we introduce the random index 𝑁𝑇 ∶= inf{𝑛 ∣ 𝑇𝑛 ≥ 𝑇 } which is the index of
the first time such that 𝑇𝑛 ≥ 𝑇 . In other words, 𝑁𝑇 − 1 is the total number of bondings and unbondings which have occurred by
time 𝑇 . With this definition, the dissipation due to a single bonding site after a time 𝑇 is given by

𝐷𝑇 =
⌊(𝑁𝑇 −1)∕2⌋

∑

𝑖=1
𝜙(𝑉 𝑡2𝑖).

As mentioned previously, we are interested in the macroscopic behavior of a large number of bonds. For such systems, the total
macroscopic dissipation is dominated by the average behavior of an individual bond: 𝐷𝑡𝑜𝑡

𝑇 ≈ 𝑁⟨𝐷𝑇 ⟩, where 𝑁 is the number of bonds
and ⟨⋅⟩ denotes averaging over the distribution of the total bonding history {𝑡 }∞ of an individual bond (we will also use ⟨⋅⟩ and
3
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Fig. 1. (a) A sketch of the stochastic bonds model. Bonds form with a rate 𝜅on, are stretched by the shearing of the two plates, and break with rate 𝜅off(𝑡)
causing the stored elastic energy to dissipate. (b) The first few times of a model trajectory of a single bond. Odd-indexed lowercase times 𝑡 (e.g. 𝑡1 , 𝑡3 , 𝑡5 ,…)
denote times spent unbonded (solid blue). Even-indexed lowercase times (e.g. 𝑡2 , 𝑡4 , 𝑡6 ,…) denote times spent bonded (dashed black). Capital 𝑇𝑛, denote the total
time past after 𝑛 bonding and unbonding events. For any given time 𝑇 (shown in red), 𝑁𝑇 is the trajectory dependent index such that 𝑁𝑇 is the smallest 𝑛 so
that 𝑇𝑛 ≥ 𝑇 .

⟨⋅⟩off to denote the average with respect to the densities 𝑝on(𝑡) and 𝑝off(𝑡), respectively). We observe that the average dissipation of a
single bond limits to a linear function of time, characteristic of a system tending to a non-equilibrium steady state with a constant
dissipation rate per bond. Hence, we define the steady state dissipation rate of a single bond as

𝐷̇𝑆𝑆 ∶= lim
𝑇→∞

𝑑
𝑑𝑇

⟨𝐷𝑇 ⟩. (1)

We will refer to this quantity as the steady state dissipation rate throughout. 𝑁𝐷̇𝑆𝑆 can be viewed as the energy per unit time
necessary to keep the macroscopic system in steady state. It is the behavior of 𝐷̇𝑆𝑆 and its dependence on the velocity 𝑉 which will
later help us interpret the resulting macroscopic material behavior as a function of the bonding energy and kinetic rates.

Equation (1) alone is not suitable for deriving a connection between the steady state dissipation rate and the microscopic features
of the model because the average defining ⟨𝐷𝑇 ⟩ is over all possible bonding histories up until time 𝑇 . Although not impossible,
omputing this average is a challenge even for simple unbonding distributions. In order to form a more workable equation, we first
se a fact about differentiable functions: if lim𝑡→∞ 𝑓 ′(𝑡) exists then lim𝑡→∞ 𝑓 ′(𝑡) = lim𝑡→∞

𝑓 (𝑡)
𝑡 (Lemma C.1). Thus,

𝐷̇𝑆𝑆 = lim
𝑇→∞

⟨𝐷𝑇 ⟩

𝑇
. (2)

Using tools from the theory of martingales in probability theory, we prove in Appendix C.3 that the right hand side of (2) limits to

lim
𝑇→∞

⟨𝐷𝑇 ⟩

𝑇
=

⟨𝜙(𝑉 𝑡on)⟩on
⟨𝑡off⟩off + ⟨𝑡on⟩on

.

Putting the two together shows that

𝐷̇𝑠𝑠 = lim
𝑇→∞

⟨𝐷𝑇 ⟩

𝑇
=

⟨𝜙(𝑉 𝑡on)⟩on
⟨𝑡off⟩off + ⟨𝑡on⟩on

. (3)

Equation (3) provides a more manageable means of computing the steady state dissipation rate as the averages on the right hand
ide correspond to individual bonding or unbonding events rather than the entire history. It tells us that the steady state dissipation
ate is simply the average energy dissipated at a single bond rupture divided by the average length of time of a single bonding and
nbonding cycle.
4
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3. Results and discussion

In the following section we use Eq. (3) to explore the connection between the bond interaction potentials and bonding rates and
the macroscopic dissipation of the system as a whole. First, we focus on the case when unbonding is independent of the applied
force, where we are able to derive an equation for the average dissipation of a single bond as a function of time explicitly (including
the transient behavior). Next, we incorporate force dependence through the so-called Bell model (Bell, 1978; Evans and Ritchie,
997) and explore the limiting cases of low and high shear velocities.

.1. Force independent unbonding

To begin, we first consider the case in which the unbonding rate is independent of the force on the bond. In this circumstance, the
ate of unbonding is constant, and the lifetime of each bond is exponentially distributed, 𝑝on(𝑡on) = 𝜅off exp(−𝜅off𝑡on). Using Eq. (3)
t is straight forward to compute the steady state dissipation rate which arises from an arbitrary positive monomial interaction
otential

𝜙(𝑥) = 𝑎𝑥𝑝 (𝑎, 𝑝 > 0) ⇒ 𝐷̇𝑠𝑠 =
⟨𝑎(𝑡on𝑉 )𝑝⟩on
1∕𝜅off + 1∕𝜅on

=
𝜅on

(𝜅off + 𝜅on)
𝛤 (𝑝 + 1)

𝜅𝑝−1
off

𝑎𝑉 𝑝, (4)

where 𝛤 (𝑝+1) is the gamma function which evaluates to 𝛤 (𝑝+1) = 𝑝! when 𝑝 is a non-negative integer, although the equation holds
for any 𝑝 positive. Equation (4) extends to interactions consisting of polynomials in 𝑥 with positive coefficients linearly. In the case
of a spring interaction, 𝜙(𝑥) = 1

2𝐾𝑥2, the steady state dissipation rate is given by

𝐷̇𝑠𝑠 =
𝜅on

𝜅off + 𝜅on
𝐾
𝜅off

𝑉 2 = 𝜌on𝜏on𝐾𝑉 2,

where 𝜌on = 𝜅on∕(𝜅off + 𝜅on) is the average fraction of bonds which are bonded and 𝜏on = 1∕𝜅off is the average life time of a single
bond. As this is the expected dissipation rate for a single bond, a large system consisting of 𝑁 identical and independent bonds can
be expected to reach a steady state dissipation rate of 𝑁𝜌on𝜏on𝐾𝑉 2, which is macroscopically characteristic of a Newtonian fluid, as
the dissipation rate depends quadratically on the shear velocity. This is almost exactly the result derived by Tawada and Sekimoto
(1991) (it is off by a factor of 2 as they have taken the average energy lost at the bond rupture to be 1

2𝑘⟨𝑡on𝑉 ⟩

2
on, i.e., the energy

lost at the average length ⟨𝑡on𝑉 ⟩on at rupture, versus ⟨
1
2𝐾(𝑡on𝑉 )2⟩on which is the average energy of the bond at rupture) and Eq. (4)

can be viewed as a generalization of their result to arbitrary polynomial bonding interactions.
Perhaps the most exciting feature of Eq. (4) is the direct link it provides between the bonding potential and the macroscopic

dependence of the steady state dissipation rate on the velocity. As already mentioned, a linear spring-like bonding energy causes the
macroscopic system to dissipate energy like a Newtonian fluid. Alternatively, an energy which is linear in the bond length causes
the macroscopic system to exert constant force against the shearing, analogous to classical Coulomb friction. However, the behavior
is not restricted to just these two potentials. Using 𝑝 = 1+𝛼 for 𝛼 ∈ (0, 1), we achieve a shear thinning power law fluid with viscosity
proportional to the shear rate to the power 𝛼 − 1 (i.e., 𝜂 ∝ 𝛾̇𝛼−1), and 𝑝 > 2 corresponds to shear thickening fluids. Thus, this model
shows that only a minor change of the bond interactions can lead to a wide range of macroscopic behavior.

It is worth noting that it is also possible to derive an expression for the average dissipation ⟨𝐷𝑇 ⟩ at all times for a monomial
interaction potential 𝜙(𝑥) = 𝑎𝑥𝑝 assuming that all of the bonds are initially unbonded (see Appendix B)

⟨𝐷𝑇 ⟩ = 𝑎𝑉 𝑝
( ∞
∑

𝑛=1

𝑛 𝜅𝑛+1
on 𝜅𝑛

off 𝑇
2𝑛+1+𝑝 𝑝! exp(−𝜅off𝑇 )

(2𝑛 + 1 + 𝑝)! 1𝐹1(𝑛 + 1, 2𝑛 + 2 + 𝑝;𝛥𝜅𝑇 )

+
∞
∑

𝑛=1

𝑛 𝜅𝑛
off 𝜅

𝑛
on 𝑇 2𝑛+𝑝 𝑝! exp(−𝜅on𝑇 )

(2𝑛 + 𝑝)! 1𝐹1(𝑛 + 𝑝, 2𝑛 + 1 + 𝑝; −𝛥𝜅𝑇 )
)

, (5)

here 1𝐹1(𝑎, 𝑏; 𝑥) ∶=
∑∞

𝑚=0
(𝑎+𝑚−1)!(𝑏−1)!
(𝑏+𝑚−1)!(𝑎−1)!

𝑥𝑚

𝑚! is Kummer’s confluent hypergeometric function (Abramowitz et al., 1988, chapter 13)
and 𝛥𝜅 = 𝜅off − 𝜅on. When the two bonding rates are equal (𝜅on = 𝜅off =∶ 𝜅) and for the particular case of the spring interaction
𝜙(𝑥) = 1

2𝐾𝑥2 it reduces to

⟨𝐷𝑇 ⟩ =
1
2
𝐾𝑉 2

𝜅2
(𝜅𝑇 − 𝛽(𝑇 )) ,

where the transient 𝛽(𝑇 ) is given by

𝛽(𝑇 ) = 5
2
− 2(1 + 𝜅𝑇 ) exp(−𝜅𝑇 ) − 1

2
exp(−2𝜅𝑇 ).

As a means of verification, we have conducted kinetic Monte Carlo (KMC) simulations of the stochastic bonding and unbonding
rocess in order to compare the analytical result for the average dissipation per bond to averages of randomly generated trajectories
see Appendix A for details of the KMC simulations). This comparison is shown in Fig. 2(a) for various choices of rates and bonding
potentials, and it is clear that there is good agreement between both methods.
5
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Fig. 2. (a) A comparison of the exact expression for the average dissipation per particle assuming force independence as shown in Eq. (5) (lines) and an
empirical average of 10,000 KMC simulations each (scattered points). The time axis is normalized by the expected time of one bonding and one unbonding event
𝜏 = 1

𝜅on
+ 1

𝜅off
, and the dissipation is normalized by the dissipation after time 𝑇max = 5𝜏 in steady state: 𝑇max𝐷̇𝑆𝑆 . The comparison shows excellent agreement over

ll choices of 𝜅on, 𝜅off, 𝑉 , and 𝜙(𝑥) (simulation 1: 𝜅on = 0.3, 𝜅off = 1.0, 𝑉 = 0.5, 𝜙(𝑥) = 2.4𝑥2, simulation 2: 𝜅on = 3.0, 𝜅off = 0.2, 𝑉 = 0.1, 𝜙(𝑥) = 𝑥3, simulation 3:
on = 1.0, 𝜅off = 10.0, 𝑉 = 1.0, 𝜙(𝑥) = 𝑥1.5∕5, simulation 4: 𝜅on = 1.0, 𝜅off = 1.0, 𝑉 = 1.0, 𝜙(𝑥) = 𝑥2∕2, simulation 5: 𝜅on = 0.3, 𝜅off = 0.2, 𝑉 = 2.0, 𝜙(𝑥) = 𝑥0.3). (b) A
comparison of the steady state dissipation rate versus normalized velocity for a system with Lennard-Jones interaction potential with depth 𝐸, constant width
𝜎 = 1, and force dependent unbonding. Scattered points denote the values obtained from kinetic Monte Carlo simulations (average dissipation is determined
from 1000 bonds and the steady state dissipation rate found via linear regression) and lines denote those obtained through the Eq. (11).

3.2. Force dependent unbonding

Next, we consider the case of force dependent bond dissociation. Including force dependence is a necessary step for accurately
modeling many of the systems mentioned in the introduction (Chaudhury, 1999; Wei, 2014; Vernerey et al., 2018; Yang et al., 2020;
ong et al., 2021). In Chaudhury (1999), Yang et al. (2020), and Song et al. (2021) the dependence of the dissociation rate on the
pplied force is assumed to be governed by the Bell model which we describe shortly (see also Bell (1978) and the introduction of
vans and Ritchie (1997)). A reaction rate equation describing the time dependent mean volume (or area) density of active bonds
s then solved and utilized to study macroscopic material properties such as energy dissipated and damage evolution during rupture
f an adhesive. In Vernerey et al. (2018), a similar reaction rate equation is solved, but instead the rate of bond dissociation is
ssumed to increase quadratically in the force. Finally, Wei (2014) makes use of the Bell model, but assumes the system remains
ear equilibrium so as to work directly with the Gibbs–Boltzmann distribution, and derives a traction-separation relation. Although
ore complex and accurate models for the force dependence of bond dissociation have been established following the reaction rate
heory of Kramers (Kramers, 1940; Evans and Ritchie, 1997; Dudko et al., 2006; Freund, 2009) and the theory of first passage times
(Szabo et al., 1980), we elect to use the Bell model since we are interested only in developing a qualitative understanding, and
so we trade off accuracy for relative simplicity. However, it is worth noting that Eq. (3) is valid quite generally, only requiring a
few assumptions on the probability densities 𝑝on(𝑡on) and 𝑝off(𝑡off), and it could be used to compute the steady state dissipation rate
under any of these models for bond dissociation.

Under the Bell model, the rate of bond dissociation accelerates exponentially with the applied force. Symbolically,

𝜅off(𝐹 ) = 𝜅off exp(𝑎𝛽𝐹 ),

where 𝐹 is the force exerted on the bond, 𝑎 is the distance between the bond energy minimum and the transition state, and 𝛽 is the
inverse absolute temperature (Evans and Ritchie, 1997). Since the plates move at a constant relative velocity, it is useful to write
the rate of unbonding as a function of the time spent bonded

𝜅off(𝑡) = 𝜅off exp(𝛽𝑎𝐹 (𝑉 𝑡)). (6)

Using this equation, it is straightforward to derive the corresponding distribution of unbonding times. Denoting by 𝑆(𝑡) the survival
probability of bonds at time 𝑡 (i.e., the fraction of bonds remaining at time 𝑡), 𝑆(𝑡) is related to the unbonding rate through the
ordinary differential equation

𝑑𝑆
𝑑𝑡

(𝑡) = −𝜅off(𝑡)𝑆(𝑡). (7)

Since 𝑆(𝑡) is the probability that a bond survives longer than time 𝑡, 1−𝑆(𝑡) is the probability that a bond breaks before time 𝑡, and
the density of unbonding times can be found via (Durrett, 2019, Page 10)

𝑝on(𝑡) = − 𝑑
𝑑𝑡

(1 − 𝑆(𝑡)) = 𝜅off(𝑡)𝑆(𝑡). (8)

Since all bonds are intact immediately after they form (i.e., 𝑆(0) = 1), Eq. (7) can be solved assuming 𝜅off(𝑡) ≥ 0 as

𝑆(𝑡) = exp
(

−
𝑡
𝜅off(𝑠)𝑑𝑠

)

.

6
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In the special case of 𝜅off(𝑡) given by (6), 𝑆(𝑡) becomes

𝑆(𝑡) = exp
(

−∫

𝑡

0
𝜅off exp(𝛽𝑎𝐹 (𝑉 𝑠))𝑑𝑠

)

. (9)

sing Eqs. (8) and (9) shows that the density of times spent bonded is

𝑝on(𝑡) = 𝜅off exp (𝛽𝑎𝐹 (𝑉 𝑡)) exp
(

−𝜅off ∫

𝑡

0
exp(𝛽𝑎𝐹 (𝑉 𝑠))𝑑𝑠

)

. (10)

With this equation for the unbonding distribution we proceed as before with the force independent case. Equation (3) allows us
o relate the steady state dissipation rate directly to the potential. The average dissipation from a single bond is

⟨𝐷⟩on = ∫

∞

0
𝜙(𝑉 𝑡)𝑝on(𝑡)𝑑𝑡

nd the average time spent bonded is

⟨𝑡on⟩on = ∫

∞

0
𝑡𝑝on(𝑡)𝑑𝑡.

herefore, after inserting Eq. (10) and integrating by parts, the steady state dissipation rate is given by

𝐷̇𝑆𝑆 =
∫ ∞
0 𝑉 𝐹 (𝑉 𝑡) exp

[

−𝜅off ∫
𝑡
0 exp(𝛽𝑎𝐹 (𝑉 𝑠))𝑑𝑠

]

𝑑𝑡

∫ ∞
0 exp

[

−𝜅off ∫
𝑡
0 exp(𝛽𝑎𝐹 (𝑉 𝑠))𝑑𝑠

]

𝑑𝑡 + 1
𝜅on

.

In order to determine the impact of the many microscopic parameters of the model, it is helpful to rewrite this equation in terms
of dimensionless quantities

𝑑̇𝑆𝑆 ∶=
𝛽𝐷̇𝑆𝑆
𝜅off

=
∫ ∞
0 𝑓 (𝑎𝑥) exp

[

− 1
𝑣 ∫

𝑥
0 exp(𝑓 (𝑎𝑦))𝑑𝑦

]

𝑑𝑥

1
𝑣 ∫

∞
0 exp

[

− 1
𝑣 ∫

𝑥
0 exp(𝑓 (𝑎𝑦))𝑑𝑦

]

𝑑𝑥 + 𝜅off
𝜅𝑜𝑛

, (11)

where 𝑓 (𝑎𝑥) ∶= 𝑎𝛽𝐹 (𝑎𝑥) is the normalized force, 𝑥 and 𝑦 are unitless lengths, and 𝑣 ∶= 𝑉
𝑎𝜅off

is a normalized velocity.
As in the force independent case, Eq. (11) allows us to directly relate the steady state dissipation rate to the interaction potential

ia the force 𝑓 (𝑎𝑥). Fig. 2(b) compares the results of Eq. (11) to KMC simulations where the steady state dissipation rate is estimated
through linear regression. It is clear that both the analytical values and those extracted from numerical simulations are in excellent
agreement.

In order to better understand the relationship between 𝑑̇𝑠𝑠 and 𝑣, we investigate the quantity

𝑃 ∶=
𝑑 log(𝑑̇𝑆𝑆 )
𝑑 log(𝑣)

,

hich we will refer to as the phase. This definition is motivated by the force independent case where we have shown that an
nteraction potential of the form 𝜙(𝑥) = 𝑎𝑥𝑝 induces a steady state dissipation rate 𝐷̇𝑆𝑆 = 𝑏𝑉 𝑝 for some constant 𝑏 independent of 𝑉 .
In this case, log(𝑑̇𝑆𝑆 ) = 𝑝 log(𝑣) + log(𝑐) for some 𝑐 independent of 𝑣, so 𝑃 ∶= 𝑑 log(𝑑̇𝑆𝑆 )

𝑑 log(𝑣) ≡ 𝑝 is independent of 𝑎 and the bonding rates.
Moreover, the phase indicates the model’s macroscopic behavior at a particular (dimensionless) velocity 𝑣. For example, if 𝑃 (𝑣0) = 2,
the system behaves like a Newtonian fluid for 𝑣 ≈ 𝑣0. If 𝑃 (𝑣0) ∈ (1, 2) then the system behaves like a shear-thinning fluid. The plots
shown in Fig. 3 depict the dependence of the phase on the normalized velocity and the normalized stiffness (𝑘 = 𝑎𝑓 ′(0) = 𝑎2𝛽𝐹 ′(0))
of the interaction potential for three standard interatomic potentials: spring (harmonic), Lennard-Jones, and the soft Coulomb (see
Fig. 5 for visuals and Appendix C.4 for the algebraic forms of these potentials). The diagrams reveal that these three potentials lead
to qualitatively similar macroscopic behaviors. In each case, for fixed stiffness and (non-dimensional) shear velocity low enough,
the system has a phase value of two, meaning that the system behaves like a Newtonian fluid. As the velocity increases, the value
of the phase drops and the system behaves like a shear thinning fluid. For even higher shear velocities, the phase value hits one
and then decreases below one.

The fact that each of these systems has a phase value of two for low velocities is directly connected to our analysis in the
force independent case. To illustrate this point, Fig. 4 shows the same diagrams, but instead compares quadratic, cubic, and quartic
interaction potentials. These plots contain a few differences not present for the previous interatomic potentials. In the limit of low
shear velocities, the phase of the quadratic, cubic and quartic potential tend to two, three, and four, respectively. This occurs because
at low velocities most bonds break before the bond can be stretched to the point that it feels a meaningful force, and thus the bonding
kinetics closely approximate the force independent case. In the case of a Lennard-Jones and the soft Coulomb interactions, the low
shear velocities also implies that most bonds are never stretched very far away from the local minimum at zero stretch. Both the
Lennard-Jones and the soft Coulomb have lowest order quadratic approximations and hence behave like harmonic spring potentials
at low velocities.

The previous diagrams intentionally cover many decades of dimensionless shear velocities in order to examine the full range
of possible behavior. It is also worth examining shear rates and kinetic parameters which correspond to realistic systems and
achievable experiments. Using the kinetic and bonding parameters listed in Barel et al. (2010) (𝜅on = 𝜔on exp(−𝐸on∕𝑘𝐵𝑇 ) and
𝜅 = 𝜔 exp(−𝐸 ∕𝑘 𝑇 ) with 𝜔 = 𝜔 = 1010 s−1, 𝐸 = 0.05 eV, 𝐸 = 0.15 eV, and 𝑇 = 300 K, and 𝑎 = .25 nm, 𝑉 = 10 − 10000
7
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Fig. 3. Plots of the phase 𝑃 against normalized velocity 𝑣 and normalized stiffness (𝑘 ∶= 𝑎𝑓 ′(0)) for a harmonic spring, Lennard-Jones, and soft Coulomb
potentials (algebraic forms of the potentials used are listed in Appendix C.4). For both the Lennard-Jones and the soft Coulomb potentials, the potential height,
𝐸, and the potential width, 𝜎, were chosen so that 𝐸

𝜎2 = 𝐾 and the ratio of the 𝐸 to 𝜎 remained fixed (𝑎𝛽 was taken to be one).

Fig. 4. Phase diagrams comparing the harmonic spring, cubic, and quartic potentials. Since 𝑓 ′(𝑥) vanishes for the cubic and quartic potentials, stiffness here
corresponds to the value of the first non-vanishing derivative of the normalized force 𝑘 = 𝑑𝑛

𝑑𝑥𝑛
𝑓 (𝑎𝑥)||

|𝑥=0
= 𝑎𝑛𝑓 [𝑛](0). In each case, lim𝑣→0 𝑃 (𝑣) = 𝑝 where 𝜙(𝑥) ∝ 𝑥𝑝

s in the force independent case.

Fig. 5. Plots of the Lennard-Jones (a) and soft-Coulomb (b) potentials in blue. The red dashed line depicts the limiting height of the potential 𝐸, and the 𝑥-axis
is scaled by the width of the potential 𝜎.

nm/s) which were originally used to model sliding friction between a crystalline surface and an Atomic Force Microscope (AFM)
tip, the resulting phase diagram is shown in Fig. 6 (larger scanning velocities are used to show where shear thinning begins). We
see that the physical regime (circled in red in the phase diagram) corresponds with the low and mid-range shear rates mentioned
previously. For potentials with quadratic approximations to their minimum, this corresponds to a Newtonian fluid at low shear rates
which eventually becomes shear thinning at higher shear rates. Since most interaction potentials fit this criteria, this model predicts
that in most systems, stochastic bonds will lead to a Newtonian fluid or a shear thinning fluid like response to applied shear. As
a comparison, Fig. 6b shows the shear thinning behavior of the stochastic bond model together with three other standard shear
hinning fluid models: the Eyring model, the Carreau model, and the limiting stress model (Mate and Carpick, 2019, Chapter 3).
8



Journal of the Mechanics and Physics of Solids 158 (2022) 104660T. Leadbetter et al.

𝜅
n
𝑃
m
𝑛
i

u

a

U

Fig. 6. (a) Phase diagram for a system with a soft Coulomb interaction using kinetic and bonding parameters taken from Barel et al. (2010) (specifically
on = 𝜔on exp(−𝐸on∕𝑘𝐵𝑇 ) and 𝜅off = 𝜔off exp(−𝐸off∕𝑘𝐵𝑇 ) with 𝜔on = 𝜔off = 1010 s−1, 𝐸on = 0.05 eV, 𝐸off = 0.15 eV, and 𝑇 = 300 K, and 𝑎 = .25 nm, 𝑉 = 10 − 10000
m/s). The region corresponding to values near these are circled by the red ellipse. Except for near very large stiffness of the AFM tip, the phase is predominantly
= 2 signifying a Newtonian fluid behavior. (b) A comparison of the effective viscosity predicted for the stochastic bond model with three common shear thinning
odels: the Eyring model, the Carreau model, and the limiting stress model (𝜂Eyring = 30.6 kPa s, 𝛾̇Eyring = 13400 s−1, 𝜂Carreau = 30.8 kPa s, 𝛾̇Carreau = 12300 s−1,
Carreau = 0.47, 𝜂limiting stress = 30.7 kPa s, 𝛾̇limiting stress = 42800 s−1). Kinetic and bonding parameters are the same as those used for the phase diagram. A spring
nteraction with 𝐾 = 6 N∕m, a distance ℎ = 1 nm between the AFM tip and the crystalline surface, and a bond concentration of 𝑐 ∶= 𝑁∕𝜋𝑟2 = 20∕𝜋(10)2 ≈ 0.064
nm−2 using the estimation of 20 bonds on the AFM tip (Barel et al., 2010) and an AFM tip with radius 10 nm (Mate and Carpick (2019) page 33). The effective
viscosity is then 𝜂 = 𝑐 ℎ𝐷̇𝑆𝑆

𝑉 2 as 𝑐𝐷̇𝑆𝑆

𝑉
is the steady state stress and 𝑉

ℎ
is the shear rate. All models have qualitatively similar behavior, but the Eyring model

obtains the best fit to the viscosity given by the steady state dissipation rate equation.

3.2.1. Low shear velocity limit
We turn our attention to deriving approximations to the steady state dissipation rate in both the low and high shear rate limit.

In the limit of low shear rates, the force dependence of the unbonding rate is dominated by the behavior of the potential near its
minimum since bonds rupture due to thermal fluctuations (encoded in the intrinsic unbonding rate 𝜅off) before they can stretch far
with high probability. Thus, for many interactions the behavior at low shear rates is well approximated by the behavior of a spring
interaction with effective spring constant 𝐾eff = 𝐹 ′(0). In this case, by explicitly computing the integral in Eq. (10), we find that the
nbonding distribution is a Gompertz distribution

𝑝on(𝑡) = 𝜅off exp(−
𝜅off
𝜔

exp(𝜔𝑡) + 𝜔𝑡 +
𝜅off
𝜔

), (12)

where 𝜔 = 𝑎𝛽𝐾eff𝑉 is the scale parameter and 𝜅off∕𝜔 is the shape parameter. The mean time spent bonded is then

⟨𝑡on⟩on = 1
𝜔
exp(

𝜅off
𝜔

)∫

∞

𝜅off
𝜔

𝑢−1 exp(−𝑢)𝑑𝑢 (13)

and the average dissipation due to a single unbonding is proportional to the second moment

⟨𝐷⟩on = 𝐾eff𝑉
2
exp( 𝜅off𝜔 )

𝜔2 ∫

∞

1

log(𝑢) exp(−𝜅off𝑢∕𝜔)
𝑢

𝑑𝑢 (14)

(see Lenart (2014) Proposition 2). The functions

∫

∞

𝑡

exp(−𝑢)
𝑢

𝑑𝑢 (15)

nd

∫

∞

1

log(𝑢) exp(−𝑡𝑢)
𝑢

𝑑𝑢 (16)

admit an expansion in powers of 1
𝑡 (see Appendix D for derivations). This allows us to investigate the limit as 𝑉 → 0 and 𝜅off∕𝜔 → ∞.

sing these expansions for ⟨𝑡on⟩on and ⟨𝐷⟩, and ⟨𝑡off⟩off = 1∕𝜅on gives

𝐷̇𝑆𝑆 =
𝜌on𝐾eff𝑉 2

𝜅off

(

1 − 𝜔
𝜅off

(3 − 𝜌on) +
(

𝜔
𝜅off

)2
(17 + 𝜌2on − 2𝜌on) + (𝜔3)

)

, (17)

where 𝜌on = 𝜅on∕(𝜅off + 𝜅on) is the force independent equilibrium fraction of active bonds. For 𝜔 ≪ 𝜅off or 𝑉 ≪ 𝜅off
𝑎𝛽𝐾eff

, the steady
state dissipation rate grows like 𝑉 2, leading to a value of two for the phase. Higher order terms become relevant when 𝑉 ≈ 𝜅off

𝑎𝛽𝐾eff
which explains why the yellow bands in Fig. 3 have a slope of negative one as this transition can also be written as

log(𝑣) = log( 𝑉 ) ≈ − log(𝑎2𝛽𝐾eff) = − log(𝑘eff).
9
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Fig. 7. Theoretic densities of unbonding times as a function of normalized velocity of the top plate for a spring (a) with 𝐾 = 1.0 and Lennard-Jones (b,c)
interactions (𝐸 = 1.0, 𝜎 = 10). For the spring interaction, the probability density becomes highly peaked near zero and essentially vanishes for long times as
𝑣 → ∞ (legend of (a) applies here too). For the Lennard-Jones interaction, some fraction of bonds break rapidly, but the distribution tends to an exponential (as
in the force independent case). The solid black line depicts an exponential distribution (the force independent distribution) for reference.

In the general case (i.e., bond interactions whose expansion about the minimum need not have a quadratic term), the force
independent steady state dissipation rate gives the lowest order approximation in the force dependent case at low velocities. This
can be seen by expanding the unbonding probability density and the interaction potential to the lowest order in 𝑉 (here denoted
by 𝑝). The resulting steady state dissipation rate is given by

𝐷̇𝑆𝑆 =
⟨𝜙(𝑉 𝑡on)⟩on

⟨𝑡on⟩on + ⟨𝑡off⟩off
=

𝜙[𝑝](0)(𝑉 ∕𝜅off)𝑝 + (𝑉 𝑝+1)
1

𝜅off
+ 1

𝜅on
+ (𝑉 )

=
𝜌on
𝜅𝑝−1
off

𝜙[𝑝](0)𝑉 𝑝 + (𝑉 𝑝+1),

where 𝜙[𝑝](𝑥) is the 𝑝th derivative of 𝜙 evaluated at 𝑥 and (𝑉 𝑝+1) represents a term which goes to zero at least as fast as 𝑉 𝑝+1

as 𝑉 → 0. Moreover, examining the expansion for the unbonding probability density reveals that to lowest order, the unbonding
density is an exponential (as in the force independent case) and the next order effect is to increase the probability of unbonding at
short times 𝑡 < 𝑝

𝜅off
and reduce the probability of longer unbonding times 𝑡 > 𝑝

𝜅off
(for details see Appendix D.2).

.2.2. High shear velocity limit
From the plots shown in Figs. 3 and 4 it is clear that in all cases the phase, and hence the strength of the dependence of the steady

tate dissipation rate on the shear rate, decreases dramatically as the shear rate increases for all values of the potential stiffness.
owever, there is a subtle difference between the behaviors of the steady state dissipation when the interaction potentials remain
ounded for large separations versus when they become unbounded. In both cases, the large shear rates cause the bonds to experience
large force very quickly, accelerating bond dissociation. In the case of an unbounded interaction, all of the bonds dissociate rapidly.
owever, in the case of a bounded interaction, only some of the bonds dissociate rapidly, but the remainder are pulled to the plateau
f the bonding potential. There, the force is greatly reduced and the unbonding distribution becomes approximately exponential as in
he force independent limit. These two distinct behaviors are shown through the unbonding distributions of the spring (unbounded)
nd Lennard-Jones (bounded) in Fig. 7.
This manifests as distinctive behaviors for the steady state dissipation rate. Taking spring interaction with spring constant 𝐾 as an

xample of an unbounded interaction, we can study the limiting behavior of the Gompertz distribution for 𝑉 → ∞ and 𝜅off∕𝜔 → 0.
sing the result of Lenart (2014) (see proofs of corollaries one and two), we can expand the mean time bonded and the mean
issipation per bond to get an expansion for the steady state dissipation rate

𝐷̇𝑆𝑆 =
𝜅on

2𝐾𝑎2𝛽2
[

log( 𝜔
𝜅off

)2 − 𝛾Euler log(
𝜔
𝜅off

) + 𝛾2Euler +
𝜋2

6
+ 𝑜(1)

]

,

here, 𝛾Euler ≈ 0.57722 is the Euler–Mascheroni constant, and 𝑜(1) signifies a remainder going to zero as 𝜔 → ∞. This expansion
arallels the work of Chaudhury (1999) who solved a reaction equation equivalent to Eq. (7) with unbonding rate given by the Bell
odel and a spring interaction (𝐹 = 𝐾𝑉 𝑡), and found that the energy dissipated by the fracture of an adhesive at a polymer-glass
nterface is given by

𝐺el =
𝑁

2𝐾𝑎2𝛽2

[

log
(

𝛽𝐾𝑉 𝑎
𝑛𝜅off

)]2
= 𝑁

2𝐾𝑎2𝛽2

[

log
(

𝜔
𝑛𝜅off

)]2
.

This expression differs only by the prefactors of 𝑁 , the total number of bonds, and 𝜅on since Chaudhury (1999) computes the total
dissipated energy rather than the dissipation rate per bond, and a factor of 𝑛 in the logarithm due to the fact that the polymers in
the adhesives are described as having 𝑛 links and hence 𝑛 possible locations for rupture. Here, we have the benefit of an analytical
expression for all the moments of the Gompertz distribution, thanks to the work of Lenart (2014), which allows us to expand
10

the steady state dissipation rate per bond to higher orders. Given the parallels of the methodology, it may be possible to use the
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techniques presented here to estimate the rate dependent fracture energy like the one calculated by Chaudhury (1999), but for
different polymer bond energies.

Returning to our analysis, the fastest growing term grows like 𝐷̇𝑆𝑆 ∝ log(𝑉 2) which becomes arbitrarily large in the limit of high
velocities. However, in the case of an bounded potential 𝜙(𝑥) ≤ 𝜙max, the steady state dissipation rate is also bounded as well,

𝐷̇𝑆𝑆 =
⟨𝜙(𝑉 𝑡off)⟩

⟨𝑡off⟩ + ⟨𝑡on⟩
≤ 𝜅on𝜙max.

his explains why the phase tends to zero in all cases. In the case of the spring interaction, the largest term in 𝐷̇𝑆𝑆 grows like
log(𝑉 ))2 and hence when the dimensions are removed, 𝑑̇𝑆𝑆 ∝ (log(𝑣))2 for large 𝑣. Thus 𝑃 = 𝑑

𝑑 log(𝑣) log(𝑑̇𝑆𝑆 ) ∝
1

log(𝑣) → 0 as 𝑣 → ∞.
Moreover, for the bounded potentials 𝑑̇𝑆𝑆 is bounded. But if the phase 𝑃 were larger than any 𝛼 > 0 for all 𝑣 this would mean 𝑑̇𝑆𝑆
would grow at least as fast as 𝑣𝛼 and hence be unbounded: a contradiction. Thus, the phase must eventually tend to zero.

4. Applications to physical systems

4.1. Dynamic response and a connection to transient polymer networks.

Now we turn our focus to understanding the viscoelastic response of the stochastic bond model. To do this, we derive the system’s
response to an instantaneous displacement 𝜖(𝑡) = 𝜖𝐻(𝑡) where 𝐻(𝑡) is the Heaviside step function

𝐻(𝑡) =

{

0 𝑡 < 0,
1 𝑡 ≥ 0.

In other words, we derive the response to a stress relaxation experiment. Since the system experiences zero strain prior to time
𝑡0 = 0, it will have had time to relax, and the probability of a bond being bonded at time 𝑡0 = 0 is simply the equilibrium probability
of being bonded

𝜌on =
1

𝜅off
1

𝜅off
+ 1

𝜅on

.

f a bond is not already bonded at time 𝑡0 = 0, the instantaneous displacement will not have any effect and this bond will not
contribute to the force on the top plate. If the bond is bonded, however, it will exert a force 𝐹 (𝜖) against the displacement until
it unbonds, after which it will no longer exert any force. Surviving bonds experience the force 𝐹 (𝜖) and so their unbonding rate is
ccelerated to 𝜅(𝜖) = 𝜅off exp(𝑎𝛽𝐹 (𝜖)) giving an accelerated unbonding density

𝑝on(𝑡) = 𝜅(𝜖) exp(−𝜅(𝜖)𝑡).

his means the fraction of bonds which existed at time 𝑡0 = 0 and which are still intact by time 𝑡 > 0 is exp(−𝜅(𝜖)𝑡). Thus, the average
esponse of an individual bond to the instantaneous displacement is given by

𝜎(𝑡) = 𝜌on𝐹 (𝜖) exp(−𝜅(𝜖)𝑡). (18)

quation (18) holds for any displacement 𝜖. Fig. 8(a) shows Eq. (18) compared to the average force per bond in KMC simulations
f an instantaneous displacement with 10,000 bonds.
Now, we use this result to derive the dynamic moduli, characterizing the system’s response to small strains. To compute the

ynamic moduli, we define a response function 𝐺(𝑡, 𝜖𝑀 ) which is dependent on the maximum strain 𝜖𝑀 as

𝐺(𝑡, 𝜖𝑀 ) ∶=
𝜌on𝐹 (𝜖𝑀 )

𝜖𝑀
exp(−𝜅(𝜖𝑀 )𝑡),

so that it is consistent with the theoretical response to a step displacement, i.e., for 𝜖(𝑡) = 𝜖𝑀𝐻(𝑡)

𝜎(𝑡) = ∫

𝑡

−∞
𝐺(𝑡 − 𝑠, 𝜖𝑀 )𝜖̇(𝑠)𝑑𝑠.

We then write down the predicted response to the periodic driving 𝜖(𝑡) = 𝜖𝑀 sin(𝜔𝑡)

𝜎(𝑡) = ∫

𝑡

−∞
𝐺(𝑡 − 𝑠, 𝜖𝑀 )𝜖𝑀𝜔 cos(𝜔𝑠)𝑑𝑠

=
𝜌on𝐹 (𝜖𝑀 )𝜔2𝜅(𝜖𝑀 )
(𝜔2 + 𝜅(𝜖𝑀 )2)

sin(𝜔𝑡) +
𝜌on𝐹 (𝜖𝑀 )𝜅(𝜖𝑀 )𝜔
(𝜔2 + 𝜅(𝜖𝑀 )2)

cos(𝜔𝑡).

Hence, the system has dynamic moduli

𝐺′(𝜔, 𝜖𝑀 ) =
𝜌on𝐹 (𝜖𝑀 )𝜔2

𝜖𝑀
(

𝜔2 + 𝜅(𝜖𝑀 )2
) (19)

𝐺′′(𝜔, 𝜖𝑀 ) =
𝜌on𝐹 (𝜖𝑀 )𝜔𝜅(𝜖𝑀 )
𝜖𝑀

(

𝜔2 + 𝜅(𝜖𝑀 )2
) , (20)
11



Journal of the Mechanics and Physics of Solids 158 (2022) 104660T. Leadbetter et al.

a
E
E
l
d
i

a
f
a
n
c

Y
t
(
t
a
e
l
t
t
c

4

s
t
(
i
5
f
b
s
c
R

p

Fig. 8. (a) A comparison of the predicted and simulated average response to relaxation tests at various strains. The analytic formula (Eq. (18)) is shown in
the line, and the simulated data in the scattered markers. There is excellent agreement for all choices of strain 𝜖. (b,c) A comparison of the predicted dynamic
moduli and those observed from simulations of periodic driving over a range of frequencies. We use a soft Coulomb potential with energy height 𝐸 = 1.0 and
width 𝜎 = 1.0. (b) For small strains well within the linear regime of the interaction (𝜖 = 0.08 is plotted here), there is very good agreement with the predicted
Maxwell model behavior. (c) For finite strains (𝜖 = 2.0 plotted), non-linearities cause the fit to lose its quantitative predictability. However, the response remains
qualitatively similar.

which corresponds to the well studied Maxwell material with spring constant 𝐸 ∶= 𝜌on𝐹 (𝜖𝑀 )
𝜖𝑀

and relaxation time 𝜏 ∶= 1
𝜅(𝜖𝑀 ) . In

the limit of infinitesimal strains 𝐹 (𝜖𝑀 )∕𝜖𝑀 → 𝐹 ′(0) and 𝜅(𝜖𝑀 ) → 𝜅off, and hence a strain independent description can only be
pplied when the interaction is harmonic about its minimum (so that 𝜙′′(0) = 𝐹 ′(0) ≠ 0). Fig. 8b,c depicts a comparison of
qs. (19) and (20) against the dynamic moduli gathered from KMC simulations of periodic driving. We find that at low strains
qs. (19) and (20) accurately predict the response to periodic driving. However, for larger strains, there is disagreement. This is
ikely both due to nonlinear effects that large strains (and hence larger stresses) induce on the unbonding distribution, as well as
ue to the assumption that the amplitude of the driving (𝜖1 in 𝜖(𝑡) = 𝜖1 sin(𝜔𝑡)) should correspond to the maximum amplitude in the
nstantaneous displacement (𝜖2 in 𝜖(𝑡) = 𝜖2𝐻(𝑡) and we assume that we should compare the case of 𝜖1 = 𝜖2).
Finally, it is worth mentioning two observations. The first is that a Maxwell material behavior is consistent with our previous

nalysis of the steady state behavior. When subjected to a constant strain rate, a Maxwell material is expected to flow as a Newtonian
luid. This is also the prediction of the steady state behavior for bonds with interactions admitting a harmonic expansion (which are
lso the bonds for which strain independent moduli can be defined). Thus the two findings are mutually compatible. Second, we
ote that the crossover point of 𝐺′ and 𝐺′′ marks the inverse relaxation time (set 𝐺′(𝜔) = 𝐺′′(𝜔) and solve to get 𝜔 = 𝜅(𝜖𝑀 ) in this
ase). Thus, the unbonding rate 𝜅off could be found experimentally by finding the crossover frequency in the limit of zero strain.
An exponential decay response is a common occurrence among polymer networks with transient cross-links (Long et al., 2013;

ang et al., 2015). Maxwell type material behavior has already been shown to be the limiting response of a continuum model for
hese networks in the limit of no permanent cross-links (i.e., only stochastic bonds with short average bonding and unbonding times)
Vernerey et al., 2017) and for ideal reversible polymer networks (Parada and Zhao, 2018). Moreover, in the regime of finite strains,
he increase and flattening of the dynamic moduli prior to the crossover time is qualitatively similar to the behavior of biopolymer
ctin networks as described in Broedersz et al. (2010). Although the quantitative power law dependence of 1∕2 shown in Broedersz
t al. (2010) is not observed, this could be explained by the lack of long lasting bonds in the model we study here. Including long
asting bonds may improve the ability to model polymer networks, however our main focus is characterizing the dissipative rather
han elastic behavior. Thus, it appears that the simplified model can indeed help elucidate the mechanical properties resulting from
ransient cross-links. Perhaps the connection between bonding interaction on the microscale and macroscopic material behavior
ould be of use for those seeking to engineer networks with desirable mechanical response.

.2. Solid bridges in granular media

We conclude by applying the stochastic bond model to a study of ‘‘solid bridges’’ which arise in polydisperse granular media
ubject to transient hydrodynamic forces (Seiphoori et al., 2020). We use this model to predict the rate of energy dissipation due to
he rupture of inter-particle bonds in geomaterials involved in various geophysical flow processes such as slow-moving landslides
e.g., Highland et al. (2008)). Many natural and industrial materials are composed of particles of various size and are subject to
ntermittent cycles of wetting and drying. As liquid evaporates from a polydisperse colloidal suspension, smaller particles (size ≤
μm) tend to condense within the shrinking capillary bridges between larger grains and the substrate or one grain to another. After
ull evaporation, smaller particles act as inter-grain bonds, giving rise to an effective cohesion. Such bonds, referred to as solid
ridges, can form mechanically stable aggregates that resist subsequent rewetting and shear flow. Understanding the mechanical
tability of aggregates composing such systems is essential for predicting their macroscopic mechanical and transport behavior. The
ollapse and erosion of natural soils results from disintegration of aggregates when inter-particle bonds are reduced (Barthes and
oose, 2002; Li et al., 2019).
Here we perform experiments by creating a bidisperse aggregate system composed of 20-μm and 3-μm particles, where smaller
12

articles ring larger grains and connect them to the substrate through solid bridges. We then use an Atomic Force Microscope
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Fig. 9. (a) Microscopic images of a 20 μm microsphere in a monodispersed and bidispersed solution which originally appeared in Seiphoori et al. (2020) Figure
2. Also included is an illustration of the AFM pull-off experiment. The tip of the AFM approaches and attaches to the 20 μm microsphere. The epoxy is allowed
to solidify at which point the cantilever arm is retracted, pulling the 20 μm microsphere away from the substrate and the solid bridge in the particle assembly
rom a bidisperse solution. Similar illustrations originally appeared in Figure 5.B of the same article. These figures were published under the Creative Commons
CC BY-NC-ND license. (b) Force versus displacement data for an adhesion, monodisperse, and bidisperse pull-off experiment.

(AFM) to measure the force required to pull a 20 μm bead out off its solid bridge (see Appendix E for details). Fig. 9 shows both an
illustration of the experiment as well as the resulting force versus displacement data from the pull-off experiment.

To model this experiment, we combine the interactions between the AFM tip and the microsphere and that between the substrate
and the microsphere into a single force which we describe as a spring with spring constant 𝐾eff. The solid bridge is modeled as a
number of kinetic bonds (estimated around 30 from microscopic images) which we assume have a spring interaction with spring
constant 𝐾bond. These bonds are in series with the effective AFM/substrate spring force and so if there are 𝑁 bonds in the solid
ridge at a given time, the total spring constant of the whole system is 𝐾tot =

𝑁𝐾bond𝐾eff
𝑁𝐾bond+𝐾eff

.
Using the force versus displacement data shown in Fig. 9(b), we split the data up into seven sections defined by the seven

pproximately linear and decreasing pieces. We interpret these linear pieces as periods of constant number of bonds in the solid
ridge and the nonlinear portions of the plot as periods of bond formation or breaking. From each linear piece, we extract the slope
s the observed spring constant for that section, labeled 𝐾 𝑖

obs for 𝑖 = 1,… , 7. Then, we use these to fit the total number of bonds 𝑁tot
and the two spring constants, 𝐾eff, 𝐾bond as follows. For fixed values of 𝑁tot and 𝐾eff, we assume the first effective spring constant
corresponds to all 𝑁tot bonds formed (i.e., 𝑁1 ∶= 𝑁tot), and so we use the equation

𝐾1
obs =

𝑁1𝐾bond𝐾eff
𝑁1𝐾bond +𝐾eff

o solve for 𝐾bond. For the remaining effective spring constants 𝐾 𝑖
obs, 𝑖 = 2,… , 7, we choose the integer 𝑁𝑖 such that 𝑁𝑖𝐾bond𝐾eff∕

(𝑁𝑖𝐾bond+𝐾eff) is closest to 𝐾 𝑖
obs, which gives a best estimate for the number of surviving bonds during the portion of the experiment

where 𝐾 𝑖
obs is observed. The fit is then scored by summing the squares of the distance between the predicted and observed effective

pring constants

𝐺(𝑁tot, 𝐾eff) =
7
∑

𝑖=1

(

𝐾 𝑖
obs −

𝑁𝑖𝐾bond𝐾eff
𝑁𝑖𝐾bond +𝐾eff

)2

nd the best fit is chosen as the minimizer of this quantity. The best fit over the range 𝑁tot ∈ [1, 35]∩Z and 𝐾eff ∈ [0.03, 0.08] (N/m)
s shown in Fig. 10(a). The observed spring constants and their uncertainty (computed using standard error prorogation through
he least squares regression formula assuming 3% error in the force measurement (Seiphoori et al., 2020)) are shown in black and
he allowable effective spring constants depicted by the red lines (i.e., those corresponding to integer number of bonds). The best
it model parameters are 𝑁tot = 25, 𝐾eff = 68 (nN/μm), 𝐾bond = 2 (nN/μm). We put an upper bound on the number of bonds 𝑁tot,
ecause as 𝑁tot increases the effective spring constants allowed become more dense to the point where any observed spring constant
s approximated well. An upper bound on the number of bonds is necessary to avoid this erroneous overfitting. We choose 35 as a
aximum so as to be consistent with our microscopic observations.
We now turn to using the predicted 𝐾bond, 𝐾eff, and 𝑁𝑖 to estimate the kinetic parameters of the bonds. Using the 𝑁𝑖 and

he displacement data of the experiment, we can write the observed number of active bonds as a function of time 𝑁(𝑡) which
s piecewise constant during the periods of constant number of bonds, and linearly interpolating during periods when bonds are
reaking or forming. The force on a single bond as a function of time is

𝐹 (𝑡) =
𝐾eff𝐾bond𝑉 𝑡

,

13

𝑁(𝑡)𝐾bond +𝐾eff
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Fig. 10. (a) This plot shows the fit for the observed spring constants. The black crosses show the experimentally observed spring constants and the blue lines
hose corresponding to an integer number of bonds. Vertical black lines show the error in the observed spring constant assuming 3% error in force measurement
Seiphoori et al., 2020). The fit shown uses 𝑁𝑡𝑜𝑡 = 25, 𝐾eff = 68 (nN/μm), 𝐾bond = 2 (nN/μm). Note that bonding and unbonding often occurs many at a time.
(b) A comparison of the observed number of active bonds taken from data and the empirical average over 100,000 KMC simulations of the pull-off experiment
using the MLE parameters. The best fit rates are 𝜅on = 3.47 s−1, 𝜅off = 4.17 s−1 , and 𝐹𝑐 = 1.99 nN. (c) A KMC simulation of the pull-off experiment using the best
fit parameters. Shown in the plot is the number of active bonds, the force on the AFM cantilever, and the force on a single bond as a function of displacement
of the base of the cantilever arm. There is strong qualitative resemblance to the experimental data in shown in Fig. 9(b). (d) The empirical average of the same
three quantities as a function of time using 100,000 KMC simulations.

where 𝑉 = 8.97 μm∕s is the velocity of the base of the cantilever. To predict 𝜅on, 𝜅off, and the critical force 𝐹𝑐 ∶= (𝑎𝛽)−1 at which
nbonding is accelerated, we use maximum likelihood estimation, a standard method of parameter estimation in statistics (Rossi,
018, p. 226). The maximum likelihood estimator (MLE) for the parameters 𝜅on, 𝜅off, and 𝐹𝑐 is defined as follows. The likelihood
unction of 𝜅on, 𝜅off, and 𝐹𝑐 is defined as the probability density of observing 𝑁(𝑡) assuming the solid bridge model with these
pecific parameters

𝓁(𝜅on, 𝜅off, 𝐹𝑐 ) ∶= 𝑝SB(𝑁(𝑡) ∣ 𝜅on, 𝜅off, 𝐹𝑐),

see Appendix F for details in computing 𝑝SB(𝑁(𝑡) ∣ 𝜅on, 𝜅off, 𝐹𝑐)). The MLE is then the set of parameters which maximize the
ikelihood function

𝜅̂on, 𝜅̂off, 𝐹𝑐 ∶= argmax
𝜅on ,𝜅off ,𝐹𝑐

𝓁(𝜅on, 𝜅off, 𝐹𝑐).

n other words, the MLE is the set of parameters which is mostly likely to have brought about the observed data. Using the 𝑁(𝑡)
onstructed from the solid bridge data, the MLE for the parameters is 𝜅̂on = 3.47 s−1, 𝜅̂off = 4.17 s−1, and 𝐹𝑐 = 1.99 nN.
Using the estimated spring constants, number of bonds, kinetic properties, and critical force, we can use KMC simulations to

enerate force versus displacement plots mirroring the pull-off experiment (see Appendix A for details on the KMC simulations).
e make one final assumption in generating simulated data. Since the microsphere forming the solid bridges between the 20 μm
article and the substrate is 3 μm in diameter, we assume that once the simulated bonds comprising the solid bridge are stretched
eyond 3 μm, broken bonds are no longer able to reform. An example simulation is plotted in Fig. 10(c). There is good qualitative
greement with the experimental data from Fig. 9(b). At early times, the force on the AFM cantilever is almost linear with small
eviations due to unbonding. This is followed by a rapid flattening of the force on the cantilever, as well as a shortening of the
ength of each linear section as the number of active bonds drops below 10. Finally, there is a large discontinuous decreases in force
s the last bonds break away. Using KMC simulations, we can also numerically estimate the number of active bonds, the force on
14

he AFM cantilever, and the force on a single bond as a function of displacement averaged over many simulated experiments. These
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Fig. 11. The effective potential energy for the solid bridge as a function of bond displacement and the unbonding probability density as a function of time
spent bonded for a landslide velocity of (a) 10 μm/s ≈ .86 m/day and (b) 3 μm/s ≈ .26 m/day.

empirical averages are shown in Fig. 10(d). Additionally, the average number of active bonds is plotted in Fig. 10(b) along with
the observed number of active bonds taken from the experimental data to show the goodness of fit of the MLE parameters. Some
features of interest in the plot of empirical averages include an average peak force on the cantilever of around -20 nN which occurs
at a displacement of -1.25 μm. In Fig. 10(c), the force on a single bond gradually increases until the final bond ruptures when it
discontinuously jumps down to zero. The empirical average however, begins to slowly decrease after a displacement of 2 μm. This
suggests that a significant number of simulated solid bridges ruptured on or after being pulled 2 μm. By this point, the magnitude of
the force on a single bond is around 2.5 nN, and the rate of unbonding has accelerated by a factor of exp(𝐹∕𝐹𝑐 ) = exp(2.5∕1.99) ≈ 3.5.
One noticeable difference between the model and the experiment is the large non-linear increases in the force on the cantilever in
the single simulation (Fig. 10(c)). This is likely due the fact that our model uses a constant rate of bonding. Since a newly reformed
bond immediately experiences the force from the cantilever, a bonding rate which decreases with the magnitude of the applied
force would likely be more appropriate. Additionally, the model supposes that each of the bonds are independent aside from their
effect on the force felt. However, our fit for the number of active bonds at a given time 𝑁(𝑡) suggests that multiple bonds break and
reform together. A simple way one might try to model this is to group multiple bonds together as one effective bond which breaks
and reforms as a group.

Finally, we use our model of the solid bridge rupture to give an estimate for the rate of energy dissipation due to solid bridges
in the landslide example. Such systems may feature large grains or blocks of geomaterials moving under a steady state velocity
(e.g., on the order of meter per day) (Highland et al., 2008) where the formation and rupture of transient bonds between the
moving objects and the substrate (i.e., the hillslope or ground surface) is inevitable. While such cohesive bonds have a complex
nature, the solid bridging and adhesion are likely the dominant microscopic mechanisms (Seiphoori et al., 2020). We approximate
the dissipation due to the repeated rupture of such microscopic bonds using our steady state dissipation rate equation. Although
originally formulated within the parallel plate geometry of the stochastic bond model, the derivation of the equation itself does not
depend on this geometry. Instead, all that is necessary are repeated cycles of bonding and unbonding, an effective energy of the
bonds, and the assumption that the system as a whole has converged to steady state.

Solid bridges form when a polydisperse system undergoes wetting and subsequent drying. Thus, we approximate 1∕𝜅on as the
mean time between wetting and drying cycles (order of days or 105 s) and use an exponential distribution for the time spent
unbonded, 𝑝sboff(𝑡off) = 𝜅on exp(−𝜅on𝑡off), as before. To approximate the distribution of times spent bonded, we use KMC simulations
to compute an empirical cumulative distribution function (CDF). We run these simulations with a pulling velocity of 𝑉 = 10 μm∕s
or about 0.86 m/day which is our assumed average velocity of the larger particles sliding downhill. To write the approximation
mathematically, suppose for each simulation, labeled 𝑖 = 1,… ,𝑀 , that {𝑡𝑖}𝑀𝑖=1 are the times at which the solid bridge breaks and
does not reform. We approximate the empirical CDF as

CDFsb(𝑡) =
#{𝑖 ∣ 𝑡𝑖 < 𝑡}

𝑀
.

e then approximate this function with a cubic spline through 200 evaluation points, and differentiate the result to get an
pproximate probability density of times spent bonded, 𝑝sbon(𝑡on). In order to compute an effective potential for the solid bridge,
sb(𝑥), we compute the average force on the solid bridge conditioned on the solid bridge still being formed and then numerically
ntegrate to get a potential. The distribution of times spent bonded and the effective potential for the solid bridge is shown in
ig. 11(a). Plugging these quantities into the Eq. (3) gives

𝐷̇sb ≈ 3.46 × 10−14
0.255 + 1∕𝜅on

J
s

s the average rate of energy dissipation per particle which can form a solid bridge. When we plug in the order of magnitude
stimate of 𝜅 ≈ 10−5 s−1 we obtain 𝐷̇sb ≈ 3.5 × 10−19 W. We can repeat the process with a slower pulling velocity of 3 μm/s ≈ .26
15

on
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m/day to investigate the extent to which a slower flow velocity impacts the dissipation rate. The effective potential and unbonding
distribution for 𝑉 = 3 μm∕s is shown in Fig. 11(b). The resulting dissipation rate per bond is 𝐷̇sb ≈ 2.20×10−14

(0.738+1∕𝜅on)
W or approximately

2.2 × 10−19 W using the order of magnitude estimate for 𝜅on. Despite using a velocity which is one third as fast, the dissipation rate
per atom is only reduced to two thirds its value for 𝑉 = 10 μm∕s. Since we expect zero dissipation at zero velocity, this hints that
there is a non-quadratic relationship between the velocity and the dissipation rate for this system.

5. Conclusion

We have shown that the stochastic formation and breaking of bonds is capable of producing a wide range of macroscopic
material behavior in response to shear depending on the nature of the bond interaction and the bond kinetics. In particular,
the model presented here offers an explanation for the occurrence of Newtonian viscosity and shear thinning rheology as most
bond interactions in solids are locally quadratic about their minimum. Modifying this interaction gives a direct way to alter the
macroscopic rheology and provides a means of designing materials with desired dissipative properties. The analytical formula for
the steady state dissipation rate gives a rapid means of creating a phase diagram for a given interaction potential, which can also
assist in the design process. Moreover, the model is readily extendable to more accurate models of force dependent unbonding (as
well as time or force dependent bonding). Although we have studied the effects of force dependence under the Bell model, the
same procedure may be followed to study other models of force or time dependent bond breaking and reforming, so long as one can
obtain the rates of bonding and unbonding as a function of the time (i.e., 𝜅off(𝑡) and/or 𝜅on(𝑡)). One such extension could incorporate
a dependence of the unbonding rate on the normal force, which is an important feature of sliding friction. It may be possible to
include this dependence within the force dependent unbonding rate. We have also presented applications of the stochastic bond
model to both polymer networks and polydisperse granular media to highlight the model’s utility despite its simplicity. Further
work could reveal the full range of possible dissipative responses for these systems and others, such as interlayer forces in graphene
or sliding friction between solids.
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Appendix A. Kinetic Monte Carlo simulations

Kinetic Monte Carlo algorithms are a standard technique to simulate transitions between discrete states when the transition
rates are known in advance (Bortz et al., 1975; Gillespie, 1977; Prados et al., 1997). Here, we use a rejection free kinetic Monte
arlo (KMC) algorithm to model the bonding an unbonding within the stochastic bond model presented in Section 2.1. In all cases
xcept the simulations of the granular solid bridges, every bonding site is independent and so systems of many bonding sites can
e simulated by repeatedly simulating one bonding site.
16
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To perform these simulations, it will be necessary to generate random times with a distribution given by the probability density

𝑝on(𝑡) = 𝜅off(𝑡) exp
(

−∫

𝑡

0
𝜅off(𝑠)𝑑𝑠

)

,

rom random numbers which are uniformly distributed on the unit interval. To do this, one must find an invertible function
∶ (0, 1) → (0,∞) such that if 𝑋 is a random number uniformly distributed on the interval (0, 1), then 𝑈 (𝑋) has a distribution

iven by 𝑝on(𝑡). If 𝑡on is a random time with density 𝑝on(𝑡), then the density 𝑝on(𝑡) is determined through the derivative of the
robability that 𝑡on is less that a given time 𝑡,

𝑝on(𝑡) =
𝑑
𝑑𝑡

P(𝑡on < 𝑡).

hus, if we select the function 𝑈 such that P(𝑈 (𝑋) < 𝑡) = P(𝑡on < 𝑡), 𝑈 (𝑋) will have the correct distribution. Since 𝑝on(𝑡) = 0 for
𝑡 < 0, we can integrate to get

P(𝑡on < 𝑡) = ∫

𝑡

0
𝑝on(𝑠)𝑑𝑠

= ∫

𝑡

0
𝜅off(𝑠) exp

(

−∫

𝑠

0
𝜅off(𝑢)𝑑𝑢

)

𝑑𝑠

= ∫

𝑡

0
− 𝑑
𝑑𝑠

exp
(

−∫

𝑠

0
𝜅off(𝑢)𝑑𝑢

)

𝑑𝑡

= 1 − exp
(

−∫

𝑡

0
𝜅off(𝑠)𝑑𝑠

)

.

his means we want to pick 𝑈 so that

P(𝑈 (𝑋) < 𝑡) = 1 − exp
(

−∫

𝑡

0
𝜅off(𝑠)𝑑𝑠

)

.

ince we assume 𝑈 is invertible, 𝑈 (𝑋) < 𝑡 if and only if 𝑋 < 𝑈−1(𝑡), and hence P(𝑈 (𝑋) < 𝑡) = P(𝑋 < 𝑈−1(𝑡)). As 𝑋 has a uniform
istribution on (0, 1), P(𝑋 < 𝑥) = 𝑥 for any 𝑥 ∈ (0, 1). This means P(𝑈 (𝑋) < 𝑡) = P(𝑋 < 𝑈−1(𝑡)) = 𝑈−1(𝑡) since 𝑈−1(𝑡) ∈ (0, 1) by
efinition. Putting these facts together gives

𝑈−1(𝑡) = P(𝑈 (𝑋) < 𝑡) = 1 − exp
(

−∫

𝑡

0
𝜅off(𝑠)𝑑𝑠

)

.

his determines 𝑈−1 as a function of 𝑡. To get the function 𝑈 , we label 𝑈−1(𝑡) as 𝑥 and 𝑡 as 𝑈 (𝑥) solve for 𝑈 (𝑥) which gives

∫

𝑈 (𝑥)

0
𝜅off(𝑠)𝑑𝑠 = log

( 1
1 − 𝑥

)

.

y defining the utility function inverse_integral which given a positive number 𝑦, and a positive, continuous function 𝑔 ∶ [0,∞) →

(0,∞) outputs

inverse_integral(𝑦, 𝑔) = 𝐺−1(𝑦) where 𝐺(𝑢) = ∫

𝑢

0
𝑔(𝑠)𝑑𝑠,

we can write

𝑈 (𝑥) = inverse_integral
(

log
( 1
1 − 𝑥

)

, 𝜅off(𝑠)
)

.

Since 1 −𝑋 also has a uniform distribution if 𝑋 does, we may use instead

𝑈 (𝑥) = inverse_integral
(

log
( 1
𝑥

)

, 𝜅off(𝑠)
)

.

Hence, if 𝑋 has a uniform distribution on (0, 1), 𝑡 = 𝑈 (𝑋) defined this way has distribution 𝑝 (𝑡).
17
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Then, the code for a single bonding site simulation goes as follows

Algorithm 1: Single Bond KMC Simulation
1 Input: float tFinal, float kOn, function kOff;
2 t ← 0.0 ;
3 times ← []; /* initialize sequence of times */
4 while t < tFinal do
5 u1 ← unif_random(0,1) ; /* generate two uniform random numbers in [0, 1] */
6 u2 ← unif_random(0,1);
7 tOff ← log(1∕u1)∕kOn ; /* transform into a exponentially distributed time */
8 tOn ← inverse_integral(log(1∕u2), kOff) ; /* transform into unbonding time */
9 t ← t + tOff;
0 Append t to times;
1 t ← t + tOn;
2 Append t to times;
3 end
4 Output: times;

Here, tFinal is the desired stopping time, kOn= 𝜅on is the bonding rate, and kOff= 𝜅off(𝑡) is the time dependent unbonding rate.
The result is a collection of times at which each bonding and unbonding occurred, times = {𝑇𝑖}𝑁𝑖=1, with 𝑇𝑁 > tFinal from which
the steady state dissipation rate can be calculated using the formulas given in Section 2.2. Multiple bonds can be simulated by
repeatedly generating independent trajectories.

In order to simulate the breaking of solid bridges, a slightly more complex algorithm is necessary since the bonds are no longer
independent (the applied force depends on the number of attached bonds). Assuming that the base of the AFM cantilever moves
with velocity 𝑉 , that the interaction between the microsphere and the cantilever tip and substrate has a spring constant of 𝐾eff, that
each bond of the solid bridge has a spring constant 𝐾bond, and that there are 𝑁(𝑡) active bonds at time 𝑡, the force on an individual
bond as a function of time is given by

𝐹 (𝑡) =
𝐾bond𝐾eff𝑉 𝑡

𝑁(𝑡)𝐾bond +𝐾eff
. (A.1)

Since the number of active bonds is stochastic, we define the force as a function of time and 𝑁 the number of active bonds 𝐹 (𝑡,𝑁).
The algorithm can be broken up into 4 steps: (1) store the equation for the sum of the rates of all possible transitions as a function
of time, (2) randomly generate the time until the next bonding or unbonding event using the total rate, (3) randomly select whether
the event is a bonding or an unbonding with the proper weighting, (4) update the simulation time and number of active bonds and
repeat these steps until the terminating time.

We now go through steps in more detail. At a given step, the known quantities are the time 𝑇 at the start of the step are the
total number of bonds 𝑁tot, and the number of active bonds 𝑁 . The rate of unbonding as a function of time for each active bond is

𝜅off(𝑠) = 𝜅off exp(𝑎𝛽𝐹 (𝑇 + 𝑠,𝑁))

whereas the rate of bonding is simply 𝜅on. Thus the total rate starting at time 𝑇 , defined as the sum of all the rates, is

𝜅tot(𝑠) = 𝑁𝜅off exp(𝑎𝛽𝐹 (𝑇 + 𝑠,𝑁)) + (𝑁tot −𝑁)𝜅on

To get the time step, we generate a uniform random number in (0, 1), 𝑢, and find the 𝛥t such that

∫

𝛥𝑡

0
𝜅tot(𝑠)𝑑𝑠 = log(1∕𝑢)

(i.e., we compute 𝛥t ← inverse_integral(log(1∕𝑢), 𝜅tot)). Finally, the next step is chosen to be a bonding with probability

𝑝 =
(𝑁tot −𝑁)𝜅on𝛥𝑡

∫ 𝛥𝑡
0 𝜅tot(𝑠)𝑑𝑠

r an unbonding with probability

1 − 𝑝 =
∫ 𝛥𝑡
0 𝑁𝜅off exp(𝑎𝛽𝐹 (𝑡 + 𝑠), 𝑁)𝑑𝑠

∫ 𝛥𝑡
0 𝜅tot(𝑠)𝑑𝑠

.

he algorithm is shown in Algorithm 2. Here, Ntot is the total number of bonds to be simulated, force is the force on an individual
ond as a function of the total time passed and the current number of active bonds, and fCritical is 𝐹 = (𝑎𝛽)−1 as described in
18

𝑐



Journal of the Mechanics and Physics of Solids 158 (2022) 104660T. Leadbetter et al.

a

d

w

Section 4.2. The output is the length of time between each event as in Algorithm 1 as well as a list of the number of active bonds
t each step.
Algorithm 2: KMC simulation of a solid bridge pull-off experiment
1 Input: Float tFinal, float kOn, function kOff, int Ntot, function force, float fCritical;
2 t ← 0.0;
3 Nactive ← Ntot; /* start with all bonds bonded */
4 times ← [t,]; /* initialize sequence of times */
5 bonds ← [Nactive,]; /* initialize sequence of bonds */
6 while t < tFinal do

/* generate two uniform random numbers in [0, 1] */
7 u1 ← unif_random(0,1);
8 u2 ← unif_random(0,1);
9 totalRate(s) ← Nactive kOff exp( force(s + t,Nactive)/fCritical ) + (Ntot - Nactive) kOn ;
10 𝛥t ← inverse_integral(log(1∕u1), totalRate);
11 kOffTotal ← ∫ 𝛥t

0 Nactive kOff exp( force(s + t,Nactive)/fCritical)𝑑𝑠;
12 kOnTotal ← 𝛥t (Ntot - Nactive) kOn;
13 if u2 < kOnTotal/(kOnTotal + kOffTotal) then
14 𝛥n ← +1;
15 else
16 𝛥n ← −1;
17 end
18 t ← t + 𝛥t;
19 Nactive ← Nactive + 𝛥n;
20 Append t to times;
21 Append Nactive to bonds;
22 end
23 Output: times, bonds;

Appendix B. Dissipation equation: force independent case

When the rate of unbonding is independent of the applied force it is possible to derive a closed form expression for the average
issipation as a function of time. The distributions of bonding time and unbonding times are both exponential

𝑝on(𝑡) = 𝜅off exp(−𝜅off𝑡)
𝑝off(𝑡) = 𝜅on exp(−𝜅on𝑡)

here 𝜅on ≠ 𝜅off in general. We fix an interaction 𝜙(𝑥) = 𝑎𝑥𝑝 for some 𝑎, 𝑝 > 0 and we use the fact that the stopping time 𝑁𝑇 is
finite with probability one (proven in Appendix C) to write the average of 𝐷𝑇 as the sum of the average of 𝐷𝑇 when 𝑁𝑇 = 𝑛 for
𝑛 = 0, 1,…. We then split up the cases when 𝑁𝑇 is even and when 𝑁𝑇 is odd into two separate sums

⟨𝐷𝑇 ⟩ =
⟨

⌊(𝑁𝑇 −1)∕2⌋
∑

𝑗=1
𝜙(𝑉 𝑡2𝑗 )

⟩

=
∞
∑

𝑛=0

⌊(𝑛−1)∕2⌋
∑

𝑗=1
⟨𝜙(𝑉 𝑡2𝑗 )1𝑁𝑇 =𝑛⟩

=
∞
∑

𝑛=1
𝑛
(

⟨𝜙(𝑉 𝑡2)1(𝑁𝑇 =2𝑛+1)⟩ + ⟨𝜙(𝑉 𝑡2)1(𝑁𝑇 =2𝑛+2)⟩
)

. (B.1)

In the last line we have used the fact that for each 𝑗 = 1, 2,… , ⌊𝑛∕2⌋ the random variables 𝜙(𝑉 𝑡2𝑗 )1𝑁𝑇 =𝑛 and 𝜙(𝑉 𝑡2)1𝑁𝑇 =𝑛 have the
same distribution and hence the same expectation. Breaking up the sum in this way is a necessary step because 𝑁𝑇 is also a random
variable, and so specifying its value changes the random sum into a deterministic sum. Let 𝑝[𝑚]on (𝑠) denote the density of the sum of
𝑚 independent random times with density 𝑝on (Durrett (2019) Theorem 2.1.16),

𝑝[𝑚]on (𝑆) = 𝑝on ∗ ⋯ ∗ 𝑝on
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

m times

(𝑆),

where ∗ denotes the convolution of two functions

𝑓 ∗ 𝑔(𝑥) = ∫

∞

−∞
𝑓 (𝑦)𝑔(𝑥 − 𝑦)𝑑𝑦.

Since 𝑝on(𝑠) = 𝜅off exp(−𝜅off𝑠) for 𝑠 ≥ 0 we can directly compute the convolution

𝑝[2](𝑆) = 𝑝on ∗ 𝑝on(𝑆) =
∞
𝜅off𝑒

−𝜅off𝑠𝜅off𝑒
−𝜅off(𝑆−𝑠)1𝑠≥01𝑆−𝑠≥0𝑑𝑠
19
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𝜙

= 𝜅2
off exp(−𝜅off𝑆)∫

∞

−∞
1𝑠≥01𝑆−𝑠≥0𝑑𝑠

= 𝜅2
off exp(−𝜅off𝑆)∫

𝑆

0
𝑑𝑠

= 𝜅2
off𝑆 exp(−𝜅off𝑆).

Likewise, one can show by induction that 𝑝[𝑚]on (𝑆) = 𝜅𝑚
off𝑆

𝑚−1 exp(−𝜅off𝑆)∕(𝑚 − 1)!. Define 𝑝[𝑚]off (𝑠) analogously. Now, we want to
determine the expectation of 𝜙(𝑉 𝑡2)1(𝑁𝑇 =2𝑛+1). In order for 𝑁𝑇 to be equal to 2𝑛 + 1 for a given trajectory, it must be the case
that 𝑇2𝑛 < 𝑇 and 𝑇2𝑛+1 ≥ 𝑇 . Thus, the sum of the first 𝑛 times spend unbonded and first 𝑛 times spent bonded must add up to some
𝑆 < 𝑇 , and the final time spent unbonded 𝑡2𝑛+1 must be greater than or equal to 𝑇 −𝑆. Finally, to compute the expectation, we need
the first time spend bonded 𝑡2 to be less that 𝑇 (i.e., 𝑡2 < 𝑇 ). Next, we need the sum of the remaining 𝑛−1 times spent bonded, call
it 𝑇on (which has density 𝑝[𝑛−1]on (𝑇on)), to be less than 𝑇 − 𝑡2. We also need the sum of the other 𝑛 times spent unbonded, call this sum
𝑇off (which has density 𝑝[𝑛]off(𝑇off)), to be less than 𝑇 − 𝑡2 − 𝑇on. Lastly, we need 𝑡2𝑛+1 to be greater than 𝑇 − 𝑡2 − 𝑇on − 𝑇off. Summing
p all of the possibilities with their respective probabilities and multiplying by 𝜙(𝑉 𝑡2) to measure its expectation then gives

⟨𝜙(𝑉 𝑡2)1(𝑁𝑇 =2𝑛+1)⟩ = ∫

𝑇

0
𝑑𝑡2 ∫

𝑇−𝑡2

0
𝑑𝑇on ∫

𝑇−𝑡2−𝑇on

0
𝑑𝑇off ∫

∞

𝑇−𝑡2−𝑇on−𝑇off
𝑑𝑡2𝑛+1 𝜙(𝑉 𝑡2)𝑝on(𝑡2)𝑝[𝑛−1]on (𝑇on)𝑝

[𝑛]
off(𝑇off)𝑝off(𝑡2𝑛+1). (B.2)

riting out 𝜙(𝑉 𝑡2) = 𝑎𝑉 𝑝𝑡𝑝2, writing out the densities, and carrying out the integration for 𝑡2𝑛+1 and 𝑇off gives

⟨𝜙(𝑉 𝑡2)1(𝑁𝑇 =2𝑛+1)⟩ = ∫

𝑇

0
𝑑𝑡2 ∫

𝑇−𝑡2

0
𝑑𝑇on ∫

𝑇−𝑡2−𝑇on

0
𝑑𝑇off 𝑎(𝑉 𝑡2)𝑝𝜅off𝑒−𝜅off𝑡2

𝜅𝑛−1
off 𝑇

𝑛−2
on 𝑒−𝜅off𝑇on

(𝑛 − 2)!
𝜅𝑛
on𝑇

𝑛−1
off 𝑒−𝜅on𝑇off

(𝑛 − 1)!
𝑒−𝜅on(𝑇−𝑡2−𝑇on−𝑇off)

=
𝑎𝑉 𝑝𝜅𝑛

off𝜅
𝑛
on𝑒

−𝜅on𝑇

(𝑛 − 2)!(𝑛 − 1)! ∫

𝑇

0
𝑑𝑡2 𝑡𝑝2𝑒

−𝛥𝜅𝑡2
∫

𝑇−𝑡2

0
𝑑𝑇on 𝑇 𝑛−2

on 𝑒−𝛥𝜅𝑇on ∫

𝑇−𝑡2−𝑇on

0
𝑑𝑇off 𝑇

𝑛−1
off

=
𝑎𝑉 𝑝𝜅𝑛

off𝜅
𝑛
on𝑒

−𝜅on𝑇

(𝑛 − 2)!𝑛! ∫

𝑇

0
𝑑𝑡2 𝑡𝑝2𝑒

−𝛥𝜅𝑡2
∫

𝑇−𝑡2

0
𝑑𝑇on 𝑇 𝑛−2

on (𝑇 − 𝑡2 − 𝑇on)𝑛𝑒−𝛥𝜅𝑇on ,

here 𝛥𝜅 = 𝜅off − 𝜅on. We are left with an integral of the form

∫

𝑥

0
𝑢𝑚(𝑥 − 𝑢)𝑛 exp(−𝑘𝑢)𝑑𝑢

here 𝑢 = 𝑇on, 𝑥 = 𝑇 − 𝑡2, and 𝑘 = 𝛥𝜅. We use the fact that the exponential admits an everywhere absolutely convergent Taylor
eries to expand and integrate term by term. After doing so, repeatedly integrating by parts yields the identity

∫

𝑥

0
𝑢𝑚(𝑥 − 𝑢)𝑛 exp(−𝑘𝑢)𝑑𝑢 =

∞
∑

𝑙=0

(−𝑘)𝑙

𝑙! ∫

𝑥

0
𝑢𝑚+𝑙(𝑥 − 𝑢)𝑛𝑑𝑢 =

∞
∑

𝑙=0

(−𝑘)𝑙𝑛!(𝑚 + 𝑙)!𝑥𝑚+𝑛+𝑙+1

𝑙!(𝑚 + 𝑛 + 𝑙 + 1)!
.

We apply the equation twice to get

⟨𝜙(𝑉 𝑡2)1(𝑁𝑇 =2𝑛+1)⟩ =
𝑎𝑉 𝑝𝜅𝑛

off𝜅
𝑛
on𝑒

−𝜅on𝑇

𝑛!(𝑛 − 2)!

∞
∑

𝑙=0

∞
∑

𝑘=0

(−𝛥𝜅)𝑙+𝑘𝑛!(𝑛 − 2 + 𝑘)!(𝑝 + 𝑙)!𝑇 2𝑛+𝑝+𝑙+𝑘

𝑘!𝑙!(2𝑛 + 𝑙 + 𝑘 + 𝑝)!
.

ext, we rewrite the sums in terms of 𝑚 = 𝑙 + 𝑘 and 𝑘 ≤ 𝑚,

⟨𝜙(𝑉 𝑡2)1(𝑁𝑇 =2𝑛+1)⟩ =
𝑎𝑉 𝑝𝜅𝑛

off𝜅
𝑛
on𝑇

2𝑛+𝑝𝑒−𝜅on𝑇

(𝑛 − 2)!

∞
∑

𝑚=0

𝑚
∑

𝑘=0

(−𝛥𝜅𝑇 )𝑚(𝑛 − 2 + 𝑘)!(𝑝 + 𝑚 − 𝑘)!
𝑘!(𝑚 − 𝑘)!(2𝑛 + 𝑚 + 𝑝)!

=
𝑎𝑉 𝑝𝜅𝑛

off𝜅
𝑛
on𝑇

2𝑛+𝑝𝑒−𝜅on𝑇

(𝑛 − 2)!

∞
∑

𝑚=0

(−𝛥𝜅𝑇 )𝑚

(2𝑛 + 𝑚 + 𝑝)!

𝑚
∑

𝑘=0

(𝑛 − 2 + 𝑘)!(𝑝 + 𝑚 − 𝑘)!
𝑘!(𝑚 − 𝑘)!

.

And finally, we apply a combinatorial identity ∑𝑚
𝑘=0

(𝑞+𝑘)!
𝑘!

(𝑝+𝑚−𝑘)!
(𝑚−𝑘)! = 𝑝!𝑞!

𝑚!
(𝑝+𝑞+𝑚+1)!
(𝑝+𝑞+1)! to the rightmost sum (set 𝑞 = 𝑛 − 2) and rewrite

he result in terms of a hypergeometric function

⟨𝜙(𝑉 𝑡2)1(𝑁𝑇 =2𝑛+1)⟩ = 𝑎𝑉 𝑝𝜅𝑛
off𝜅

𝑛
on𝑝!𝑇

2𝑛+𝑝𝑒−𝜅on𝑇
∞
∑

𝑚=0

(−𝛥𝜅𝑇 )𝑚

(2𝑛 + 𝑚 + 𝑝)!
(𝑛 + 𝑝 + 𝑚 − 1)!
𝑚!(𝑛 + 𝑝 − 1)!

=
𝑎𝑉 𝑝𝜅𝑛

off𝜅
𝑛
on𝑝!𝑇

2𝑛+𝑝𝑒−𝜅on𝑇

(2𝑛 + 𝑝)! 1𝐹1(𝑛 + 𝑝, 2𝑛 + 1 + 𝑝; −𝛥𝜅𝑇 ),

which is the equation we state in Eq. (5). For reference, the definition of the hypergeometric function is

1𝐹1(𝑎, 𝑏; 𝑧) =
∞
∑

𝑚=0

(𝑎 + 𝑚 − 1)!(𝑏 − 1)!
(𝑎 − 1)!(𝑏 + 𝑚 − 1)!

𝑧𝑚

𝑚!
.

This gives the formula for 𝑛 > 1. It is straight forward to show that this formula also holds for 𝑛 = 1 after removing the integration
ith respect to the variable 𝑇on in Eq. (B.2). Following almost the exact same steps, one can also compute the expectation of
(𝑉 𝑡2)1(𝑁𝑇 =2𝑛+2) as

⟨𝜙(𝑉 𝑡2)1(𝑁𝑇 =2𝑛+2)⟩ =
𝑇
𝑑𝑇off

𝑇−𝑇off
𝑑𝑇on

𝑇−𝑇off−𝑇on
𝑑𝑡2

∞
𝑑𝑡2𝑛+2 𝑝[𝑛+1]off (𝑇off) 𝑝[𝑛−1]on (𝑇on) 𝑝on(𝑡2) 𝜙(𝑉 𝑡2) 𝑝on(𝑡2𝑛+2)
20

∫0 ∫0 ∫0 ∫𝑇−𝑇off−𝑇on−𝑡2
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=
𝑎𝑉 𝑝𝜅𝑛+1

on 𝜅𝑛
off𝑒

−𝜅off𝑇

𝑛!(𝑛 − 2)! ∫

𝑇

0
𝑑𝑇off 𝑇

𝑛
off𝑒

𝛥𝜅𝑇off
∫

𝑇−𝑇off

0
𝑑𝑇on 𝑇 𝑛−2

on ∫

𝑇−𝑇off−𝑇on

0
𝑑𝑡2 𝑡𝑝2

=
𝑎𝑉 𝑝𝜅𝑛+1

on 𝜅𝑛
off𝑒

−𝜅off𝑇

𝑛!(𝑛 − 2)!(𝑝 + 1) ∫

𝑇

0
𝑑𝑇off𝑇

𝑛
off𝑒

𝛥𝜅𝑇off
∫

𝑇−𝑇off

0
𝑑𝑇on𝑇

𝑛−2
on (𝑇 − 𝑇off − 𝑇on)𝑝+1

=
𝑎𝑉 𝑝𝜅𝑛+1

on 𝜅𝑛
off𝑝!𝑒

−𝜅off𝑇

𝑛!(𝑛 + 𝑝)! ∫

𝑇

0
𝑑𝑇off𝑇

𝑛
off(𝑇 − 𝑇off)𝑛+𝑝𝑒𝛥𝜅𝑇off

=
𝑎𝑉 𝑝𝜅𝑛+1

on 𝜅𝑛
off𝑝!𝑒

−𝜅off𝑇

𝑛!(𝑛 + 𝑝)!

∞
∑

𝑙=0

𝛥𝜅𝑙(𝑛 + 𝑝)!(𝑛 + 𝑙)!𝑇 2𝑛+𝑝+𝑙+1

𝑙!(2𝑛 + 𝑝 + 𝑙 + 1)!

=
𝑎𝑉 𝑝𝜅𝑛+1

on 𝜅𝑛
off𝑝!𝑇

2𝑛+1+𝑝𝑒−𝜅off𝑇

(2𝑛 + 𝑝 + 1)! 1𝐹1(𝑛 + 1, 2𝑛 + 2 + 𝑝;𝛥𝜅𝑇 ).

Plugging these two results into Eq. (B.1) gives Eq. (5).

Appendix C. Proofs for steady state dissipation equation

C.1. Limit of a differentiable function of time

Lemma C.1. Let 𝑓 ∶ [0,∞) → R be a continuously differentiable function such that lim𝑡→∞ 𝑓 ′(𝑡) = 𝐶 < ∞ exists and is finite. Then
lim𝑡→∞ 𝑓 ′(𝑡) = 𝐶 = lim𝑡→∞

𝑓 (𝑡)
𝑡 .

roof. Fix 𝜖 > 0, and choose 𝑡0 ≥ 0 large enough such that |𝑓 ′(𝑡) −𝐶| < 𝜖∕3 for all 𝑡 ≥ 𝑡0. Next, choose 𝑡1 > 𝑡0 such that |
𝑓 (𝑡0)
𝑡1

| < 𝜖∕3

and |

𝐶𝑡0
𝑡1

| < 𝜖∕3. Then, for all 𝑡 ≥ 𝑡1 one has

|

𝑓 (𝑡)
𝑡

− 𝐶| = |

1
𝑡

(

𝑓 (𝑡0) + ∫

𝑡

𝑡0
𝑓 ′(𝑠)𝑑𝑠

)

− 𝐶|

≤ |

𝑓 (𝑡0)
𝑡

| + |

1
𝑡 ∫

𝑡

𝑡0
𝑓 ′(𝑠)𝑑𝑠 − 𝐶|

< 𝜖
3
+ 1

𝑡 ∫

𝑡

𝑡0
|𝑓 ′(𝑠) − 𝐶|𝑑𝑠 + |

1
𝑡 ∫

𝑡

𝑡0
𝐶𝑑𝑠 − 𝐶|

< 2𝜖
3

+ |𝐶
𝑡0
𝑡
|

< 𝜖.

Since 𝜖 was arbitrary, lim𝑡→∞
𝑓 (𝑡)
𝑡 = 𝐶. □

.2. Mathematical background on probability and martingales

The theory of martingales is a core topic within the broader theory of probability. Like in the theory of sequences of numbers
n mathematical analysis, martingale theory is a theory of sequences of random variables with ‘‘a martingale’’ being a sequence
hich is constant on average. Martingales often have nice convergence properties, a fact that we take advantage of in the proof of
he equation for the steady state dissipation rate. We only give details necessary for a conceptual understanding of the proof in the
ollowing section. Durrett (2019), Chapter 4 gives a full introduction to the theory of martingales.
Rather than give the technical definition of a martingale, we give an illustrative example which will suit our purposes. Let {𝜉𝑖}∞𝑖=1

e a sequence of random numbers. Often, one will assume that each of the 𝜉𝑖 are independent of each other and have the same
istribution, but that need not be the case. Next, let {𝑋𝑖}∞𝑖=1 be a sequence of functions where 𝑋𝑖 depends on the first 𝑖 random
umbers 𝜉1,… , 𝜉𝑖, i.e., 𝑋𝑖 = 𝑋𝑖(𝜉1,… , 𝜉𝑖). The sequence {𝑋𝑖}∞𝑖=1 is a martingale with respect to the random numbers {𝜉𝑖}∞𝑖=1 if the
bsolute value of each 𝑋𝑖 has finite expectation with respect to the randomness of the sequence {𝜉𝑖}∞𝑖=1, i.e. ⟨|𝑋𝑖(𝜉1,… , 𝜉𝑖)|⟩ < ∞ for
ach 𝑖, and if the conditional expectation of 𝑋𝑖 given that we know 𝜉1,… , 𝜉𝑖−1 is 𝑋𝑖−1, i.e.,

⟨𝑋𝑖(𝜉1,… , 𝜉𝑖) ∣ 𝜉1,… , 𝜉𝑖−1⟩ = 𝑋𝑖−1.

his last condition can be thought of as saying our best guess as to the value of 𝑋𝑖 given that we know 𝜉1,… 𝜉𝑖−1 is 𝑋𝑖−1, the previous
unction in the sequence. Note that if we know 𝜉1,… , 𝜉𝑖−1, the value of 𝑋𝑖−1 = 𝑋𝑖−1(𝜉1,… , 𝜉𝑖−1) is deterministic rather than random.
f {𝑋𝑖}∞𝑖=1 is a martingale, the ‘‘tower property’’ of conditional expectations (Durrett, 2019, Theorem 4.1.13), for any 𝑗 < 𝑖 ensures
hat

⟨𝑋𝑖 ∣ 𝜉1,… , 𝜉𝑗⟩ = 𝑋𝑗 ,

nd
21

⟨𝑋𝑖⟩ = ⟨𝑋𝑗⟩,
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hence the analogy to sequences which are constant. In the following section, the bonding and unbonding times {𝑡𝑖}∞𝑖=1 will play the
role of the {𝜉𝑖}∞𝑖=1, and a centered dissipation (the dissipation minus its expected value) {𝐷̃𝑛}∞𝑛=1 will play the role of the {𝑋𝑖}∞𝑖=1.

C.3. Proof of the steady state dissipation rate equation

Here, we prove Eq. (3) using tools from the theory of martingales. Recall the definitions of {𝑡2𝑖−1}∞𝑖=1, {𝑡2𝑖}
∞
𝑖=1, {𝑇𝑛}

∞
𝑛=1, 𝑁𝑇 , 𝐷𝑛,

and 𝐷𝑇 from the text, where the times spent bonded {𝑡2𝑖}∞𝑖=1 may be distributed with an arbitrary rate of unbonding 𝜅off(𝑡) (i.e.,
𝑝on(𝑡) = 𝜅off(𝑡) exp(− ∫ 𝑡

0 𝜅off(𝑠)𝑑𝑠)). We also define the random variable

𝐷̃𝑛 = 𝐷𝑛 − ⌊𝑛∕2⌋⟨𝜙(𝑉 𝑡on)⟩on

for 𝑛 ≥ 1 and 𝐷̃0 = 0 which is a recentering so that ⟨𝐷̃𝑛⟩ = 0 for all 𝑛. We know that ⟨𝑡off⟩off =
1

𝜅on
< ∞, but we also assume that

⟨𝑡on⟩on < ∞ and ⟨𝜙(𝑉 𝑡on)⟩on < ∞ (i.e., that the average time spent bonded is finite and the average energy stored in a bond when
it breaks is also finite). We first check that 𝐷̃𝑛 is a martingale with respect to the sequence of times {𝑡𝑖}∞𝑖=1. First,

⟨

|

|

|

𝐷̃𝑛
|

|

|

⟩ =
⟨

|

|

|

⌊𝑛∕2⌋
∑

𝑖=1
𝜙(𝑉 𝑡2𝑖) − ⌊𝑛∕2⌋ ⟨𝜙(𝑉 𝑡on)⟩on

|

|

|

⟩

< 𝑛⟨𝜙(𝑉 𝑡on)⟩on < ∞,

so the finite expectation condition is satisfied. For 𝑛 odd, 𝑛 = 2𝑗 + 1, 𝐷̃2𝑗+1 = 𝐷̃2𝑗 so we know that when we take the conditional
xpectation

⟨𝐷̃𝑛 ∣ 𝑡1,… , 𝑡𝑛−1⟩ = ⟨𝐷̃2𝑗+1 ∣ 𝑡1,… , 𝑡2𝑗⟩ = ⟨𝐷̃2𝑗 ∣ 𝑡1,… , 𝑡2𝑗⟩ = 𝐷̃2𝑗 = 𝐷̃𝑛−1

yields the desired result (example 4.1.3 of Durrett (2019) allows us to remove the conditional expectation since 𝐷̃2𝑗 is completely
determined by 𝑡1,… , 𝑡2𝑗). Likewise, when 𝑛 is even, 𝑛 = 2𝑗, we have

⟨𝐷̃𝑛 ∣ 𝑡1,… , 𝑡𝑛−1⟩ =
⟨ 𝑗
∑

𝑖=1
𝜙(𝑉 𝑡2𝑖) − 𝑗⟨𝜙(𝑉 𝑡on)⟩on

|

|

|

|

𝑡1,… , 𝑡2𝑗−1

⟩

=
⟨𝑗−1
∑

𝑖=1
𝜙(𝑉 𝑡2𝑖) − (𝑗 − 1)⟨𝜙(𝑉 𝑡on)⟩on + 𝜙(𝑉 𝑡2𝑗 ) − ⟨𝜙(𝑉 𝑡on)⟩on

|

|

|

|

𝑡1,… , 𝑡2𝑗−1

⟩

= ⟨𝐷̃2𝑗−1 ∣ 𝑡1,… , 𝑡2𝑗−1⟩ + ⟨𝜙(𝑉 𝑡2𝑗 ) ∣ 𝑡1,… , 𝑡2𝑗−1⟩ − ⟨𝜙(𝑉 𝑡on)⟩on
= 𝐷̃𝑛−1

since 𝑡2𝑗 is independent of 𝑡1,… , 𝑡2𝑗−1 and so the conditional expectation is equal to the regular expectation (example 4.1.4 in Durrett
(2019)). Thus, {𝐷̃𝑛}∞𝑛=1 is a martingale with respect to the times {𝑡𝑖}

∞
𝑖=1.

The goal of the next step is to show that ⟨𝐷̃𝑁𝑇
⟩ = 0 for every 𝑇 . For every 𝑇 ≥ 0, 𝑁𝑇 is finite with probability one. To see this,

fix a 𝑇 ≥ 0, and we will consider the probability that 𝑁𝑇 is larger than some given 𝑛 for 𝑛 large (i.e., P(𝑁𝑇 > 𝑛)). Assume that
⟨𝑡on⟩on and ⟨𝑡off⟩off are not zero. In this case, there is a length of time 𝑠 > 0 and a 𝑝 ∈ (0, 1) such that the sum 𝑡on+ 𝑡off is greater than
𝑠 with probability 𝑝, i.e., P(𝑡on + 𝑡off > 𝑠) = 𝑝. Let 𝑚 = ⌈𝑇 ∕𝑠⌉ (⌈𝑥⌉ is defined as the smallest integer larger than 𝑥) so that ms≥ 𝑇 .
Let 𝑛 > 2𝑚 and consider pairs of bonding and unbonding time 𝑡2𝑖−1 + 𝑡2𝑖 for 1 ≤ 𝑖 ≤ ⌊𝑛∕2⌋. If at least 𝑚 such pairs obey 𝑡2𝑖−1 + 𝑡2𝑖 > 𝑠,
then 𝑇𝑛 =

∑𝑛
𝑖=1 𝑡𝑖 ≥ 𝑚𝑠 ≥ 𝑇 and hence 𝑁𝑇 ≤ 𝑛. But this means that for 𝑛 > 2𝑚, the probability that 𝑁𝑇 > 𝑛 is bounded above by the

probability that there are less than 𝑚 such times that 𝑡2𝑖−1 + 𝑡2𝑖 > 𝑠. That is

P(𝑁𝑇 > 𝑛) ≤ P
(

#
{

𝑖 ||
|

1 ≤ 𝑖 ≤ ⌊𝑛∕2⌋, 𝑡2𝑖−1 + 𝑡2𝑖 > 𝑠
}

< 𝑚
)

.

Since P(𝑡2𝑖−1 + 𝑡2𝑖 > 𝑠) = 𝑝, P(𝑡2𝑖−1 + 𝑡2𝑖 ≤ 𝑠) = 1 − 𝑝, and each pair is independent, the right hand side can be computed by referring
to a binomial distribution with ⌊𝑛∕2⌋ trials and probability 𝑝 of success. The right hand side is then the probability of having less
than 𝑚 successes, so

P
(

#
{

𝑖 ||
|

1 ≤ 𝑖 ≤ ⌊𝑛∕2⌋, 𝑡2𝑖−1 + 𝑡2𝑖 > 𝑠
}

< 𝑚
)

=
𝑚−1
∑

𝑗=0

(

⌊𝑛∕2⌋
𝑗

)

𝑝𝑗 (1 − 𝑝)⌊𝑛∕2⌋−𝑗 .

Using 𝑝 < 1,
(

⌊𝑛∕2⌋
𝑗

)

≤ (⌊𝑛∕2⌋)𝑗 ≤ (𝑛∕2)𝑚, (1 − 𝑝)⌊𝑛∕2⌋−𝑗 ≤ (1 − 𝑝)𝑛∕2−𝑚, and 𝑚 < 𝑛∕2 gives a more useful bound for the right hand side

𝑚−1
∑

𝑗=0

(

⌊𝑛∕2⌋
𝑗

)

𝑝𝑗 (1 − 𝑝)⌊𝑛∕2⌋−𝑗 ≤
𝑚−1
∑

𝑗=0

( 𝑛
2

)𝑚
(1 − 𝑝)𝑛∕2−𝑚 ≤

( 𝑛
2

)𝑚+1
(1 − 𝑝)𝑛∕2−𝑚.

his shows that the probability that 𝑁𝑇 > 𝑛 decays exponentially once 𝑛 is large enough. Now, we need a technical lemma to show
that the rapid decay in P(𝑁𝑇 > 𝑛) ensures that 𝑁𝑇 has finite expectation.

Lemma C.2. Let 𝑁 be a random variable taking values in the non-negative integers including possibly infinity, 𝑁 ∈ 0, 1, 2,… ,∞. Let 𝑝𝑛
be the probability that 𝑁 > 𝑛. If ∑∞

𝑛=0 𝑝𝑛 < ∞, then ⟨𝑁⟩ < ∞ and ⟨𝑁⟩ =
∑∞

𝑛=0 𝑝𝑛.
22
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Proof. First, it must be the case that the probability that 𝑁 = ∞ is zero. To see this, assume the opposite. If P(𝑁 = ∞) = 𝑞 > 0 for
some 𝑞, the 𝑝𝑛 ≥ 𝑞 for each 𝑛. But this means the sequence {𝑝𝑛}∞𝑛=0 could not be summable, a contradiction. Since P(𝑁𝑇 = ∞) = 0,
we can write

⟨𝑁⟩ =
∞
∑

𝑛=0
𝑛P(𝑁 = 𝑛).

Writing 𝑛P(𝑁𝑇 = 𝑛) =
∑𝑛

𝑗=1 P(𝑁𝑇 = 𝑛) gives

⟨𝑁𝑇 ⟩ =
∞
∑

𝑛=0

𝑛
∑

𝑗=1
P(𝑁 = 𝑛).

Every term in the summand is positive, so we may rearrange the order without changing the result. We exchange the order as
follows. We ignore the 𝑛 = 0 term since it is an empty sum. For the remaining 𝑛, we arrange the summands so that as written, we
sum over the columns

∞
∑

𝑛=0

𝑛
∑

𝑗=1
P(𝑁 = 𝑛) =

∑

⎛

⎜

⎜

⎜

⎜

⎝

P(𝑁 = 1) P(𝑁 = 2) P(𝑁 = 3) ⋯
P(𝑁 = 2) P(𝑁 = 3) ⋯

P(𝑁 = 3) ⋯
⋱

⎞

⎟

⎟

⎟

⎟

⎠

.

By summing over the rows instead, one gets
∞
∑

𝑛=0

𝑛
∑

𝑗=1
P(𝑁 = 𝑛) =

∞
∑

𝑛=0

∞
∑

𝑗=𝑛+1
P(𝑁 = 𝑗) =

∞
∑

𝑛=0
𝑝𝑛,

and hence ⟨𝑁⟩ =
∑∞

𝑛=0 𝑝𝑛. □
Returning to the proof that 𝑁𝑇 is finite, we compute

∑∞
𝑛=0 P(𝑁𝑇 > 𝑛).

∞
∑

𝑛=0
P(𝑁𝑇 > 𝑛) =

2𝑚
∑

𝑛=0
P(𝑁𝑇 > 𝑛) +

∞
∑

2𝑚+1
P(𝑁𝑇 > 𝑛)

≤ 2𝑚 + 1 +
∞
∑

𝑛=0

( 𝑛
2

)𝑚+1 (
√

(1 − 𝑝))𝑛

(1 − 𝑝)𝑚
,

where we exchanged P(𝑁𝑇 > 𝑛) for the bound we derived when 𝑛 > 2𝑚 and extended the sum to zero. Factoring out the terms
which do not depend on 𝑛 in the sum on the second line leaves a sum of the form ∑∞

𝑛=0 𝑛
𝑚+1𝑥𝑛 with 𝑥 =

√

(1 − 𝑝) < 1. It is well
nown that ∑∞

𝑛=0 𝑥
𝑛 = 1∕(1 − 𝑥) for |𝑥| < 1. For such 𝑥, the sum on the right converges absolutely and the function on the left is

nfinitely differentiable and it’s derivatives are all continuous. Differentiating and then multiplying by 𝑥 term by term on the left
nd on the right gives the equality

∞
∑

𝑛=0
𝑛𝑥𝑛 = 𝑥 𝑑

𝑑𝑥
1

1 − 𝑥
,

with the right hand side being an infinitely differentiable function for all |𝑥| < 1 since both 𝑥 and 1∕(1−𝑥) are. We repeatedly apply
the operation

(

𝑥 𝑑
𝑑𝑥

)

to both sides a total of 𝑚 + 1 times to get

∞
∑

𝑛=0
𝑛𝑚+1𝑥𝑛 =

(

𝑥 𝑑
𝑑𝑥

)𝑚+1 1
1 − 𝑥

. (C.1)

The right hand side is still infinitely differentiable for |𝑥| < 1 and hence continuous for such 𝑥 and so evaluating at 𝑥 =
√

(1 − 𝑝) < 1
yields a finite result. Plugging Eq. (C.1) into the bound for ∑∞

𝑛=0 P(𝑁𝑇 > 𝑛) yields
∞
∑

𝑛=0
P(𝑁𝑇 > 𝑛) ≤ 2 𝑚 + 1 + 1

2𝑚+1(1 − 𝑝)𝑚

[

(

𝑥 𝑑
𝑑𝑥

)𝑚+1 1
1 − 𝑥

]

𝑥=
√

1−𝑝
< ∞.

hus, ⟨𝑁𝑇 ⟩ < ∞ which means that 𝑁𝑇 < ∞ with probability one. 𝑁𝑇 is a so-called stopping time (i.e., the set of trajectories where
𝑇 = 𝑛 only depends on the first 𝑛 times 𝑡1,… , 𝑡𝑛), so for each 𝑛 ≥ 0, 𝑁𝑇 ∧ 𝑛 is also a stopping time (where 𝑎 ∧ 𝑏 = min(𝑎, 𝑏)). Since
(𝑁𝑇 ∧ 𝑛 ≤ 𝑛) = 1 and every martingale is a submartingale (essentially by definition, see Durrett (2019) page 188), we can apply
heorem 4.4.1 of Durrett (2019) to conclude that

⟨𝐷̃0⟩ ≤ ⟨𝐷̃𝑁𝑇 ∧𝑛⟩ ≤ ⟨𝐷̃𝑛⟩.

ince the left and right hand terms are zero, ⟨𝐷̃𝑁𝑇 ∧𝑛⟩ = 0 for every 𝑛. Finally, since 𝑁𝑇 is finite with probability one, 𝐷̃𝑁𝑇 ∧𝑛 → 𝐷̃𝑁𝑇
s 𝑛 → ∞ with probability one. Moreover, the definition of 𝐷̃𝑛 consists of the difference of two terms which are monotonic in 𝑛, we
an apply the monotone convergence theorem (Rudin, 1986, 1.26) to conclude

lim ⟨𝐷̃ ⟩ = ⟨ lim 𝐷̃ ⟩ = ⟨𝐷̃ ⟩.
23

𝑛→∞ 𝑁𝑇 ∧𝑛 𝑛→∞ 𝑁𝑇 ∧𝑛 𝑁𝑇
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The left hand side is a sequence of zeros, so its limit is zero. Thus, 0 = ⟨𝐷̃𝑁𝑇
⟩. Since 𝑇 was arbitrary, this holds for all 𝑇 ≥ 0.

Now we examine what this means for ⟨𝐷𝑇 ⟩. First, since ⟨𝐷̃𝑁𝑇
⟩ = 0 we know that

⟨𝐷𝑁𝑇
⟩ =

⟨

⌊𝑁𝑇 ∕2⌋
∑

𝑗=1
𝜙(𝑉 𝑡2𝑗 )

⟩

= ⟨⌊𝑁𝑇 ∕2⌋⟩⟨𝜙(𝑉 𝑡on)⟩on.

hen 𝑁𝑇 is odd, 𝐷𝑇 = 𝐷𝑁𝑇 −1 = 𝐷𝑁𝑇
. When 𝑁𝑇 is even, 𝐷𝑇 = 𝐷𝑁𝑇

− 𝜙(𝑉 𝑡𝑁𝑇
). This means we have the bounds

(

⟨𝑁𝑇 ⟩

2
− 1

)

⟨𝜙(𝑉 𝑡on)⟩on − ⟨𝜙(𝑉 𝑡𝑁𝑇
)⟩ ≤ ⟨𝐷𝑇 ⟩ ≤

⟨𝑁𝑇 ⟩

2
⟨𝜙(𝑉 𝑡on)⟩ (C.2)

ince 𝑛∕2 − 1 ≤ ⌊𝑛∕2⌋ ≤ 𝑛∕2 for all 𝑛.
In the next step, we repeat the process, but instead derive bounds for ⟨𝑁𝑇 ⟩ using 𝑇 . It is easier to work with the sums of pairs of

onding and unbonding times, 𝑡2𝑖−1 + 𝑡2𝑖 rather than the times individually. Let 𝑠𝑖 = 𝑡2𝑖−1 + 𝑡2𝑖 for 𝑖 ≥ 1, let 𝑆𝑛 =
∑𝑛

𝑖=1 𝑠𝑖, and finally
et 𝑀𝑇 = inf{𝑛 ∣ 𝑆𝑛 ≥ 𝑇 }. Note that by definition 𝑁𝑇 = 2𝑀𝑇 or 2𝑀𝑇 − 1. Thus, 𝑀𝑇 is also finite with probability one. By the same
rgument as above, 𝑆̃𝑛 = 𝑆𝑛 − 𝑛⟨𝑠1⟩ is a martingale with respect to the times {𝑠𝑖}∞𝑖=1, and is also the difference of two monotone
equences in 𝑛. Hence, we can also conclude that

0 = lim
𝑛→∞

⟨𝑆̃𝑀𝑇 ∧𝑛⟩ = ⟨ lim
𝑛→∞

𝑆̃𝑀𝑇 ∧𝑛⟩ = ⟨𝑆̃𝑀𝑇
⟩,

nd so

⟨𝑆𝑀𝑇
⟩ = ⟨𝑀𝑇 ⟩⟨𝑠1⟩.

y the definition of 𝑀𝑇 , 𝑇 ≤ 𝑆𝑀𝑇
≤ 𝑇 + 𝑠𝑀𝑇

, which means we have the bounds (upon replacing ⟨𝑠1⟩ = ⟨𝑡1 + 𝑡2⟩),

𝑇
⟨𝑡1 + 𝑡2⟩

≤ ⟨𝑀𝑇 ⟩ ≤
𝑇 + ⟨𝑠𝑀𝑡

⟩

⟨𝑡1 + 𝑡2⟩
. (C.3)

Using, 2𝑀𝑇 − 1 ≤ 𝑁𝑇 ≤ 2𝑀𝑇 , and substituting (C.3) into (C.2) gives
(

𝑇
⟨𝑡1 + 𝑡2⟩

− 3
2

)

⟨𝜙(𝑉 𝑡on)⟩on − ⟨𝜙(𝑉 𝑡𝑁𝑇
)⟩ ≤ ⟨𝐷𝑇 ⟩ ≤

𝑇 + ⟨𝑠𝑀𝑇
⟩

⟨𝑡1 + 𝑡2⟩
⟨𝜙(𝑉 𝑡on)⟩on.

Since ⟨𝜙(𝑉 𝑡on)⟩on < ∞, dividing by 𝑇 , replacing ⟨𝑡1 + 𝑡2⟩ = ⟨𝑡off⟩off + ⟨𝑡on⟩on, and taking the limit as 𝑇 → ∞ shows that

lim
𝑇→∞

⟨𝐷𝑇 ⟩

𝑇
=

⟨𝜙(𝑉 𝑡on)⟩on
⟨𝑡off⟩off + ⟨𝑡on⟩on

assuming that
⟨𝜙(𝑉 𝑡𝑁𝑇 )⟩

𝑇 and
⟨𝑠𝑀𝑇 ⟩

𝑇 both limit to zero. This assumption amounts to assuming that the average dissipation due to the
last unbonding and the average length of time of the last bonding and unbonding pair do not grow to be arbitrarily large as 𝑇 → ∞.

C.4. Algebraic form of the interaction potentials

Below are the algebraic forms of the potentials used to create the phase diagrams in Fig. 3. The potentials differ from standard
presentations as they have been centered on 𝑥 = 0 and 𝜙(𝑥) = 0 in all cases.
Spring potential:

𝜙(𝑥;𝐾) = 1
2
𝐾𝑥2

ennard-Jones potential:

𝜙(𝑥;𝐸, 𝜎) = 𝐸

[

(

1
(𝑥∕𝜎) + 1

)12
− 2

(

1
(𝑥∕𝜎) + 1

)6
]

+ 𝐸

Soft Coulomb potential:

𝜙(𝑥;𝐸, 𝜎) = −𝐸
√

1 + (𝑥∕𝜎)2
+ 𝐸

ppendix D. Integral expansions for low velocities

.1. Gompertz integrals

We are interested in deriving the expansions of Eqs. (15) and (16). First, we note that (15) is a special case of the incomplete
gamma function 𝛤 (𝑛, 𝑧)

𝛤 (𝑛, 𝑡) =
∞
𝑢𝑛−1 exp(−𝑢)𝑑𝑢
24

∫𝑡
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which for our case we will only consider for 𝑡 > 0. By integrating by parts, one gets the identity

𝛤 (1 − 𝑛, 𝑡) = ∫

∞

𝑡

exp(−𝑢)
𝑢𝑛

𝑑𝑢

=
exp(−𝑡)

𝑡𝑛
− ∫

∞

𝑡

𝑛 exp(−𝑢)
𝑢𝑛+1

𝑑𝑢

=
exp(−𝑡)

𝑡𝑛
− 𝑛𝛤 (−𝑛, 𝑡)

for 𝑛 ≥ 0. We also have the bound for 𝑡 ≥ 1

𝛤 (−𝑛, 𝑡) = ∫

∞

𝑡

exp(−𝑢)
𝑢𝑛+1

𝑑𝑢 ≤ ∫

∞

𝑡

exp(−𝑢)
𝑡𝑛+1

𝑑𝑢 =
exp(−𝑡)
𝑡𝑛+1

. (D.1)

By applying the identity recursively, we get

𝛤 (1 − 𝑛, 𝑡) =
exp(−𝑡)

𝑡𝑛
− 𝑛𝛤 (−𝑛, 𝑡)

=
exp(−𝑡)

𝑡𝑛
− 𝑛

exp(−𝑡)
𝑡𝑛+1

+ 𝑛(𝑛 + 1)𝛤 (−𝑛 − 1, 𝑡)

= …

=
exp(−𝑡)

𝑡𝑛

[ 𝑁
∑

𝑚=0

(𝑛 − 1 + 𝑚)!
(𝑛 − 1)!

(−1)𝑚

𝑡𝑚

]

+
(−1)𝑁+1(𝑛 +𝑁)!

𝑛!
𝛤 (−𝑛 −𝑁, 𝑡)

=
exp(−𝑡)

𝑡𝑛

[ 𝑁
∑

𝑚=0

(𝑛 − 1 + 𝑚)!
(𝑛 − 1)!

(−1)𝑚

𝑡𝑚
+ 

(

1
𝑡𝑁+1

)

]

,

here in the last line we have used the bound (D.1). This holds for any 𝑁 > 0 and 𝑡 ≥ 1 and gives the expansion for Eq. (15) by
aking 𝑛 = 1.
To derive an expansion for (16), first change variables 𝑣 = 𝑢𝑡

∫

∞

1
log(𝑢)

exp(−𝑢𝑡)
𝑢

𝑑𝑢 = ∫

∞

𝑡
log(𝑣)

exp(−𝑣)
𝑣

𝑑𝑣 − log(𝑡)∫

∞

𝑡

exp(−𝑣)
𝑣

𝑑𝑣. (D.2)

he second term on the right is log(𝑡)𝛤 (0, 𝑡) for which we have an expansion. For the first term on the right, define

𝐼(𝑛, 𝑡) ∶= ∫

∞

𝑡
log(𝑣)

exp(−𝑣)
𝑣𝑛

𝑑𝑣

or 𝑛 ≥ 1. Integrating by parts shows that

𝐼(𝑛, 𝑡) = log(𝑡)
exp(−𝑡)

𝑡𝑛
+ ∫

∞

𝑡

(

1
𝑣𝑛+1

−
𝑛 log(𝑣)
𝑣𝑛+1

)

exp(−𝑣)𝑑𝑣

= log(𝑡)
exp(−𝑡)

𝑡𝑛
+ 𝛤 (−𝑛, 𝑡) − 𝑛𝐼(𝑛 + 1, 𝑡). (D.3)

The function 𝑔𝑛(𝑣) =
log(𝑣)
𝑣𝑛 has negative derivative for 𝑣 ≥ 𝑒,

𝑔′𝑛(𝑣) =
1

𝑣𝑛+1
−

𝑛 log(𝑣)
𝑣𝑛+1

=
1 − 𝑛 log(𝑣)

𝑣𝑛+1
,

and so log(𝑣)
𝑣𝑛 is non-increasing on for 𝑣 ≥ 𝑒. Thus, for 𝑡 ≥ 𝑒 we have the bound

𝐼(𝑛, 𝑡) = ∫

∞

𝑡
log(𝑣)

exp(−𝑣)
𝑣𝑛

𝑑𝑣 ≤ ∫

∞

𝑡

log(𝑡) exp(−𝑣)
𝑡𝑛

=
log(𝑡) exp(−𝑡)

𝑡𝑛
.

As before, we use the recursion formula to write

𝐼(1, 𝑡) =
log(𝑡) exp(−𝑡)

𝑡
+ 𝛤 (−1, 𝑡) − 𝐼(2, 𝑡)

=
log(𝑡) exp(−𝑡)

𝑡
+ 𝛤 (−1, 𝑡) −

log(𝑡) exp(−𝑡)
𝑡2

− 𝛤 (−2, 𝑡) + 2𝐼(3, 𝑡)

= …

= log(𝑡)
exp(−𝑡)

𝑡

𝑁
∑

𝑛=0

[

(−1)𝑛𝑛!
𝑡𝑛

]

+
𝑁
∑

𝑛=0

[

(−1)𝑛𝑛!𝛤 (−1 − 𝑛, 𝑡)
]

+ (−1)𝑁+1(𝑁 + 1)!𝐼(𝑁 + 2, 𝑡), (D.4)

or any 𝑁 ≥ 1. The remainder term

𝑅(𝑁 + 1, 𝑡) = (−1)𝑁+1(𝑁 + 1)!𝐼(𝑁 + 2, 𝑡)

beys the bound

|𝑅(𝑁 + 1, 𝑡)| ≤ (𝑁 + 1)! log(𝑡)
exp(−𝑡)

.

25
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𝑛

∫

t

The factorial term suggests blow up in the expansion for 𝑡 near one. However, using Sterling’s upper bound 𝑛! ≤ 𝑛𝑛+1∕2𝑒−𝑛+1 with
= 𝑁 + 1, we see that

|𝑅(𝑁 + 1, 𝑡)| ≤ log(𝑡) exp(−𝑡 −𝑁)
(𝑁 + 1

𝑡

)𝑁+2
,

so that the rate of decay of the polynomial depends on 𝑁+1
𝑡 rather than 1

𝑡 alone. Since we only need to take a few terms, the
convergence is still of order (exp(−𝑡)𝑡−(𝑁+1)) since log(𝑡)∕𝑡 = (1).

Finally, we first note that the terms in the first sum of Eq. (D.4) cancel with the terms in the expansion of log(𝑡)𝛤 (0, 𝑡), which is
the second term of Eq. (D.2). Thus, we can ignore this first sum in the expansion of 𝐼(1, 𝑡) and the log(𝑡)𝛤 (0, 𝑡) term when we expand
∞
1

log(𝑢) exp(−𝑢𝑡)
𝑢 . Writing out this expansion to order exp(−𝑡)𝑡−5

∫

∞

1
log(𝑢)

exp(−𝑢𝑡)
𝑢

𝑑𝑢 = ∫

∞

𝑡

log(𝑢) exp(−𝑢)
𝑡

− log(𝑡)𝛤 (0, 𝑡)

=
5
∑

𝑛=0
(−1)𝑛𝑛!𝛤 (−1 − 𝑛, 𝑡) + (exp(−𝑡)𝑡−6)

𝛤 (−1, 𝑡) =
exp(−𝑡)

𝑡2

[

1 − 2
𝑡
+ 6

𝑡2
− 24

𝑡3
+ 

(

1
𝑡4

)]

𝛤 (−2, 𝑡) =
exp(−𝑡)

𝑡3

[

1 − 3
𝑡
+ 12

𝑡2
+ 

(

1
𝑡3

)]

𝛤 (−3, 𝑡) =
exp(−𝑡)

𝑡4

[

1 − 4
𝑡
+ 

(

1
𝑡2

)]

𝛤 (−4, 𝑡) =
exp(−𝑡)

𝑡5

[

1 + 
( 1
𝑡

)

]

𝛤 (−5, 𝑡) = 
(

exp(−𝑡)
𝑡6

)

∫

∞

1
log(𝑢)

exp(−𝑢𝑡)
𝑢

𝑑𝑢 =
exp(−𝑡)

𝑡2

[

1 − 3
𝑡
+ 17

𝑡2
− 50

𝑡3

]

+ 
(

exp(−𝑡)
𝑡6

)

.

As stated in the text, we can use Proposition 2 of Lenart (2014) to find the mean time and dissipation in Eqs. (13) and (14) using
he expansion for 𝑡 = 𝜅off

𝜔 large

⟨𝑡on⟩on = 1
𝜔
exp(

𝜅off
𝜔

)∫

∞

𝜅off
𝜔

𝑢−1 exp(−𝑢)𝑑𝑢

= 1
𝜅off

[

1 − 𝜔
𝜅off

+ 2
(

𝜔
𝜅off

)2
− 6

(

𝜔
𝜅off

)3]

+ (𝜔−4)

⟨𝐷⟩on = 𝐾eff𝑉
2
exp( 𝜅off𝜔 )

𝜔2 ∫

∞

1

log(𝑢) exp(−𝜅off𝑢∕𝜔)
𝑢

𝑑𝑢

=
𝐾eff𝑉 2

𝜅2
off

[

1 − 3
(

𝜔
𝜅off

)

+ 17
(

𝜔
𝜅off

)2
− 50

(

𝜔
𝜅off

)3]

+ (𝜔−4).

Finally, using ⟨𝑡off⟩off =
1

𝜅on
and plugging in the expansion for Eq. (3) shows

𝐷̇𝑆𝑆 =
⟨𝐷⟩on

⟨𝑡on⟩on + ⟨𝑡off⟩off
=

𝜌on𝐾eff𝑉 2

𝜅off

[

1 − (3 − 𝜌on)
𝜔
𝜅off

+
(

17 − 2𝜌on + 𝜌2on
)

(

𝜔
𝜅off

)2]

+ (𝜔−3)

gives Eq. (17).

D.2. Expanding the probability density of times spent bonded as a function of shear velocity

The unbonding density as a function of the velocity (assuming the Bell model) is given by

𝑝on(𝑡;𝑉 ) = 𝜅off exp
(

𝑎𝛽𝐹 (𝑉 𝑡) − 𝜅off ∫

𝑡

0
exp (𝑎𝛽𝐹 (𝑉 𝑠)) 𝑑𝑠

)

.

Expanding the force and the integral shows that

𝑝on(𝑡;𝑉 ) = 𝜅̃off exp(−𝜅̃off𝑡) exp

[

𝑎𝛽𝐹 ′(0)𝑡
(

1 −
𝜅̃off𝑡

)

𝑉 + 𝑎𝛽
(

𝐹 ′′(0)𝑡2(1 −
𝜅̃off𝑡 ) − 𝑎𝛽𝐹 ′(0)2𝜅̃off

𝑡3
)

𝑉 2
+ (𝑉 3)

]

,
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where 𝜅̃off = 𝜅off exp(𝑎𝛽𝐹 (0)) is the effective force independent unbonding rate. From this, we see the zeroth order term mirrors the
force independent case

𝑝on(𝑡;𝑉 ) ≈ 𝜅̃off exp(−𝜅̃off𝑡)

ith force independent unbonding rate 𝜅̃off. The next order effect

𝑝on(𝑡;𝑉 ) ≈ 𝜅̃off exp(−𝜅̃off𝑡) exp

[

𝑎𝛽𝐹 ′(0)𝑡
(

1 −
𝜅̃off𝑡
2

)

𝑉

]

increases the probability of unbonding at times 𝑡 < 2
𝜅̃off

and decrease the probability of being bonded for longer times 𝑡 > 2
𝜅̃off
.

When the interaction expands as 𝜙(𝑥) = 𝑐𝑥𝑝 + 𝑑𝑥𝑝+1 + (𝑥𝑝+2) for some 𝑐, 𝑑 > 0 and 𝑝 ≥ 3, then

∫

𝑡

0
𝐹 (𝑉 𝑠)2𝑑𝑠 = (𝑉 2(𝑝−1)) = (𝑉 𝑝+1)

as 𝑉 → 0 (since 2(𝑝 − 1) ≥ 𝑝 + 1 for 𝑝 ≥ 3). This means that

𝑝on(𝑡;𝑉 ) = 𝜅off exp
(

𝑎𝛽𝐹 (𝑉 𝑡) − 𝜅off ∫

𝑡

0
exp(𝑎𝛽𝐹 (𝑉 𝑠))𝑑𝑠

)

= 𝜅off exp(−𝜅off𝑡) exp
(

𝑎𝛽𝑐𝑝(𝑉 𝑡)𝑝−1 + 𝑎𝛽𝑑(𝑝 + 1)(𝑉 𝑡)𝑝 − 𝑎𝛽𝜅off𝑐𝑡(𝑉 𝑡)𝑝−1 − 𝑎𝛽𝜅off𝑑𝑡(𝑉 𝑡)𝑝 + (𝑉 𝑝+1)
)

= 𝜅off exp(−𝜅off𝑡) exp
(

𝑎𝛽𝑐𝑡𝑝−1
(

𝑝 − 𝜅off𝑡
)

𝑉 𝑝−1 + 𝑎𝛽𝑑𝑡𝑝
(

𝑝 + 1 − 𝜅off𝑡
)

𝑉 𝑝 + (𝑉 𝑝+1)
)

.

gain, the zeroth order effect is the same as the force independent case and the next order effect increases the probability of bonding
or 𝑡 < 𝑝

𝜅off
and decreases it for 𝑡 > 𝑝

𝜅off
.

Appendix E. Formation of solid bridges and AFM pull-off experiment

To create the bidisperse colloidal systems, first aqueous suspensions of silica microspheres (Corpuscular Inc., NY, USA) with mean
diameter of 20 and 3 μm (particle density, 𝜌 = 2.65 g/cm3) were diluted in deionized water (Milli-Q Reagent Water System, Millipore,
MA, USA) and mixed. Using a high precision pipette, colloidal droplets (approximately 0.1 μL) were placed on a borosilicate glass
coverslip (Fisher Scientific, NH, USA; thickness varying from 0.13 to 0.17 mm) and then air-dried under laboratory conditions (RH
=0.50 ± 0.05, T=22 ◦C). To encourage the formation of widely dispersed, isolated aggregates after evaporation, the coverslip surface
was pre-treated by using O2-plasma (SCE-108 Barrel Asher, Anatech USA, CA, USA) under a radio frequency (RF) power of 50 W
for a duration of 15 s under chamber pressure of 300 m Torr. By creating isolated aggregates, we were able to perform AFM pull-off
experiments on a single 20-μm particle bound to the substrate through solid bridges formed by 3 μm particles. The deposits were
laced in a vacuum chamber (500 m Torr) prior to pull-off experiments to minimize the adhesion due to humidity. Under such
ircumstances, the interparticle bonds are credibly governed by van der Waals attractive forces.
The pull-off force was measured by modifying the contact mode of an AFM Asylum MFP-3D unit (Asylum Research, CA,

SA), where the force spectroscopy data were obtained using the IGOR PRO program (WaveMetrics, OR, USA). Soft contact mode
antilevers made of silicon nitride (NanoAndMore Co., CA, USA), 250–350 μm long with spring constant of 0.03–0.08 N/m, and
Al backside coating, were used to cover the range of measured forces. The exact spring constant value of each cantilever was
determined using the thermal calibration method prior to experiments. Devcon 5-Minute Epoxy (Devcon Co., MA, USA) was then
prepared according to the manufacturer’s instructions directly on a coverslip strip and flattened to form a thin film. The apex of
the cantilever was approached to the film until contact with the epoxy surface was observed. The cantilever was then pulled up
immediately to prevent an excessive amount of epoxy due to capillary action. After depositing a small bead of epoxy, the apex of the
cantilever was moved on top and pushed onto the target 20-μm particle. The epoxy was then allowed to cure for 15 min and solidify.
he experiment was performed by lifting the cantilever, while deflection data were recorded. The scan rate (loading/unloading rate)
as 0.50 Hz in all experiments. The setpoint, or zero deflection position in the non-contact regime was set to the zero-voltage position
or all force curves. Following the detachment of a single 20-μm particle from the substrate in a monodisperse system, we corrected
he cantilever stiffness using thermal calibration data and measured the adhesion force between the particle and the substrate with
alues found in the range of 4 ± 2 nN for several spots on the substrate. The adhesion force between the bare AFM apex and the
0-μm particles surface was measured to be in the range of 2 ± 1 nN. The AFM measurements were carried out in the quasi-static
egime, where the force curve should be completely determined by the elastic modulus of the cantilever. The thermal calibration we
erformed indicated a dissipation factor in the range of 2.1-3.2%, confirming that dissipation was negligible compared to measured
orces.

ppendix F. Maximum likelihood estimation of solid bridge kinetic parameters

As described in Section 4.2, we are interested in finding the kinetic parameters 𝜅on, 𝜅off, and 𝐹𝑐 which maximize the likelihood
f observing the experimentally observed active bonds as a function of time, 𝑁(𝑡), assuming the stochastic bond model for the solid
ridge. Mathematically, we want to find

𝜅̂on, 𝜅̂off, 𝐹𝑐 = argmax 𝓁(𝜅on, 𝜅off, 𝐹𝑐 ) = argmax 𝑝SB(𝑁(𝑡) ∣ 𝜅on, 𝜅off, 𝐹𝑐 )
27
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Fig. F.12. (a) A figure depicting how the force versus displacement data from the pull-off experiment is split up into seven pieces (labeled as 𝑁𝑖(𝑡)) each
ontaining a linear portion (lighter color) which we interpret as periods of constant number of bonds, and non-linear portions (darker colors) which we interpret
s periods of bonding and unbonding. The dashed black lines represent the extracted slopes which determine the observed, effective spring constants 𝐾 𝑖

Obs. (b)
The number of surviving bonds 𝑁(𝑡) split up into seven pieces 𝑁𝑖(𝑡) based on the linear sections of the data. The coloring matches the plot (a).

here 𝓁 is the likelihood function and 𝑝SB(𝑁(𝑡) ∣ 𝜅on, 𝜅off, 𝐹𝑐) is the probability density of observing 𝑁(𝑡) given the solid bridge
model with kinetic parameters 𝜅on, 𝜅off, and 𝐹𝑐 . For notational simplicity, the conditioning on the parameters will be suppressed in
hat follows.
𝑁(𝑡) consists of seven section corresponding to the seven linear sections of the experimental data (Fig. F.12(a)). Label as 𝑁𝑖(𝑡)

the section which starts off as a constant value 𝑁𝑖 as defined in the text, and ends at the start of the section which is the constant
value 𝑁𝑖+1 (𝑁7(𝑡) ends just before the breaking of the epoxy). For each 𝑖 = 1,… , 6, let 𝑇𝑖 be the starting time for 𝑁𝑖(𝑡), let 𝑡𝑖 be the
length of time that 𝑁𝑖(𝑡) remains constant (the length of time that the force versus displacement data is linear) and let 𝛥𝑡𝑖 be the
length of time that 𝑁𝑖(𝑡) is linearly interpolating (the length of time that the force versus displacement data is nonlinear before the
next linear section). For 𝑖 = 7, we can define 𝑇7 and 𝑡7 in the same way but there is no corresponding 𝛥𝑡7. Also let 𝛥𝑁𝑖 = 𝑁𝑖+1 −𝑁𝑖
be the number of bonds that form (or break if the value is negative) between section 𝑖 and 𝑖 + 1.

We break up 𝑝SB(𝑁(𝑡)) into the probability of each of the section 𝑁𝑖(𝑡) as follows. We may first think of this density as the
density for the trajectory which first follows 𝑁1(𝑡) from 𝑇1 to 𝑇2, and then 𝑁2(𝑡) from 𝑇2 to 𝑇3 and so on. The goal is to split the
probability density into a product of the density of each of these pieces. However, the sections are not completely independent
since, for example, 𝑁1(𝑇2) must equal 𝑁2(𝑇2) since they both give the value of the 𝑁(𝑇2) = 𝑁2. From the definition of conditional
robability, the probability density of following 𝑁1(𝑡) and then 𝑁2(𝑡) is equal to the probability density of following 𝑁1(𝑡) times the
probability density of following 𝑁2(𝑡) conditioned on the fact that the trajectory first followed 𝑁1(𝑡). Symbolically,

𝑝SB(𝑁1(𝑡), 𝑁2(𝑡)) = 𝑝SB(𝑁1(𝑡))𝑝SB(𝑁2(𝑡) ∣ 𝑁1(𝑡)).

Since we have assumed that bonding trajectories are independent of their own past, the density for 𝑁2(𝑡) depends only on 𝑁1(𝑡)
hrough their overlapping value at 𝑁1(𝑇2) = 𝑁2(𝑇2) = 𝑁2. Thus, we know that

𝑝SB(𝑁2(𝑡) ∣ 𝑁1(𝑡)) = 𝑝SB(𝑁2(𝑡) ∣ 𝑁2(𝑇2) = 𝑁2).

ikewise, when we consider the whole trajectory, we can repeatedly apply the same logic to conclude that

𝑝SB(𝑁(𝑡)) = 𝑝SB(𝑁1(𝑡))
7
∏

𝑖=2
𝑝SB(𝑁𝑖(𝑡) ∣ 𝑁𝑖(𝑇𝑖) = 𝑁𝑖).

In order to determine 𝑝SB(𝑁𝑖(𝑡) ∣ 𝑁𝑖(𝑇𝑖) = 𝑁𝑖), we need to know the probability that none of the bonds change for the correct
mount of time (that is 𝑡𝑖) and that when a bond does change, the right event (i.e. a bond or unbonding) occurs. For this we use
he following technical lemma.

emma F.1. Let 𝑚 ≥ 2 and suppose that at a given time 𝑇 , there are 𝑚 possible events labeled 𝑖 = 1,… , 𝑚 which can occur independently
f each other. Suppose further that each occurs with rate 𝜅𝑖(𝑡) ≥ 𝜅min > 0 for some minimum rate 𝜅min so that if one begins watching at time

𝑇 , the probability density of observing event 𝑖 at time 𝑡𝑖 is given by

𝑝𝑖(𝑡𝑖) = 𝜅𝑖(𝑇 + 𝑡𝑖) exp
(

−∫

𝑇+𝑡𝑖

𝑇
𝜅𝑖(𝑠)𝑑𝑠

)

or each 𝑖. Under these assumptions, probability density that the first event observed after time 𝑇 is event 𝑗, and that this event occurs at
time 𝑡 is

𝜅𝑗 (𝑇 + 𝑡) exp

(

−∫

𝑇+𝑡

𝑇

( 𝑚
∑

𝑖=1
𝜅𝑖(𝑠)

)

𝑑𝑠

)

.
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Proof. We assume that 𝑇 = 0 for simplicity as the result for general 𝑇 is just obtained by translating time. Let 𝑗 be the first event
observed. This event happens at time 𝑡 if and only if 𝑡𝑗 = 𝑡 and 𝑡𝑖 > 𝑡 for all 𝑖 ≠ 𝑗. Since the events are independent, the probability
density of this event is given by

𝑝𝑗 (𝑡)
∏

𝑖≠𝑗
P(𝑡𝑖 > 𝑡),

where P(𝑡𝑖 > 𝑡) is the probability that 𝑡𝑖 > 𝑡. For each 𝑖, we know that

P(𝑡𝑖 > 𝑡) = ∫

∞

𝑡
𝑝𝑖(𝑠)𝑑𝑠.

Substituting in the definition for 𝑝𝑖(𝑠), rewriting the integrand as a total derivative, and integrating gives

P(𝑡𝑖 > 𝑡) = ∫

∞

𝑡
𝜅𝑖(𝑠) exp

(

−∫

𝑠

0
𝜅𝑖(𝑢)𝑑𝑢

)

𝑑𝑠

= ∫

∞

𝑡
− 𝑑
𝑑𝑠

exp
(

−∫

𝑠

0
𝜅𝑖(𝑢)𝑑𝑢

)

𝑑𝑠

= exp
(

−∫

𝑡

0
𝜅𝑖(𝑠)𝑑𝑠

)

− exp
(

−∫

∞

0
𝜅𝑖(𝑠)𝑑𝑠

)

= exp
(

−∫

𝑡

0
𝜅𝑖(𝑠)𝑑𝑠

)

,

ince the term exp(− ∫ ∞
0 −𝜅𝑖(𝑠)𝑑𝑠) = 0 as we assumed that 𝜅𝑖(𝑠) ≥ 𝜅min > 0. Noting that

𝑝𝑗 (𝑡) = 𝜅𝑗 (𝑡) exp
(

−∫

𝑡

0
𝜅𝑗 (𝑠)𝑑𝑠

)

ives the desired result. □

We apply this lemma by noting that at any given time during the pull-off experiment, there are 𝑁tot possible events which could
ccur, and each of these events is independent of the others except through their contribution to the total number of active bonds
hich impacts the force acting on each bond. Since we are interested in the probability density of a section conditioned on knowing
he number of active bonds at the start of that section, the dependence between the events is negated and we can apply this lemma.
For example, we compute 𝑝SB(𝑁4(𝑡) ∣ 𝑁4(𝑇4) = 𝑁4). Section 𝑁4(𝑡) begins at 𝑇4 = 0.0933 s when there are an estimated 𝑁4(𝑇4) = 19

onds (see Fig. F.12(b)). These bonds last for 𝑡4 = 0.0527 and bonds start breaking at time 𝑇4 + 𝑡4 = 0.1460 and continue to break for
ime 𝛥𝑡4 = 0.0078 s until 𝑁5 = 14 bonds are active. Since Lemma F.1 only applies to single events and in this case 5 bonds break, we
reak up 𝑝SB(𝑁4(𝑡) ∣ 𝑁4(𝑇4) = 𝑁4) by assuming that it is well approximated by the density that the first bond breaks after time 𝑡4
nd the remaining bonds break at equal intervals of the remaining 𝛥𝑡4 (i.e., one more breaks after time

𝛥𝑡4
𝛥𝑁4−1

where one has been
subtracted to account for the first bond breaking). Using the lemma, the density for the first bond breaking is given by

𝑁4𝜅off exp(𝐹 (𝑇4 + 𝑡4, 𝑁4)∕𝐹𝑐 ) exp
(

−∫

𝑇4+𝑡4

𝑇4
(𝑁tot −𝑁4)𝜅on +𝑁4𝜅off exp(𝐹 (𝑠,𝑁4)∕𝐹𝑐)𝑑𝑠

)

,

where we have multiplied by the number of active bonds, 𝑁4, since any of these bonds could have broken at time 𝑇4 + 𝑡4. Calling
𝛿𝑡4 ∶=

𝛥𝑡4
𝛥𝑁4−1

, the density for the next time is

(𝑁4 − 1)𝜅off exp(𝐹 (𝑇4 + 𝑡4 + 𝛿𝑡4, 𝑁4 − 1)∕𝐹𝑐 ) exp
(

−∫

𝑇4+𝑡4+𝛿𝑡4

𝑇4+𝑡4
(𝑁tot −𝑁4 + 1)𝜅on + (𝑁4 − 1)𝜅off exp(𝐹 (𝑠,𝑁4 − 1)∕𝐹𝑐)𝑑𝑠

)

,

ince there are now 𝑁4 − 1 active bonds and one more broke. The densities for the unbonding of the remaining six bonds are
omputed in the same way. By taking the product of them all we get the density 𝑝SB(𝑁4(𝑡) ∣ 𝑁4(𝑇4) = 𝑁4),

𝑝SB(𝑁4(𝑡) ∣ 𝑁4(𝑇4) = 𝑁4) = 𝑁4𝜅off exp
(

𝐹 (𝑇4 + 𝑡4, 𝑁4)∕𝐹𝑐

)

exp
(

−∫

𝑇4+𝑡4

𝑇4
(𝑁tot −𝑁4)𝜅on +𝑁4𝜅off exp

(

𝐹 (𝑠,𝑁4)∕𝐹𝑐

)

𝑑𝑠
)

×
7
∏

𝑙=1

[

(𝑁4 − 𝑙)𝜅off exp
(

𝐹 (𝑇4 + 𝑡4 + 𝑙𝛿𝑡4, 𝑁4 − 𝑙)∕𝐹𝑐

)

× exp
(

−∫

𝑇4+𝑡4+𝑙𝛿𝑡4

𝑇4+𝑡4+(𝑙−1)𝛿𝑡4
(𝑁tot −𝑁4 + 𝑙)𝜅on + (𝑁4 − 𝑙)𝜅off exp

(

𝐹 (𝑠,𝑁4 − 𝑙)∕𝐹𝑐

)

𝑑𝑠
)

]

.

e compute the densities for the remaining pieces in this way, and form the whole density by taking the product of all of the pieces.
he MLE is determined by taking the maximum of this density with respect to the parameters 𝜅on, 𝜅off, and 𝐹𝑐 using a standard
onjugate gradient method. In practice, the logarithm of the probability density is maximized rather than the probability density
tself since this yields the same MLE and there is better convergence given the exponential factors and the number of products
aking up the total density. As mentioned in the text, the MLE for the solid bridge parameters was found to be 𝜅on = 3.47 s−1,
= 4.17 s−1, and 𝐹 = 1.99 nN.
29
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