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ABSTRACT

A class of fast-slow Hamiltonian systems with potential U, describing the interaction of non-ergodic
fast and slow degrees of freedom is studied. The parameter ¢ indicates the typical timescale ratio of
the fast and slow degrees of freedom. It is known that the Hamiltonian system converges for ¢ — 0
to a homogenised Hamiltonian system. We study the situation where ¢ is small but positive.

First, we rigorously derive the second-order corrections to the homogenised (slow) degrees of
freedom. They can be decomposed into explicitly given terms that oscillate rapidly around zero
and terms that trace the average motion of the corrections, which are given as the solution to an
inhomogeneous linear system of differential equations.

Then, we analyse the energy of the fast degrees of freedom expanded to second-order from a
thermodynamic point of view. In particular, we define and expand to second-order a temperature,
an entropy and external forces and show that they satisfy to leading-order, as well as on average to

second-order, thermodynamic energy relations akin to the first and second law of thermodynamics.
Finally, we analyse for a specific fast-slow Hamiltonian system the second-order asymptotic
expansion of the slow degrees of freedom from a numerical point of view. Their approximation quality
for short and long time frames and their total computation time are compared with those of the
solution to the original fast-slow Hamiltonian system of similar accuracy.
© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Many scientists in physics, chemistry and materials science resort to computer simulations to study real-world dynamical processes.
These simulations open up the possibility to quickly and inexpensively iterate through different experimental setups, thus hugely
reducing cost in the form of time and labour and allow a level of insight into small- and large-scale processes that were out of
reach decades ago. In chemical physics or materials science, for example, scientists frequently analyse large scale molecular dynamics
simulations to predict properties of large dynamical systems based on mathematical models that aim to describe the dynamical
evolution of the constituent particles. In simulating these systems, one typically encounters two problems that severely impede their
scalability. Firstly, the simulation of molecular structures requires a step size in the numerical integration scheme that ranges in the
order of 10~ seconds to accurately replicate the fast molecular vibrations in the system. Secondly, even small macroscopic systems
of interest require the integration of a potentially large number of particles. Even more, the two problems often compound and pose
a challenging obstacle in the scalability and utility of molecular dynamic simulations.

From an applications point of view, one is often not interested in analysing the exact evolution of the fast molecular vibrations,
but in the slow conformal motion that embodies the macroscale dynamics of the system. Here lies an opportunity to bypass at least
partly the scalability issues by advancing the understanding of these systems and a subsequent development of numerical integration
schemes that describe only the average evolution of the dynamical system without fully resolving the small-scale vibrations.

Fast-slow Hamiltonian systems provide a simplified fundamental description of large-scale interacting particles systems, where the
system’s degrees of freedom evolve on different scales in time and space. They can be used, for example, to model the evolution
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of molecules where the slow degrees of freedom represent the conformal motion and the fast degrees of freedom represent the
high-frequency molecular vibrations [1]. There is a vast body of literature for averaging general dynamical systems, not necessarily
of Hamiltonian type, for example, using Young measures [2]. Applications of such fast-slow systems arise, for example, in models of
plasticity [3]. Recent work on averaging of Hamiltonian fast-slow systems and connections with adiabatic invariants include [4-6]
and references therein. Similar averaging techniques are also relevant to understand equilibration in springy billiards [7]. For general
references to averaging, we refer the reader to [8-10].

With a mathematical description of a dynamical system in the form of a fast-slow Hamiltonian system, we are able to derive the
conformal motion through homogenisation in time. The theory laid out by Bornemann in [1] enables us to derive the homogenised
evolution of a specific class of fast-slow Hamiltonian systems. More precisely, Bornemann considers a family of mechanical systems,
parametrised by a scale parameter ¢, whose Lagrangian is of the form

Lo, %) = 3 (K, %) = We(x), X eTM, (1)

on a Euclidean configuration space M = R™ with a potential given by
W,(x) = V(x) + e 2U(x).

Here, the potential U characterises the fast dynamics of the system. By splitting the coordinates according to x = (y,z) € R" xR" = R™,
where y represents the slow and z the fast degrees of freedom, Bornemann showed that system (1) converges as ¢ — 0 to a system
on a slow manifold N = U~'(0), governed by the Lagrangian

Lhom(X, X) = 5 (X, %) = V(X) = Upom(x), X € TN, )

where Upom can be derived from the Hessian of U and the initial conditions of x.

System (2) describes the slow, leading-order dynamics of the original system (1). As such, it allows for the integration of the
corresponding equations of motion with a larger step size than what would usually be required for the integration of the original
system. This can speed up the numerical integration significantly.

A crucial aspect of approximating the fast-slow solution of system (1) by a slow solution of system (2) is that the approximation
error depends on the scale parameter ¢. This scale parameter is a critical element in the dynamics described by (1). It is determined by
the underlying true natural system that the model aims to represent and indicates the ratio of the typical timescales of the fast and slow
degrees of freedom. In the case of a very small ¢, a description of the fast-slow solution of system (1) by a slow solution of system (2)
might be an acceptable trade-off in order to deal with the scalability issue mentioned earlier. However, a problem arises if ¢ is small,
so that the microscale oscillations severely affect the numerical integration, but not small enough so that the dynamics of system (1)
cannot be sufficiently approximated by the homogenised dynamics given by system (2). In this case, the dynamics of the fast degrees
of freedom contribute much more to the evolution of the whole system than in the case of a very small ¢. For example, in [1, Chapter III
§2], the author applies the homogenisation process to derive the conformal motion of a butane molecule, where in the united atom
representation, the scale parameter is ¢ &~ 0.25, which cannot be considered as small. It is thus natural to extend the theory presented
in [1] to describe the slow dynamics of the original system on a finer scale, potentially revealing microscale properties in the case of a
scale parameter away from the limit ¢ — 0. This line of research begins already in [ 1], where formal asymptotic expansions are derived
in Appendix C.

A further step was developed in [11], where the authors derive a second-order asymptotic expansion to the solution of system (1) in
the case of one fast and one slow degree of freedom, i.e., n = r = 1. Although the model in [11] is rather simple and the fast subsystem is
ergodic, the fast-slow character is sufficient to derive properties of the fine-scale dynamics that are characteristic for thermodynamic
processes. More precisely, for V(x) = 0 and U(x) = %wz(y)zz, where @ > 0 is a smooth frequency function, the thermodynamic
character of the model in [11] becomes evident by analysing the fast subsystem, which models the dynamics of the fast degree of
freedom z, as a motion that is perturbed by the evolution of the slow degree of freedom y. This setting allows an interpretation of
the fast subsystem from a thermodynamic point of view. By applying the thermodynamic theory for ergodic Hamiltonian systems,
first developed by Boltzmann and Gibbs [12], and later specified by Hertz [13], one derives expressions for temperature, entropy and
external force in the fast subsystem. Utilising the second-order asymptotic expansion, one can determine the leading-order terms of
these thermodynamic expressions and show that they satisfy a thermodynamic energy relation akin to the first and second law of
thermodynamics. It turns out that the entropy expression to leading-order is constant, suggesting an interpretation of the leading-order
dynamics as an adiabatic thermodynamic process. Remarkably, although away from the limit ¢ — 0, one finds a similar energy relation
for the averaged second-order terms of the expansion. Most importantly, the entropy expression to second-order is not constant. The
dynamics to second-order can therefore be interpreted as a non-adiabatic thermodynamic process.

In this article, we carry out a comparable study for the case of more than one fast and slow degrees of freedom, with the important
difference that the higher dimensional fast subsystem is non-ergodic. We extend the theory presented in [1] and derive the second-
order asymptotic expansion to the solution of system (1) in the case of an arbitrary finite number of fast and slow degrees of freedom,
i.e., n,r € N. Specifically, we analyse the mechanical system (1) with a smooth potential V = V(y) and U(x) = % (H(y)z, z), where
H(y) = diag(w%(y), cees wf(y)) for smooth frequency functions w; > 0 (A = 1,...,r). Unlike in [11], we have to impose certain
non-resonance conditions to derive the second-order asymptotic expansion. Following the strategy presented in [11], a key element in
the derivation of the second-order asymptotic expansion is a transformation of the fast degrees of freedom into action-angle variables.
By using weak convergence methods we show that the second-order asymptotic expansion of the e-dependent transformed variables
is given, for instance in the case of y,, as y, = yo + &%(y2 + [y21°) + 52y§, where y5 — 0in C([0, T],R") as ¢ — 0. Here, the function
Yo is the leading-order term derived from system (2), the function y, is the slow component of the second-order correction, which can
be derived as the solution to an inhomogeneous linear system of differential equations, and the function [y,]° is the fast component of
the second-order correction, which consists of explicitly given rapidly oscillating terms that converge weakly* to zero in L*([0, T], R").

Furthermore, we interpret the dynamics of the fast subsystem, which is composed of the fast degrees of freedom, from a
thermodynamic point of view. This is based on the thermodynamic theory for Hamiltonian systems formalised by Hertz [13] and
used in [11]. More precisely, by decomposing the total energy E. into the energies E! and Ei such that E, = E! + EZ, we consider
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Ej(ze, Ze; Ye) as the energy describing the evolution of the fast degrees of freedom z. under a slow, external influence described by
the dynamics of y,. As the fast subsystem is not necessarily ergodic, we follow along the lines of [14] and replace time averages in
the thermodynamic theory by ensemble averages, i.e., averages over uniformly distributed initial values on the energy surface. With
this modification, we apply Hertz’' thermodynamic formalism and derive a temperature T,, an entropy S, and an external force F, for
the fast subsystem. By applying the asymptotic expansion results from the first part of this article, we similarly expand the energy
El = Eg +e[E{ 1 + 2 (Ey + [E)1°) 4+ £2E5™, the temperature T, = To+ O(e), the entropy S, = So+&[S1]° + &2 (S; + [S2]°) +£2S5 and
the external force F, = Fy + O(¢), where E;*’, S5 — 01in C([0, T]). We find that to leading-order the thermodynamic quantities satisfy
an energy relation akin to the first and second law of thermodynamics (in the sense of Carathéodory [15])

n
dEy = F)dy} + TodSo.
j=1

In contrast to the work in [11], the leading-order entropy So can be constant or non-constant, depending on the characteristics
of the weighted frequency ratios 6w; (yo)/w.(¥o) (A, ¢ = 1,...,7). Here, we use the definition of the entropy as the logarithm
of the phase space volume where the latter does not have to change slowly; the analysis shows that even in this situation, a
meaningful thermodynamic setting exists. As a consequence, we interpret the dynamics to leading-order as an adiabatic or non-
adiabatic thermodynamic process, respectively. Moreover, by considering the average dynamics to second-order for fixed yo and pg = yo,
we similarly find, although away from the limit ¢ — 0, a comparable energy relation of the form

n
dEy =) F)dy, + TodS,.
j=1
Likewise, with a non-constant second-order entropy expression S,, we can interpret the averaged second-order dynamics as a
non-adiabatic thermodynamic process.

Finally, we analyse the viability of the second-order asymptotic expansion as a suitable approximation to the slow degrees of freedom
of system (1) from a numerical point of view. More precisely, we choose a specific model from the class of fast-slow Hamiltonian
systems represented by (1) and compare the numerical solution of y, with yo 4+ &2(y> + [¥]°) in terms of its short- and long-
term approximation quality and computation time. The maximal time frame for which an approximation of y, can be considered
sufficiently accurate significantly increases by using yo + £%(y, + [y,]?) instead of yo alone. Moreover, we show that the computation of
Yo+ &2(y2+[y2]?) is up to two orders of magnitude faster (depending on the scale parameter ¢) than a computation of y, to comparable
accuracy as a solution to system (1). As described earlier, the reason is that fast oscillations severely affect the runtime for numerically
computing y, from (1). In contrast, the problematic oscillatory term at second-order [y,]° is given explicitly, and the derivation of y,
and y, only require a numerical integration of two slow systems of differential equations, which can be solved, in parallel, using a
relatively large step size.

An application of the theory presented in this article may not only improve large-scale molecular dynamics simulations. It can also
find applications in cases where the homogenisation theory outlined above and related work as in [16] are applicable. Some examples
are given by the description of quantum-classical models in quantum-chemistry [1], the problem of deriving the guiding centre motion
in plasma physics [17] or, more recently, the derivation of a coarse-grained description of the coupled thermoelastic behaviour from
an atomistic model in materials science [18].

Finally, we want to point out other thermodynamic analyses based on the fast-slow system governed by the Lagrangian (1). In [19],
the authors extend system (1) by coupling the fast and slow degrees of freedom to an external Nosé-Hoover thermostat and analyse the
thermodynamic equilibration of the system on the fast and slow scale. In a similar line of thought, the authors in [20] expand system (1)
by embedding it into an external heat bath and subsequently analysing the resulting slow dynamics, analogous to the homogenisation
procedure introduced above, in the limit ¢ — 0.

1.1. Outline of the paper

In Section 2 we introduce the model problem, which establishes the foundation for the analysis in this article, and state necessary
non-resonance conditions, which ensure that the subsequently derived second-order expansion of the solution to the model problem
is well-defined. A summary of our main results is provided in Section 3. We start the analysis of the model problem by introducing a
transformation of the fast degrees of freedom into action-angle variables in Section 4, where we also prove the existence and uniqueness
of a solution of the transformed system. In Section 5 we introduce some notation that simplifies the governing equations of motion and
derive the second-order asymptotic expansion for the transformed degrees of freedom. Subsequently, in Section 6, we define expressions
for the temperature, the entropy and the external force for the fast subsystem and interpret the model from a thermodynamic point
of view. For a test model, the global error for approximating y. by yo + £2(J2 + [y2]¢) are analysed on short and long time intervals in
Section 7, where we also compare the runtimes for computing y., yo and y, + [y,]°. Section 8 provides a short conclusion of this article.
In Appendix A we summarise how the thermodynamic expressions can be derived for the fast subsystem. Finally, in Appendix B we
present some data on the computation times corresponding to the maximal step sizes used in the numerical simulations presented in
this article.

2. The model problem

For a small scale parameter 0 < ¢ < gy < 00, we study the family of mechanical systems given by the Lagrangian

Z(x, %) =3 (X X)) —W.(x), keTM, (3)
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on a Euclidean configuration space M = R™. Here and in the following, (-, -) denotes Euclidean inner products and |-| denotes Euclidean
norms. Splitting the coordinates according to x = (y, z) € R" x R" = R™, we specify, following [1], the potential W, =V 4+ ¢72U by a
smooth potential V = V(y), which is assumed to be bounded from below and

U(x)= 1 (H)z,z)  with  H(y) = diag(@i(y), ..., ©?(¥)). (4)

r

We assume that the smooth functions w; € C*°(R") are uniformly positive, i.e., there exists a constant w, > 0 such that

o)z, YyeR", rA=1,....1. 5)
A componentwise formulation of the equations of motion for the e-dependent coordinates y, and z. in (3) yields

Fo=—oV(ye) — 2e 2 (HYe)ze. z.).  j=1.....n, (6a)

7, = — 2H(y,)z. (6b)

Moreover, we consider the e-independent initial values

ys(O) = Vs, yg(o) = D, ZS(O) =0, Z{-‘(O) = Uy. (7)
We notice that the energy E. of the system is independent of ¢ due to the particular choice z.(0) = 0,
E. = % |y5|2 + % [ARES V(ye) + 572U(yg,zs) = % |p*|2 + % |u,|* + V(y«) = E.. (8)

Remark. For the equations in (6)-(8) and below, we will simultaneously make use of the vector notation for the coordinates y. € R"
and z, € R" (and related expressions) as well as their componentwise representation . (j = 1,...,n) and z? (A =1,...,r). The index
in the superscript should not be confused with an exponent.

We are primarily interested in the evolution of the slow degrees of freedom y{g (G=1,...,n). The following theorem by Bornemann
shows that y, converges in the limit ¢ — 0 to a function yo which is given as the solution to a second-order differential equation.

Theorem 2.1 (Bornemann, [1]). For

.
Unom(yo) = Y 0l w;(yo),  where 0} = =11,
r=1

C 2w,(04)
let yo be the solution to the second-order differential equation
Vo = =9V00) = §Unomo),  =1,....m, (9)
with initial values yo(0) = y., ¥o(0) = p.. Then, for every finite time interval [0, T], we obtain the strong convergence
Ye = yo in C'([0, T],R")
and the weak* convergences s~ 'z, X 0and Ze X 0in L>°([0, T], R").

Theorem 2.1 shows that the family of mechanical systems (3) converges as ¢ — 0 to a mechanical system which is again Hamiltonian.
2.1. Non-resonance conditions

As the interaction of multiple oscillating degrees of freedom can lead to resonance effects in the system, we will, similar to [1],
impose suitable non-resonance conditions on the frequencies w; to ensure that the second-order asymptotic expansions, which we
will derive in Section 5, are well-defined. We say, referring to the definition stated for example in [21, Section 14.6], that a resonance
of order j € N at y € R" is given by the relation

o)+ +yoy)=0, Inl+--+lnl=j (10)
with integer coefficients y, € Z for A = 1,...,r. Note that the non-degeneracy condition (5) implies that there is no resonance of
order one.

Assumption 1. We assume that the homogenised solution in Theorem 2.1 is non-resonant of order two, i.e., we assume that
riw1(yo(t)) + - - - + vrwr(yo(t)) # 0, bl =+ + Il =2,
forall t € [0, T].

Assumption 2. Moreover, we assume that the homogenised solution in Theorem 2.1 is not flatly resonant up to order three. More
precisely, we assume that

d
I (101(Yo(ti)) + - - - + yror(Yo(t;))) # 0, lyil + -+ vl <3,

for all impact times t; € [0, T] (i € I C N, I finite) such that the non-resonance condition (10) holds at yo(t;).
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We remark that Assumption 1 is intentionally chosen to simplify the derivation of the second-order asymptotic expansions (see
remark following Lemma 5.9). Under these simplifications the assumption also ensures, that the second-order asymptotic expansions
derived in Section 5 are well-defined. Assumption 2 is, analogous to [1], a necessary prerequisite for the theory developed below. It
ensures that rapidly oscillating functions of the form exp (Zie ™" (ws(ve) — @u(ve))) and exp (Fie ™" (w1 (ye) + wy(Ve) — @u(ve))) where
A, u,v=1,...,1r, A # u converge weakly* to zero in L>°([0, T]). In [1] these functions appear due to interactions of the fast degrees
of freedom caused by the structure of a more general potential U(x) as well as a more general metric (-, -) and Assumption 2 is used
to derive the leading-order asymptotic expansion of the system’s degrees of freedom. Here, however, these functions appear only due
to small-scale interactions in the second-order asymptotic expansions.

3. Summary of the main results

The goal of this article is to extend the theory developed in [1] by deriving the second-order asymptotic expansion rigorously for
the solution of the equations of motion (6) and interpret the corresponding second-order asymptotic expansion of the energy (8) from
a thermodynamic point of view. Note that the mechanical system (3) is not a classical thermodynamic system. In particular, the fast
subsystem, consisting of the fast degrees of freedom z? (A = 1,...,r), which we will consider in Section 6 as the thermodynamic
part of the whole system, is in general not ergodic. Finally, we will discuss the numerical implications of the second-order asymptotic
expansion of y, in terms of its approximation error and computational cost.

Our main findings in this article can be summarised as follows.

1. After transforming the rapidly oscillating degrees of freedom into action-angle variables (z,, Z;) — (0,, ¢.), which also involves
a transformation of the generalised momentum y, > p., we derive the second-order asymptotic expansion of y,, p., 6;, ¢.. This
takes the form

Ye = Yo + el + &[] + %5,

pe = po + [p1]° + 2 [D21° + £°ps,

0. = 6, + e[01]° + (6, ]° + %65,

b = do + £ld1]° + 2[4l + 795,
where for i € {1, 2},

G =3+ il = in L®([0, T R"), ¥5—0 in C([0,T],R"),
[Bil° == pi + [pil° — B in ([0, TI,R"), p5— 0 in C([0,T],R"),
[61° =6, +[61° =6 in L([0,T],R"), 65 — 0 in C([0,T],R"),
(@] = i+ [$]° = ¢ in L*([0,T]R"), ¢5— 0 in C([0,TLR").

In other words, for each degree of freedom the second-order asymptotic expansion is characterised - to leading-order by the
theory developed in [1] (Theorem 2.1) - to ith order by a decomposition into a slow term, indicated by an overbar, which
constitutes the average motion of the ith order expansion, and a fast term, indicated by square brackets, which oscillates rapidly
and converges weakly* to zero — and by a residual term, indicated with a subscript three, which converges uniformly to zero.
In particular, we show that

1P =0, [p1fF=0, [6if =[6:)°, [$] =0,

and that (¢,, 62, ¥2, p2) is given as the solution to an inhomogeneous linear system of differential equations (Theorem 5.2).
Moreover, the rapidly oscillating functions [61]°, [y2]°, [p2]°, [62]° and [¢,]¢ are explicitly given in Definition 5.1.

2. In [13], Hertz formalises a thermodynamic theory for fast Hamiltonian systems which are perturbed by slow external agents.
We regard the fast subsystem (z, z.) as such a thermodynamic system, perturbed by the slow motion of (y,, y.). Since the fast
subsystem is not ergodic, we follow along the lines of [14, Chapter 1.10] and replace the time average, which is an essential
component in the thermodynamic theory, by the ensemble average, i.e., the average over uniformly distributed initial values on
the energy surface (see Appendix A), and define, based on Hertz’ formulation, a temperature T, an entropy S, and an external
force F, for the fast subsystem.

In combination with the analytic result discussed under 1, we decompose the total energy E, into the energy associated with the
fast subsystem E;- and its residual energy E! = E. — E*, and expand, similar to above EX, E!, T, S, and F. into the form

El = Ey +e[E{ | + &°[E5 I° + €2E5°,
E! = Ej + e[E]1" + e?[EJ)° + £?EY’,
Se = So + e[S1]° + £7[S;1° + €755,

T, = Ty + O(¢),
F, = Fy + O(¢),
where for i € {1, 2},
(B ="+ [E'F = E- in L®([0, T]), EX* >0 in C([0,T]),
[Elf :=E +[E'1T = E' in 1°(0,T)), Elf >0 in c(o,T]),
51 =5 +I[SI° =5 in L®(0,T]), $5—0 in C([0,T]).

The characterisation of the ith order expansion is similar to 1 and is already discussed, for the case of n = r = 1, in [11].
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In Section 6 we interpret these asymptotic expansions from a thermodynamic point of view. In particular, we show that, to
leading-order, the dynamics can be interpreted as a thermodynamic process characterised by the energy relation

n
dEy =) " Fydy} + TodSo.
j=1

In contrast to the analysis in [11], we find, provided that * # O for at least one A = 1,...,r, that the entropy expression to
leading-order is constant, dSy = O, if and only if all pairwise weighted frequency ratios Qja),\(yo)/wu(yg) A, uw=1,...,r)are
constant. In this case, the leading-order dynamics can be interpreted as an adiabatic thermodynamic process. Yet, if any of the
weighted frequency ratios is non-constant, the entropy is non-constant and thus the leading-order dynamics can be interpreted
as a non-adiabatic thermodynamic process. Here we use the definition of entropy given by Hertz in a context where the entropy
is not necessarily the logarithm of an adiabatic invariant. Nevertheless, we show that a meaningful thermodynamic interpretation
can be given.

Furthermore, we show that the averaged second-order dynamics, i.e., the dynamics in the weak* limit of the second-order terms,
indicated by an overbar, represents for fixed (yo, po) a non-adiabatic thermodynamic process with an averaged non-constant
entropy, dS, # 0, which also satisfies relations akin to equilibrium thermodynamics, despite being beyond the limit &¢ — 0,

n
j=1

Finally, we show in Theorem 6.1 that the evolution of (y,, p;) is governed by equations which resemble Hamilton’s canonical

equations,
dy,  OE; 9p; _ OE,
dt  apo’ d — dyo’

for E, = E5- + EJ, which are complemented by the s-independent initial values
$2(0) = —=[y21°(0),  pa2(0) = —[p2]°(0).

3. Finally, we compare in numerical simulations the second-order asymptotic expansion of the slow degrees of freedom y,+&2(y, +
[y2]¢) with simulations for y. of the original system (6). The latter is computationally expensive, as it requires a numerical
integration of the fast degrees of freedom z.. To this end, we derive numerically the slow motion yo of the leading-order
system (9) and the average motion y, of the second-order system (23) and combine them with the explicitly given rapidly
oscillating components [y,]¢ of the second-order expansion as specified in Definition 5.1. We find, depending on the value of the
scale parameter &, that the computation time for the second-order expansion is up to two orders of magnitude faster than the
computation time for the slow degrees of freedom of the original system. Moreover, we show that y, + £2(y, + [y»]?) provides
an approximation of y, which has significantly better global error bounds on long time intervals than an approximation by yg
alone.

4. The model problem in action-angle variables

To study the dynamics of y. and z, on different scales, a detailed asymptotic analysis is required. Such an analysis was already
presented for the model problem as introduced in Section 2 in the case of one fast and one slow degree of freedom (i.e, n=r = 1)
in [11], which extends the analysis given in [1, Appendix C]. To derive the second-order asymptotic expansion of the solution to
the model problem for arbitrary n,r € N, we analogously start by rephrasing the governing system of Newtonian equations (6) by
transforming the fast degrees of freedom (z,, z,) into action-angle variables (6., ¢.).

We denote the canonical momenta corresponding to the positions (y., z.) as (5., ¢:). Then, the equations of motion (6), together
with the velocity relations

y&‘ = Mg, 25 = e,

are given by the canonical equations of motion belonging to the energy function

1 1 1oy
B g 5l V00 + 5o ey

The transformation (z, ¢;) — (6, ¢.) can be found by the theory of generating functions [22] as presented in [1, Appendix C]. For
fixed y,, the generating function is given by

1« _
Solze. e e) = 5 ;wx(}’s)(lg)z cot(e ™' ¢}),
via ¢, = 0S9/0z. and 6, = —03Sy/d¢.. With this transformation, the fast degrees of freedom (z., ;) can be written as

A
Zt=¢ /% sin(e '), ¢} = /260 w,(ye) cos(e ).

It turns out, however, that the transformation (z;, ;) — (0., ¢.) is symplectic only for fixed y.. To derive a transformation that preserves
the symplectic structure on the whole phase-space, one introduces the generalised momenta p, through another transformation

6
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ne > pe. To this end, we define the extended generating function S(y,, p:, z, ¢:) = pgys + So(ze, ¢¢; y.) which does not transform the
position y, = 9S/dp,, but changes the momentum 7, such that the transformation remains symplectic on the whole phase-space. The

missing transformation of the momentum 7, is given componentwise forj = 1,...,n by
i 6} - 0jw;.(Ve)
M=—"=p +e) EF T sin2e'pM).
: yl ; 2w;(ye) ‘

By construction, the resulting transformation (ye, 1;; Z, &) = (Ve, Pe; @e, 0:) is symplectic.
The energy can be expressed in the new coordinates as

0P - don(ye) -
|p5| +V(ye) +Ze 03(Ve) +gZZ 2wj O Gin(ae1g7)
A

j=1 a=1
2
2 n r A
& 07 - djwy(Ve) . Y
+ — - T sin(2e19) | .

Thus, by the canonical formalism, the equations of motion take the form

. 9E. . oE, y i OE.
pr=— O =——, ;ﬂg— | =——,
398 a¢£ 317’s 8yle
fora=1,...,randj=1,...,n. After some calculations, we find that these equations are given by
0
. p. - djwu(ye) . _
P = (Ve) e Y = in(2e 7 9h)
b T el ]_Zl 20,(3.) g
ajwp. Ve) ajwk(YS) u w
+& ZZ (cos (267" (¢t — ¢1)) — cos (27" (¢ + ¢1))) . (11a)
Para— wy (Ve )or(ye)
h 9 p’ a jx ys) _
0r = — cos (2¢1¢p?
¢ Z Wy, ys ( ¢F)
€ 016} - . (Ve) - den(Ve) (. (o _ -
_ZZZ e AT TE (sin (267" (¢ — ¢1)) +sin (27" (¢ + ¢1))) . (11b)
P U)u(ys)wk(J’e)
.
y j 6} - 9jw;. (ve)
=p 4+e) = T 60 (267 97), 11c
ompke) Ty snee) o
. 9 - D 3]31(0))\(}/8) Oy (Ve) - aj‘”k()’s) . Y
P =—-0V(y.) — 0} - djwy(ve) — & F( sin(2¢7'¢
‘ Z ’ ; ; @(ye) ©3(y.) (2e710:)
& Z Z Z H k(Y ) (ajakwk(}’s) _ O (Ve) - aj“»»(Ys))
k=1 A1 u—1 wp. (¥e) ;. (Ve) w%(Y&)
x (cos (267" (¢1 — @) — cos (27" (@ + ¢1))) - (11d)
The initial values as given in (7) transform to
A A |“;\|2
¢s(0) =0, 05 (O) =6* = s J’s(o):y*, Ps(0)=P* (]2)
wa(Y*)

4.1. Existence and uniqueness of a solution to the transformed model problem

Let us denote the right-hand side of (11) as F,: R*™ — R?". By assumption w; € C®(R") for A = 1,...,r and therefore
F, € C®(R*™, R¥) for 0 < & < g < oo. In particular, 7, is locally Lipschitz continuous. Hence, by the standard existence and
uniqueness theory for ordinary differential equations (see for example [23]), there exists a T > 0 such that for fixed 0 < ¢ < gy < ©
the initial value problem (11)-(12) has a unique solution

(e, Oc. Ve, pe) € C([0, T], R?™). (13)
5. Asymptotic expansion

In this section, we rigorously derive the second-order asymptotic expansion of ¢, 6, y. and p.. We will see, that the leading-order
expansion follows directly from the evolution equations (11). To simplify these equations for the subsequent analysis, we introduce in
Section 5.2 some suitable new notation. We then derive the first- and second-order asymptotic expansion in Section 5.3.

7
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5.1. Leading-order expansion

We consider a sequence of solutions (13) for & — 0. The right-hand side of the evolution equations (11) is oscillatory and has
rapidly oscillating terms of leading-order. As a consequence, the sequences {¢.} and {6,} are bounded in C® 1([O T],R"), and the
sequences {y,} and {p,} are bounded in C%([0, T], R"), while sequences of higher-order derivatives (in particular {¢,}, which will thus
require special attention in the later part of this analysis) become unbounded as ¢ — 0. It follows from the extended Arzela-Ascoli
theorem [1, Chapter I §1] that we can extract a subsequence, not relabelled, and functions 6, € C%([0, T], R"), ¢ € C*1([0, T], R")
and yg, po € CH([0, T], R"), such that

¢e — ¢o in C'([0,T],R"), ¢ = Go in L°([0, TLR"), (14a)
0, — 6, in C([0,T],R"), 0. = o in L®([0, T],R"), (14b)
e —yo in C'([0,TLR"), e —Jo in L°([0,T],R"), (140)
p. —po in C'([0,T],R"), p. — o in L([0, L, R"). (14d)

By taking the limit ¢ — 0 in Eqgs. (11a), (11c) and (11d) and the weak* limit in (11b) we deduce that
be = 0.(vo), 6 =0, ylo ZPI;), 17’ = —0;V(yo) — 29 - 9w (Yo),

fora=1,...,randj=1,...,n, and in particular that 9* = 02 (compare with (12)). Moreover, since the right-hand side of the limit
equation

= —V(yo)— Y 6% - dan(yo)

does not depend on a chosen subsequence, we can discard the extraction of a subsequence altogether (see [1, Principle 5, Chapter I
§1]). Note that the above convergence results extend Theorem 2.1.

5.2. Reformulation of the governing equations

It will be convenient to introduce some notation to simplify the system of differential equations (11). To this end, we define for
f € C®°(R"), where f = f(y) and y € C*°([0, T], R"), the expression

D¥D'f = ikﬂ
7 T gk Al
dt* 9y;
for k,l € Ng and j = 1, ..., n. We will often apply this notation in combination with the function
= log(wy(¥e)),
where A = 1, ..., r. Then, we can conveniently write, for instance,
n n
DL} = "Djlt-¢j or DL} =(y,DL}) =Y . DL}, (15)

j=1

with e; as the jth standard basis vector in R". With these definitions, the equations in (11) read

¢r = w(ye) + g(ps, DLY)sin(2e " ¢})
+ & ZG“ (DL, DL¥) (cos (267" (¢ — ¢})) — cos (2e7" (¢ + ¢1))) (16a)

' <p8’DL2‘>COS(28_]¢?)

- - ZeﬂeA (DL*, DL¥) (sin (267" (¢% — ¢2)) + sin (2e7" (¢ + ¢1))) . (16b)
¥o=p+ g Y67 - Dy’ sin(2e "¢}, (16¢)
r=1

P = —DV(y,) — Ze -Djwp(ye) — = Zekpg,DDL’\)sm(Ze o)

A=1 A 1
- —ZZ@ 6! (DL, DD;LY) (cos (267" (¢! — ¢7)) — cos (261 (¢ + 1)) - (16d)
r=1 pu=1

8
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Moreover, solving (16¢) with respect to p{g and inserting the result into (16a), (16b) and (16d) brings the equations of motion to their
final form

. & . _
¢ = @ye) + S DALy sin(2e ™)), (17a)
6} = —6* - DL cos(2e'¢?), (17b)
r
Ji =P+ 2 Y6 DLt sin2e')), (170)
r=1
P = —D;v( Ze -Djwr(ye) — = Ze - DD sin(2e ™1 ¢?). (17d)

5.3. First- and second-order expansion
We now define functions that will appear throughout this work and then state the first main result 1.

Definition 5.1. Let (¢., 0;, y., p.) be the solution to (11)-(12) and (¢, 6o, Yo, Po) be as in (14). With Assumption 1 and the notation

introduced above we define for A = 1,...,randj =1, ..., n the functions
9)”8 — 0? - 9»& re . ¢:~L - ¢3 yis — yi-" _ylo pis — P{? _plo gke — 91” B [9%]8
1 o e 3 vl . 82 ) 2 ¢ 5‘2 ] 2 52 El 2 . e £
67 - DL D L*
[02]F = — 7°sin(28’1 ), 7 - 0 cos(2e '),
‘ 20,0 % o= o0 %
- 6 - DL B . d (6" DL B
o) =~ Z G (o) O2796) [p5)° = Z i ( . (;03’) cos(2e”"¢5),
Aa=1
and
"L 026" (Dw , DL* 0 (D*L}yo, 0D L} )?
01 =) —— ( 2"%) 0 cos(2e'p}) — 01 (D130 3o) cos(2e ') + Mcos(zg*wg)
=1 4“)10’0) 460,\()’0) 460)\(}/())
6*|DLA | DL} 6* (DV(y,), DL
0.V IDLy[ cos(4e™"¢p) — 0. Dily 0 %5 cos(2e ') + 2 {PV(yo), DL) (ZyO) i os(2e~ ')
16w, (o) w.(Yo) 4w;(Yo)
", 026 (DLy, DL}) {cos(zgl(¢g‘ — b)) . cos(2e7 (g + ¢g))}
+ > :
1 8 wu(}’o) - wk(yo) wu(}’o) + wA(}’o)
WFEL

Theorem 5.2. The functions specified in Definition 5.1 satisfy

d
0f — [0 — 0 in C([0,T],R") p (05 — [9118) 0 in L°([0, T], R"), (18)
e & - . r d e\ * d(}Z . 0 r
¢ — 2" — ¢, in C([0,T],R") 7 (92— [a2l') = —= in [™(10,T],R"), (19)
d dy
— [yl > 7> in C([0,T],R") s =) S T2 i LY. TLRY, (20)
&
— [Pl — P in C([0,T],R") (= par) = 2 i 1¥(0.TLRY) (21)
and
—[6,)° — 6, in C([0,T],R"), (22)
where (¢2, 05, y2, D2) is the unique solution to the inhomogeneous linear system of differential equations

d@} _ oD (D)
—= = (D — , 23
ot (Dw;(Yo), ¥2) + 3 8o, (v0) (23a)
doy  d 6X(D.L})?
40, _d *(2[ o) (23b)
dt dt 8wy (yo)
d . 0% . DjL} - DL}

y’2 Plz Zwy (23¢)

= 4o:(0)

dﬁi oo " (6*)* (D3, DD;I}) <~ 67 - D,D;L% - D L}

dtz = — (32, DDV(y 29 - Djws (o) — 29:(3/2,DDij(J/o)>— (©2)"{ 80 il5) Z * 4;):(;0) o (23d)

A=1 =1 =1 =1

9
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fora=1,...,randj=1,...,n, with e-independent initial values

$2(0) = —[¢21°(0),  62(0) = —[61°(0),  72(0) = —[y21°(0),  P2(0) = —[p1°(0). (24)
5.4. Proof of Theorem 5.2

The proof of Theorem 5.2 will use the following Lemmas 5.3 to 5.12. We start by sketching the general strategy of the proof.

Theorem 5.2 states that the first- and second-order asymptotic expansions of ¢, 6, y. and p, can be decomposed into rapidly
oscillating terms [611°, [¢2]°, [V21%, [p2]¢ and [6,]¢, which converge weakly* to zero, and slowly evolving terms ¢, ¥», p» and 6, which
describe the average motion of the second-order expansions and are given as the solution to an inhomogeneous linear system of
ordinary differential equations.

To derive these second-order asymptotic expansions, we specified in Definition 5.1 the scaled first-order residual function 67 and
the scaled second-order residual functions ¢35, y5, p; and 65 by subtracting the leading- and first-order asymptotic expansion terms
from the original solution to the model problem and by scaling these residual terms to appropriate order. The functions ¢3, y5, p5 and
65 carry all the information about the system’s second-order asymptotic expansion in their leading-order expression. We thus analyse
the limit ¢ — 0 of these terms.

In the proof of Theorem 5.2, we will repeatedly integrate by parts, which requires us to regularly divide by ¢é and ¢>j - q'ﬁjj (A #£ ).
Lemma 5.3 ensures that the resulting terms are well-defined, provided that the scale parameter ¢ is small enough.

As the model problem is highly oscillatory, the interacting degrees of freedom can exhibit resonances of different types. Lemmas 5.4-
5.6 clarify how the interaction of a generic function u, with a rapidly oscillating function exp(is ~!4/,) affects their interaction in the
limit ¢ — 0. Here, u, and v, are representatives of functions that appear throughout the proof of Theorem 5.2. Lemmas 5.4-5.6 are
used in the derivation of the weak* limit of specific rapidly oscillating functions under the non-resonance Assumptions 1 and 2.

Similarly, Lemma 5.7 provides information about the uniform convergence of the term u, exp(ie v, ) — ug exp(is ~ '), which is a
representation of functions that appear throughout the proof of Theorem 5.2. Here, u, exp(ie ™', ) is rapidly oscillating at leading-order.
By subtracting the leading-order term ug exp(is ~!4/), their difference converges uniformly under certain convergence assumptions on
u, and V..

In Lemmas 5.8 and 5.9 we show that the sequences of scaled residual functions {67}, {¢5} and {65} are bounded in L*°([0, T], R"), and
{y5} and {p3} are bounded in L*°([0, T], R"). This is a necessary prerequisite for the analysis of the first- and second-order asymptotic
expansion.

In general, the rapidly oscillating terms [64]%, [¢2]°, [y2]°, [p2]° and [6;]%, which do not converge in the limit ¢ — 0, can be found
through integration by parts. To find the evolution equation for the averaged second-order expansion terms ¢,, y», p» and 65, we analyse
in Lemmas 5.10 and 5.11 the time derivatives of the terms ¢5 — [¢2]°, y5 — [21°, p5 — [p2]° and 65 — [6,]°. They carry information about
the time derivative of ¢,, y,, p, and 6, in their leading-order asymptotic expansion. Alaoglu’s theorem [1, Principle 3] and the extended
Arzela-Ascoli theorem [1, Principle 4] justify the extraction of a subsequence such that in the weak* limit an evolution equation for
the average dynamics at second-order emerges. However, since the evolution equation has a unique solution, Lemma 5.12 implies that
the extraction of a subsequence can be discarded altogether, meaning the limit holds for the whole sequence.

The following lemmas collectively proof Theorem 5.2. They are stated separately for reference but should be understood in the
context of Theorem 5.2. As mentioned earlier, the problem presented in Section 2 extends the model in [11]. More precisely, it
generalises the model in [11] in two ways. Firstly, by describing the interaction of r fast and n slow degrees of freedom (n, r € N) instead
of the interaction of one fast and one slow degree of freedom. This requires us to impose certain non-resonance conditions. Secondly,
the model in this article includes a slow potential V = V(y) which is absent in [11]. These generalisations make the following proof
much more involved, yet it mimics at its core the proof as presented in [11]. As such, some of the following preparatory lemmas, with
model-specific alterations, can be found in [11]. Nevertheless, we will state and prove these lemmas here for the reader’s convenience.

Lemma 5.3 (Sg’milar to Lemma 3.4 in [11]). Therg exisg constants 0 < C < oo and 0 < gy < oo where g9 = &o(P«, Os, Y, D+, @, C) such
that 0 < C <@g fora=1,...,rand 0 < C < |¢* —d*| for A, =1,...,1, A # u, for all 0 < & < gy small enough.

Proof. The claim follows directly from Assumption 1 and (17a). O
Remark. Henceforth, we assume that 0 < ¢ < g is small enough so that the statements of Lemma 5.3 apply.

Lemma 5.4 (Lemma 3.5 in [11]). Let {u.} be a bounded sequence in C%([0, T]) and {v,} be a bounded sequence in C([0, T]) with
0 < C < .. Then, for all a,b € [0, T]:

b b
/ u, sin(e ™1y, ) dt = O(¢), / u, cos(e 1, ) dt = O(e).

Proof. Integration by parts gives for 0 < & < g small enough
b . b .
b d
/ U, exp (%> dt . L.IS( ) ‘ € / — (u;) exp (%> dt
a € Ve(a) V(D) o dt \ Y €

The claim follows by considering the real and imaginary parts separately and the isometric isomorphism C*~1-1([0, T]) & W*>°([0, T])
(see [24, p. 154]). O

. ug(a)

&

= O(e).

10
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Lemma 5.5. Let ug € C%([0, T]) and vy € C3([0, T1). Let {u,} be a sequence in C*([0, T]) and {;} be a sequence in C3([0, T]) such that the
sequences (e~ Y(u, — uo)}, {e72(, — Vo)) are bounded in L>([0, T]). Moreover, let t; € [0, T] be an impact point in time (see Assumption 2)
with o(t;) = 0 and Yo(t;) # 0. Then, for all a, b € [0, T]:

b b
/ u, sin(e™ 1, ) dt = 0(e/?), f u, cos(e "1, ) dt = O(/?).

Proof. We treat the real and imaginary parts separately and write
u, expl(ie ') = (1, — ug) exp(ie ') — ug exp(ie ' ¥o) (1 — exp (ie ™" (Y — Y0))) + o exp(ic ™' vo).

Since the sequences {e~!(u, — ug)} and {e~2(y, — )} are bounded in L>°([0, T]), the claim is satisfied for the first two terms on the
right-hand side. Moreover, let n € C5°([0, T]) and Uy,, Vi, be small neighbourhoods around t; such that suppn = V;,, U, C V;; and n =1
in U, and write

b
/ uoexp(ie_lwo)dtzf uoexp(is‘llpo)ndt—i-/ ug exp(is o)1 — n)dt.
a Vi,

la.b)\Up;

For the second integral we can apply Lemma 5.4 since t; ¢ [a, b] \ Uy, and obtain an error of order O(¢). For the first integral we use
the method of stationary phase to derive

/ ug exp(is "o)n dt = 0(e'/?).
Vti
A detailed description of the method of stationary phase can be found, for example, in [25, §1, Proposition 3], where smoothness of

ug and v is assumed. Here, we are only interested in the leading-order asymptotics, for which ug € C%([0, T]) and v € C3([0, T]) is
sufficient. O

Lemma 5.6 (Generalisation of Lemma 3.6 in [11]). Let u € CZ(RQO x R™2") and (¢, s, Ve, Pe) be the solution to (11)-(12). Then, the
sequence of functions {u,} where u, := u(¢., 6, y., y.) satisfies for all a,b € [0, T] and k = 1, 2:

b b n
/ l:lg COS(ZkE_l(P?) dt — T / D[Lé (wk(yo) . 8)LU() — 09: . 8r+)LU()) + 93 Z Dij(yo) . 82r+jU() dt
a a j=1

and

b
/ i, sin(2e~'¢}) dt = O(e).

a
Proof. The equations in (17) imply

.
. & . _ . _
U, = Z By, - (D[wﬂ(ys) + EDfLS" sin(2e " '¢/*) 4 DL - ¢! cos(2e %é‘))

n=1

;
— ) Bryute - 0 DL cos(2e 7 ¢)")
n=1
,

n r
= > eyt | DV + Y01 Djw(ye) — Y 0L - Djwy(ye) cos(2e )
j=1

n=1 n=1
n
+ Z 82r+n+jus . }"8
j=1
The claim follows from the uniform convergence results in (14), Lemmas 5.4 and 5.5 and the trigonometric identities

2 cos(x)cos(y) = cos (x +y) + cos (x — y), 2 cos(x)sin(y) =sin(x+y) —sin(x—y). O

Lemma 5.7 (Similar to Lemma 3.9 in [11]). Let ug, Yo € C'([0, T1) and let {u,}, {1} be sequences in C'([0, T]) such that the sequences
(i), {71 (U, — ug)}, {72 (Y. — Vo)) and {e~ (Y, — Yo)} are bounded in L>([0, T]). Then, for v, such that

ve = U, exp(ie” ¥, ) — U exp(ie o),
the sequence {¢~1v,} is bounded in L*°([0, T], C) and in particular

v. — 0 in C([0,T],C), ¥, —0 in L*([0,T],C).

Proof. By writing

ve = (U — o) exp(ie ™" Ye) — g explie ™ 'yo) (1 — exp (ie ™" (Ve — ¥0)))
11
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and

i)s = ((us - uO) + i571¢s(us - Uo) + i871u0(¢s - 1pO)) exp(igilws)
— (o + i~ "ouo) (1 — exp (ie™" (Y — 0))) explie ™ o),

the assumptions imply that the sequences {¢~'v,} and {9} are bounded in L*°([0, T], C). This implies directly the uniform convergence
of v, to zero. The weak* convergence of ¥, follows from [1, Principle 1]. O

Lemma 5.8. The sequences {07} and {¢3} are uniformly bounded in L°°([0, T], R"), and the sequences {y5} and {p3} are uniformly bounded
in L°°([0, T], R™).

Proof. In this proof, the constant 0 < C < oo depends on T but is independent of ¢ and can take different values from line to line. Let
t €[0,T]. For 0 <& < g small enoughand A =1, ...,r let

M} == sup sup [|Dw;((1— h)y, + hyo)ll oo, r1,mmy »

O0<e<gg hel0,1]

M)\ = sup sup Dzw ( 1 - h)y + hy() 0o nxny s
2 0<e<eg hel0,1] ” * & ”L ([0,T],R*1)

Ms; = sup sup [D?V((1—h)y. + hyo)| . 5
O0<e<gg hel0,1] || ‘ ”L (10.T], R *

ForA=1,...,randj=1,...,n we apply Lemma 5.4 to Eq. (17a),

re ‘ P AE 1 ‘ 1 ‘ s -1 41 -
|@3°O] = | | #57ds| = 5 | | @) =@y ds| + o— | | Dl sin(2e”'¢)ds| < My (25)
0 0 0 ;
Jj=1
then to Eq. (17b),
t X ] t
lote()| = ‘/ 61 ds| = — / 6} - D5l cos(2e'¢2)ds| < C, (26)
0 € 1Jo
to Eq. (17¢),
y’;(t)‘: /y’;ds 5/ Z‘/ 6} - DiL* sin(2e " '¢) ds| < / (27)
0 0
and finally to Eq. (17d),
Pio)] = / P
r t
<5 f DV(y.) — DV(yo)ds| + / 6 Dyn(y) — 0} - Dian(yo) ds
0 =1 0
1 | [t
+ gz /0 6} - D:DiL% sin(2e~'¢?) ds
=1
5M3Z / v3 9“ Djos(y:) ds| + (6, Ma) / || ds +C. (28)
After integrating by parts, Eq. (17b) and Lemmas 5.4 and 5.6 imply that
t t s .
01 - Djw; (y:)ds| = Djwk(ys) / 61 dr ds
= Dwkys / 0} - D,L* cos(2e ¢t )dr ds
1 0} - D;L* - D
< — / R T ’wl(yg)sin(25’1¢§)ds
2e oy 1Jo ¢6
1| [ Sd (6" DI
— D; — [ =2} sin(2¢ " '¢M)dr ds| < C. 29
+28§/0 wa(}’s)/(;dr< = ) (2671 dr ds| < (29)

By combining the inequalities (27)-(29) we obtain

Vi) =

(e

12



M. Klar, K. Matthies, C. Reina et al. Physica D 428 (2021) 133036

and thus
n .
PG
j=1

Finally, a variation of the classical Gronwall inequality (see [26, p. 383]) implies that

(0s,

>[5 = ncexp (n s + (6., M) 7).
for t € [0, T], which together with (25)-(29) yields the uniform bound for {67}, {¢5}, {¥5} and {p3}. O
Lemma 5.9. The sequence {65} is uniformly bounded in L>°([0, T], R").

Proof. We write 6 componentwise as

1 [, "0} Dl d
9{\8:7/‘98'\&:—/‘ Ze Tt — sin(2e g dt
€ Jo 0

29 dt
and integrate by parts to derive 03¢ = &' (01° — [0]°) = 055 + 635, where
160} DL 6} - DL 1 [ d (6} DL}
02 = — [ 22— sin(2e7p}) — =L sin(2e @) |, 62 = - / sin(2e ™ '¢*) dt. 30
21 8<2wx(y0) in(2e™ ¢y5) 207 in(2e™ ¢;) 22 ar 2¢A in(2e™ ¢;) (30)

The claim then follows from Assumption 1 and Lemmas 5.6 and 5.7. O

Remark. Lemmas 5.7 and 5.9 imply the convergence (18). Moreover, without Assumption 1, the sequence {92*2s } is not necessarily
bounded in L*°([0, T]). In fact, by Lemma 5.5 and the definition of 92*257 in the proof of Lemma 5.11, we would have in this case

(0} = 01,

Lemma 5.10. There exist a subsequence {'} and functions ¢, € C>'([0, T], R"), ¥, p» € C%([0, T], R") such that the convergences (19)-
(21) hold.

Proof. By taking the time derivative of ¢3° — [¢31, y¥5 — [y}]° and p} — [p}]f for A =1,...,randj=1,...,n we obtain

d e) — d (DL LA
I @ —le]) = M m <4;-3§)COS(28”¢8) <[¢2]"" 4¢j cos(2e~ ¢} )), 31)
d je jqe) _ p{s_p{) - d st'DjL? -1 . J -1
E(}’lz_[ylz]) = o2 +§dt< 4¢§ >C0(25 (P)_* Zl ? C0523 ¢) (32)
d /i DV(y.) — D,V "\ . Djwy(ys) — D; 01 — [0}
- <p12 _ [p12]£> _ _ M _ 29: ;Y. )82 iwr(Yo) Z ]7[]][);60)\(}’5)
Ar=1 r=1
" d (9* .D[Djm) » ( " 9* . DD;L* s )
- — (2= ) cos(2e gty — — (b1 — Y T =8 cos(2e 1 ¢)
; dt 4¢p} 2 ; 47
" d (6D - Djw;(ye 0} - DeL} - Djws(ye
X () e (v 2 e 9
a=1 by
where we used [p’lz]g = [p’é]i + [pg]g with
j1e . - 93 'DtDjLé —1 X jye . ‘9A DLK D]LO -1
[plz]l = ; W COS(ZS 4)0), [pIZ]Z = ; T(yo) COS(ZS ¢0)

For the derivation of Eq. (33) note that in the evaluation of p’f we need to evaluate the expression

r r
6} - Djw;(ye) — 0} - Djer(¥o) 6} — 6} 5 Djws(ye) — Dij(YO)
> = -y 7 Dew) + ) e =
A=1 A=1 a=1
in which we rewrite the first term on the right-hand side by introducing [91*]3, i.e

0* — 62 o} — [01]° d (6} DL} - Djws(ve)
5D, D: i (. 0T cos(2e
&2 oY) € jon(Ye) dt 403 (yo) 2 d)

d (0" D% - Djw;(ye) B
dt( 402(yy) >C°S( %)

By Lemmas 5.7-5.9 the sequence {¢5 —[¢,]°} is bounded in C%1([0, T1, R") and the sequences {y5 —[¥21°} and {p§ — [p.1°} are bounded
in C%1([0, T], R™). The claim follows after successive applications of [1, Principle 4]. O
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Lemma 5.11. There exists a further subsequence {&'} and a function 6, € C=([0, T1, R") such that the convergence (22) holds. Moreover,
the component functions 93 (A =1,...,r) satisfy (23b).

Proof. We write ;¢ = Zizzl 65 as in the proof of Lemma 5.9 and [0 ]° = Ziz:l[@z*]f, where [0 (i = 1, 2) will be defined later in

this proof. We then show that there exist component functions é; = 21'2:1 éﬁ- and a subsequence {¢'}, not relabelled, such that for
i=1

631 — 16317 — 63 in C([0,T]) (34)
and fori =2

re _ phie ok i re _ rprie) 5 @ ; 0

0y — 0515 — 05, in C([0, T]), I (035 —16315) praiiy) ([0, T]). (35)

The convergence result (22) then follows immediately.

Part i = 1: To prove (34), we expand 657 in (30), by replacing 6} — 6} + (9% — 6}), D;L* — DL} + (D;L* — D;L}) and sin(2e~'¢}) —
sin(2e'¢)) + (sm(Ze‘lqﬁj) sin(2e7'¢})), and assign the resulting terms to the functions 62113 (j = 1,...,5). That is, we derive
055 = Zle S+ where

1 1 6} - DL
038 = = (wx ¢A) % sin(2e~'¢}),

€ (Yo) 2
O572 = _:W sin(2e ' ¢),
Or1s = _;W sin(2&~"¢}),
Bjig = 1% Do (f;“ (sin(2e~1¢7) — sin(2e'63))
95»;;5 - _ é (93 - 93) '2((;?1“2 - DfLé) Sil‘l(287]¢3)
_ %(9? _295)2 DL (sin(2e™"'¢}) — sin(2e ' ¢))
_ ;01\ (thL;SA DiLp) (sin(2e'¢}) — sin(2e~'¢))
- é (6 ~22) .2(5;? = D) (sin(2e™"'¢}) — sin(2e™"¢)) -
Notice that by (17) and Lemma 5.8, we have 0%18] =0(1)forj=1,...,4 and 055 = O(¢). The function ;7 = 21.5:1 92*{’] is composed

of oscillatogy and non-oscillatory (averaged) terms. For the proof of (34), we therefore define the corresponding oscillatory term
(0315 == Y__,[67]5;, where

O*(D,L%)?
(6215, = _M cos(4e1¢}),
360,\(}’0)
QA(DtLA)Z
(0515, == ————2 cos(4e ™ '¢p),
2112 860%()’0) 0
2 r
(6:)° |DLs| : 00+ (DLg , DL;) : :
(05155 == ————— cos(4e ™ '¢g) — S 2 Zlsin(2e'¢g) sin(2e @),
2 8w:.(¥o) 0 ; 4w;.(Yo) 0 0
nFEL
6> - DL} - 9*(DrL ?
(6215, == ——=——¢) cos(2e 7 'p}) + === cos(4e ' p}).
2 oyo) © 8wl ’
We now define the averaged functions 621] (j=1,...,4) such that for 6}, := Z 05\1] the statement in (34) holds. More precisely, we
will show that in the case of j = 1,2, 3
e e Y d re re) X déZ}\U ; o0
by1; — 16313 — 05 in C([0, T]), i@ (921j —[6; 1j) -~ I L°°([0, TY), (36)
and in the case of j = 4
0314 — 163154 — 03,4 in C([0, T]). (37)

In the following, we give the detailed proof of the convergences in (36) for the case j = 1. The other cases follow along a similar line
of arguments.

14
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Case j = 1: We start by defining 55\21, ie.,
o _ Or(Dg)

2T 8wi(yo)
for A = 1,..., r and use the trigonometric identity 1 — cos(4x) = 2 sin?(2x) to derive
_ OX(DLX)?  6MD.L} 62D )
Gy + 10}, = = 3 L = 0 costa e7'5) = ACE sin*(2s~"¢p). (38)
86%(3’0) wa(yo) 4wx(y0)
Moreover, with Eq. (17a) we can write
1(¢F — 6% - DL}
03t = — ("% ”*E’;O)) * 10 sin(2e ')
& wk(yo)(pg 2
1 - DL} 6* . DL
— (7 w)»(yé‘) .)\wl(yo) + f'; Sin(2£_1([)5 )) t 0 (28_1¢0) (39)
€ oA 2¢; ZWA(YO)
Now, we use Egs. (38) and (39) to write
0311 — 105151 — 031, = (u}s + vlm) wi®, (40)
where
1 — DL} 6% - DL}
u) = 1:0e) = @(0) 'wa(}’o)’ M= — i (267 1¢}) — —2_sin(2e '¢h), wl® = =—Csin(2e'¢}).
¢} 2¢7 2w, (Yo) 2w;(yo)

It follows from Lemmas 5.7 and 5.8, and the system of differential equations (17) that the sequences {s~! F} {u’}F} {e~ v 8} {v“}
{w?e} and {sw?“‘} are bounded in L*°([0, T]). This implies the uniform convergence, and after an application of [ 1, Principle 1], the weak
convergence in (36).

For the cases j = 2, 3, we only summarise the equations corresponding to (40), from which u}¢, v%s and w’¢ can be read off. The
convergences as in (36) are then proven similarly to the case j = 1, by applying Lemmas 5.7 and 5.8 (and 5.9 in the case j = 2). The
case j = 4 requires more explanation and is thus again described in greater detail.

Case j = 2: With
5 O (De L5 )?
22 8wi(yo)
we can write
0572 — 16515, — 631, = w3 w3,
where
ek € eks D L)L
= 1671 wh® = % sin(2e "1 pp).
w(yo) ¢)‘ 2

Case j = 3: Analogously, with

(6 |pLj|?

N
237 80 (v0)

we write

re Aqe nr re re re.
0513 — (65135 — 515 = (u3 +v3 ) w3

here
1(pe, DL;) — {po, DL} 0}
ut = —7<p£ S> - <p0 0>, wif = = sin(2e ' ¢p),
£ ¢} 2
64 (DL, DLg) 6/ (DL*, DL?)
AE * 0> =0/ ; —1 41 & e Zel . -1
03¢ = ———————sin(2e” @) — ——— sin(2e” ¢H).
’ ; 20, (yo) 0 247 ‘
Case j = 4: For this final case we first define
o OM(DeLj)?
2T 8w (yo)

and use ¢* = ¢0 + 52¢ (see Definition 5.1) with a trigonometric identity to write
sin(2e~'¢2) = sin(2e @) ) cos(2e¢3%) + cos(2e @) ) sin(2e¢5°).

This allows us to derive the equation
G314 — 165154 — 6314 = Ui w37 + wjywis,

15
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where
Ale s : Le
+ 1 sin(2¢
uy = 95" +¢;  Tsin( .¢2 ), wjt = 0} - DL} cos(2e ' ¢p),
w(¥o) e 2¢)
11— cos(2e¢p’®
e o 117 C0S2605T) Wi = 0* . DL sin(2e = 8h).

€ 2¢}
By (17), (19) and Lemma 5.8 we obtain

SR 3 e o B i O G O .
|u41| = W—(pf? + ; le:(Zk-i-l) (25¢ ) — 0 in C([0,T])
and
d)ks x (_1)k
|ujs| < ,2A i = 0(e),
€ k=1

which implies the uniform convergence in (37).
Part i = 2: To prove (35) we expand 92*5 in (30), by writing out the time derivative and using the equations

. e o . i
¢! = D, (y:) + EDfLQ sin(2e'¢") + DL - ¢} cos(2e 7' ¢)

and

r r
DL} = (D’L}y., y:) — (DV(y.), DLY) — Zeg (Dw,.(y.), DLY) + Z 0 (Dw,.(ve), DLY) cos(2e ™" ¢1).

n=1 n=1
In this way, we can write 85 = 7 | 63 where
1 [ 6*(D:[)?
055, = —f/ Mcos(28’]¢§)sin(28’1¢j)dt
& Jo s
1 (6*-Dl*-D R
65, = _7/ S f“’*(y‘)sin(za”(pg)dr,
€ Jo 2(p2 )
1 [ 6X(D*L'y,,y
65, = f/ 0L DLede, o) oot gy,
e Jo 20}
1 [ 6*(DV , DL*
035, = _7/ 6: {PV0.), DL O:) ! sin(2e1¢%) dt
€ Jo 2¢}
16! (Dw,(ye ), DLY)
re HATE =142
0555 = Z/ 2¢A sin(2e™ "¢, ) dt,
9)‘ Dw ,
03, = —f (627 2;(3/F) 8>cos(28’]¢§)sin(28’1¢§)dt,
0k = = Z/ 0202 (Dwy(ye), DL) cos(2e ¢ ) sin(2e ' ¢?) dt
227 s 2¢A & &
WUFEL
"6} . DI} D}
0335 = _/ ot e sin?(2e g ) dt.
0 AP ’

Again, the function 92*28 = Z 62*25] consists of oscillatory and non-oscillatory terms. To derive the statement in (35), we therefore
define the corresponding oscillatory term [9;]5 = Z, ][9 ]2], where

(0515, = Mcos(%’]gb’\)
2121 ka(yo) 0
0}(D,LEY?
(0315, = ——— 2= cos(2e " ¢p),
PP 40in) ’
6} (D*Lgyo. Yo
(62155 = _y 0s(2e ' pp),
4a)x(y0)
6} (DV(yo), DL
(6215, = Mcos(h*%),
4(1)1(3’0)

16
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0315 =D

n=1

6761 (Dw,(yo), DL})

—1 41
402(30) os(2e %)

(027IDLy I
16w;.(yo)
O Xr: 06X (Dw,(yo), DLy) | cos (267 (¢ — ¢})) _ cos (267 (e + ¢}))
2 8ws (o) wu(¥0) — @1(¥0) ®u(¥0) + @1(¥0)

(05156 == — cos(4e™'pg),

n=1
HFEL

We show that for a subsequence {¢’} (not relabelled) there exist non-oscillatory functions @2]. (G=1,...,8) such that for éﬁ; =

Zf 1 922], the statement in (35) holds. More precisely, we will prove that forj=1,...,7

. d g, .
035 — 10515 — 635 in C([0, T]), E(e;;j—[eg];j)i% in L*([0, T]), (41)

and forj =8
dez%s * déézs
dt dt

Note that the scaling in 0228 is different from the scaling in Qﬁ\fj (j=1,...,7). As a consequence, there is no non-converging oscillatory

component that we would have to subtract from 0228 in order to analyse the limit ¢ — O.
We now give a detailed proof of the convergences in (41) for the case j = 1. The other cases are dealt with similarly.
Casej =1: For A = 1,...,r we start by writing

0355 — 35 in C([0, T1), in L([0, T]). (42)

d92)‘§] _ ]QQ(DILQ‘)Z . —1 0y QQ(DfL/e\)Z d —12
2= — 20 sin(4e”'¢r) = Wa cos(4e™ ' ¢;)
)\. )\
(9 (((;A)E) cos(4s ' )) 4 (0 ((W) >COS(487]¢:}),

which we use to derive

d re Aqe d QA(DL )2 -1 Aqe 9)»( [ ) —1 4

p (035, — 16315, = p ( 8(¢A)2 cos(4e™'p2) — [6515, (¢*)F cos(4e ™ '¢l)

= 3 — W)* cos(eTyle).

Here, we identified v}* := u}* cos(e~'y*) — ut? cos(e ~110), where

7= 6: (DL Y , 1= 4¢l,

8(¢

according to Lemma 5.7. The necessary assumptions on u?“‘ and 1//1“ are satisfied by (13) and Lemma 5.8. Consequently, it follows that

v1e 0 in [°([0, T]). Moreover, since {i}* cos(e~'y1#)} is a bounded sequence in L*([0, T]), [1, Chapter I. Lemma 1] implies the
equivalence of the weak* convergence of the sequence {iﬁg cos(e”l/r{“)} and the integral convergence as in Lemma 5.6. Hence, we

reason that i}* cos(e~1y/}¢) 2 0in [([0, T]). We therefore conclude that

d dé}: .
o (635 = 163,) = - “2L=0 in L([0.T]).

Finally, with {#7¢} and {i}*} being bounded sequences in L°([0, T]), the convergence in (41) follows for a subsequence {¢} from [1,
Principle 4], i.e., an extended version of the Arzela-Ascoli theorem.
For j = 2,...,6 we only summarise the results, since the arguments follow along the same lines as in the case j = 1 above. In
*
particular, we always identify terms vj“ — 0 in L*°([0, T]), according to Lemma 5.7, and terms u“ cos(e ‘11/1“) A 9;2] G=2,...,6)
according to Lemma 5.6. The cases j = 7, 8 require some different reasoning and are thus explamed in more detall
Casej = 2:

d
a7 (921252 - [92x ]52) =

d (92 'DtLé - Dy (ye)

d (6> -Dd>-D .
cos(2e ') — [92*]32> _ ( ¢ - DLt - Deay(ye)

) cos(2e ')

dt dt POSE dt 4¢7)?
0y,  OMDLY?  (02PIDLYI - DLy
N 222 — *(2[ O) _ ( *) | 0| tHo in LOO([O’ T])
dt 2w3(¥o) 4w (Yo)
Casej = 3:
d re re d 9§L<D2L2ys,‘)‘/£) —1 1A rye d 91 <D2LAy€’y€) —1 44
a (9223 — [92 ]23) = —a <4(¢,§)2 COS(Z&‘ ¢£ ) + [92 ]23 + a W COS(ZS (pg)
« d0}, (01 (D.DLy, DLY) 36} (D’Lyo. yo) - DeL}

= - in L*°([0, T]).
dt 40, (¥0) 82(y0) i L2001
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Casej =4:
d re A d 92 (DV(yg),DLéL> -1 44 rye d QSA (DV(yE),DLé> —1 A
a (9224 — [92 ]24) = a (W COS(ZS d)g) — [02 ]24 — a T@»)Z COS(2€ ¢8)
« dok 302 (DV(yo), DL3) - D L%
e ( sw§<yo>°) — i 0.7
Casej =>5:
d, . . d [ 026" (Dw,(y.), DL B .
i (03355 — [6315) = m Z 4((}.‘;)2 cos(2e ") — [631:s
n=1 &
026" (Dw,(ye), D _
— Zdt( ”A L) cos(2e¢?)
! 4o )
x dBhs 3 360261 (Dw,(yo), DLg) - Del | (02IDLgI" - Dily 1°([0, T1)
e~ =~ 802 (¥o) 8w, (yo) o
Casej = 6:
d .. R d ((6}) (Dws(ye), DL} _ R
pn (0335 — [05156) = n ( <16(¢'>A)2 >cos(4g 162 + 105156
d ((6}) (Dws(ye). DL} _
i (e
« db}
- % =0 in L®([0, T]).

Case j = 7: Analogous to the previous cases we write

d, . . d 06! (Dw,.(y:), DL;) | cos (267! (g — ¢))  cos (267" (¢ + ¢7)) .
o (635 - 16%5) = — Z 55 S = — 051
HFEL

r E (93‘95‘ <Da)'u(y5), DL;‘)

83 0L + 97) ) cos (26707 + 4;)

"\ d (626" Dw,(y.), DL B
- ( 839t — 40 )C‘”(ZS -0,

We identify, similar to the case j = 1, the first term on the right-hand side with i;;‘s. Then, it follows from Lemma 5.7 that i)%g 2 0in
L°°([0, T]). Moreover, we identify the summands in the remaining two sums on the right-hand side with functions

d {6*6*(Dw,(y.), DL ~
7 cost wf):dt( e )

for A, u = 1,...,r, A # u. Together with (17) we expand the time derivative in u7f and find, based on the non-resonance

Assumptions 1 and 2, and Lemmas 5.4 and 5.5, that u;f cos(e ‘H//A’“) — 0 in L*°([0, T]). All together, we conclude that

d do’ .
o (635 —1631) =~ =2 =0 in 1[0, T]).

Finally, we use [1, Principle 4] to derive the uniform convergence for a subsequence {&'} in (41).
Case j = 8: The convergences in (42) follow for a subsequence {&'} (not relabelled) from [1, Principle 4] and
635 ) -DL»-D2L: 6} -DL- DL} « d0e 0} - DL} - DL

& € t~e £ £ t™e -1 A 0 t=0 s [es]
=— . + . cos(4e — = — in L°([0,T]),
dt () 8(er) e de) dt 8w?(¥o) (0.1

where we used Lemma 5.4 for the weak* convergence.
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Now, by combining the casesj =1, ..., 8 notice that

8 n 2
d63,; _ O}(DLg) 6} - DiLj - DL (62)*(DDLy, DL)  (62)*|DL}|” - DL}

e 2wl(yo) 20%(yo) 4w, (Yo) 8w (Yo)

i (Q?wr%)z oy |DL3'2)

TS 402 (y0) 8wy (¥o)

j=1

where we used

.
D?Li = (D*Lo. Yo) — (DV(vo). DL§) — » _ 6! (D, (o). DL}) .

n=1
Finally, Eq. (23b) follows with
dor G~ dfh by O dy
— = L = —_— —. O 43
dt Z dt Z dt +Z dt (43)

i=1 j=1 j=1
Remark. It would be desirable to complement the uniform convergence result in (37) by a weak* convergence result of the form

d « dél,

gt O5ia = 10:1h) = =3 % in L¥([0.T1).
This would allow us to extend the uniform convergence result in (22) by a weak* convergence as in (18)-(21). To this end one would
need to show in the proof of Lemma 5.11, part i = 1, case j = 4, that u** = O(¢). To do so one would need to extend Lemma 5.8 and
show that the sequence {¢~' (¢3° — (¢ + [¢]°))} is bounded in L([0, T1). This would require more notation and would significantly
increase the complexity of this article. We therefore do not pursue this analysis further.

Lemma 5.12. The extraction of a subsequence in Lemmas 5.10 and 5.11 can be discarded altogether and (¢, 85, y2, p2) is the unique solution
to the initial value problem (23)-(24).

Proof. The differential equations (23a), (23c) and (23d) follow from (31)-(33) by taking the weak* limit in combination with Lemmas 5.6
and 5.7, and [1, Lemma 1]. Formula (23b) follows from (43). The initial values (24) can be derived from the uniform convergences
in (19)—(22). Furthermore, since the right-hand side of (23) — and therefore the solution (¢,, 65, J», p2) € C*®([0, T], R*") — does not
depend on the chosen subsequence, [1, Principle 5] allows us to discard the extraction of a subsequence altogether. O

5.5. Higher-order asymptotic expansion and restrictions on the timescale

In the following we summarise how to derive higher-order asymptotic expansions of the solution to (11)-(12). Let us assume that we
know the asymptotic expansion up to order k — 1 and we want to derive the asymptotic expansion to kth order, i.e., for u, representing
the functions ¢,, 6., y. or p,, we are looking for an asymptotic expansion of the form

k—1
u =uo+ » '] + e lie]’ + e*uf, .,
=1

where for £ =1, ...,k
[ == + [u)® =@ in L°(0,T]), uf,,—0 in C([0,T]).

Two approaches can be used to derive the function [u]¢. They both rely on analysing the leading-order asymptotic expansion of
k=1

U, — Up e
U = - Zsl k[, ).

8’(
=1

The first approach relies on deriving [i]® directly from uj by applying the fundamental theorem of calculus to the function u, — ug
and subsequently integrating the oscillatory component of the integrand i1, — il by parts to lower the exponent of the denominator
k. After k iterations by parts and corresponding expansions of the resulting terms, i, and [u]¢ can then be derived such that

up — [ul® — u, in C([0, T1).

This method was used to derive the leading-order asymptotic expansion of 65, in Lemma 5.11.
Another approach for the derivation of [u]° is based on an application of the extended Arzela-Ascoli theorem. Analogous to
Lemma 5.8, one shows first that the sequence {u}} is uniformly bounded in L*°([0, T]). Then, by Alaoglu’s theorem [1, Principle 3],

there exists a subsequence {¢'} such that uj, A Uy in L°°([0, T]). To determine i, one chooses [u,]® such that the sequence {uj — [u]®}
is uniformly bounded in C%([0, T]). Then, according to the extended Arzela-Ascoli theorem [1, Chapter I §1], there exists a subsequence
such that

. d . o+ dil
uf — [ud® — @ in ([0, T]), —w—mnAgf

i in L*([0, T]),
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from which 1, can be determined as the solution to a system of differential equations. This approach was used to derive the
leading-order asymptotic expansion of ¢3, ¥5, p5 in Lemma 5.10 and 65, in Lemma 5.11.

Remark. Theorem 5.2 provides immediately quantitative estimates on the difference between the original system (¢,, 6, y., p.) and
the limit system (¢g, 0o, Yo, Po) of order O(e) for times up to arbitrary, but fixed T. With the second-order asymptotic expansions
Po+ ¢ (¢2 +[$21), 6o + (611 + €2(85 + [621), Yo + €2(72 + [¥21) and pg + £2(p2 + [p2]) the result provides error estimates of order better
than O(¢?) over the same timescale. There are other averaging approaches which deal with the differential equation only. A formal
expansion in ¢ can also derive the equations for the averaged second-order corrections ¢,, 85, -, p», then error estimates need to be
obtained separately, e.g., using some Gronwall and integration by parts arguments as described in [8]. The general restriction to finite
timescales cannot be avoided unless the averaged correction terms vanish [8, Chap. 2], which does not hold in our situation.

6. Thermodynamic interpretation

We now give a thermodynamic interpretation of the analytic result presented in Theorem 5.2. The model problem in Section 2
describes the interaction of r (in general non-ergodic) fast and n slow degrees of freedom (n,r € N). A simplified model of one fast
(hence, ergodic) and one slow degree of freedom was already studied in [11], where the authors similarly interpret a fast-slow system
of the kind presented in Section 2 from a thermodynamic point of view. Since the thermodynamic interpretation of the model studied
in [11] includes arguments that are similarly applicable to the more general model considered in this article, we will focus here on the
differences and refer the interested reader for a detailed thermodynamic discussion to [11].

Fundamental in the theory of classical equilibrium thermodynamics is the transfer of energy in the form of work and heat in
thermodynamic processes. This energy transfer is described by the energy relation

n
dE = dW +dQ = ) Pldy + Tds. (44)

j=1
In more detail, let E be the energy of a generic thermodynamic system composed of many fast particles, such as gas particles trapped in
a container with a piston. Then, the change of the system’s energy dE is the sum of external work done on the system, dW = Z}; Fidy,
where F/ are external forces exerted on the system by infinitesimal displacements of some external slow variables dy, and a change of
heat, dQ = TdS, where T is the system’s temperature and dS a change of entropy. Classical statistical mechanics provides the derivation
of thermodynamic quantities such as temperature, entropy and external forces as the slow, average macroscale observations from the

microscale dynamics in the system.

The energy transfer within a thermodynamic system in the form of work and heat also applies to mechanical systems which evolve
within an environment that allow for thermodynamic interactions. A suitable thermodynamic theory for such mechanical systems was
developed by L. Boltzmann and later refined by G. W. Gibbs [12], which was subsequently rederived by Hertz [13]. We will follow
Hertz’ line of thought. His formalisation is based on fast Hamiltonian systems that are slowly perturbed by external agents. In this
setting, his theory describes how to define temperature, entropy and external forces such that the fundamental thermodynamic energy
relation (44) is satisfied.

Applying Hertz’ thermodynamic formalism to the model problem introduced in Section 2, we regard, similar to [11], the subsystem
composed of the fast degrees of freedom z* (A = 1, ..., r) as a thermodynamic system that is slowly perturbed by the interactions with
the slow subsystem composed of y"g (j = 1,...,n). Note that the ergodicity assumption for thermodynamic systems is not given for
the fast subsystem. Nevertheless, one can still derive thermodynamic properties if one replaces time-averages with ensemble-averages
(see [14]), which can be derived by averaging the trajectories not only with respect to time but also with respect to initial values
assumed to be uniformly distributed over the energy surface. A more detailed explanation can be found in Appendix A.

In contrast to classical thermodynamic theory, which mainly focuses on the thermodynamic analysis of some fast dynamics that
experiences some slow external influence, such as gas particles trapped in a container with a piston, our focus lies in analysing the
slow dynamics that experiences some external thermodynamic effects through its interaction with the fast subsystem. This focus is
motivated, for instance, by the conformal motion of a molecule in a solvent.

We will focus our attention on the energy associated to the fast degrees of freedom EX and the residual energy E/!, which are given
by

Ef = |zg fgfzzwkyp Xz*)?,  El=E —EL (45)

£

The evolution of the fast degrees of freedom is governed by the energy Ej = Ej(zs, Zs; ¥e) Which is subject to slowly varying external
parameters given by . (j = 1,...,n). As pointed out in [11], this framework allows us to interpret the model problem from a
thermodynamic point of view by applying the thermodynamic theory of Hertz [13].

By applying Hertz' thermodynamic formalism to the fast subsystem, which is governed by the energy function E}, we derive in

Appendix A, provided that 6 # 0 for at least one A = 1,...,r, the following expressions for the temperature T,, the entropy S, and
the external force F;:
1 r . r r . (I)M(ys) r .
==Y o). Se= log| Y 6! . F=T.) DI}, (46)
ris A=1 =1 @2(ye) a=1

where, according to the notation introduced in (15), the vector DL’; represents the gradient of Lﬁ = log(w; (y.)) with respect to y, € R".
The classical thermodynamic concepts of temperature and entropy are commonly described for systems in or near thermodynamic
equilibrium, i.e., for an infinite separation of timescales, so in the limit ¢ — 0. It is noteworthy that we derive these expressions
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for finite but non-zero . Note that the assumption on 6 ensures, that the system exhibits a genuine scale-separation into fast and
slow dynamics. Moreover, note that the temperature is the arithmetic mean of the frequencies w; (y.) (A = 1, ..., r) weighted by their
corresponding actions 93. The entropy provides a measure for the pairwise weighted frequency ratios Hja)x(yg Youye) (A, w=1,...,71),
while the external force primarily indicates the change of log(w; (y.)) with respect to the slow coordinates y..

In combination with the second-order expansion derived in Theorem 5.2 we can expand T;, S, and F,, and thus determine their
asymptotic properties, i.e., T, = To + O(¢), F. = Fy + O(¢) and S, = Sg + [S11° + €%[S,]° + EZS§ with §§ — 0 in C([0, T]), where

_l r r r r @ (y )
= floy). Fo:=To) DIy, So=) log|y er—tnr ). (5] := 2[91]0)AJ’0 (47)
r=1 r=1 r=1

= ;. (Yo)

and

- 1 — - 1 « )
(5o = - ; (63 + [621°) wa(yo) + T Ze: (D, (o). ¥2 + [y21°)

- Z DL}, y2 + [y21°) ~3 Tz (Z[Q IFw:(yo) )

=1

We use the expansions derived in Section 5 to analyse the energy Ej on different scales. To this end, we expand Ej— = Zf\ﬂ Qja)x(yg)
and write E} = Ey + ¢[E{]° + €2[Ey |° + e2E3* with E3* — 0 in C([0, T]), where

r

o= Olwo).  [ET =) [01] iy,
A=1 A=1
51 =) (65 +1051°) @5(yo) + Y _ 0} (Dwi(¥o), 32 + [ya]°) -

=1 r=1
6.1. Leading-order thermodynamics

We now analyse the energy Ej in the limit ¢ — 0 from a thermodynamic perspective. For ¢ — 0, the temperature, entropy and
external force are given by the expressions Ty, Sp and Fy as in (47).

While the temperature captures the average collective dynamics of the weighted frequencies 6 w; (yo), the entropy depends on the
dynamics of the weighted frequency ratios ij,\(yo)/w,t(yg). In contrast to the simplified model in [11], which can be regarded as the
degenerate case of one fast degree of freedom, the entropy S is constant if and only if all weighted frequency ratios 6} w; (¥o)/®.(Yo)
A, pn =1, r) are constant, regardless of the number of fast degrees of freedom. In this case, the motion of the fast degrees of
freedom can be described as a quasi-periodic motion. Thus, the entropy can be considered as an indicator of the homogeneity of the
frequencies with respect to y, and therefore serves as a measure of chaos for the fast subsystem. In the case of one fast degree of
freedom as in [11], the weighted frequency ratio is naturally constant and hence the entropy remains constant. Therefore, we can
regard - in reference to classical thermodynamic theory - the leading-order dynamics of the fast subsystem in the case of a constant
entropy as an adiabatic thermodynamic process and non-constant entropy as a non-adiabatic thermodynamic process. We remark that
we make this thermodynamic interpretation despite the fact that the fast subsystem is non-ergodic.

Finally, by expressing the leading-order energy of the fast subsystem EOl = Z;zl 62w, (yo) as a function of Sp and y,, it can be
written as

,
Eq(So.y0) =™/ ] @, (vo).

r=1

As a consequence, the differential is given by
n
dEy =) Fdy} + TodSo, (48)

j=1

which coincides with the fundamental thermodynamic energy relation in (44).
6.2. Second-order thermodynamics

In contrast to the e-independent thermodynamic expressions to leading-order discussed in Section 6.1, the asymptotic expansion
terms to higher-order are e-dependent. In particular, they contain terms that rapidly oscillate around zero, and terms that yield the
average motion of the higher-order asymptotic expansions. As the thermodynamic theory aims to describe many-particle systems by
their average dynamics, we analyse, similar to [11], the average dynamics of the higher-order asymptotic expansion in EX and S, by
studying the weak* limit of [E;]°, [E5 17, [S1]° and [S,]°, i.e.,

[ELF S0 in L™([0, T]), [ES]° = E& in L([0, T]),
[5:F =0 in L[*([0,TI), [5,0° =5, in L%([0, T),
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where
r r
3=y Bon(ye) + Y 0F (Do), 72)
_ Ar=1
and
- 1 d 3 1 4 A - : Ao 1 A A
Sy = — 292 o (Yo) + — 29* (D, (¥0), ¥2) — ) _(DLg, ¥2) — ——= Z (0 - Delg )
TO 1 TO =1 =1 16r TO r=1
[ 1 < 2
5 A A
- 2 _ DL* 0. - D.Lj) . 49
T ;< 0> J’2) 16rT§ ;( x "Dt 0) (49)

Note that the expression of the entropy is in this case not constant. Intuitively, this follows from the second-order asymptotic expansion
of the slow degrees of freedom .G =1, n). These exhibit according to Theorem 5.2 a decomposition into slowly varying
components y’2 and rapidly varying components [y’z]“" The existence of this decomposition gives rise to a non-constant entropy discussed
in more detail in [11]. Moreover, we notice that the last term in S, originates from [S;]¢, the rapidly oscillating first-order correction
of So

Finally, after rearranging (49), we derive for Ej— = Ezl(Sz,jlz; Yo, Po) the expression

r

= 1
EZ = <F0»y2>+T052+ﬁZ(9:DtLé)2

Now, by analysing the differential of E2L for fixed (yo, po), which is given by

n
dEy = " F)dy), + TodS,,
j=1
we find, similar to (48), a remarkable resemblance to the fundamental thermodynamic relation as presented in Eq. (44).

6.3. Analysis of the total energy

Finally, we inspect how the thermodynamic energy transfer in form of work and heat is realised in the second-order asymptotic
expansion of the total energy E.. Recalling the analysis above, we split the total energy E. into E} and E! (compare with (45)),
ie, E, = EX + El, where

1
El = 5|p5|2 + V() + 29” (pe, DLY)sin(2e™"¢}) + ZZQ 6/ (DL;, DL¥)sin(2& ™" ¢} ) sin(2 ' p1).
2.5 =1 p=1

Similar to before, we use the expressions derived in Theorem 5.2 to expand the energy E/, i.e., E! = E(‘)‘ + S[Ehg + 52[@]5 + 825!8 with
Egg — 0in C([0, T]), where

1 _ 1 ¢ o
Ey = lpol* + V). [E))° = 5 D 0iDiLysin(2e'5)
r=1
and
_ _ _ 1 o
[E;1° = (Po. B2 + [P2]") + (DV(yo). 52 + [y2l") + 5 D _[671° Dyl sin(2e ')
r=1

+ Ze*mA cos(2e ¢ (@2 + () ZZ@ 6" (DLy, DL}) sin(2e~"¢3) sin(2e ' ¢f).

r=1 Al/l.l

To determine the average energy correction at first- and second-order, we take the weak* limit and derive El'g S 0in L*°([0, T]) and
2

O*DIA? < (6*)2|DLA
2(DeL§) +Z(*)| 5l

250 " in ([0, T]).

r

[E;1F = Ej = (po, B2) + (DV(¥o), 72) — )

A=1 A=1

The following theorem shows how the Hamlltoman character of the problem and the thermodynamic interpretation materialise for
the averaged second-order energy correction E, = E + EL

Theorem 6.1. Let (yo, po) be as in (14) and (¥, p,) be as in Theorem 5.2. Let E, be the averaged second-order energy correction E, = E"! +EL,
where
.

o ) _ 0 (P, Din(y0))? <= (62 IDws (vo)I?
E)32. P2: ¥o. Do) = (Po. Pa) + (DV(¥o). ¥2) — T TS e
2 ; 407 (yo) ; 1607 (¥o)
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and
r r
E5 (¥2: Yo. o) = Z@(Yoypo)wx(m) + 29: (D (¥o), ¥2) »
A=1 A=1

with

. 62 (po, Dwi(¥o))? 0} (p+. Dy ()

Qz)h(yo’ Po) — % + Cé;\, Cgk — _% _ [02)»]8(0)

8a)x(yo) 2 2 wa(y*)

Then the differential equations (23c) and (23d) take the form

dy,  oE dp) JE

ﬁzi,z, ﬁ:_i?, (50)

dt 3p’0 dt 3y’0
forj = 1,...,n Moreover, with the functions Ty, §2_ and Fy given in (47) and (49), which can be interpreted as the temperature, entropy
and external force in the fast subsystem, the energy E2l can be written as

o _ - 1 (02) (po, Dy (1))

Ey (52, 725 Yo, Po) = (Fo(o), To(¥0)S x ‘ :

3 (52, ¥2; Yo, Po) = (FoYo), ¥2) + To(¥0)S2 + 16rTo(y0) ; w20y0)
With this notation, the energy E‘j satisfies the constituent equations

AEs- . OEy
To=22, p=22 (51)
EAY) 8}_/]2

Proof. The evolution equations (50) follow directly from (23c) and (23d). The constituent equations (51) follow from (44). O

Remark. With E, = E, = E, according to (8), the expansion of the energy E. = Eo + :a[E'l]‘g + [ + 82E§ implies that
[E1]* = [E;]* = E5 = 0 and thus E, = 0. As a consequence, the averaged energy function E, acts as a constraint on the system
and &2 can be regarded as a Lagrange multiplier. Note that the evolution equations (50) resemble Hamilton’s canonical equations.

7. Simulations

Fast-slow Hamiltonian systems model, for example, the evolution of molecular systems, where the slow degrees of freedom
represent the conformal motion of a molecule and the fast degrees of freedom represent the molecular vibrations. A crucial component
in the fast-slow Hamiltonian system with the Lagrangian of Section 2 is the scale parameter ¢. It often represents a fixed parameter
determined by the problem in terms of the ratio of the typical timescales of the fast (here z.) and slow (here y. ) degrees of freedom.

In the analysis of molecular systems, one is often primarily interested in the slow conformal motion of molecules. As such, a small
scale parameter ¢ causes costly overhead in the numerical derivation of y, from (6), since the step size has to be chosen sufficiently small
to account for the fast, oscillatory motion of z,. Theorem 2.1 provides a possible solution to this problem by deriving the homogenised
system (6).

The homogenised system describes the evolution of the slow degrees of freedom y, only, which can be used to approximate the
evolution of y,. The approximation of y, by yo comes, however, with a trade-off. On the one hand, one can choose a larger step size
for the computation of yp from (9) than for that of y, from (6). This significantly reduces the computational cost of the numerical
integration. On the other hand, approximating y. by y, introduces an approximation error which depends on the scale parameter
&, namely |lye — Yollieoqo.r1.r7) = O(e?). Therefore, we extend in this article the leading-order asymptotic expansion and derive in
Theorem 5.2 the second-order correction [y,]° to yo such that ||8‘2(y8 —Yo) — [1=20° H 10, TLRY 0 as ¢ — 0. Here, [y,]° takes the
form [y2]° = ¥ + [y2]%, where y, traces the average motion of the second-order correction and can be derived as the solution to a
slow system of differential equations (50) and [y,]¢ is the explicitly given rapidly oscillating term of the second-order correction.

We compare the global error of approximating y. by y, and by yg+&%[y,]° both on a short and a long time interval, and the associated
computation times for a specific fast-slow Hamiltonian system described in the next paragraph. The key finding is that the computation
of yo and [y,]°, which can be done in parallel, is up to two orders of magnitude faster than the computation of y, of similar accuracy.
Moreover, the total computation time for yy and yo + £2[¥, 1 is practically identical, while the global error |y, —yo — &2[y, ¢ Il oo(o,71,R7)
is significantly smaller than the global error ||y, — Yollreo((0,71,z?) Oon short as well as on long time intervals.

The test model. We consider a fast-slow Hamiltonian system as described in Section 2, defined on the Euclidean configuration space
M = R*. The test model describes the evolution of two fast and two slow degrees of freedom such that x = (y, z) € R? x R? = R*.
Their dynamics is governed by the Lagrangian as described in (3), with

Vi) =100+ 300 o) =4+ P wye) =2+sin(y})
and initial values
¥:(0) =(1,-0.5),  y:(0)=(1,12),  2z(0)=(0,0),  Z(0)=(3,2).

We simulate the full solution y, = (y;, y?) and homogenised approximations, in particular the second-order approximation based on
Theorems 2.1 and 5.2. Specifically, we compare the second-order asymptotic expansion y}, + 52[)7;]5 with the full trajectory of y! for
short and long time intervals. Here, the superscript 1 denotes the index of the first component of y, and indicates the first slow degree
of freedom in the system. A similar comparison of the second slow degree of freedom, yg and yé + 82[)_/%]5, is analogous.
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0.010 S
0.0075 1 — vz = Yole=qo.
0.0050 - 0.0081 — V2 —y5 —€y3Fll=qo.m
)
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0.0000 \
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~0.00501 v 0.002
—0.0075 £1 (; 2rclie
— Ye— Yo~ €°ly3] 0.000 1
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(a) y2(6) = yb(t) and y2(1) — yi (1) — (5] (1) () [lve = voll L o,y a0 [[v2 — w0 — €*(52)°| L (10,
for t € 0,677 for T € [0,e72)

Fig. 1. Comparison of the full dynamics y! as the solution to (6), y} as the solution to the homogenised limit equation (9) and [y}] as the second-order approximation,
where y; is derived from (50). The parameter choice is & = 0.5,

0.031 0.0006 1 H
0.02 1 0.0004 -
0.011 0.0002
0.00 ‘ 0.0000
-0.011 2yt —yi) J u v ~0.00021
-0.02{ —— Jl4[ylf | ~0.0004
-0.031 — ¥3 ‘ —-0.00061{ — £ 4yl —y§) — (i +1y3])
00 02 04 06 08 1.0 00 02 04 06 08 10
(a) e (y2(t) — yo (1)), H2(t) + [y2]°(t) and F3(t) (b) e 2(yL(t) — v (1)) — (FA () + [ ()
for ¢t € [0,1] for t € [0,1]

Fig. 2. Comparison of e~2(y!(t) — y}(t)) and y3(¢)+ [y}1°(¢) on a short time interval t € [0, 1], with y!, y} and y} as the solutions of (6), (9) and (50), with & = 0.5°.
The function [yl]¢ is given explicitly in Definition 5.1.

Fig. 1(a) displays the trajectory of y! —yj — &?[¥3]° superimposed on y! — y;, for a long time interval with final time T = ¢~2, where

& = 0.5%. It is evident that the second-order error y! — y} — e[y} is significantly smaller throughout the entire time interval than the
leading-order error y; - yé. This becomes even clearer in Fig. 1(b). There, we observe that the leading-order error grows faster than
the second-order error, illustrating the increased importance of the second-order correction [37;]5 with time.

The reason why an approximation of y; by ya performs worse than an approximation by yé + 82[}_1;]5 on long time intervals is that
yl is highly oscillatory at higher-orders, which is not captured by y}). This difference becomes evident only to higher-order. Fig. 2(a)
illustrates the oscillatory behaviour of y; to second-order. Here, we superimpose the second-order correction [)7%]8 = )75 + [y;]s on
top of y%e = s‘z(y; — y(l,) to visualise the oscillatory dynamics to higher-order and illustrate the approximation quality of [)7;]5 for
short time intervals. For this purpose, we integrate system (6), (9) and (50) for the test model with & = 0.5%, on a short time interval
t € [0, 1]. The trajectories of y;“’ and [)7;]8 are almost indistinguishable; the difference becomes visible only at third-order, as shown
in Fig. 2(b).

Although the error y! — y}) - 82[)7;]“' looks very accurate on short time intervals, the accuracy decreases, as Fig. 2(b) suggest, for long
time intervals. Fig. 3 reveals how this error increases for long time intervals. Here, we integrated (6), (9) and (50) for & = 0.5, where
T=¢2

7.1. Comparison of the execution time

As mentioned earlier, the approximation of y! by the homogenisation limit y}) comes with a trade-off. The simulation of y}) is faster
than that of y! but introduces an approximation error of order O(¢?). This error can be reduced by approximating y! by y§ + &2y, 1%,
i.e., the second-order asymptotic expansion derived in Theorem 5.2. The leading-order and second-order errors are discussed in the
previous section. We now discuss the computational costs of the simulations in this section.

Before comparing the total runtime for deriving y!, y§ and y} + €2[y}]°, we note that in [y}]° = ¥} + [y;]%, the function y] traces the
slow, average motion of the second-order correction term and is given as the solution to (50), while [y%]S is the explicitly given rapidly
oscillating term of the second-order correction. Moreover, we point out that the derivation of y} and y} can be carried out in parallel.
As such, there is little additional simulational overhead in computing the second-order asymptotic expansion [)7;]8.
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0 10 20 30 40 50 60

Fig. 3. The second-order correction [y}1°(t) = y3(t)+[y31°(t) and its average motion y}(t) superimposed on y;*(t) = e ~2(y1(t)—y(t)) for t € [0, e~2] where & = 0.5°.

1031 —— £=0.52
I £=0.53

1074 E=0.54
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10724

10734

107 10 105 10~* 10~3 102

Fig. 4. Graphs of || vy — 731 ”Lw([o,n) versus step size dtzyy; for different values of ¢. The start of an upwards slope indicates the maximal step size.

To analyse the execution time for simulating y!, yj and y + £?[§}]°, we determine the maximal step sizes such that certain
convergence properties are still satisfied. More precisely, we determine the maximal step size dté“;i‘ to compute y! and dt(‘)“;i‘ to compute
WJE 2. 0

yg such that
lve =8l oy = 0 (52)

and the maximal step size dt;“;‘i‘ to compute y! and dt;“;‘i‘}71 to compute y}, and }7; such that
e YoY2

ly: = yo = 2320 || ooy = O™ (53)

To determine, for instance, dt‘“ai‘, we fix ¢ and derive y0 and y2 with a small but fixed step size dt2 1 and solve system (6) for
increasingly larger dt2 1 This process results in an error plot as shown in Fig. 4. The error is constant for small step sizes dt, 51 and
increases after crossmg an e-dependent threshold value. This value expresses the maximal step size dtmji‘ which still ensures that
property (53) holds. A similar procedure was applied to determine the step size dtma" such that property (52) holds, and conversely to
determine dt‘f‘;;‘ and dtri‘;;"yz

With this procedure, we find for ¢ = 0.5% (k = 2, ..., 7) the maximal step size such that the properties (52) and (53) are still

satisfied. That is, for the leading-order error (52) we derive dg‘;’l‘ = 0(e?) and d(')“;’l‘ = O(¢), and for the second-order error (53) we
sJE 2. 0

obtain dt;’;f = 0(¢?) and dt;“ai‘y = 0(£3/?). The exact maximal step sizes are listed in Tables 3 and 4 in Appendix B.
WJE 2

With these maximal step sizes, we can determine the average runtime for simulating y!, y} and y} + 2[y3]° as depicted in Figs. 5(a)

and 5(b). Most significantly, we see that the derivation of the leading-order asymptotic expansion in Fig. 5(a) and the second-order

asymptotic expansion in Fig. 5(b) are up to two orders of magnitude faster than the simulation of y; via (6). This directly reflects
the differences in the maximal step sizes as explained above. Moreover, Fig. 5(b) shows that the execution time for simulating y(‘)
as the leading-order approximation and 37; as the averaged second-order correction are comparable. The minimal difference can be

explained by the evolution equation (50), which is more complicated than in (9), resulting in an increase of floating points operations
per time-step.
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100 q
—— QOriginal system 10t — Original system
Leading-order system Leading-order system
10714 —— Second-order system
100 4
1024 10-14
1073 1072
0.52 0.5 0.5% 0.5 0.56 0.52 0.5° 0.5% 0.55 0.5
(a) Average runtime in seconds to solve (6) and (9) (b) Average runtime in seconds to solve (6), (9)
for different values of e. and (50) for different values of e.

Fig. 5. Total runtime to simulate y! from (6), y}) from (9) and ¥} from (50). The exact computation times are listed in Tables 3 and 4 in Appendix B.

7.2. Details of the implementation

To compare the runtime of solving system (6) for y, with an accuracy that describes its evolution up to second-order with both the
leading-order approximation (Theorem 2.1) and second-order approximation (Theorem 5.2), one needs a numerical integration scheme
that allows to solve each of the three systems of differential equations (6), (9) and (50).

We note that system (6) and (9) are given as two autonomous, second-order systems of differential equations. As such, a simple
Velocity-Verlet algorithm, which is frequently used in the numerical integration of molecular dynamic systems, can be used to integrate
these systems. However, system (50) is non-autonomous. Thus, a numerical integration scheme from the family of Runge-Kutta
methods could be used to integrate each of the three systems of differential equations. We notice that system (50) resembles Hamilton's
canonical equations. In particular, the system is separable, which allows for the implementation of efficient partitioned Runge-Kutta
methods. Furthermore, because of the Hamiltonian structure of systems (6) and (9), it seems natural to apply a symplectic partitioned
Runge-Kutta method as an integration scheme for solving the three systems. On that account, the simulations in this article were
derived on the basis of a second-order symplectic partitioned Runge-Kutta method which combines the following Lobatto IIIA (Table 1)
and Lobatto IIIB (Table 2) tableaux (taken from [27, Chapter IV.5]). Sun [28] proved (also see [29]), that this specific method is symplectic.
A detailed description of the implementation can be found in [30, Chapter 8 and 14].

Table 1

Lobatto IIIA.

0 0 0

1 1/2  1/2
| 12 172

Table 2

Lobatto IIIB.

0| 1/2 0

1 1/2 0
\ 12 1/2

8. Conclusion

In this article, we studied a class of fast-slow Hamiltonian systems with energy functions given by
E = Sl 4 212 + V() 2Zwy
& 2 & 2 & & AYe s

where y’ =1, n) are the slow and z r=1, r) are the non-ergodic fast degrees of freedom and 0 < ¢ < gy < o0 is a
parameter characterlsmg their typical tlmescale ratlo. A 51mp11f1ecl version of one fast and one slow degree of freedom was already
studied in [11].

In the first part of this article, we introduced a transformation of the fast degrees of freedom into action-angle variables (z,, z;)
(0., ¢.), which also required a transformation of the momenta y, +> p.. We derived subsequently the second-order asymptotic
expansion of the transformed degrees of freedom. Furthermore, we showed that these expansions can be decomposed into terms
that oscillate rapidly around zero and slow terms that trace the average motion of the expansion. While the rapidly oscillating terms
are given explicitly, the slow, average terms are given as solutions to an inhomogeneous linear system of differential equations.

In the second part of this article, we studied the fast subsystem characterised by the energy function

Ej_ |Z£ 78722“& Ve X )L)Z
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Guided by the thermodynamic theory for ergodic Hamiltonian systems described by Hertz, we regard the dynamics of the fast degrees
of freedom z* (A = 1,...,r) as a system that is slowly perturbed by the interaction with the slow degrees of freedom ¥, j = 1, ..., n).
Because the fast subsystem is not ergodic, we followed along the lines of [14] and replaced the time-average in classical statistical
mechanics by an ensemble-average and defined otherwise, following Hertz, the temperature T, the entropy S, and the external force
F, of the fast subsystem.

Together with the second-order asymptotic expansion derived in the first part of this article, we expanded E., T, S, and F.. After
analysing the leading-order asymptotic expansion of these terms, we found that they obey an energy relation akin to the first and
second law of thermodynamics (in the sense of Carathéodory)

dEy = " F)dy} + TodSo.

j=1

In contrast to the case studied in [11], the entropy is not always constant. Indeed, the entropy is constant if and only if all weighted
frequency ratios 6} w; (yo)/w,. (o) (A, w = 1,..., 1) are constant. In this case, the fast subsystem’s dynamics is a rigid (quasi-)periodic
motion. We infer that, in the case of a constant entropy, the fast subsystem can be regarded as an adiabatic thermodynamic system,
while in the case of a non-constant entropy, it can be interpreted as a non-adiabatic thermodynamic system.

Remarkably, for the second-order asymptotic expansion we find, for fixed (yq, po), a thermodynamic energy relation of the form

n
dEy =) F)dy), + TodS,.
j=1
With a second-order entropy expression S, that is not constant, we can interpret the averaged second-order asymptotic dynamics as a
non-adiabatic thermodynamic process.

Finally, in the third part of this article, we analysed the model problem from a numerical point of view. In particular, we compared by
means of a specific test model the quality of the short- and long-term approximation of y. by the leading-order asymptotic expansion
¥o and by the second-order asymptotic expansion yg + %[y ]°. Most importantly we found that the time interval for which yo + €[y, ]°
ceases to be a viable approximation of y, is significantly longer than for an approximation by y, alone. Moreover, we analysed in a
series of tests how the total runtime of numerically computing y,, yo and y, depends on the value of the scale parameter ¢. We derived
experimentally the largest step size so that certain convergence properties are still satisfied. In contrast to system (9) and (50), which
only require the integration of slow degrees of freedom and thus allow for choosing a relatively large step size, the integration of
system (6) requires the choice of a relatively small step size to accurately replicate small-scale oscillations in the numerical solution.
As a consequence, we found that the runtime for simulating y, and ¥,, and thus for simulating the second-order asymptotic expansion
Yo + €%[¥2]%, is up to two orders of magnitude faster than the simulation of y, from the original system, for a similar accuracy.

The analysis of this article is restricted to a simple Hamiltonian. A significant limitation of the current analysis is the choice of
the interaction potential U in (4). The diagonal structure implies that fast modes interact only indirectly, through slow modes as
intermediaries, via multiplicative coupling. Such a coupling appears in the Caldeira-Leggett Hamiltonian [31], with Lagrangian

_l _l r _l r r
Ly, 2,y,2) = EMJ.’Z V) + 5 mez'f =5 mecxlf —J/wazx
A=1 a=1 A=1

with ¢, > 0. (Note in the framework of this article, the small parameter would here not be the mass ratio m; /M, but the limit of
increasing coupling w;.) For direct practical applications such as chemical reactions, for example, the evolution of the butane molecule,
an extension of the results presented here to more complex potentials is required. One of the key insights of this paper is the existence
of thermodynamic potentials far from equilibrium, albeit in the special situation of diagonal, or diagonalisable, interaction potentials U.
If this observation holds in greater generality, then this can lead to a better understanding and better computational approaches away
from equilibrium, such as a chain of atoms linked to two reservoirs assigning the outer atoms different temperatures. This is a matter
of future investigation.
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Appendix A. Hertz’ approach to thermodynamics

As mentioned earlier, the authors in [11] analyse a simplified version of the model problem as presented in Section 2 from a
thermodynamic point of view. More precisely, they focus on a system of one fast and one slow degree of freedom, i.e,n =r = 1,
whose fast subsystem is by construction ergodic. That analysis builds on the thermodynamic theory described by Hertz as presented
in [14]. Because of the similarity of the two models, we will focus on the differences in the derivation of the temperature, entropy and
external force as given in (46) and refer the interested reader for a detailed discussion to [11].

A.1. Introduction to thermodynamics for non-ergodic systems

To illustrate the difference in the derivation of the thermodynamic quantities in [11] and here, we recall how the temperature is
derived for the ergodic system studied in [11] and explain why the same approach fails for non-ergodic systems as studied in this
article.

Let us start by analysing the dynamics of a generalised position z. € R" and momentum ¢, € R" governed by a Hamiltonian of the
form

1 1
2o, Lo ye) = ZHA Ze, i ye),  where  HI(z, Giye)i= oV 4 S0l0)E), A=1,.T,

and y.(t) = y(et) € R" are slow external parameters with y. = O(¢). This setting of a Hamiltonian system which is slowly perturbed
by an external parameter is fundamental in the thermodynamic formulation derived by Hertz. For ¢ = 0, the unperturbed Hamiltonian
is given by

1 1
Hy (20, $o; Yo) = ZH 20, 03 Yo), where  H}(zo, %03 Yo) = E(C(?)z + iwi(}’o)(zé)zs A=1,...,1,

and yo(t) = y(0) = y,. With initial values of the form 23(0) = 0 and {&(O) = /2E} the solutions to the corresponding Hamilton's
equations are then given for A = 1,...,r by

2EX
zZj(t) = 2*)Sin(wx(y*)f), ¢y (t) = \/2E} cos (@, (y:)D) - (54)

w)\(y*

Moreover, we define the constant total energy

1
+Ea)§(y*)(z§)2, r=1,...,r.

.
1
1 A A A2
= ZE*, where  E; = 5({0)
If r = 1, the trajectory of (zg, &y) covers the entire energy surface {(zo, &) € R?: Hj-(zo, o3 Yo) = E1}. Hence, the system is ergodic.
In this case, which corresponds to the model studied in [11], the temperature in thermal equilibrium is defined via the time average,
indicated by angle brackets (-), of twice the kinetic energy. More precisely, we obtain

T,.(EY, y.) ;. 0Hg li 1 2E* cos®(w, (v, )t) dt = E*
Vi) = — )= lim — + €os“(w (Y =
MME, Yy ;‘0 8;3 0000 0 0 Y
which is unique in the case r = 1.
However, if r > 1, the energies E} (A = 1, ..., r) form distinct integrals of motion. This implies that the system is non-ergodic. A

naive application of the definition of temperature above results in distinct temperature expressions that are unsuitable to describe the
thermodynamic state of the whole system, because their values are in general path-dependent, i.e., T = E} # Ef' =T, for A # p
(A, u = 1,...,r). Therefore, we define as in [14] the temperature for non-ergodic systems via the ensemble-average. This gives a
unique measure for the thermodynamic state of the whole system.

A.1.1. The Birkhoff-Khinchin theorem for non-ergodic systems

A suitable expression for the temperature, which provides a unique measure for the whole system, can be derived if, in addition to
averaging with respect to time, one averages with respect to all uniformly distributed initial values on the energy surface, making the
temperature path-independent. This ensemble average allows us to define a temperature expression as a measure of the average kinetic
motion of the whole system. We follow [14] for the definition of the ensemble average and its application to Hamiltonian systems. Let
x = X(t, Xo) be the parametric form of the trajectory in phase-space starting at the point xo. Then, the average value of some function
¢ with respect to any phase trajectory x(t), i.e.,

(B(x _92%9/9/) (t, Xo))

depends, in general, on xy. An ensemble of systems is given by varying initial data xo, independent and identically distributed over the
phase region E < H(x) < E + AE. The probability density of x, in this region is constant and is equal to (I"(E + AE) — I'(E))™".
The ensemble average, E.A. (¢), of the function ¢ is defined by

1 1 rf
EA-(g) = ]I lim — t, X)) dt dxo.
() P I'(E + AE) — I'(E) /E<H(Xo)<E+AE om /(; B(x(t, x0)) dt dxo
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Suppose that the order of calculation of the integral over xy and limy_, », can be changed. Then

1
EA. = li t, dxp dt. 55
<¢> Al}:r—l;lo F(E =+ AE) 9~>OO 0 / \/E<H(X0 <E+AE ( XO)) Xo ( )

The region E < H(xg) < E + AE is invariant under the action of the phase flow x(t, x¢). Hence, in calculating the integral over xq in (55),
one can make a change of the variables xo — x. Since the determinant of this transformation is 1 by Liouville’s theorem, we can write

/ P(t. x0)) dxy = / $(x) d.
E<H(xo)<E+AE E<H(x)<E+AE

Thus, the integral does not depend on time. For small AE, this integral is given by

¢(x)dx ~ AE / o(x)
-/Esﬂ(x)sEME |VH|

Therefore, we arrive at an “analogous” version of the Birkhoff-Khinchin theorem: for any Hamiltonian system

EA. (¢) = Js¢ d(',VH' ) (56)

> [VH|

This version of the Birkhoff-Khinchin theorem reflects the “average” (with respect to initial data) behaviour of non-ergodic Hamiltonian
systems and is thus used to define the temperature in non-ergodic systems.

A.2. Derivation of thermodynamic relations in non-ergodic systems

As we saw in the previous section, the ensemble average of a function can be derived from the equality

f): |VH|
T do
= IVH

EA. (¢) =

where X = {(zo, {o) € R¥: Hi (20, {0; y+) = Ei+}, do is a surface element on the energy surface and

r 2 21/2
dH: dHF*

= |2 (5) + (5) |
; ALy az

The temperature for non-ergodic Hamiltonian systems is defined via the ensemble average by

/{ dHy do
OH (20, Lo V) > 0 8;& |VHL| (57)

ags /
s IVHE|

The numerator can be evaluated by noting that BHOL / 8;0* is the Ath component of the vector VHOL and hence

T(E),y.)=E <¢0

, . OHy /d¢s
n, = —m——
¢ |VHy |

is the Ath component of the outer unit vector n = VHy /|VHg"| on the energy surface. Therefore, we can write the numerator in the

form
/ & ; Oty / gy} do = / d"(z0. %o) = T'(E;" yx) (58)
= N - w2 Yx)s
af& |VHL Hgt (20, ¢0:y+)<E-

which follows from Gauss’ theorem, where I'(E., y,) is the phase-space volume enclosed by the trajectories of (54). To derive the
denominator in (57), we calculate the derivative of I'(EZ, y,) with respect to E*l and find

F(Ej+AE:,y*)—F(E:,y*)=/ d“(zo,;o)%/ Ando,
E <Hg-(20,50:y+)<E5 +AEs- Ha 20,50+ )=Ex-

where An is the distance between the energy surface Hy (zo + n,An, ¢ + n; An; y.) = E- + AE} and Hy (2o, o; y+) = E;-. A Taylor
expansion gives An = AE*L/WHOH and hence

Or(EL, d
M B / 7(1 (59)
o Hg' (20,50 y+)=Ex- [VHy|
Combining Egs. (57)-(59), the temperature T can thus be expressed in terms of the phase-space volume I"(E}, y..):
L
T(EL, y.) = T(E; . Ys) }

I (EL, y.)/0EL
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Similar to [11] we integrate (60) with respect to EX and obtain for the entropy
S(E,y.) = log (I (. y.)) + f(:),

where f(y,) is a constant of integration with respect to EL. To find the dependence of S on y, we follow again the derivation presented
in [11]. Using (56), we calculate for j = 1, ..., n the external force

(61)

BHOl do
8H&(Zo,co;y*)>_/z 3yl IVHy |
oy / _do
s |VHy |

For the numerator, we calculate the derivative of I'(EZ, y,) with respect to y’* Similarly to before, we have

F(ES, y.) = E.A.<

F(EL, v, + Ay) — F(E-.y.) = / (20, 20) / d"(20, o)
Ho-(20.80: Y+ Ays ) <Ef- Hg' (20,60:y+)<Ex-

~ / Ando,
Hg-(20.50:y%)=E+

where An indicates the distance between the energy surface Hy-(zo + n,An, ¢ + n{An;y’; + Ay, = Eif and Hy (20, 03 y«) = Ef. A
Taylor expansion gives
1 9H:
n=—-——_——24y,
IVHg | 9y,
and we obtain

A (EL, oH: d
Or(E . ys) _ _/ 9o "L . (62)
ayl* HOL(ZO»CO?J’*):E*L 3}"* |VHO |
Combining Egs. (59), (61) and (62) we obtain
dHE dT(EL, y,)/9y,
Ay = EA (S0 ) = _OPE, vy, (63)
Yk oI (E;, y.)/ O]

We thus find
S(Ey. y.) = log (I'(E;". y.)) + C. (64)

The constant C is chosen such that the entropy is dimensionless. This is the key result of Hertz’' thermodynamic formulation: the explicit
derivation of the entropy of a Hamiltonian system under the influence of a slowly varying parameter is (up to a constant) the logarithm
of the phase-space volume.

A.3. Application to the model problem

The analysis of the previous section reveals that thermodynamic properties of Hamiltonian systems are intrinsically connected to
the phase-space volume.

In general, the set {x € R? : X' ¥ ~1x < R*}, where ¥ = diag(a3, a2, ..., a3) with ay, ..., ag € R, describes a hyperellipsoid in R%. Its
d-dimensional volume is given by
I = Iy x|'?RY, (65)

where Iy is the volume of the d-dimensional hypersphere.
To calculate the phase-space volume for the model problem as presented in Section 2 note, that the set {(zg, o) € R*": Hé-(zo, Co5 Vx)
= E1} with

r r
1 1

By =) El=) S(@V+50i)z), (66)

=1 =1

describes a hyperellipsoid in R*". Eq. (66) can be written in the form E* = x" X~ 'x with x = (23, 23, ..., 2}, &3, ¢2, ..., &) and

. 2 2 2

XY =diag|(2,2,...,2, 3 v e .
w](y*) wz(}’*) WF(Y+)

Therefore, with d = 2r and R? = Ej, the volume of the hyperellipsoid (66) is according to (65) given by
(2E})
l_[;=] wk(y*) ’
We reason by analogy that the e-dependent phase-space volume, characterised by the energy of the fast subsystem

F(E*Lvy*) = FZr

r r
1 1 _
Ef =) E =) SV + e el
r=1 r=1
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is given by
(1)
l_[;:] Wy, (ye ) '

We therefore define, provided that I'.(EX, y.) # O, the temperature, normalised entropy and external force, in analogy to (60), (63) and
(64), as

TW(E-,ye) =Ty (67)

Tg(El Vo) = FS(ESJ'J’S)
°’ oI (Et, y:)/0EL"

which become with (67) and C, = —log((2e)' I»,)forj=1,...,n

1 r EL 4 r
Te=*29?wx(y5), sszzl()g( £ )7 Fész ZDJL;\
r =1 (V) 1

r=1

_ OLL(EL. )0y,

Se(ES,ye) = log (FL(ES, ye)) + G, EUES,ye) = ATL(E~. y.)/9E~"
e\Eg™s Ve £

Appendix B. Computation times for numerical simulations

For completeness, we present in this section the total computation times corresponding to the maximal step sizes used in the
simulations presented in this article. Tables 3 and 4 illustrate in column y! the total runtime for simulations of system (6) with respect
to distinct values of ¢ and a corresponding maximal step size as discussed in Section 7.1. Similarly, the columns y}) and }7; indicate
the total runtime for simulating systems (9) and (50). We recall that the maximal step size as discussed in Section 7.1 is given for
the leading-order approximation under the theoretical global error (52) by dt(;“;i‘ = 0(¢?) and dt(;“;{‘ = O(¢), and for the second-order

i e
approximation under the theoretical global error (53) by dt;“;f = 0(&%) and dt;“;fyl = O(e%?). Note that we always chose identical
e Yo¥2
step sizes for the derivation of y} and y,.

The source code for the numerical integration scheme was written in Python version 3.8.5. The simulations of the systems (6), (9)

and (50) as presented in Tables 3 and 4 were performed on a single core Intel® Core™ i5-8250U CPU.

Table 3
Computation times in seconds for y! and its leading-order asymptotic expansion yé for maximally viable step sizes that satisfy the theoretical global error (52).

Computation times (s) and maximal step sizes

¢ /! ag % i

0.5% 0.0026 1x 1072 0.00028 6 x 1072

0.5% 0.0271 1x 1073 0.00059 3x 1072

0.5* 0.0488 5x 107 0.00182 1x 1072

0.5° 0.2392 1x107* 0.00266 7 x 1073

0.58 0.7945 3x107° 0.00590 3x 1073
Table 4

Computation times in seconds for yg, its leading-order asymptotic expansion y}, and averaged second-order correction 37; for maximally viable step sizes that satisfy
the theoretical global error (53). The step sizes for deriving y}) and j/; were chosen identical.

Computation times (s) and maximal step sizes

‘ J! ayy % i} @y

0.5? 0.013 2x1073 0.0019 0.0037 1x1072
0.53 0.062 4x 1074 0.0069 0.0121 3x 1073
0.5* 0.303 8 x 107° 0.0258 0.0408 8 x107*
0.5° 6.122 4x10°° 0.0663 0.1017 3x107*
0.58 23.670 1x107® 0.1838 0.3041 1x 107
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