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a b s t r a c t

A class of fast–slow Hamiltonian systems with potential Uε describing the interaction of non-ergodic
fast and slow degrees of freedom is studied. The parameter ε indicates the typical timescale ratio of
the fast and slow degrees of freedom. It is known that the Hamiltonian system converges for ε → 0
to a homogenised Hamiltonian system. We study the situation where ε is small but positive.

First, we rigorously derive the second-order corrections to the homogenised (slow) degrees of
freedom. They can be decomposed into explicitly given terms that oscillate rapidly around zero
and terms that trace the average motion of the corrections, which are given as the solution to an
inhomogeneous linear system of differential equations.

Then, we analyse the energy of the fast degrees of freedom expanded to second-order from a
thermodynamic point of view. In particular, we define and expand to second-order a temperature,
an entropy and external forces and show that they satisfy to leading-order, as well as on average to
second-order, thermodynamic energy relations akin to the first and second law of thermodynamics.

Finally, we analyse for a specific fast–slow Hamiltonian system the second-order asymptotic
expansion of the slow degrees of freedom from a numerical point of view. Their approximation quality
for short and long time frames and their total computation time are compared with those of the
solution to the original fast–slow Hamiltonian system of similar accuracy.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Many scientists in physics, chemistry and materials science resort to computer simulations to study real-world dynamical processes.
hese simulations open up the possibility to quickly and inexpensively iterate through different experimental setups, thus hugely
educing cost in the form of time and labour and allow a level of insight into small- and large-scale processes that were out of
each decades ago. In chemical physics or materials science, for example, scientists frequently analyse large scale molecular dynamics
imulations to predict properties of large dynamical systems based on mathematical models that aim to describe the dynamical
volution of the constituent particles. In simulating these systems, one typically encounters two problems that severely impede their
calability. Firstly, the simulation of molecular structures requires a step size in the numerical integration scheme that ranges in the
rder of 10−15 seconds to accurately replicate the fast molecular vibrations in the system. Secondly, even small macroscopic systems
f interest require the integration of a potentially large number of particles. Even more, the two problems often compound and pose
challenging obstacle in the scalability and utility of molecular dynamic simulations.
From an applications point of view, one is often not interested in analysing the exact evolution of the fast molecular vibrations,

ut in the slow conformal motion that embodies the macroscale dynamics of the system. Here lies an opportunity to bypass at least
artly the scalability issues by advancing the understanding of these systems and a subsequent development of numerical integration
chemes that describe only the average evolution of the dynamical system without fully resolving the small-scale vibrations.
Fast–slow Hamiltonian systems provide a simplified fundamental description of large-scale interacting particles systems, where the

ystem’s degrees of freedom evolve on different scales in time and space. They can be used, for example, to model the evolution
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f molecules where the slow degrees of freedom represent the conformal motion and the fast degrees of freedom represent the
igh-frequency molecular vibrations [1]. There is a vast body of literature for averaging general dynamical systems, not necessarily
f Hamiltonian type, for example, using Young measures [2]. Applications of such fast–slow systems arise, for example, in models of
lasticity [3]. Recent work on averaging of Hamiltonian fast–slow systems and connections with adiabatic invariants include [4–6]
nd references therein. Similar averaging techniques are also relevant to understand equilibration in springy billiards [7]. For general
eferences to averaging, we refer the reader to [8–10].

With a mathematical description of a dynamical system in the form of a fast–slow Hamiltonian system, we are able to derive the
onformal motion through homogenisation in time. The theory laid out by Bornemann in [1] enables us to derive the homogenised
volution of a specific class of fast–slow Hamiltonian systems. More precisely, Bornemann considers a family of mechanical systems,
arametrised by a scale parameter ε, whose Lagrangian is of the form

Lε(x, ẋ) = 1
2 ⟨ẋ, ẋ⟩ −Wε(x), ẋ ∈ TxM, (1)

n a Euclidean configuration space M = Rm with a potential given by

Wε(x) = V (x)+ ε−2U(x).

Here, the potential U characterises the fast dynamics of the system. By splitting the coordinates according to x = (y, z) ∈ Rn
×Rr

= Rm,
where y represents the slow and z the fast degrees of freedom, Bornemann showed that system (1) converges as ε → 0 to a system
on a slow manifold N = U−1(0), governed by the Lagrangian

Lhom(x, ẋ) = 1
2 ⟨ẋ, ẋ⟩ − V (x)− Uhom(x), ẋ ∈ TxN, (2)

where Uhom can be derived from the Hessian of U and the initial conditions of x.
System (2) describes the slow, leading-order dynamics of the original system (1). As such, it allows for the integration of the

orresponding equations of motion with a larger step size than what would usually be required for the integration of the original
ystem. This can speed up the numerical integration significantly.
A crucial aspect of approximating the fast–slow solution of system (1) by a slow solution of system (2) is that the approximation

rror depends on the scale parameter ε. This scale parameter is a critical element in the dynamics described by (1). It is determined by
he underlying true natural system that the model aims to represent and indicates the ratio of the typical timescales of the fast and slow
egrees of freedom. In the case of a very small ε, a description of the fast–slow solution of system (1) by a slow solution of system (2)
ight be an acceptable trade-off in order to deal with the scalability issue mentioned earlier. However, a problem arises if ε is small,
o that the microscale oscillations severely affect the numerical integration, but not small enough so that the dynamics of system (1)
annot be sufficiently approximated by the homogenised dynamics given by system (2). In this case, the dynamics of the fast degrees
f freedom contribute much more to the evolution of the whole system than in the case of a very small ε. For example, in [1, Chapter III
2], the author applies the homogenisation process to derive the conformal motion of a butane molecule, where in the united atom
epresentation, the scale parameter is ε ≈ 0.25, which cannot be considered as small. It is thus natural to extend the theory presented
n [1] to describe the slow dynamics of the original system on a finer scale, potentially revealing microscale properties in the case of a
cale parameter away from the limit ε → 0. This line of research begins already in [1], where formal asymptotic expansions are derived
n Appendix C.

A further step was developed in [11], where the authors derive a second-order asymptotic expansion to the solution of system (1) in
he case of one fast and one slow degree of freedom, i.e., n = r = 1. Although the model in [11] is rather simple and the fast subsystem is
rgodic, the fast–slow character is sufficient to derive properties of the fine-scale dynamics that are characteristic for thermodynamic
rocesses. More precisely, for V (x) ≡ 0 and U(x) =

1
2ω

2(y)z2, where ω > 0 is a smooth frequency function, the thermodynamic
character of the model in [11] becomes evident by analysing the fast subsystem, which models the dynamics of the fast degree of
freedom z, as a motion that is perturbed by the evolution of the slow degree of freedom y. This setting allows an interpretation of
the fast subsystem from a thermodynamic point of view. By applying the thermodynamic theory for ergodic Hamiltonian systems,
first developed by Boltzmann and Gibbs [12], and later specified by Hertz [13], one derives expressions for temperature, entropy and
external force in the fast subsystem. Utilising the second-order asymptotic expansion, one can determine the leading-order terms of
these thermodynamic expressions and show that they satisfy a thermodynamic energy relation akin to the first and second law of
thermodynamics. It turns out that the entropy expression to leading-order is constant, suggesting an interpretation of the leading-order
dynamics as an adiabatic thermodynamic process. Remarkably, although away from the limit ε → 0, one finds a similar energy relation
for the averaged second-order terms of the expansion. Most importantly, the entropy expression to second-order is not constant. The
dynamics to second-order can therefore be interpreted as a non-adiabatic thermodynamic process.

In this article, we carry out a comparable study for the case of more than one fast and slow degrees of freedom, with the important
difference that the higher dimensional fast subsystem is non-ergodic. We extend the theory presented in [1] and derive the second-
order asymptotic expansion to the solution of system (1) in the case of an arbitrary finite number of fast and slow degrees of freedom,
i.e., n, r ∈ N. Specifically, we analyse the mechanical system (1) with a smooth potential V = V (y) and U(x) =

1
2 ⟨H(y)z, z⟩, where

(y) = diag(ω2
1(y), . . . , ω

2
r (y)) for smooth frequency functions ωλ > 0 (λ = 1, . . . , r). Unlike in [11], we have to impose certain

non-resonance conditions to derive the second-order asymptotic expansion. Following the strategy presented in [11], a key element in
the derivation of the second-order asymptotic expansion is a transformation of the fast degrees of freedom into action–angle variables.
By using weak convergence methods we show that the second-order asymptotic expansion of the ε-dependent transformed variables
is given, for instance in the case of yε , as yε = y0 + ε2(ȳ2 + [y2]ε)+ ε2yε3, where yε3 → 0 in C([0, T ],Rn) as ε → 0. Here, the function
0 is the leading-order term derived from system (2), the function ȳ2 is the slow component of the second-order correction, which can
e derived as the solution to an inhomogeneous linear system of differential equations, and the function [y2]ε is the fast component of
he second-order correction, which consists of explicitly given rapidly oscillating terms that converge weakly∗ to zero in L∞([0, T ],Rn).

Furthermore, we interpret the dynamics of the fast subsystem, which is composed of the fast degrees of freedom, from a
thermodynamic point of view. This is based on the thermodynamic theory for Hamiltonian systems formalised by Hertz [13] and
used in [11]. More precisely, by decomposing the total energy E into the energies E∥ and E⊥ such that E = E∥ + E⊥, we consider
ε ε ε ε ε ε
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⊥
ε (zε, żε; yε) as the energy describing the evolution of the fast degrees of freedom zε under a slow, external influence described by
he dynamics of yε . As the fast subsystem is not necessarily ergodic, we follow along the lines of [14] and replace time averages in
he thermodynamic theory by ensemble averages, i.e., averages over uniformly distributed initial values on the energy surface. With
his modification, we apply Hertz’ thermodynamic formalism and derive a temperature Tε , an entropy Sε and an external force Fε for
he fast subsystem. By applying the asymptotic expansion results from the first part of this article, we similarly expand the energy
⊥
ε = E⊥0 + ε[E⊥1 ]

ε
+ ε2

(
Ē⊥2 + [E⊥2 ]

ε
)
+ ε2E⊥ε3 , the temperature Tε = T0 +O(ε), the entropy Sε = S0 + ε[S1]ε+ ε2

(
S̄2 + [S2]ε

)
+ ε2Sε3 and

he external force Fε = F0 + O(ε), where E⊥ε3 , Sε3 → 0 in C([0, T ]). We find that to leading-order the thermodynamic quantities satisfy
n energy relation akin to the first and second law of thermodynamics (in the sense of Carathéodory [15])

dE⊥0 =

n∑
j=1

F j
0dy

j
0 + T0dS0.

n contrast to the work in [11], the leading-order entropy S0 can be constant or non-constant, depending on the characteristics
f the weighted frequency ratios θλ

∗
ωλ(y0)/ωµ(y0) (λ,µ = 1, . . . , r). Here, we use the definition of the entropy as the logarithm

f the phase space volume where the latter does not have to change slowly; the analysis shows that even in this situation, a
eaningful thermodynamic setting exists. As a consequence, we interpret the dynamics to leading-order as an adiabatic or non-
diabatic thermodynamic process, respectively. Moreover, by considering the average dynamics to second-order for fixed y0 and p0 = ẏ0,
e similarly find, although away from the limit ε → 0, a comparable energy relation of the form

dĒ⊥2 =

n∑
j=1

F j
0dȳ

j
2 + T0dS̄2.

ikewise, with a non-constant second-order entropy expression S̄2, we can interpret the averaged second-order dynamics as a
on-adiabatic thermodynamic process.
Finally, we analyse the viability of the second-order asymptotic expansion as a suitable approximation to the slow degrees of freedom

f system (1) from a numerical point of view. More precisely, we choose a specific model from the class of fast–slow Hamiltonian
ystems represented by (1) and compare the numerical solution of yε with y0 + ε2(ȳ2 + [y2]ε) in terms of its short- and long-
erm approximation quality and computation time. The maximal time frame for which an approximation of yε can be considered
ufficiently accurate significantly increases by using y0+ ε2(ȳ2+[y2]ε) instead of y0 alone. Moreover, we show that the computation of
0+ε

2(ȳ2+[y2]ε) is up to two orders of magnitude faster (depending on the scale parameter ε) than a computation of yε to comparable
ccuracy as a solution to system (1). As described earlier, the reason is that fast oscillations severely affect the runtime for numerically
omputing yε from (1). In contrast, the problematic oscillatory term at second-order [y2]ε is given explicitly, and the derivation of y0
nd ȳ2 only require a numerical integration of two slow systems of differential equations, which can be solved, in parallel, using a
elatively large step size.

An application of the theory presented in this article may not only improve large-scale molecular dynamics simulations. It can also
ind applications in cases where the homogenisation theory outlined above and related work as in [16] are applicable. Some examples
re given by the description of quantum–classical models in quantum-chemistry [1], the problem of deriving the guiding centre motion
n plasma physics [17] or, more recently, the derivation of a coarse-grained description of the coupled thermoelastic behaviour from
n atomistic model in materials science [18].
Finally, we want to point out other thermodynamic analyses based on the fast–slow system governed by the Lagrangian (1). In [19],

he authors extend system (1) by coupling the fast and slow degrees of freedom to an external Nosé–Hoover thermostat and analyse the
hermodynamic equilibration of the system on the fast and slow scale. In a similar line of thought, the authors in [20] expand system (1)
y embedding it into an external heat bath and subsequently analysing the resulting slow dynamics, analogous to the homogenisation
rocedure introduced above, in the limit ε → 0.

.1. Outline of the paper

In Section 2 we introduce the model problem, which establishes the foundation for the analysis in this article, and state necessary
on-resonance conditions, which ensure that the subsequently derived second-order expansion of the solution to the model problem
s well-defined. A summary of our main results is provided in Section 3. We start the analysis of the model problem by introducing a
ransformation of the fast degrees of freedom into action–angle variables in Section 4, where we also prove the existence and uniqueness
f a solution of the transformed system. In Section 5 we introduce some notation that simplifies the governing equations of motion and
erive the second-order asymptotic expansion for the transformed degrees of freedom. Subsequently, in Section 6, we define expressions
or the temperature, the entropy and the external force for the fast subsystem and interpret the model from a thermodynamic point
f view. For a test model, the global error for approximating yε by y0 + ε2(ȳ2 + [y2]ε) are analysed on short and long time intervals in
ection 7, where we also compare the runtimes for computing yε , y0 and ȳ2+[y2]ε . Section 8 provides a short conclusion of this article.
n Appendix A we summarise how the thermodynamic expressions can be derived for the fast subsystem. Finally, in Appendix B we
resent some data on the computation times corresponding to the maximal step sizes used in the numerical simulations presented in
his article.

. The model problem

For a small scale parameter 0 < ε < ε0 <∞, we study the family of mechanical systems given by the Lagrangian

L (x, ẋ) = 1
⟨ẋ, ẋ⟩ −W (x), ẋ ∈ T M, (3)
ε 2 ε x

3
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n a Euclidean configuration space M = Rm. Here and in the following, ⟨·, ·⟩ denotes Euclidean inner products and |·| denotes Euclidean
norms. Splitting the coordinates according to x = (y, z) ∈ Rn

× Rr
= Rm, we specify, following [1], the potential Wε = V + ε−2U by a

mooth potential V = V (y), which is assumed to be bounded from below and

U(x) = 1
2 ⟨H(y)z, z⟩ with H(y) = diag(ω2

1(y), . . . , ω
2
r (y)). (4)

e assume that the smooth functions ωλ ∈ C∞(Rn) are uniformly positive, i.e., there exists a constant ω∗ > 0 such that

ωλ(y) ≥ ω∗, y ∈ Rn, λ = 1, . . . , r. (5)

componentwise formulation of the equations of motion for the ε-dependent coordinates yε and zε in (3) yields

ÿjε = −∂jV (yε)− 1
2ε

−2 ⟨∂jH(yε)zε, zε
⟩
, j = 1, . . . , n, (6a)

z̈ε = −ε−2H(yε)zε. (6b)

oreover, we consider the ε-independent initial values

yε(0) = y∗, ẏε(0) = p∗, zε(0) = 0, żε(0) = u∗. (7)

e notice that the energy Eε of the system is independent of ε due to the particular choice zε(0) = 0,

Eε = 1
2 |ẏε|

2
+

1
2 |żε|

2
+ V (yε)+ ε−2U(yε, zε) = 1

2 |p∗|
2
+

1
2 |u∗|

2
+ V (y∗) = E∗. (8)

emark. For the equations in (6)–(8) and below, we will simultaneously make use of the vector notation for the coordinates yε ∈ Rn

nd zε ∈ Rr (and related expressions) as well as their componentwise representation yjε (j = 1, . . . , n) and zλε (λ = 1, . . . , r). The index
in the superscript should not be confused with an exponent.

We are primarily interested in the evolution of the slow degrees of freedom yjε (j = 1, . . . , n). The following theorem by Bornemann
hows that yε converges in the limit ε → 0 to a function y0 which is given as the solution to a second-order differential equation.

heorem 2.1 (Bornemann, [1]). For

Uhom(y0) =
r∑

λ=1

θλ
∗
ωλ(y0), where θλ

∗
=

⏐⏐uλ
∗

⏐⏐2
2ωλ(y∗)

, λ = 1, . . . , r,

et y0 be the solution to the second-order differential equation

ÿj0 = −∂jV (y0)− ∂jUhom(y0), j = 1, . . . , n, (9)

ith initial values y0(0) = y∗, ẏ0(0) = p∗. Then, for every finite time interval [0, T ], we obtain the strong convergence

yε → y0 in C1([0, T ],Rn)

and the weak∗ convergences ε−1zε
∗

⇀ 0 and żε
∗

⇀ 0 in L∞([0, T ],Rr ).

Theorem 2.1 shows that the family of mechanical systems (3) converges as ε → 0 to a mechanical system which is again Hamiltonian.

2.1. Non-resonance conditions

As the interaction of multiple oscillating degrees of freedom can lead to resonance effects in the system, we will, similar to [1],
impose suitable non-resonance conditions on the frequencies ωλ to ensure that the second-order asymptotic expansions, which we
will derive in Section 5, are well-defined. We say, referring to the definition stated for example in [21, Section 14.6], that a resonance
of order j ∈ N at y ∈ Rn is given by the relation

γ1ω1(y)+ · · · + γrωr (y) = 0, |γ1| + · · · + |γr | = j, (10)

with integer coefficients γλ ∈ Z for λ = 1, . . . , r . Note that the non-degeneracy condition (5) implies that there is no resonance of
order one.

Assumption 1. We assume that the homogenised solution in Theorem 2.1 is non-resonant of order two, i.e., we assume that

γ1ω1(y0(t))+ · · · + γrωr (y0(t)) ̸= 0, |γ1| + · · · + |γr | = 2,

for all t ∈ [0, T ].

Assumption 2. Moreover, we assume that the homogenised solution in Theorem 2.1 is not flatly resonant up to order three. More
precisely, we assume that

d
dt
(γ1ω1(y0(ti))+ · · · + γrωr (y0(ti))) ̸= 0, |γ1| + · · · + |γr | ≤ 3,

or all impact times t ∈ [0, T ] (i ∈ I ⊂ N, I finite) such that the non-resonance condition (10) holds at y (t ).
i 0 i

4
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We remark that Assumption 1 is intentionally chosen to simplify the derivation of the second-order asymptotic expansions (see
remark following Lemma 5.9). Under these simplifications the assumption also ensures, that the second-order asymptotic expansions
derived in Section 5 are well-defined. Assumption 2 is, analogous to [1], a necessary prerequisite for the theory developed below. It
ensures that rapidly oscillating functions of the form exp

(
±iε−1

(
ωλ(yε)− ωµ(yε)

))
and exp

(
±iε−1

(
ωλ(yε)+ ων(yε)− ωµ(yε)

))
where

λ,µ, ν = 1, . . . , r , λ ̸= µ converge weakly∗ to zero in L∞([0, T ]). In [1] these functions appear due to interactions of the fast degrees
of freedom caused by the structure of a more general potential U(x) as well as a more general metric ⟨·, ·⟩ and Assumption 2 is used
to derive the leading-order asymptotic expansion of the system’s degrees of freedom. Here, however, these functions appear only due
to small-scale interactions in the second-order asymptotic expansions.

3. Summary of the main results

The goal of this article is to extend the theory developed in [1] by deriving the second-order asymptotic expansion rigorously for
the solution of the equations of motion (6) and interpret the corresponding second-order asymptotic expansion of the energy (8) from
a thermodynamic point of view. Note that the mechanical system (3) is not a classical thermodynamic system. In particular, the fast
subsystem, consisting of the fast degrees of freedom zλε (λ = 1, . . . , r), which we will consider in Section 6 as the thermodynamic
part of the whole system, is in general not ergodic. Finally, we will discuss the numerical implications of the second-order asymptotic
expansion of yε in terms of its approximation error and computational cost.

Our main findings in this article can be summarised as follows.

1. After transforming the rapidly oscillating degrees of freedom into action–angle variables (zε, żε) ↦→ (θε, φε), which also involves
a transformation of the generalised momentum ẏε ↦→ pε , we derive the second-order asymptotic expansion of yε, pε, θε, φε . This
takes the form

yε = y0 + ε[ȳ1]ε + ε2[ȳ2]ε + ε2yε3,

pε = p0 + ε[p̄1]ε + ε2[p̄2]ε + ε2pε3,

θε = θ∗ + ε[θ̄1]
ε
+ ε2[θ̄2]

ε
+ ε2θ ε3 ,

φε = φ0 + ε[φ̄1]
ε
+ ε2[φ̄2]

ε
+ ε2φε3,

where for i ∈ {1, 2},

[ȳi]ε := ȳi + [yi]ε
∗

⇀ ȳi in L∞([0, T ],Rn), yε3 → 0 in C([0, T ],Rn),

[p̄i]ε := p̄i + [pi]ε
∗

⇀ p̄i in L∞([0, T ],Rn), pε3 → 0 in C([0, T ],Rn),

[θ̄i]
ε
:= θ̄i + [θi]

ε ∗

⇀ θ̄i in L∞([0, T ],Rr ), θ ε3 → 0 in C([0, T ],Rr ),

[φ̄i]
ε
:= φ̄i + [φi]

ε ∗

⇀ φ̄i in L∞([0, T ],Rr ), φε3 → 0 in C([0, T ],Rr ).

In other words, for each degree of freedom the second-order asymptotic expansion is characterised – to leading-order by the
theory developed in [1] (Theorem 2.1) – to ith order by a decomposition into a slow term, indicated by an overbar, which
constitutes the average motion of the ith order expansion, and a fast term, indicated by square brackets, which oscillates rapidly
and converges weakly∗ to zero — and by a residual term, indicated with a subscript three, which converges uniformly to zero.
In particular, we show that

[ȳ1]ε = 0, [p̄1]ε = 0, [θ̄1]
ε
= [θ1]

ε, [φ̄1]
ε
= 0,

and that (φ̄2, θ̄2, ȳ2, p̄2) is given as the solution to an inhomogeneous linear system of differential equations (Theorem 5.2).
Moreover, the rapidly oscillating functions [θ1]ε , [y2]ε , [p2]ε , [θ2]ε and [φ2]

ε are explicitly given in Definition 5.1.
2. In [13], Hertz formalises a thermodynamic theory for fast Hamiltonian systems which are perturbed by slow external agents.

We regard the fast subsystem (zε, żε) as such a thermodynamic system, perturbed by the slow motion of (yε, ẏε). Since the fast
subsystem is not ergodic, we follow along the lines of [14, Chapter 1.10] and replace the time average, which is an essential
component in the thermodynamic theory, by the ensemble average, i.e., the average over uniformly distributed initial values on
the energy surface (see Appendix A), and define, based on Hertz’ formulation, a temperature Tε , an entropy Sε and an external
force Fε for the fast subsystem.
In combination with the analytic result discussed under 1, we decompose the total energy Eε into the energy associated with the
fast subsystem E⊥ε and its residual energy E∥ε = Eε − E⊥ε , and expand, similar to above E⊥ε , E

∥
ε , Tε , Sε and Fε into the form

E⊥ε = E⊥0 + ε[Ē⊥1 ]
ε
+ ε2[Ē⊥2 ]

ε
+ ε2E⊥ε3 ,

E∥ε = E∥0 + ε[Ē
∥

1 ]
ε
+ ε2[Ē∥2 ]

ε
+ ε2E∥ε3 ,

Sε = S0 + ε[S̄1]ε + ε2[S̄2]ε + ε2Sε3,
Tε = T0 + O(ε),
Fε = F0 + O(ε),

where for i ∈ {1, 2},

[Ē⊥i ]
ε
:= Ē⊥i + [E⊥i ]

ε ∗

⇀ Ē⊥i in L∞([0, T ]), E⊥ε3 → 0 in C([0, T ]),

[Ē∥i ]
ε
:= Ē∥i + [E∥i ]

ε ∗

⇀ Ē∥i in L∞([0, T ]), E∥ε3 → 0 in C([0, T ]),

[S̄i]ε := S̄i + [Si]ε
∗

⇀ S̄i in L∞([0, T ]), Sε3 → 0 in C([0, T ]).

The characterisation of the ith order expansion is similar to 1 and is already discussed, for the case of n = r = 1, in [11].
5
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In Section 6 we interpret these asymptotic expansions from a thermodynamic point of view. In particular, we show that, to
leading-order, the dynamics can be interpreted as a thermodynamic process characterised by the energy relation

dE⊥0 =

n∑
j=1

F j
0dy

j
0 + T0dS0.

In contrast to the analysis in [11], we find, provided that θλ
∗
̸= 0 for at least one λ = 1, . . . , r , that the entropy expression to

leading-order is constant, dS0 = 0, if and only if all pairwise weighted frequency ratios θλ
∗
ωλ(y0)/ωµ(y0) (λ,µ = 1, . . . , r) are

constant. In this case, the leading-order dynamics can be interpreted as an adiabatic thermodynamic process. Yet, if any of the
weighted frequency ratios is non-constant, the entropy is non-constant and thus the leading-order dynamics can be interpreted
as a non-adiabatic thermodynamic process. Here we use the definition of entropy given by Hertz in a context where the entropy
is not necessarily the logarithm of an adiabatic invariant. Nevertheless, we show that a meaningful thermodynamic interpretation
can be given.
Furthermore, we show that the averaged second-order dynamics, i.e., the dynamics in the weak∗ limit of the second-order terms,
indicated by an overbar, represents for fixed (y0, p0) a non-adiabatic thermodynamic process with an averaged non-constant
entropy, dS̄2 ̸= 0, which also satisfies relations akin to equilibrium thermodynamics, despite being beyond the limit ε → 0,

dĒ⊥2 =

n∑
j=1

F j
0dȳ

j
2 + T0dS̄2.

Finally, we show in Theorem 6.1 that the evolution of (ȳ2, p̄2) is governed by equations which resemble Hamilton’s canonical
equations,

dȳ2
dt

=
∂ Ē2
∂p0

,
∂ p̄2
dt

= −
∂ Ē2
∂y0

,

for Ē2 = Ē⊥2 + Ē∥2 , which are complemented by the ε-independent initial values

ȳ2(0) = −[y2]ε(0), p̄2(0) = −[p2]ε(0).

3. Finally, we compare in numerical simulations the second-order asymptotic expansion of the slow degrees of freedom y0+ε2(ȳ2+
[y2]ε) with simulations for yε of the original system (6). The latter is computationally expensive, as it requires a numerical
integration of the fast degrees of freedom zε . To this end, we derive numerically the slow motion y0 of the leading-order
system (9) and the average motion ȳ2 of the second-order system (23) and combine them with the explicitly given rapidly
oscillating components [y2]ε of the second-order expansion as specified in Definition 5.1. We find, depending on the value of the
scale parameter ε, that the computation time for the second-order expansion is up to two orders of magnitude faster than the
computation time for the slow degrees of freedom of the original system. Moreover, we show that y0 + ε2(ȳ2 + [y2]ε) provides
an approximation of yε which has significantly better global error bounds on long time intervals than an approximation by y0
alone.

4. The model problem in action–angle variables

To study the dynamics of yε and zε on different scales, a detailed asymptotic analysis is required. Such an analysis was already
presented for the model problem as introduced in Section 2 in the case of one fast and one slow degree of freedom (i.e., n = r = 1)
in [11], which extends the analysis given in [1, Appendix C]. To derive the second-order asymptotic expansion of the solution to
the model problem for arbitrary n, r ∈ N, we analogously start by rephrasing the governing system of Newtonian equations (6) by
transforming the fast degrees of freedom (zε, żε) into action–angle variables (θε, φε).

We denote the canonical momenta corresponding to the positions (yε, zε) as (ηε, ζε). Then, the equations of motion (6), together
with the velocity relations

ẏε = ηε, żε = ζε,

are given by the canonical equations of motion belonging to the energy function

Eε =
1
2
|ηε|

2
+

1
2
|ζε|

2
+ V (yε)+

1
2
ε−2

r∑
λ=1

ω2
λ(yε)(z

λ
ε )

2.

he transformation (zε, ζε) ↦→ (θε, φε) can be found by the theory of generating functions [22] as presented in [1, Appendix C]. For
fixed yε , the generating function is given by

S0(zε, φε; yε) =
1
2ε

r∑
λ=1

ωλ(yε)(zλε )
2 cot(ε−1φλε ),

via ζε = ∂S0/∂zε and θε = −∂S0/∂φε . With this transformation, the fast degrees of freedom (zε, ζε) can be written as

zλε = ε

√
2θλε
ωλ(yε)

sin(ε−1φλε ), ζ λε =

√
2θλε ωλ(yε) cos(ε

−1φλε ).

It turns out, however, that the transformation (zε, ζε) ↦→ (θε, φε) is symplectic only for fixed yε . To derive a transformation that preserves
he symplectic structure on the whole phase-space, one introduces the generalised momenta p through another transformation
ε

6
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ε ↦→ pε . To this end, we define the extended generating function S(yε, pε, zε, φε) = pTε yε + S0(zε, φε; yε) which does not transform the
osition yε = ∂S/∂pε , but changes the momentum ηε such that the transformation remains symplectic on the whole phase-space. The
issing transformation of the momentum ηε is given componentwise for j = 1, . . . , n by

ηjε =
∂S

∂yjε
= pjε + ε

r∑
λ=1

θλε · ∂jωλ(yε)
2ωλ(yε)

sin(2ε−1φλε ).

y construction, the resulting transformation (yε, ηε; zε, ζε) ↦→ (yε, pε;φε, θε) is symplectic.
The energy can be expressed in the new coordinates as

Eε =
1
2
|pε|2 + V (yε)+

r∑
λ=1

θλε ωλ(yε)+ ε
n∑

j=1

r∑
λ=1

θλε p
j
ε · ∂jωλ(yε)
2ωλ(yε)

sin(2ε−1φλε )

+
ε2

8

n∑
j=1

(
r∑

λ=1

θλε · ∂jωλ(yε)
ωλ(yε)

sin(2ε−1φλε )

)2

.

Thus, by the canonical formalism, the equations of motion take the form

φ̇λε =
∂Eε
∂θλε

, θ̇λε = −
∂Eε
∂φλε

, ẏjε =
∂Eε
∂pjε

, ṗjε = −
∂Eε
∂yjε

,

or λ = 1, . . . , r and j = 1, . . . , n. After some calculations, we find that these equations are given by

φ̇λε = ωλ(yε)+ ε
n∑

j=1

pjε · ∂jωλ(yε)
2ωλ(yε)

sin(2ε−1φλε )

+
ε2

8

n∑
j=1

r∑
µ=1

θµε · ∂jωµ(yε) · ∂jωλ(yε)
ωµ(yε)ωλ(yε)

(
cos

(
2ε−1 (φµε − φλε

))
− cos

(
2ε−1 (φµε + φλε

)))
, (11a)

θ̇λε = −

n∑
j=1

θλε p
j
ε · ∂jωλ(yε)
ωλ(yε)

cos
(
2ε−1φλε

)
−
ε

4

n∑
j=1

r∑
µ=1

θµε θ
λ
ε · ∂jωµ(yε) · ∂jωλ(yε)
ωµ(yε)ωλ(yε)

(
sin
(
2ε−1 (φµε − φλε

))
+ sin

(
2ε−1 (φµε + φλε

)))
, (11b)

ẏjε = pjε + ε
r∑

λ=1

θλε · ∂jωλ(yε)
2ωλ(yε)

sin
(
2ε−1φλε

)
, (11c)

ṗjε = −∂jV (yε)−
r∑

λ=1

θλε · ∂jωλ(yε)− ε
n∑

k=1

r∑
λ=1

θλε p
k
ε

2

(
∂j∂kωλ(yε)
ωλ(yε)

−
∂kωλ(yε) · ∂jωλ(yε)

ω2
λ(yε)

)
sin
(
2ε−1φλε

)
−
ε2

8

n∑
k=1

r∑
λ=1

r∑
µ=1

θλε θ
µ
ε · ∂kωµ(yε)
ωµ(yε)

(
∂j∂kωλ(yε)
ωλ(yε)

−
∂kωλ(yε) · ∂jωλ(yε)

ω2
λ(yε)

)
×
(
cos

(
2ε−1 (φµε − φλε

))
− cos

(
2ε−1 (φµε + φλε

)))
. (11d)

The initial values as given in (7) transform to

φε(0) = 0, θλε (0) = θλ
∗
=

|uλ
∗
|
2

2ωλ(y∗)
, yε(0) = y∗, pε(0) = p∗. (12)

4.1. Existence and uniqueness of a solution to the transformed model problem

Let us denote the right-hand side of (11) as Fε:R2m
→ R2m. By assumption ωλ ∈ C∞(Rn) for λ = 1, . . . , r and therefore

Fε ∈ C∞(R2m,R2m) for 0 < ε < ε0 < ∞. In particular, Fε is locally Lipschitz continuous. Hence, by the standard existence and
uniqueness theory for ordinary differential equations (see for example [23]), there exists a T > 0 such that for fixed 0 < ε < ε0 <∞

the initial value problem (11)–(12) has a unique solution

(φε, θε, yε, pε) ∈ C∞([0, T ],R2m). (13)

5. Asymptotic expansion

In this section, we rigorously derive the second-order asymptotic expansion of φε , θε , yε and pε . We will see, that the leading-order
expansion follows directly from the evolution equations (11). To simplify these equations for the subsequent analysis, we introduce in
Section 5.2 some suitable new notation. We then derive the first- and second-order asymptotic expansion in Section 5.3.
7
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5
.1. Leading-order expansion

We consider a sequence of solutions (13) for ε → 0. The right-hand side of the evolution equations (11) is oscillatory and has
rapidly oscillating terms of leading-order. As a consequence, the sequences {φ̇ε} and {θε} are bounded in C0,1([0, T ],Rr ), and the
sequences {ẏε} and {ṗε} are bounded in C0,1([0, T ],Rn), while sequences of higher-order derivatives (in particular {θ̈ε}, which will thus
require special attention in the later part of this analysis) become unbounded as ε → 0. It follows from the extended Arzelà–Ascoli
theorem [1, Chapter I §1] that we can extract a subsequence, not relabelled, and functions θ0 ∈ C0,1([0, T ],Rr ), φ0 ∈ C1,1([0, T ],Rr )
and y0, p0 ∈ C1,1([0, T ],Rn), such that

φε → φ0 in C1([0, T ],Rr ), φ̈ε
∗

⇀ φ̈0 in L∞([0, T ],Rr ), (14a)

θε → θ0 in C([0, T ],Rr ), θ̇ε
∗

⇀ θ̇0 in L∞([0, T ],Rr ), (14b)

yε → y0 in C1([0, T ],Rn), ÿε
∗

⇀ ÿ0 in L∞([0, T ],Rn), (14c)

pε → p0 in C1([0, T ],Rn), p̈ε
∗

⇀ p̈0 in L∞([0, T ],Rn). (14d)

By taking the limit ε → 0 in Eqs. (11a), (11c) and (11d) and the weak∗ limit in (11b) we deduce that

φ̇λ0 = ωλ(y0), θ̇λ0 = 0, ẏj0 = pj0, ṗj0 = −∂jV (y0)−
r∑

λ=1

θλ
∗
· ∂jωλ(y0),

for λ = 1, . . . , r and j = 1, . . . , n, and in particular that θλ0 ≡ θλ
∗
(compare with (12)). Moreover, since the right-hand side of the limit

equation

ÿj0 = −∂jV (y0)−
r∑

λ=1

θλ
∗
· ∂jωλ(y0)

does not depend on a chosen subsequence, we can discard the extraction of a subsequence altogether (see [1, Principle 5, Chapter I
§1]). Note that the above convergence results extend Theorem 2.1.

5.2. Reformulation of the governing equations

It will be convenient to introduce some notation to simplify the system of differential equations (11). To this end, we define for
f ∈ C∞(Rn), where f = f (y) and y ∈ C∞([0, T ],Rn), the expression

Dk
tD

l
jf :=

dk

dtk
∂ lf
∂ylj
,

for k, l ∈ N0 and j = 1, . . . , n. We will often apply this notation in combination with the function

Lλε := log(ωλ(yε)),

where λ = 1, . . . , r . Then, we can conveniently write, for instance,

DLλε =
n∑

j=1

DjLλε · ej or DtLλε =
⟨
ẏε,DLλε

⟩
=

n∑
j=1

ẏjε · DjLλε , (15)

with ej as the jth standard basis vector in Rn. With these definitions, the equations in (11) read

φ̇λε = ωλ(yε)+
ε

2

⟨
pε,DLλε

⟩
sin(2ε−1φλε )

+
ε2

8

r∑
µ=1

θµε
⟨
DLλε ,DL

µ
ε

⟩ (
cos

(
2ε−1 (φµε − φλε

))
− cos

(
2ε−1 (φµε + φλε

)))
, (16a)

θ̇λε = −θλε
⟨
pε,DLλε

⟩
cos(2ε−1φλε )

−
ε

4

r∑
µ=1

θµε θ
λ
ε

⟨
DLλε ,DL

µ
ε

⟩ (
sin
(
2ε−1 (φµε − φλε

))
+ sin

(
2ε−1 (φµε + φλε

)))
, (16b)

ẏjε = pjε +
ε

2

n∑
λ=1

θλε · DjLλε sin(2ε
−1φλε ), (16c)

ṗjε = −DjV (yε)−
r∑

λ=1

θλε · Djωλ(yε)−
ε

2

r∑
λ=1

θλε
⟨
pε,DDjLλε

⟩
sin(2ε−1φλε )

−
ε2

8

r∑ r∑
θλε θ

µ
ε

⟨
DLµε ,DDjLλε

⟩ (
cos

(
2ε−1 (φµε − φλε

))
− cos

(
2ε−1 (φµε + φλε

)))
. (16d)
λ=1 µ=1

8
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M
f

a

oreover, solving (16c) with respect to pjε and inserting the result into (16a), (16b) and (16d) brings the equations of motion to their
inal form

φ̇λε = ωλ(yε)+
ε

2
DtLλε sin(2ε

−1φλε ), (17a)

θ̇λε = −θλε · DtLλε cos(2ε
−1φλε ), (17b)

ẏjε = pjε +
ε

2

r∑
λ=1

θλε · DjLλε sin(2ε
−1φλε ), (17c)

ṗjε = −DjV (yε)−
r∑

λ=1

θλε · Djωλ(yε)−
ε

2

r∑
λ=1

θλε · DtDjLλε sin(2ε
−1φλε ). (17d)

5.3. First- and second-order expansion

We now define functions that will appear throughout this work and then state the first main result 1.

Definition 5.1. Let (φε, θε, yε, pε) be the solution to (11)–(12) and (φ0, θ0, y0, p0) be as in (14). With Assumption 1 and the notation
introduced above we define for λ = 1, . . . , r and j = 1, . . . , n the functions

θλε1 :=
θλε − θλ

∗

ε
, φλε2 :=

φλε − φ
λ
0

ε2
, yjε2 :=

yjε − yj0
ε2

, pjε2 :=
pjε − pj0
ε2

, θλε2 :=
θλε1 − [θλ1 ]

ε

ε
,

[θλ1 ]
ε
:= −

θλ
∗
· DtLλ0

2ωλ(y0)
sin(2ε−1φλ0 ), [φλ2 ]

ε
:= −

DtLλ0
4ωλ(y0)

cos(2ε−1φλ0 ),

[yj2]
ε
:= −

r∑
λ=1

θλ
∗
· DjLλ0

4ωλ(y0)
cos(2ε−1φλ0 ), [pj2]

ε
:=

r∑
λ=1

d
dt

(
θλ
∗
· DjLλ0

4ωλ(y0)

)
cos(2ε−1φλ0 ),

and

[θλ2 ]
ε
:=

r∑
µ=1

θλ
∗
θ
µ
∗

⟨
Dωµ(y0),DLλ0

⟩
4ω2

λ(y0)
cos(2ε−1φλ0 )−

θλ
∗

⟨
D2Lλ0 ẏ0, ẏ0

⟩
4ω2

λ(y0)
cos(2ε−1φλ0 )+

θλ
∗
(DtLλ0)

2

4ω2
λ(y0)

cos(2ε−1φλ0 )

+
(θλ

∗
)2|DLλ0|

2

16ωλ(y0)
cos(4ε−1φλ0 )−

θλ
∗
· DtLλ0

ωλ(y0)
φ̄λ2 cos(2ε−1φλ0 )+

θλ
∗

⟨
DV (y0),DLλ0

⟩
4ω2

λ(y0)
cos(2ε−1φλ0 )

+

r∑
µ=1
µ̸=λ

θλ
∗
θ
µ
∗

⟨
DLµ0 ,DL

λ
0

⟩
8

{
cos(2ε−1(φµ0 − φλ0 ))
ωµ(y0)− ωλ(y0)

+
cos(2ε−1(φµ0 + φλ0 ))
ωµ(y0)+ ωλ(y0)

}
.

Theorem 5.2. The functions specified in Definition 5.1 satisfy

θ ε1 − [θ1]
ε
→ 0 in C([0, T ],Rr )

d
dt

(
θ ε1 − [θ1]

ε
) ∗

⇀ 0 in L∞([0, T ],Rr ), (18)

φε2 − [φ2]
ε
→ φ̄2 in C([0, T ],Rr )

d
dt

(
φε2 − [φ2]

ε
) ∗

⇀
dφ̄2

dt
in L∞([0, T ],Rr ), (19)

yε2 − [y2]ε → ȳ2 in C([0, T ],Rn)
d
dt

(
yε2 − [y2]ε

) ∗

⇀
dȳ2
dt

in L∞([0, T ],Rn), (20)

pε2 − [p2]ε → p̄2 in C([0, T ],Rn)
d
dt

(
pε2 − [p2]ε

) ∗

⇀
dp̄2
dt

in L∞([0, T ],Rn), (21)

nd

θ ε2 − [θ2]
ε
→ θ̄2 in C([0, T ],Rr ), (22)

where (φ̄2, θ̄2, ȳ2, p̄2) is the unique solution to the inhomogeneous linear system of differential equations

dφ̄λ2
dt

= ⟨Dωλ(y0), ȳ2⟩ +
θλ
∗
|DLλ0|

2

8
−

(DtLλ0)
2

8ωλ(y0)
, (23a)

dθ̄λ2
dt

=
d
dt
θλ
∗
(DtLλ0)

2

8ω2
λ(y0)

, (23b)

dȳj2
dt

= p̄j2 −
r∑

λ=1

θλ
∗
· DjLλ0 · DtLλ0
4ωλ(y0)

, (23c)

dp̄j2
dt

= −
⟨
ȳ2,DDjV (y0)

⟩
−

r∑
θ̄λ2 · Djωλ(y0)−

r∑
θλ
∗

⟨
ȳ2,DDjωλ(y0)

⟩
−

r∑ (
θλ
∗

)2 ⟨DLλ0,DDjLλ0
⟩

8
+

r∑ θλ
∗
· DtDjLλ0 · DtLλ0
4ω (y )

, (23d)

λ=1 λ=1 λ=1 λ=1 λ 0

9



M. Klar, K. Matthies, C. Reina et al. Physica D 428 (2021) 133036

f

5

o
d
o

t
f
θ

t

L

5
l
u

r
B
u

{

e

t
i
t
A
t
t

c
g
o
t
m
m

L
t

P

R

L
0

P

T

or λ = 1, . . . , r and j = 1, . . . , n, with ε-independent initial values

φ̄2(0) = −[φ2]
ε(0), θ̄2(0) = −[θ2]

ε(0), ȳ2(0) = −[y2]ε(0), p̄2(0) = −[p2]ε(0). (24)

.4. Proof of Theorem 5.2

The proof of Theorem 5.2 will use the following Lemmas 5.3 to 5.12. We start by sketching the general strategy of the proof.
Theorem 5.2 states that the first- and second-order asymptotic expansions of φε , θε , yε and pε can be decomposed into rapidly

scillating terms [θ1]ε , [φ2]
ε , [y2]ε , [p2]ε and [θ2]

ε , which converge weakly∗ to zero, and slowly evolving terms φ̄2, ȳ2, p̄2 and θ̄2, which
escribe the average motion of the second-order expansions and are given as the solution to an inhomogeneous linear system of
rdinary differential equations.
To derive these second-order asymptotic expansions, we specified in Definition 5.1 the scaled first-order residual function θ ε1 and

he scaled second-order residual functions φε2 , y
ε
2, p

ε
2 and θ ε2 by subtracting the leading- and first-order asymptotic expansion terms

rom the original solution to the model problem and by scaling these residual terms to appropriate order. The functions φε2 , y
ε
2, p

ε
2 and

ε
2 carry all the information about the system’s second-order asymptotic expansion in their leading-order expression. We thus analyse
he limit ε → 0 of these terms.

In the proof of Theorem 5.2, we will repeatedly integrate by parts, which requires us to regularly divide by φ̇λε and φ̇λε − φ̇
µ
ε (λ ̸= µ).

emma 5.3 ensures that the resulting terms are well-defined, provided that the scale parameter ε is small enough.
As the model problem is highly oscillatory, the interacting degrees of freedom can exhibit resonances of different types. Lemmas 5.4–

.6 clarify how the interaction of a generic function uε with a rapidly oscillating function exp(iε−1ψε) affects their interaction in the
imit ε → 0. Here, uε and ψε are representatives of functions that appear throughout the proof of Theorem 5.2. Lemmas 5.4–5.6 are
sed in the derivation of the weak∗ limit of specific rapidly oscillating functions under the non-resonance Assumptions 1 and 2.
Similarly, Lemma 5.7 provides information about the uniform convergence of the term uε exp(iε−1ψε)− u0 exp(iε−1ψ0), which is a

epresentation of functions that appear throughout the proof of Theorem 5.2. Here, uε exp(iε−1ψε) is rapidly oscillating at leading-order.
y subtracting the leading-order term u0 exp(iε−1ψ0), their difference converges uniformly under certain convergence assumptions on
ε and ψε .
In Lemmas 5.8 and 5.9 we show that the sequences of scaled residual functions {θ ε1 }, {φ

ε
2} and {θ ε2 } are bounded in L∞([0, T ],Rr ), and

yε2} and {pε2} are bounded in L∞([0, T ],Rn). This is a necessary prerequisite for the analysis of the first- and second-order asymptotic
xpansion.
In general, the rapidly oscillating terms [θ1]ε , [φ2]

ε , [y2]ε , [p2]ε and [θ2]
ε , which do not converge in the limit ε → 0, can be found

hrough integration by parts. To find the evolution equation for the averaged second-order expansion terms φ̄2, ȳ2, p̄2 and θ̄2, we analyse
n Lemmas 5.10 and 5.11 the time derivatives of the terms φε2 −[φ2]

ε , yε2−[y2]ε , pε2−[p2]ε and θ ε2 −[θ2]
ε . They carry information about

he time derivative of φ̄2, ȳ2, p̄2 and θ̄2 in their leading-order asymptotic expansion. Alaoglu’s theorem [1, Principle 3] and the extended
rzelà–Ascoli theorem [1, Principle 4] justify the extraction of a subsequence such that in the weak∗ limit an evolution equation for
he average dynamics at second-order emerges. However, since the evolution equation has a unique solution, Lemma 5.12 implies that
he extraction of a subsequence can be discarded altogether, meaning the limit holds for the whole sequence.

The following lemmas collectively proof Theorem 5.2. They are stated separately for reference but should be understood in the
ontext of Theorem 5.2. As mentioned earlier, the problem presented in Section 2 extends the model in [11]. More precisely, it
eneralises the model in [11] in two ways. Firstly, by describing the interaction of r fast and n slow degrees of freedom (n, r ∈ N) instead
f the interaction of one fast and one slow degree of freedom. This requires us to impose certain non-resonance conditions. Secondly,
he model in this article includes a slow potential V = V (y) which is absent in [11]. These generalisations make the following proof
uch more involved, yet it mimics at its core the proof as presented in [11]. As such, some of the following preparatory lemmas, with
odel-specific alterations, can be found in [11]. Nevertheless, we will state and prove these lemmas here for the reader’s convenience.

emma 5.3 (Similar to Lemma 3.4 in [11]). There exist constants 0 < C < ∞ and 0 < ε0 < ∞ where ε0 = ε0(φ∗, θ∗, y∗, p∗, ω, C) such
hat 0 < C ≤ φ̇λε for λ = 1, . . . , r and 0 < C ≤ |φ̇λε − φ̇

µ
ε | for λ,µ = 1, . . . , r, λ ̸= µ, for all 0 < ε < ε0 small enough.

roof. The claim follows directly from Assumption 1 and (17a). □

emark. Henceforth, we assume that 0 < ε < ε0 is small enough so that the statements of Lemma 5.3 apply.

emma 5.4 (Lemma 3.5 in [11]). Let {uε} be a bounded sequence in C0,1([0, T ]) and {ψε} be a bounded sequence in C1,1([0, T ]) with
< C ≤ ψ̇ε . Then, for all a, b ∈ [0, T ]:∫ b

a
uε sin(ε−1ψε) dt = O(ε),

∫ b

a
uε cos(ε−1ψε) dt = O(ε).

roof. Integration by parts gives for 0 < ε < ε0 small enough⏐⏐⏐⏐∫ b

a
uε exp

(
iψε
ε

)
dt
⏐⏐⏐⏐ ≤ ε

⏐⏐⏐⏐ uε(a)ψ̇ε(a)

⏐⏐⏐⏐+ ε ⏐⏐⏐⏐ uε(b)ψ̇ε(b)

⏐⏐⏐⏐+ ε ⏐⏐⏐⏐∫ b

a

d
dt

(
uε
ψ̇ε

)
exp

(
iψε
ε

)
dt
⏐⏐⏐⏐ = O(ε).

he claim follows by considering the real and imaginary parts separately and the isometric isomorphism Ck−1,1([0, T ]) ∼= W k,∞([0, T ])
(see [24, p. 154]). □
10
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emma 5.5. Let u0 ∈ C2([0, T ]) and ψ0 ∈ C3([0, T ]). Let {uε} be a sequence in C2([0, T ]) and {ψε} be a sequence in C3([0, T ]) such that the
equences {ε−1(uε− u0)}, {ε−2(ψε−ψ0)} are bounded in L∞([0, T ]). Moreover, let ti ∈ [0, T ] be an impact point in time (see Assumption 2)
ith ψ̇0(ti) = 0 and ψ̈0(ti) ̸= 0. Then, for all a, b ∈ [0, T ]:∫ b

a
uε sin(ε−1ψε) dt = O(ε1/2),

∫ b

a
uε cos(ε−1ψε) dt = O(ε1/2).

roof. We treat the real and imaginary parts separately and write

uε exp(iε−1ψε) = (uε − u0) exp(iε−1ψε)− u0 exp(iε−1ψ0)
(
1− exp

(
iε−1 (ψε − ψ0)

))
+ u0 exp(iε−1ψ0).

ince the sequences {ε−1(uε − u0)} and {ε−2(ψε − ψ0)} are bounded in L∞([0, T ]), the claim is satisfied for the first two terms on the
ight-hand side. Moreover, let η ∈ C∞

0 ([0, T ]) and Uti , Vti be small neighbourhoods around ti such that supp η = Vti , Uti ⊂ Vti and η = 1
n Uti and write∫ b

a
u0 exp(iε−1ψ0) dt =

∫
Vti

u0 exp(iε−1ψ0)η dt +
∫
[a,b]\Uti

u0 exp(iε−1ψ0)(1− η) dt.

or the second integral we can apply Lemma 5.4 since ti /∈ [a, b] \ Uti , and obtain an error of order O(ε). For the first integral we use
he method of stationary phase to derive∫

Vti

u0 exp(iε−1ψ0)η dt = O(ε1/2).

detailed description of the method of stationary phase can be found, for example, in [25, §1, Proposition 3], where smoothness of
0 and ψ0 is assumed. Here, we are only interested in the leading-order asymptotics, for which u0 ∈ C2([0, T ]) and ψ0 ∈ C3([0, T ]) is
ufficient. □

emma 5.6 (Generalisation of Lemma 3.6 in [11]). Let u ∈ C2(Rr
>0 × Rr+2n) and (φε, θε, yε, pε) be the solution to (11)–(12). Then, the

equence of functions {uε} where uε := u(φ̇ε, θε, ẏε, yε) satisfies for all a, b ∈ [0, T ] and k = 1, 2:∫ b

a
u̇ε cos(2kε−1φλε ) dt →

2− k
2

∫ b

a
DtLλ0

(
ωλ(y0) · ∂λu0 − θ

λ
∗
· ∂r+λu0

)
+ θλ

∗

n∑
j=1

Djωλ(y0) · ∂2r+ju0 dt

and ∫ b

a
u̇ε sin(2ε−1φλε ) dt = O(ε).

Proof. The equations in (17) imply

u̇ε =

r∑
µ=1

∂µuε ·
(
Dtωµ(yε)+

ε

2
D2
t L
µ
ε sin(2ε−1φµε )+ DtLµε · φ̇µε cos(2ε−1φµε )

)
−

r∑
µ=1

∂r+µuε · θµε · DtLµε cos(2ε−1φµε )

−

n∑
j=1

∂2r+juε ·

⎛⎝DjV (yε)+
r∑

µ=1

θµε · Djωµ(yε)−
r∑

µ=1

θµε · Djωµ(yε) cos(2ε−1φµε )

⎞⎠
+

n∑
j=1

∂2r+n+juε · ẏjε.

The claim follows from the uniform convergence results in (14), Lemmas 5.4 and 5.5 and the trigonometric identities

2 cos(x) cos(y) = cos (x+ y)+ cos (x− y) , 2 cos(x) sin(y) = sin (x+ y)− sin (x− y) . □

Lemma 5.7 (Similar to Lemma 3.9 in [11]). Let u0, ψ0 ∈ C1([0, T ]) and let {uε}, {ψε} be sequences in C1([0, T ]) such that the sequences
{u̇ε}, {ε−1 (uε − u0)}, {ε−2 (ψε − ψ0)} and {ε−1(ψ̇ε − ψ̇0)} are bounded in L∞([0, T ]). Then, for vε such that

vε := uε exp(iε−1ψε)− u0 exp(iε−1ψ0),

the sequence {ε−1vε} is bounded in L∞([0, T ],C) and in particular

vε → 0 in C([0, T ],C), v̇ε
∗

⇀ 0 in L∞([0, T ],C).

Proof. By writing

v = (u − u ) exp(iε−1ψ )− u exp(iε−1ψ )
(
1− exp

(
iε−1 ψ − ψ

))

ε ε 0 ε 0 0 ( ε 0)

11
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v̇ε =
(
(u̇ε − u̇0)+ iε−1ψ̇ε(uε − u0)+ iε−1u0(ψ̇ε − ψ̇0)

)
exp(iε−1ψε)

−
(
u̇0 + iε−1ψ̇0u0

) (
1− exp

(
iε−1 (ψε − ψ0)

))
exp(iε−1ψ0),

the assumptions imply that the sequences {ε−1vε} and {v̇ε} are bounded in L∞([0, T ],C). This implies directly the uniform convergence
f vε to zero. The weak∗ convergence of v̇ε follows from [1, Principle 1]. □

emma 5.8. The sequences {θ ε1 } and {φε2} are uniformly bounded in L∞([0, T ],Rr ), and the sequences {yε2} and {pε2} are uniformly bounded
n L∞([0, T ],Rn).

roof. In this proof, the constant 0 < C <∞ depends on T but is independent of ε and can take different values from line to line. Let
∈ [0, T ]. For 0 < ε < ε0 small enough and λ = 1, . . . , r let

Mλ
1 := sup

0<ε<ε0
sup

h∈[0,1]
∥Dωλ((1− h)yε + hy0)∥L∞([0,T ],Rn) ,

Mλ
2 := sup

0<ε<ε0
sup

h∈[0,1]

D2ωλ((1− h)yε + hy0)

L∞([0,T ],Rn×n) ,

M3 := sup
0<ε<ε0

sup
h∈[0,1]

D2V ((1− h)yε + hy0)

L∞([0,T ],Rn×n) .

or λ = 1, . . . , r and j = 1, . . . , n we apply Lemma 5.4 to Eq. (17a),⏐⏐φλε2 (t)
⏐⏐ = ⏐⏐⏐⏐∫ t

0
φ̇λε2 ds

⏐⏐⏐⏐ ≤ 1
ε2

⏐⏐⏐⏐∫ t

0
ωλ(yε)− ωλ(y0) ds

⏐⏐⏐⏐+ 1
2ε

⏐⏐⏐⏐∫ t

0
DsLλε sin(2ε

−1φλε ) ds
⏐⏐⏐⏐ ≤ Mλ

1

n∑
j=1

∫ t

0

⏐⏐⏐yjε2 ⏐⏐⏐ ds+ C, (25)

hen to Eq. (17b),⏐⏐θλε1 (t)
⏐⏐ = ⏐⏐⏐⏐∫ t

0
θ̇λε1 ds

⏐⏐⏐⏐ = 1
ε

⏐⏐⏐⏐∫ t

0
θλε · DsLλε cos(2ε

−1φλε ) ds
⏐⏐⏐⏐ ≤ C, (26)

to Eq. (17c),⏐⏐⏐yjε2 (t)⏐⏐⏐ = ⏐⏐⏐⏐∫ t

0
ẏjε2 ds

⏐⏐⏐⏐ ≤ ∫ t

0

⏐⏐⏐pjε2 ⏐⏐⏐ ds+ 1
2ε

r∑
λ=1

⏐⏐⏐⏐∫ t

0
θλε · DjLλε sin(2ε

−1φλε ) ds
⏐⏐⏐⏐ ≤ ∫ t

0

⏐⏐⏐pjε2 ⏐⏐⏐ ds+ C, (27)

nd finally to Eq. (17d),⏐⏐⏐pjε2 (t)⏐⏐⏐ = ⏐⏐⏐⏐∫ t

0
ṗjε2 (s) ds

⏐⏐⏐⏐
≤

1
ε2

⏐⏐⏐⏐∫ t

0
DjV (yε)− DjV (y0) ds

⏐⏐⏐⏐+ 1
ε2

r∑
λ=1

⏐⏐⏐⏐∫ t

0
θλε · Djωλ(yε)− θλ∗ · Djωλ(y0) ds

⏐⏐⏐⏐
+

1
2ε

r∑
λ=1

⏐⏐⏐⏐∫ t

0
θλε · DtDjLλε sin(2ε

−1φλε ) ds
⏐⏐⏐⏐

≤ M3

n∑
k=1

∫ t

0

⏐⏐ykε2 ⏐⏐ ds+ 1
ε

r∑
λ=1

⏐⏐⏐⏐∫ t

0
θλε1 · Djωλ(yε) ds

⏐⏐⏐⏐+ ⟨θ∗,M2⟩

n∑
k=1

∫ t

0

⏐⏐ykε2 ⏐⏐ ds+ C . (28)

After integrating by parts, Eq. (17b) and Lemmas 5.4 and 5.6 imply that

1
ε

r∑
λ=1

⏐⏐⏐⏐∫ t

0
θλε1 · Djωλ(yε) ds

⏐⏐⏐⏐ = 1
ε

r∑
λ=1

⏐⏐⏐⏐∫ t

0
Djωλ(yε)

∫ s

0
θ̇λε1 dr ds

⏐⏐⏐⏐
=

1
ε2

r∑
λ=1

⏐⏐⏐⏐∫ t

0
Djωλ(yε)

∫ s

0
θλε · DrLλε cos(2ε

−1φλε ) dr ds
⏐⏐⏐⏐

≤
1
2ε

r∑
λ=1

⏐⏐⏐⏐∫ t

0

θλε · DsLλε · Djωλ(yε)
φ̇λε

sin(2ε−1φλε ) ds
⏐⏐⏐⏐

+
1
2ε

r∑
λ=1

⏐⏐⏐⏐∫ t

0
Djωλ(yε)

∫ s

0

d
dr

(
θλε · DrLλε
φ̇λε

)
sin(2ε−1φλε ) dr ds

⏐⏐⏐⏐ ≤ C . (29)

By combining the inequalities (27)–(29) we obtain⏐⏐⏐yjε2 (t)⏐⏐⏐ ≤ C + (M3 + ⟨θ∗,M2⟩)

∫ T

0

∫ T

0

n∑⏐⏐⏐yjε2 ⏐⏐⏐ ds

j=1

12
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nd thus
n∑

j=1

⏐⏐⏐yjε2 (t)⏐⏐⏐ ≤ nC + n (M3 + ⟨θ∗,M2⟩)

∫ T

0

∫ T

0

n∑
j=1

⏐⏐⏐yjε2 ⏐⏐⏐ ds.
Finally, a variation of the classical Gronwall inequality (see [26, p. 383]) implies that

n∑
j=1

⏐⏐⏐yjε2 (t)⏐⏐⏐ ≤ nC exp
(
n (M3 + ⟨θ∗,M2⟩) T 2) ,

for t ∈ [0, T ], which together with (25)–(29) yields the uniform bound for {θ ε1 }, {φ
ε
2}, {y

ε
2} and {pε2}. □

Lemma 5.9. The sequence {θ ε2 } is uniformly bounded in L∞([0, T ],Rr ).

Proof. We write θ ε1 componentwise as

θλε1 =
1
ε

∫
·

0
θ̇λε dt = −

∫
·

0

θλε · DtLλε
2φ̇λε

d
dt

sin(2ε−1φλε ) dt

nd integrate by parts to derive θλε2 = ε−1
(
θλε1 − [θλ1 ]

ε
)
= θλε21 + θλε22 , where

θλε21 :=
1
ε

(
θλ
∗
· DtLλ0

2ωλ(y0)
sin(2ε−1φλ0 )−

θλε · DtLλε
2φ̇λε

sin(2ε−1φλε )
)
, θλε22 :=

1
ε

∫
·

0

d
dt

(
θλε · DtLλε

2φ̇λε

)
sin(2ε−1φλε ) dt. (30)

The claim then follows from Assumption 1 and Lemmas 5.6 and 5.7. □

Remark. Lemmas 5.7 and 5.9 imply the convergence (18). Moreover, without Assumption 1, the sequence {θλε22 } is not necessarily
ounded in L∞([0, T ]). In fact, by Lemma 5.5 and the definition of θλε227 in the proof of Lemma 5.11, we would have in this case

{θλε22 } = O(ε−1/2).

Lemma 5.10. There exist a subsequence {ε′} and functions φ̄2 ∈ C0,1([0, T ],Rr ), ȳ2, p̄2 ∈ C0,1([0, T ],Rn) such that the convergences (19)–
(21) hold.

Proof. By taking the time derivative of φλε2 − [φλ2 ]
ε , yjε2 − [yj2]

ε and pjε2 − [pj2]
ε for λ = 1, . . . , r and j = 1, . . . , n we obtain

d
dt

(
φλε2 − [φλ2 ]

ε
)

=
ωλ(yε)− ωλ(y0)

ε2
+

d
dt

(
DtLλε
4φ̇λε

)
cos(2ε−1φλε )−

d
dt

(
[φλ2 ]

ε
+

DtLλε
4φ̇λε

cos(2ε−1φλε )
)
, (31)

d
dt

(
yjε2 − [yj2]

ε
)

=
pjε − pj0
ε2

+

r∑
λ=1

d
dt

(
θλε · DjLλε

4φ̇λε

)
cos(2ε−1φλε )−

d
dt

(
[yj2]

ε
+

r∑
λ=1

θλε · DjLλε
4φ̇λε

cos(2ε−1φλε )

)
, (32)

d
dt

(
pjε2 − [pj2]

ε
)

= −
DjV (yε)− DjV (y0)

ε2
−

r∑
λ=1

θλ
∗

Djωλ(yε)− Djωλ(y0)
ε2

−

r∑
λ=1

θλε1 − [θλ1 ]
ε

ε
Djωλ(yε)

−

r∑
λ=1

d
dt

(
θλε · DtDjLλε

4φ̇λε

)
cos(2ε−1φλε )−

d
dt

(
[pj2]

ε
1 −

r∑
λ=1

θλε · DtDjLλε
4φ̇λε

cos(2ε−1φλε )

)

+

r∑
λ=1

d
dt

(
θλ
∗
· DtLλ0 · Djωλ(yε)

4ω2(y0)

)
cos(2ε−1φλ0 )−

d
dt

(
[pj2]

ε
2 +

r∑
λ=1

θλ
∗
· DtLλ0 · Djωλ(yε)

4ω2
λ(y0)

cos(2ε−1φλ0 )

)
, (33)

where we used [pj2]
ε
= [pj2]

ε
1 + [pj2]

ε
2 with

[pj2]
ε
1 :=

r∑
λ=1

θλ
∗
· DtDjLλ0

4ωλ(y0)
cos(2ε−1φλ0 ), [pj2]

ε
2 := −

r∑
λ=1

θλ
∗
· DtLλ0 · DjLλ0
4ωλ(y0)

cos(2ε−1φλ0 ).

For the derivation of Eq. (33) note that in the evaluation of ṗjε2 we need to evaluate the expression
r∑

λ=1

θλε · Djωλ(yε)− θλ∗ · Djωλ(y0)
ε2

=

r∑
λ=1

θλε − θλ
∗

ε2
Djωλ(yε)+

r∑
λ=1

θλ
∗

Djωλ(yε)− Djωλ(y0)
ε2

,

in which we rewrite the first term on the right-hand side by introducing [θλ1 ]
ε , i.e.,

θλε − θλ
∗

ε2
Djωλ(yε) =

θλε1 − [θλ1 ]
ε

ε
Djωλ(yε)+

d
dt

(
θλ
∗
· DtLλ0 · Djωλ(yε)

4ω2
λ(y0)

cos(2ε−1φλ0 )
)

−
d
dt

(
θλ
∗
· DtLλ0 · Djωλ(yε)

4ω2(y0)

)
cos(2ε−1φλ0 ).

By Lemmas 5.7–5.9 the sequence {φε2 −[φ2]
ε
} is bounded in C0,1([0, T ],Rr ) and the sequences {yε2−[y2]ε} and {pε2−[p2]ε} are bounded

n C0,1([0, T ],Rn). The claim follows after successive applications of [1, Principle 4]. □
13
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emma 5.11. There exists a further subsequence {ε′} and a function θ̄2 ∈ C∞([0, T ],Rr ) such that the convergence (22) holds. Moreover,
he component functions θ̄λ2 (λ = 1, . . . , r) satisfy (23b).

roof. We write θλε2 =
∑2

i=1 θ
λε
2i as in the proof of Lemma 5.9 and [θλ2 ]

ε
=
∑2

i=1[θ
λ
2 ]
ε
i , where [θλ2 ]

ε
i (i = 1, 2) will be defined later in

his proof. We then show that there exist component functions θ̄λ2 :=
∑2

i=1 θ̄
λ
2i and a subsequence {ε′}, not relabelled, such that for

= 1

θλε21 − [θλ2 ]
ε
1 → θ̄λ21 in C([0, T ]) (34)

nd for i = 2

θλε22 − [θλ2 ]
ε
2 → θ̄λ22 in C([0, T ]),

d
dt

(
θλε22 − [θλ2 ]

ε
2

) ∗

⇀
dθ̄λ22
dt

in L∞([0, T ]). (35)

he convergence result (22) then follows immediately.
art i = 1: To prove (34), we expand θλε21 in (30), by replacing θλε → θλ

∗
+
(
θλε − θλ

∗

)
, DtLλε → DtLλ0 +

(
DtLλε − DtLλ0

)
and sin(2ε−1φλε ) →

in(2ε−1φλ0 ) +
(
sin(2ε−1φλε )− sin(2ε−1φλ0 )

)
, and assign the resulting terms to the functions θλε21j (j = 1, . . . , 5). That is, we derive

λε
21 =

∑5
j=1 θ

λε
21j, where

θλε211 :=
1
ε

(
1

ωλ(y0)
−

1
φ̇λε

)
θλ
∗
· DtLλ0
2

sin(2ε−1φλ0 ),

θλε212 := −
1
ε

(
θλε − θλ

∗

)
· DtLλ0

2φ̇λε
sin(2ε−1φλ0 ),

θλε213 := −
1
ε

θλ
∗
·
(
DtLλε − DtLλ0

)
2φ̇λε

sin(2ε−1φλ0 ),

θλε214 := −
1
ε

θλ
∗
· DtLλ0
2φ̇λε

(
sin(2ε−1φλε )− sin(2ε−1φλ0 )

)
,

θλε215 := −
1
ε

(
θλε − θλ

∗

)
·
(
DtLλε − DtLλ0

)
2φ̇λε

sin(2ε−1φλ0 )

−
1
ε

(
θλε − θλ

∗

)
· DtLλ0

2φ̇λε

(
sin(2ε−1φλε )− sin(2ε−1φλ0 )

)
−

1
ε

θλ
∗
·
(
DtLλε − DtLλ0

)
2φ̇λε

(
sin(2ε−1φλε )− sin(2ε−1φλ0 )

)
−

1
ε

(
θλε − θλ

∗

)
·
(
DtLλε − DtLλ0

)
2φ̇λε

(
sin(2ε−1φλε )− sin(2ε−1φλ0 )

)
.

otice that by (17) and Lemma 5.8, we have θλε21j = O(1) for j = 1, . . . , 4 and θλε215 = O(ε). The function θλε21 =
∑5

j=1 θ
λε
21j is composed

f oscillatory and non-oscillatory (averaged) terms. For the proof of (34), we therefore define the corresponding oscillatory term
θλ2 ]

ε
1 :=

∑4
j=1[θ

λ
2 ]
ε
1j, where

[θλ2 ]
ε
11 := −

θλ
∗
(DtLλ0)

2

8ω2
λ(y0)

cos(4ε−1φλ0 ),

[θλ2 ]
ε
12 := −

θλ
∗
(DtLλ0)

2

8ω2
λ(y0)

cos(4ε−1φλ0 ),

[θλ2 ]
ε
13 :=

(θλ
∗
)2
⏐⏐DLλ0⏐⏐2

8ωλ(y0)
cos(4ε−1φλ0 )−

r∑
µ=1
µ̸=λ

θλ
∗
θ
µ
∗

⟨
DLµ0 ,DL

λ
0

⟩
4ωλ(y0)

sin(2ε−1φλ0 ) sin(2ε
−1φ

µ

0 ),

[θλ2 ]
ε
14 := −

θλ
∗
· DtLλ0

ωλ(y0)
φ̄λ2 cos(2ε−1φλ0 )+

θλ
∗
(DtLλ0)

2

8ω2
λ(y0)

cos(4ε−1φλ0 ).

We now define the averaged functions θ̄λ21j (j = 1, . . . , 4) such that for θ̄λ21 :=
∑4

j=1 θ̄
λ
21j the statement in (34) holds. More precisely, we

will show that in the case of j = 1, 2, 3

θλε21j − [θλ2 ]
ε
1j → θ̄λ21j in C([0, T ]),

d
dt

(
θλε21j − [θλ2 ]

ε
1j

) ∗

⇀
dθ̄λ21j
dt

in L∞([0, T ]), (36)

nd in the case of j = 4

θλε214 − [θλ2 ]
ε
14 → θ̄λ214 in C([0, T ]). (37)

n the following, we give the detailed proof of the convergences in (36) for the case j = 1. The other cases follow along a similar line
of arguments.
14
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ase j = 1: We start by defining θ̄λ221, i.e.,

θ̄λ211 :=
θλ
∗
(DtLλ0)

2

8ω2
λ(y0)

,

or λ = 1, . . . , r and use the trigonometric identity 1− cos(4x) = 2 sin2(2x) to derive

θ̄λ211 + [θλ2 ]
ε
11 =

θλ
∗
(DtLλ0)

2

8ω2
λ(y0)

−
θλ
∗
(DtLλ0)

2

8ω2
λ(y0)

cos(4ε−1φλ0 ) =
θλ
∗
(DtLλ0)

2

4ω2
λ(y0)

sin2(2ε−1φλ0 ). (38)

Moreover, with Eq. (17a) we can write

θλε211 =
1
ε

(
φ̇λε − ωλ(y0)
ωλ(y0)φ̇λε

)
θλ
∗
· DtLλ0
2

sin(2ε−1φλ0 )

=

(
1
ε

ωλ(yε)− ωλ(y0)
φ̇λε

+
DtLλε
2φ̇λε

sin(2ε−1φλε )
)
θλ
∗
· DtLλ0

2ωλ(y0)
sin(2ε−1φλ0 ). (39)

Now, we use Eqs. (38) and (39) to write

θλε211 − [θλ2 ]
ε
11 − θ̄

λ
211 =

(
uλε1 + vλε1

)
wλε1 , (40)

here

uλε1 :=
1
ε

ωλ(yε)− ωλ(y0)
φ̇λε

, vλε1 :=
DtLλε
2φ̇λε

sin(2ε−1φλε )−
DtLλ0

2ωλ(y0)
sin(2ε−1φλ0 ), wλε1 :=

θλ
∗
· DtLλ0

2ωλ(y0)
sin(2ε−1φλ0 ).

It follows from Lemmas 5.7 and 5.8, and the system of differential equations (17) that the sequences {ε−1uλε1 }, {u̇λε1 }, {ε−1vλε1 }, {v̇λεj },
wλε1 } and {εẇλε1 } are bounded in L∞([0, T ]). This implies the uniform convergence, and after an application of [1, Principle 1], the weak∗
onvergence in (36).
For the cases j = 2, 3, we only summarise the equations corresponding to (40), from which uλεj , vλε3 and wλεj can be read off. The

onvergences as in (36) are then proven similarly to the case j = 1, by applying Lemmas 5.7 and 5.8 (and 5.9 in the case j = 2). The
ase j = 4 requires more explanation and is thus again described in greater detail.
ase j = 2: With

θ̄λ212 :=
θλ
∗
(DtLλ0)

2

8ω2
λ(y0)

,

e can write

θλε212 − [θλ2 ]
ε
12 − θ̄

λ
212 = uλε2 w

λε
2 ,

here

uλε2 :=
[θλ1 ]

ε

ωλ(y0)
−
θλε1

φ̇λε
, wλε2 :=

DtLλ0
2

sin(2ε−1φλ0 ).

ase j = 3: Analogously, with

θ̄λ213 := −
(θλ

∗
)2
⏐⏐DLλ0⏐⏐2

8ωλ(y0)
,

e write

θλε213 − [θλ2 ]
ε
13 − θ̄

λ
213 =

(
uλε3 + vλε3

)
wλε3 ;

ere

uλε3 := −
1
ε

⟨
pε,DLλε

⟩
−
⟨
p0,DLλ0

⟩
φ̇λε

, wλε3 :=
θλ
∗

2
sin(2ε−1φλ0 ),

vλε3 :=

r∑
µ=1

θ
µ
∗

⟨
DLµ0 ,DL

λ
0

⟩
2ωλ(y0)

sin(2ε−1φ
µ

0 )−
θµε
⟨
DLµε ,DL

λ
ε

⟩
2φ̇λε

sin(2ε−1φµε ).

Case j = 4: For this final case we first define

θ̄λ214 :=
θλ
∗
(DtLλ0)

2

8ω2
λ(y0)

and use φλε = φλ0 + ε2φλε2 (see Definition 5.1) with a trigonometric identity to write

sin(2ε−1φλε ) = sin(2ε−1φλ0 ) cos(2εφ
λε
2 )+ cos(2ε−1φλ0 ) sin(2εφ

λε
2 ).

This allows us to derive the equation

θλε − [θλ]ε − θ̄λ = uλεwλε + uλεwλε,
214 2 14 214 41 41 42 42

15
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here

uλε41 :=
[φλ2 ]

ε
+ φ̄λ2

ωλ(y0)
−

1
ε

sin(2εφλε2 )
2φ̇λε

, wλε41 := θλ
∗
· DtLλ0 cos(2ε

−1φλ0 ),

uλε42 :=
1
ε

1− cos(2εφλε2 )
2φ̇λε

, wλε42 := θλ
∗
· DtLλ0 sin(2ε

−1φλ0 ).

By (17), (19) and Lemma 5.8 we obtain⏐⏐uλε41⏐⏐ ≤ ⏐⏐⏐⏐ [φλ2 ]ε + φ̄λ2ωλ(y0)
−
φλε2

φ̇λε

⏐⏐⏐⏐+
⏐⏐⏐⏐⏐φλε2φ̇λε

∞∑
k=1

(−1)k

(2k+ 1)!
(2εφλε2 )2k

⏐⏐⏐⏐⏐→ 0 in C([0, T ])

and ⏐⏐uλε42⏐⏐ ≤
⏐⏐⏐⏐⏐φλε2φ̇λε

∞∑
k=1

(−1)k

(2k)!
(2εφλε2 )2k−1

⏐⏐⏐⏐⏐ = O(ε),

hich implies the uniform convergence in (37).
art i = 2: To prove (35) we expand θλε22 in (30), by writing out the time derivative and using the equations

φ̈λε = Dtωλ(yε)+
ε

2
D2
t L
λ
ε sin(2ε

−1φλε )+ DtLλε · φ̇
λ
ε cos(2ε

−1φλε )

and

D2
t L
λ
ε =

⟨
D2Lλε ẏε, ẏε

⟩
−
⟨
DV (yε),DLλε

⟩
−

r∑
µ=1

θµε
⟨
Dωµ(yε),DLλε

⟩
+

r∑
µ=1

θµε
⟨
Dωµ(yε),DLλε

⟩
cos(2ε−1φµε ).

In this way, we can write θλε22 =
∑8

j=1 θ
λε
22j, where

θλε221 := −
1
ε

∫
·

0

θλε (DtLλε )
2

φ̇λε
cos(2ε−1φλε ) sin(2ε

−1φλε ) dt,

θλε222 := −
1
ε

∫
·

0

θλε · DtLλε · Dtωλ(yε)
2(φ̇λε )2

sin(2ε−1φλε ) dt,

θλε223 :=
1
ε

∫
·

0

θλε
⟨
D2Lλε ẏε, ẏε

⟩
2φ̇λε

sin(2ε−1φλε ) dt,

θλε224 := −
1
ε

∫
·

0

θλε
⟨
DV (yε),DLλε

⟩
2φ̇λε

sin(2ε−1φλ0 ) dt,

θλε225 := −
1
ε

r∑
µ=1

∫
·

0

θλε θ
µ
ε

⟨
Dωµ(yε),DLλε

⟩
2φ̇λε

sin(2ε−1φλε ) dt,

θλε226 :=
1
ε

∫
·

0

(θλε )
2
⟨
Dωλ(yε),DLλε

⟩
2φ̇λε

cos(2ε−1φλε ) sin(2ε
−1φλε ) dt,

θλε227 :=
1
ε

r∑
µ=1
µ̸=λ

∫
·

0

θλε θ
µ
ε

⟨
Dωµ(yε),DLλε

⟩
2φ̇λε

cos(2ε−1φµε ) sin(2ε
−1φλε ) dt,

θλε228 := −

∫
·

0

θλε · DtLλε · D
2
t L
λ
ε

4(φ̇λε )2
sin2(2ε−1φλε ) dt.

gain, the function θλε22 =
∑8

j=1 θ
λε
22j consists of oscillatory and non-oscillatory terms. To derive the statement in (35), we therefore

efine the corresponding oscillatory term [θλ2 ]
ε
2 :=

∑7
j=1[θ

λ
2 ]
ε
2j, where

[θλ2 ]
ε
21 :=

θλ
∗
(DtLλ0)

2

8ω2
λ(y0)

cos(4ε−1φλ0 ),

[θλ2 ]
ε
22 :=

θλ
∗
(DtLλ0)

2

4ω2
λ(y0)

cos(2ε−1φλ0 ),

[θλ2 ]
ε
23 := −

θλ
∗

⟨
D2Lλ0 ẏ0, ẏ0

⟩
4ω2

λ(y0)
cos(2ε−1φλ0 ),

[θλ2 ]
ε
24 :=

θλ
∗

⟨
DV (y0),DLλ0

⟩
2 cos(2ε−1φλ0 ),
4ωλ(y0)

16
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[θλ2 ]
ε
25 :=

r∑
µ=1

θλ
∗
θ
µ
∗

⟨
Dωµ(y0),DLλ0

⟩
4ω2

λ(y0)
cos(2ε−1φλ0 ),

[θλ2 ]
ε
26 := −

(θλ
∗
)2|DLλ0|

2

16ωλ(y0)
cos(4ε−1φλ0 ),

[θλ2 ]
ε
27 :=

r∑
µ=1
µ̸=λ

θλ
∗
θ
µ
∗

⟨
Dωµ(y0),DLλ0

⟩
8ωλ(y0)

{
cos

(
2ε−1(φµ0 − φλ0 )

)
ωµ(y0)− ωλ(y0)

−
cos

(
2ε−1(φµ0 + φλ0 )

)
ωµ(y0)+ ωλ(y0)

}
.

We show that for a subsequence {ε′} (not relabelled) there exist non-oscillatory functions θ̄λ22j (j = 1, . . . , 8) such that for θ̄λ22 :=∑8
j=1 θ̄

λ
22j, the statement in (35) holds. More precisely, we will prove that for j = 1, . . . , 7

θλε22j − [θλ2 ]
ε
2j → θ̄λ22j in C([0, T ]),

d
dt

(
θλε22j − [θλ2 ]

ε
2j

) ∗

⇀
dθ̄λ22j
dt

in L∞([0, T ]), (41)

nd for j = 8

θλε228 → θ̄λ228 in C([0, T ]),
dθλε228
dt

∗

⇀
dθ̄λ228
dt

in L∞([0, T ]). (42)

ote that the scaling in θλε228 is different from the scaling in θλε22j (j = 1, . . . , 7). As a consequence, there is no non-converging oscillatory
omponent that we would have to subtract from θλε228 in order to analyse the limit ε → 0.
We now give a detailed proof of the convergences in (41) for the case j = 1. The other cases are dealt with similarly.

ase j = 1: For λ = 1, . . . , r we start by writing

dθλε221
dt

= −
1
ε

θλε (DtLλε )
2

2φ̇λε
sin(4ε−1φλε ) =

θλε (DtLλε )
2

8(φ̇λε )2
d
dt

cos(4ε−1φλε )

=
d
dt

(
θλε (DtLλε )

2

8(φ̇λε )2
cos(4ε−1φλε )

)
−

d
dt

(
θλε (DtLλε )

2

8(φ̇λε )2

)
cos(4ε−1φλε ),

which we use to derive
d
dt

(
θλε221 − [θλ2 ]

ε
21

)
=

d
dt

(
θλε (DtLλε )

2

8(φ̇λε )2
cos(4ε−1φλε )− [θλ2 ]

ε
21

)
−

d
dt

(
θλε (DtLλε )

2

8(φ̇λε )2

)
cos(4ε−1φλε )

= v̇λε1 − u̇λε1 cos(ε−1ψλε
1 ).

Here, we identified vλε1 := uλε1 cos(ε−1ψλε
1 )− uλ01 cos(ε−1ψλ0

1 ), where

uλε1 :=
θλε (DtLλε )

2

8(φ̇λε )2
, ψλε

1 := 4φλε ,

ccording to Lemma 5.7. The necessary assumptions on uλε1 and ψλε
1 are satisfied by (13) and Lemma 5.8. Consequently, it follows that

˙
λε
1

∗

⇀ 0 in L∞([0, T ]). Moreover, since {u̇λε1 cos(ε−1ψλε
1 )} is a bounded sequence in L∞([0, T ]), [1, Chapter I. Lemma 1] implies the

quivalence of the weak∗ convergence of the sequence {u̇λε1 cos(ε−1ψλε
1 )} and the integral convergence as in Lemma 5.6. Hence, we

eason that u̇λε1 cos(ε−1ψλε
1 )

∗

⇀ 0 in L∞([0, T ]). We therefore conclude that

d
dt

(
θλε221 − [θλ2 ]

ε
21

) ∗

⇀
dθ̄λ221
dt

:= 0 in L∞([0, T ]).

inally, with {v̇λε1 } and {u̇λε1 } being bounded sequences in L∞([0, T ]), the convergence in (41) follows for a subsequence {ε′} from [1,
rinciple 4], i.e., an extended version of the Arzelà–Ascoli theorem.
For j = 2, . . . , 6 we only summarise the results, since the arguments follow along the same lines as in the case j = 1 above. In

articular, we always identify terms v̇λεj
∗

⇀ 0 in L∞([0, T ]), according to Lemma 5.7, and terms u̇λεj cos(ε−1ψλε
j )

∗

⇀ ˙̄θλ22j (j = 2, . . . , 6)
ccording to Lemma 5.6. The cases j = 7, 8 require some different reasoning and are thus explained in more detail.
ase j = 2:

d
dt

(
θλε222 − [θλ2 ]

ε
22

)
=

d
dt

(
θλε · DtLλε · Dtωλ(yε)

4(φ̇λε )3
cos(2ε−1φλε )− [θλ2 ]

ε
22

)
−

d
dt

(
θλε · DtLλε · Dtωλ(yε)

4(φ̇λε )3

)
cos(2ε−1φλε )

∗

⇀
dθ̄λ222
dt

:=
θλ
∗
(DtLλ0)

3

2ω2
λ(y0)

−
(θλ

∗
)2|DLλ0|

2
· DtLλ0

4ωλ(y0)
in L∞([0, T ]).

Case j = 3:

d
dt

(
θλε223 − [θλ2 ]

ε
23

)
= −

d
dt

(
θλε
⟨
D2Lλε ẏε, ẏε

⟩
4(φ̇λε )2

cos(2ε−1φλε )+ [θλ2 ]
ε
23

)
+

d
dt

(
θλε
⟨
D2Lλε ẏε, ẏε

⟩
4(φ̇λε )2

)
cos(2ε−1φλε )

∗

⇀
dθ̄λ223

:=
(θλ

∗
)2
⟨
DtDLλ0,DL

λ
0

⟩
−

3θλ
∗

⟨
D2Lλ0 ẏ0, ẏ0

⟩
· DtLλ0

2 in L∞([0, T ]).

dt 4ωλ(y0) 8ωλ(y0)

17
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ase j = 4:

d
dt

(
θλε224 − [θλ2 ]

ε
24

)
=

d
dt

(
θλε
⟨
DV (yε),DLλε

⟩
4(φ̇λε )2

cos(2ε−1φλε )− [θλ2 ]
ε
24

)
−

d
dt

(
θλε
⟨
DV (yε),DLλε

⟩
4(φ̇λε )2

)
cos(2ε−1φλε )

∗

⇀
dθ̄λ224
dt

:=
3θλ

∗

⟨
DV (y0),DLλ0

⟩
· DtLλ0

8ω2
λ(y0)

in L∞([0, T ]).

ase j = 5:

d
dt

(
θλε225 − [θλ2 ]

ε
25

)
=

d
dt

⎛⎝ r∑
µ=1

θλε θ
µ
ε

⟨
Dωµ(yε),DLλε

⟩
4(φ̇λε )2

cos(2ε−1φλε )− [θλ2 ]
ε
25

⎞⎠
−

r∑
µ=1

d
dt

(
θλε θ

µ
ε

⟨
Dωµ(yε),DLλε

⟩
4(φ̇λε )2

)
cos(2ε−1φλε )

∗

⇀
dθ̄λ225
dt

:=

r∑
µ=1

3θλ
∗
θ
µ
∗

⟨
Dωµ(y0),DLλ0

⟩
· DtLλ0

8ω2
λ(y0)

+
(θλ

∗
)2|DLλ0|

2
· DtLλ0

8ωλ(y0)
in L∞([0, T ]).

Case j = 6:

d
dt

(
θλε226 − [θλ2 ]

ε
26

)
= −

d
dt

(
(θλε )

2
⟨
Dωλ(yε),DLλε

⟩
16(φ̇λε )2

cos(4ε−1φλε )+ [θλ2 ]
ε
26

)

+
d
dt

(
(θλε )

2
⟨
Dωλ(yε),DLλε

⟩
16(φ̇λε )2

)
cos(4ε−1φλε )

∗

⇀
dθ̄λ226
dt

:= 0 in L∞([0, T ]).

ase j = 7: Analogous to the previous cases we write

d
dt

(
θλε227 − [θλ2 ]

ε
27

)
=

d
dt

⎛⎜⎝ r∑
µ=1
µ̸=λ

θλε θ
µ
ε

⟨
Dωµ(yε),DLλε

⟩
8φ̇λε

{
cos

(
2ε−1(φµε − φλε )

)
φ̇
µ
ε − φ̇λε

−
cos

(
2ε−1(φµε + φλε )

)
φ̇
µ
ε + φ̇λε

}
− [θλ2 ]

ε
27

⎞⎟⎠
+

r∑
µ=1
µ̸=λ

d
dt

(
θλε θ

µ
ε

⟨
Dωµ(yε),DLλε

⟩
8φ̇λε (φ̇

µ
ε + φ̇λε )

)
cos

(
2ε−1(φµε + φλε )

)

−

r∑
µ=1
µ̸=λ

d
dt

(
θλε θ

µ
ε

⟨
Dωµ(yε),DLλε

⟩
8φ̇λε (φ̇

µ
ε − φ̇λε )

)
cos

(
2ε−1(φµε − φλε )

)
.

We identify, similar to the case j = 1, the first term on the right-hand side with v̇λε7 . Then, it follows from Lemma 5.7 that v̇λε7
∗

⇀ 0 in
L∞([0, T ]). Moreover, we identify the summands in the remaining two sums on the right-hand side with functions

u̇λµε7± cos(ε−1ψ
λµε

7± ) :=
d
dt

(
θλε θ

µ
ε

⟨
Dωµ(yε),DLλε

⟩
8φ̇λε (φ̇

µ
ε ± φ̇λε )

)
cos

(
2ε−1(φµε ± φλε )

)
,

or λ,µ = 1, . . . , r , λ ̸= µ. Together with (17) we expand the time derivative in u̇λµε7± and find, based on the non-resonance
ssumptions 1 and 2, and Lemmas 5.4 and 5.5, that u̇λµε7± cos(ε−1ψ

λµε

7± )
∗

⇀ 0 in L∞([0, T ]). All together, we conclude that

d
dt

(
θλε227 − [θλ2 ]

ε
27

) ∗

⇀
dθ̄λ227
dt

:= 0 in L∞([0, T ]).

inally, we use [1, Principle 4] to derive the uniform convergence for a subsequence {ε′} in (41).
ase j = 8: The convergences in (42) follow for a subsequence {ε′} (not relabelled) from [1, Principle 4] and

dθλε228
dt

= −
θλε · DtLλε · D

2
t L
λ
ε

8(φ̇λε )2
+
θλε · DtLλε · D

2
t L
λ
ε

8(φ̇λε )2
cos(4ε−1φλε )

∗

⇀
dθ̄λ228
dt

:= −
θλ
∗
· DtLλ0 · D

2
t L
λ
0

8ω2
λ(y0)

in L∞([0, T ]),

where we used Lemma 5.4 for the weak∗ convergence.
18
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Now, by combining the cases j = 1, . . . , 8 notice that
8∑

j=1

dθ̄λ22j
dt

=
θλ
∗
(DtLλ0)

3

2ω2
λ(y0)

−
θλ
∗
· DtLλ0 · D

2
t L
λ
0

2ω2
λ(y0)

+
(θλ

∗
)2
⟨
DtDLλ0,DL

λ
0

⟩
4ωλ(y0)

−
(θλ

∗
)2|DLλ0|

2
· DtLλ0

8ωλ(y0)

= −
d
dt

(
θλ
∗
(DtLλ0)

2

4ω2
λ(y0)

−
(θλ

∗
)2
⏐⏐DLλ0⏐⏐2

8ωλ(y0)

)
,

here we used

D2
t L
λ
0 =

⟨
D2Lλ0 ẏ0, ẏ0

⟩
−
⟨
DV (y0),DLλ0

⟩
−

r∑
µ=1

θµ
∗

⟨
Dωµ(y0),DLλ0

⟩
.

Finally, Eq. (23b) follows with

dθ̄λ2
dt

=

2∑
i=1

dθ̄λ2i
dt

=

4∑
j=1

dθ̄λ21j
dt

+

8∑
j=1

dθ̄λ22j
dt

. □ (43)

emark. It would be desirable to complement the uniform convergence result in (37) by a weak∗ convergence result of the form

d
dt

(
θλε214 − [θλ2 ]

ε
14

) ∗

⇀
dθ̄λ214
dt

in L∞([0, T ]).

his would allow us to extend the uniform convergence result in (22) by a weak∗ convergence as in (18)–(21). To this end one would
need to show in the proof of Lemma 5.11, part i = 1, case j = 4, that uλε4 = O(ε). To do so one would need to extend Lemma 5.8 and
show that the sequence {ε−1

(
φλε2 −

(
φ̄λ2 + [φλ2 ]

ε
))
} is bounded in L∞([0, T ]). This would require more notation and would significantly

increase the complexity of this article. We therefore do not pursue this analysis further.

Lemma 5.12. The extraction of a subsequence in Lemmas 5.10 and 5.11 can be discarded altogether and (φ̄2, θ̄2, ȳ2, p̄2) is the unique solution
to the initial value problem (23)–(24).

Proof. The differential equations (23a), (23c) and (23d) follow from (31)–(33) by taking the weak∗ limit in combination with Lemmas 5.6
and 5.7, and [1, Lemma 1]. Formula (23b) follows from (43). The initial values (24) can be derived from the uniform convergences
in (19)–(22). Furthermore, since the right-hand side of (23) — and therefore the solution (φ̄2, θ̄2, ȳ2, p̄2) ∈ C∞([0, T ],R2m) — does not
depend on the chosen subsequence, [1, Principle 5] allows us to discard the extraction of a subsequence altogether. □

5.5. Higher-order asymptotic expansion and restrictions on the timescale

In the following we summarise how to derive higher-order asymptotic expansions of the solution to (11)–(12). Let us assume that we
know the asymptotic expansion up to order k−1 and we want to derive the asymptotic expansion to kth order, i.e., for uε representing
the functions φε , θε , yε or pε , we are looking for an asymptotic expansion of the form

uε = u0 +

k−1∑
ℓ=1

εℓ[ūℓ]ε + εk[ūk]
ε
+ εkuεk+1,

where for ℓ = 1, . . . , k,

[ūℓ]ε := ūℓ + [uℓ]ε
∗

⇀ ūℓ in L∞([0, T ]), uεk+1 → 0 in C([0, T ]).

Two approaches can be used to derive the function [ūk]
ε . They both rely on analysing the leading-order asymptotic expansion of

uεk :=
uε − u0

εk
−

k−1∑
ℓ=1

εℓ−k
[ūℓ]ε.

he first approach relies on deriving [ūk]
ε directly from uεk by applying the fundamental theorem of calculus to the function uε − u0

nd subsequently integrating the oscillatory component of the integrand u̇ε − u̇0 by parts to lower the exponent of the denominator
k. After k iterations by parts and corresponding expansions of the resulting terms, ūk and [uk]

ε can then be derived such that

uεk − [uk]
ε
→ ūk in C([0, T ]).

his method was used to derive the leading-order asymptotic expansion of θ ε21 in Lemma 5.11.
Another approach for the derivation of [ūk]

ε is based on an application of the extended Arzelà–Ascoli theorem. Analogous to
emma 5.8, one shows first that the sequence {uεk} is uniformly bounded in L∞([0, T ]). Then, by Alaoglu’s theorem [1, Principle 3],
here exists a subsequence {ε′} such that uεk

∗

⇀ ūk in L∞([0, T ]). To determine ūk, one chooses [uk]
ε such that the sequence {uεk − [uk]

ε
}

s uniformly bounded in C0,1([0, T ]). Then, according to the extended Arzelà–Ascoli theorem [1, Chapter I §1], there exists a subsequence
uch that

uε − [uk]
ε
→ ūk in C([0, T ]),

d (
uε − [uk]

ε
) ∗

⇀
dūk in L∞([0, T ]),
k dt k dt
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rom which ūk can be determined as the solution to a system of differential equations. This approach was used to derive the
leading-order asymptotic expansion of φε2 , y

ε
2, p

ε
2 in Lemma 5.10 and θ ε22 in Lemma 5.11.

emark. Theorem 5.2 provides immediately quantitative estimates on the difference between the original system (φε, θε, yε, pε) and
he limit system (φ0, θ0, y0, p0) of order O(ε) for times up to arbitrary, but fixed T . With the second-order asymptotic expansions
0 + ε

2(φ̄2 +[φ2]), θ0 + ε[θ1]+ ε2(θ̄2 +[θ2]), y0 + ε2(ȳ2 +[y2]) and p0 + ε2(p̄2 +[p2]) the result provides error estimates of order better
han O(ε2) over the same timescale. There are other averaging approaches which deal with the differential equation only. A formal
xpansion in ε can also derive the equations for the averaged second-order corrections φ̄2, θ̄2, ȳ2, p̄2, then error estimates need to be
btained separately, e.g., using some Gronwall and integration by parts arguments as described in [8]. The general restriction to finite
imescales cannot be avoided unless the averaged correction terms vanish [8, Chap. 2], which does not hold in our situation.

. Thermodynamic interpretation

We now give a thermodynamic interpretation of the analytic result presented in Theorem 5.2. The model problem in Section 2
describes the interaction of r (in general non-ergodic) fast and n slow degrees of freedom (n, r ∈ N). A simplified model of one fast
hence, ergodic) and one slow degree of freedom was already studied in [11], where the authors similarly interpret a fast–slow system
f the kind presented in Section 2 from a thermodynamic point of view. Since the thermodynamic interpretation of the model studied
n [11] includes arguments that are similarly applicable to the more general model considered in this article, we will focus here on the
ifferences and refer the interested reader for a detailed thermodynamic discussion to [11].
Fundamental in the theory of classical equilibrium thermodynamics is the transfer of energy in the form of work and heat in

hermodynamic processes. This energy transfer is described by the energy relation

dE = dW + dQ =

n∑
j=1

F jdyj + TdS. (44)

n more detail, let E be the energy of a generic thermodynamic system composed of many fast particles, such as gas particles trapped in
container with a piston. Then, the change of the system’s energy dE is the sum of external work done on the system, dW =

∑n
j=1 F

jdyj,
here F j are external forces exerted on the system by infinitesimal displacements of some external slow variables dyj, and a change of
eat, dQ = TdS, where T is the system’s temperature and dS a change of entropy. Classical statistical mechanics provides the derivation
f thermodynamic quantities such as temperature, entropy and external forces as the slow, average macroscale observations from the
icroscale dynamics in the system.
The energy transfer within a thermodynamic system in the form of work and heat also applies to mechanical systems which evolve

ithin an environment that allow for thermodynamic interactions. A suitable thermodynamic theory for such mechanical systems was
eveloped by L. Boltzmann and later refined by G. W. Gibbs [12], which was subsequently rederived by Hertz [13]. We will follow
ertz’ line of thought. His formalisation is based on fast Hamiltonian systems that are slowly perturbed by external agents. In this
etting, his theory describes how to define temperature, entropy and external forces such that the fundamental thermodynamic energy
elation (44) is satisfied.

Applying Hertz’ thermodynamic formalism to the model problem introduced in Section 2, we regard, similar to [11], the subsystem
omposed of the fast degrees of freedom zλε (λ = 1, . . . , r) as a thermodynamic system that is slowly perturbed by the interactions with
he slow subsystem composed of yjε (j = 1, . . . , n). Note that the ergodicity assumption for thermodynamic systems is not given for
he fast subsystem. Nevertheless, one can still derive thermodynamic properties if one replaces time-averages with ensemble-averages
see [14]), which can be derived by averaging the trajectories not only with respect to time but also with respect to initial values
ssumed to be uniformly distributed over the energy surface. A more detailed explanation can be found in Appendix A.
In contrast to classical thermodynamic theory, which mainly focuses on the thermodynamic analysis of some fast dynamics that

xperiences some slow external influence, such as gas particles trapped in a container with a piston, our focus lies in analysing the
low dynamics that experiences some external thermodynamic effects through its interaction with the fast subsystem. This focus is
otivated, for instance, by the conformal motion of a molecule in a solvent.
We will focus our attention on the energy associated to the fast degrees of freedom E⊥ε and the residual energy E∥ε , which are given

y

E⊥ε =
1
2
|żε|2 +

1
2
ε−2

r∑
λ=1

ω2
λ(yε)(z

λ
ε )

2, E∥ε = Eε − E⊥ε . (45)

The evolution of the fast degrees of freedom is governed by the energy E⊥ε = E⊥ε (zε, żε; yε) which is subject to slowly varying external
arameters given by yjε (j = 1, . . . , n). As pointed out in [11], this framework allows us to interpret the model problem from a
hermodynamic point of view by applying the thermodynamic theory of Hertz [13].

By applying Hertz’ thermodynamic formalism to the fast subsystem, which is governed by the energy function E⊥ε , we derive in
ppendix A, provided that θλ

∗
̸= 0 for at least one λ = 1, . . . , r , the following expressions for the temperature Tε , the entropy Sε and

he external force Fε:

Tε =
1
r

r∑
λ=1

θλε ωλ(yε), Sε =
r∑

λ=1

log

⎛⎝ r∑
µ=1

θµε
ωµ(yε)
ωλ(yε)

⎞⎠ , Fε = Tε
r∑

λ=1

DLλε , (46)

where, according to the notation introduced in (15), the vector DLλε represents the gradient of Lλε = log(ωλ(yε)) with respect to yε ∈ Rn.
The classical thermodynamic concepts of temperature and entropy are commonly described for systems in or near thermodynamic
equilibrium, i.e., for an infinite separation of timescales, so in the limit ε → 0. It is noteworthy that we derive these expressions
20
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or finite but non-zero ε. Note that the assumption on θλ
∗
ensures, that the system exhibits a genuine scale-separation into fast and

low dynamics. Moreover, note that the temperature is the arithmetic mean of the frequencies ωλ(yε) (λ = 1, . . . , r) weighted by their
orresponding actions θλε . The entropy provides a measure for the pairwise weighted frequency ratios θλε ωλ(yε)/ωµ(yε) (λ,µ = 1, . . . , r),
hile the external force primarily indicates the change of log(ωλ(yε)) with respect to the slow coordinates yε .
In combination with the second-order expansion derived in Theorem 5.2 we can expand Tε , Sε and Fε , and thus determine their

symptotic properties, i.e., Tε = T0 + O(ε), Fε = F0 + O(ε) and Sε = S0 + ε[S̄1]ε + ε2[S̄2]ε + ε2Sε3 with Sε3 → 0 in C([0, T ]), where

T0 :=
1
r

r∑
λ=1

θλ
∗
ωλ(y0), F0 := T0

r∑
λ=1

DLλ0, S0 :=
r∑

λ=1

log

⎛⎝ r∑
µ=1

θµ
∗

ωµ(y0)
ωλ(y0)

⎞⎠ , [S̄1]ε :=
1
T0

r∑
λ=1

[θλ1 ]
εωλ(y0) (47)

and

[S̄2]ε :=
1
T0

r∑
λ=1

(
θ̄λ2 + [θλ2 ]

ε
)
ωλ(y0)+

1
T0

r∑
λ=1

θλ
∗
⟨Dωλ(y0), ȳ2 + [y2]ε⟩

−

r∑
λ=1

⟨
DLλ0, ȳ2 + [y2]ε

⟩
−

1
2rT 2

0

(
r∑

λ=1

[θλ1 ]
εωλ(y0)

)2

.

e use the expansions derived in Section 5 to analyse the energy E⊥ε on different scales. To this end, we expand E⊥ε =
∑r

λ=1 θ
λ
ε ωλ(yε)

and write E⊥ε = E⊥0 + ε[Ē⊥1 ]
ε
+ ε2[Ē⊥2 ]

ε
+ ε2E⊥ε3 with E⊥ε3 → 0 in C([0, T ]), where

E⊥0 :=

r∑
λ=1

θλ
∗
ωλ(y0), [Ē⊥1 ]

ε
:=

r∑
λ=1

[
θλ1
]ε
ωλ(y0),

[Ē⊥2 ]
ε
:=

r∑
λ=1

(
θ̄λ2 + [θλ2 ]

ε
)
ωλ(y0)+

r∑
λ=1

θλ
∗
⟨Dωλ(y0), ȳ2 + [y2]ε⟩ .

.1. Leading-order thermodynamics

We now analyse the energy E⊥ε in the limit ε → 0 from a thermodynamic perspective. For ε → 0, the temperature, entropy and
xternal force are given by the expressions T0, S0 and F0 as in (47).
While the temperature captures the average collective dynamics of the weighted frequencies θλ

∗
ωλ(y0), the entropy depends on the

ynamics of the weighted frequency ratios θλ
∗
ωλ(y0)/ωµ(y0). In contrast to the simplified model in [11], which can be regarded as the

egenerate case of one fast degree of freedom, the entropy S0 is constant if and only if all weighted frequency ratios θλ
∗
ωλ(y0)/ωµ(y0)

λ,µ = 1, . . . , r) are constant, regardless of the number of fast degrees of freedom. In this case, the motion of the fast degrees of
reedom can be described as a quasi-periodic motion. Thus, the entropy can be considered as an indicator of the homogeneity of the
requencies with respect to y0 and therefore serves as a measure of chaos for the fast subsystem. In the case of one fast degree of
reedom as in [11], the weighted frequency ratio is naturally constant and hence the entropy remains constant. Therefore, we can
egard – in reference to classical thermodynamic theory – the leading-order dynamics of the fast subsystem in the case of a constant
ntropy as an adiabatic thermodynamic process and non-constant entropy as a non-adiabatic thermodynamic process. We remark that
e make this thermodynamic interpretation despite the fact that the fast subsystem is non-ergodic.
Finally, by expressing the leading-order energy of the fast subsystem E⊥0 =

∑r
λ=1 θ

λ
∗
ωλ(y0) as a function of S0 and y0, it can be

ritten as

E⊥0 (S0, y0) = eS0/r
r∏

λ=1

ω
1/r
λ (y0).

As a consequence, the differential is given by

dE⊥0 =

n∑
j=1

F j
0dy

j
0 + T0dS0, (48)

which coincides with the fundamental thermodynamic energy relation in (44).

6.2. Second-order thermodynamics

In contrast to the ε-independent thermodynamic expressions to leading-order discussed in Section 6.1, the asymptotic expansion
terms to higher-order are ε-dependent. In particular, they contain terms that rapidly oscillate around zero, and terms that yield the
average motion of the higher-order asymptotic expansions. As the thermodynamic theory aims to describe many-particle systems by
their average dynamics, we analyse, similar to [11], the average dynamics of the higher-order asymptotic expansion in E⊥ε and Sε by
tudying the weak∗ limit of [Ē⊥1 ]

ε , [Ē⊥2 ]
ε , [S̄1]ε and [S̄2]ε , i.e.,

[Ē⊥1 ]
ε ∗

⇀ 0 in L∞([0, T ]), [Ē⊥2 ]
ε ∗

⇀ Ē⊥2 in L∞([0, T ]),

[S̄1]ε
∗

⇀ 0 in L∞([0, T ]), [S̄2]ε
∗

⇀ S̄2 in L∞([0, T ]),
21
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here

Ē⊥2 :=

r∑
λ=1

θ̄λ2ωλ(y0)+
r∑

λ=1

θλ
∗
⟨Dωλ(y0), ȳ2⟩

nd

S̄2 :=
1
T0

r∑
λ=1

θ̄λ2ωλ(y0)+
1
T0

r∑
λ=1

θλ
∗
⟨Dωλ(y0), ȳ2⟩ −

r∑
λ=1

⟨
DLλ0, ȳ2

⟩
−

1
16rT 2

0

r∑
λ=1

(
θλ
∗
· DtLλ0

)2
=

Ē⊥2
T0

−

r∑
λ=1

⟨
DLλ0, ȳ2

⟩
−

1
16rT 2

0

r∑
λ=1

(
θλ
∗
· DtLλ0

)2
. (49)

ote that the expression of the entropy is in this case not constant. Intuitively, this follows from the second-order asymptotic expansion
f the slow degrees of freedom yjε (j = 1, . . . , n). These exhibit according to Theorem 5.2 a decomposition into slowly varying
omponents ȳj2 and rapidly varying components [yj2]

ε . The existence of this decomposition gives rise to a non-constant entropy discussed
n more detail in [11]. Moreover, we notice that the last term in S̄2 originates from [S̄1]ε , the rapidly oscillating first-order correction
f S0.
Finally, after rearranging (49), we derive for Ē⊥2 = Ē⊥2 (S̄2, ȳ2; y0, p0) the expression

Ē⊥2 := ⟨F0, ȳ2⟩ + T0S̄2 +
1

16rT0

r∑
λ=1

(
θλ
∗
· DtLλ0

)2
.

ow, by analysing the differential of Ē⊥2 for fixed (y0, p0), which is given by

dĒ⊥2 =

n∑
j=1

F j
0dȳ

j
2 + T0dS̄2,

we find, similar to (48), a remarkable resemblance to the fundamental thermodynamic relation as presented in Eq. (44).

6.3. Analysis of the total energy

Finally, we inspect how the thermodynamic energy transfer in form of work and heat is realised in the second-order asymptotic
expansion of the total energy Eε . Recalling the analysis above, we split the total energy Eε into E⊥ε and E∥ε (compare with (45)),
i.e., Eε = E⊥ε + E∥ε , where

E∥ε :=
1
2
|pε|2 + V (yε)+

ε

2

r∑
λ=1

θλε
⟨
pε,DLλε

⟩
sin(2ε−1φλε )+

ε2

8

r∑
λ=1

r∑
µ=1

θλε θ
µ
ε

⟨
DLλε ,DL

µ
ε

⟩
sin(2ε−1φλε ) sin(2ε

−1φµε ).

Similar to before, we use the expressions derived in Theorem 5.2 to expand the energy E∥ε , i.e., E
∥
ε = E∥0 + ε[Ē

∥

1 ]
ε
+ ε2[Ē∥2 ]

ε
+ ε2E∥ε3 with

E∥ε3 → 0 in C([0, T ]), where

E∥0 :=
1
2
|p0|2 + V (y0), [Ē∥1 ]

ε
:=

1
2

r∑
λ=1

θλ
∗
DtLλ0 sin(2ε

−1φλ0 )

and

[Ē∥2 ]
ε
:= ⟨p0, p̄2 + [p2]ε⟩ + ⟨DV (y0), ȳ2 + [y2]ε⟩ +

1
2

r∑
λ=1

[θλ1 ]
εDtLλ0 sin(2ε

−1φλ0 )

+

r∑
λ=1

θλε DtLλ0 cos(2ε
−1φλ0 )(φ̄2 + [φ2]

ε)+
1
8

r∑
λ=1

r∑
µ=1

θλ
∗
θµ
∗

⟨
DLµ0 ,DL

λ
0

⟩
sin(2ε−1φλ0 ) sin(2ε

−1φ
µ

0 ).

To determine the average energy correction at first- and second-order, we take the weak∗ limit and derive E∥ε1
∗

⇀ 0 in L∞([0, T ]) and

[Ē∥2 ]
ε ∗

⇀ Ē∥2 := ⟨p0, p̄2⟩ + ⟨DV (y0), ȳ2⟩ −
r∑

λ=1

θλ
∗
(DtLλ0)

2

4ωλ(y0)
+

r∑
λ=1

(θλ
∗
)2|DLλ0|

2

16
in L∞([0, T ]).

The following theorem shows how the Hamiltonian character of the problem and the thermodynamic interpretation materialise for
he averaged second-order energy correction Ē2 = Ē∥2 + Ē⊥2 .

heorem 6.1. Let (y0, p0) be as in (14) and (ȳ2, p̄2) be as in Theorem 5.2. Let Ē2 be the averaged second-order energy correction Ē2 = Ē∥2+Ē⊥2 ,
where

Ē∥2 (ȳ2, p̄2; y0, p0) = ⟨p0, p̄2⟩ + ⟨DV (y0), ȳ2⟩ −
r∑ θλ

∗
⟨p0,Dωλ(y0)⟩2

4ω3(y )
+

r∑ (θλ
∗
)2 |Dωλ(y0)|2

16ω2(y )

λ=1 λ 0 λ=1 λ 0

22
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Ē⊥2 (ȳ2; y0, p0) =
r∑

λ=1

θ̄λ2 (y0, p0)ωλ(y0)+
r∑

λ=1

θλ
∗
⟨Dωλ(y0), ȳ2⟩ ,

with

θ̄λ2 (y0, p0) =
θλ
∗
⟨p0,Dωλ(y0)⟩2

8ω4
λ(y0)

+ Cθ̄λ2 , Cθ̄λ2 = −
θλ
∗
⟨p∗,Dωλ(y∗)⟩2

8ω4
λ(y∗)

− [θλ2 ]
ε(0).

Then the differential equations (23c) and (23d) take the form

dȳj2
dt

=
∂ Ē2
∂pj0

,
dp̄j2
dt

= −
∂ Ē2
∂yj0

, (50)

for j = 1, . . . , n. Moreover, with the functions T0, S̄2 and F0 given in (47) and (49), which can be interpreted as the temperature, entropy
nd external force in the fast subsystem, the energy Ē⊥2 can be written as

Ē⊥2 (S̄2, ȳ2; y0, p0) = ⟨F0(y0), ȳ2⟩ + T0(y0)S̄2 +
1

16rT0(y0)

r∑
λ=1

(θλ
∗
)2 ⟨p0,Dωλ(y0)⟩2

ω2
λ(y0)

.

ith this notation, the energy Ē⊥2 satisfies the constituent equations

T0 =
∂ Ē⊥2
∂ S̄2

, F j
0 =

∂ Ē⊥2
∂ ȳj2

. (51)

roof. The evolution equations (50) follow directly from (23c) and (23d). The constituent equations (51) follow from (44). □

emark. With Eε = E∗ = E0, according to (8), the expansion of the energy Eε = E0 + ε[Ē1]ε + ε2[Ē2]ε + ε2Eε3 implies that
Ē1]ε = [Ē2]ε = Eε3 ≡ 0 and thus Ē2 ≡ 0. As a consequence, the averaged energy function Ē2 acts as a constraint on the system
nd ε2 can be regarded as a Lagrange multiplier. Note that the evolution equations (50) resemble Hamilton’s canonical equations.

. Simulations

Fast–slow Hamiltonian systems model, for example, the evolution of molecular systems, where the slow degrees of freedom
epresent the conformal motion of a molecule and the fast degrees of freedom represent the molecular vibrations. A crucial component
n the fast–slow Hamiltonian system with the Lagrangian of Section 2 is the scale parameter ε. It often represents a fixed parameter
etermined by the problem in terms of the ratio of the typical timescales of the fast (here zε) and slow (here yε) degrees of freedom.
In the analysis of molecular systems, one is often primarily interested in the slow conformal motion of molecules. As such, a small

cale parameter ε causes costly overhead in the numerical derivation of yε from (6), since the step size has to be chosen sufficiently small
o account for the fast, oscillatory motion of zε . Theorem 2.1 provides a possible solution to this problem by deriving the homogenised
ystem (6).
The homogenised system describes the evolution of the slow degrees of freedom y0 only, which can be used to approximate the

volution of yε . The approximation of yε by y0 comes, however, with a trade-off. On the one hand, one can choose a larger step size
or the computation of y0 from (9) than for that of yε from (6). This significantly reduces the computational cost of the numerical
ntegration. On the other hand, approximating yε by y0 introduces an approximation error which depends on the scale parameter
, namely ∥yε − y0∥L∞([0,T ],Rn) = O(ε2). Therefore, we extend in this article the leading-order asymptotic expansion and derive in
heorem 5.2 the second-order correction [ȳ2]ε to y0 such that

ε−2(yε − y0)− [ȳ2]ε

L∞([0,T ],Rn) → 0 as ε → 0. Here, [ȳ2]ε takes the

orm [ȳ2]ε = ȳ2 + [y2]ε , where ȳ2 traces the average motion of the second-order correction and can be derived as the solution to a
low system of differential equations (50) and [y2]ε is the explicitly given rapidly oscillating term of the second-order correction.
We compare the global error of approximating yε by y0 and by y0+ε2[ȳ2]ε both on a short and a long time interval, and the associated

omputation times for a specific fast–slow Hamiltonian system described in the next paragraph. The key finding is that the computation
f y0 and [ȳ2]ε , which can be done in parallel, is up to two orders of magnitude faster than the computation of yε of similar accuracy.
oreover, the total computation time for y0 and y0+ ε2[ȳ2]ε is practically identical, while the global error ∥yε− y0− ε2[ȳ2]ε∥L∞([0,T ],Rn)

s significantly smaller than the global error ∥yε − y0∥L∞([0,T ],Rn) on short as well as on long time intervals.

he test model. We consider a fast–slow Hamiltonian system as described in Section 2, defined on the Euclidean configuration space
= R4. The test model describes the evolution of two fast and two slow degrees of freedom such that x = (y, z) ∈ R2

× R2
= R4.

heir dynamics is governed by the Lagrangian as described in (3), with

V (yε) = 1
2 (y

1
ε)

4
+

1
2 (y

2
ε)

4, ω1(yε) = 4+ (y1εy
2
ε)

2, ω2(yε) = 2+ sin(y1ε)

and initial values

yε(0) = (1,−0.5), ẏε(0) = (1, 1.2), zε(0) = (0, 0), żε(0) = (3, 2).

We simulate the full solution yε = (y1ε, y
2
ε) and homogenised approximations, in particular the second-order approximation based on

Theorems 2.1 and 5.2. Specifically, we compare the second-order asymptotic expansion y10 + ε2[ȳ12]
ε with the full trajectory of y1ε for

hort and long time intervals. Here, the superscript 1 denotes the index of the first component of yε and indicates the first slow degree
f freedom in the system. A similar comparison of the second slow degree of freedom, y2 and y2 + ε2[ȳ2]ε , is analogous.
ε 0 2
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Fig. 1. Comparison of the full dynamics y1ε as the solution to (6), y10 as the solution to the homogenised limit equation (9) and [ȳ12] as the second-order approximation,
where ȳ12 is derived from (50). The parameter choice is ε = 0.53 .

Fig. 2. Comparison of ε−2(y1ε (t)− y10(t)) and ȳ12(t)+ [y12]
ε(t) on a short time interval t ∈ [0, 1], with y1ε , y

1
0 and ȳ12 as the solutions of (6), (9) and (50), with ε = 0.55 .

he function [y12]
ε is given explicitly in Definition 5.1.

Fig. 1(a) displays the trajectory of y1ε − y10− ε
2
[ȳ12]

ε superimposed on y1ε − y10, for a long time interval with final time T = ε−2, where
= 0.53. It is evident that the second-order error y1ε − y10 − ε

2
[ȳ12]

ε is significantly smaller throughout the entire time interval than the
eading-order error y1ε − y10. This becomes even clearer in Fig. 1(b). There, we observe that the leading-order error grows faster than
he second-order error, illustrating the increased importance of the second-order correction [ȳ12]

ε with time.
The reason why an approximation of y1ε by y10 performs worse than an approximation by y10 + ε

2
[ȳ12]

ε on long time intervals is that
1
ε is highly oscillatory at higher-orders, which is not captured by y10. This difference becomes evident only to higher-order. Fig. 2(a)
llustrates the oscillatory behaviour of y1ε to second-order. Here, we superimpose the second-order correction [ȳ12]

ε
= ȳ12 + [y12]

ε on
op of y1ε2 = ε−2(y1ε − y10) to visualise the oscillatory dynamics to higher-order and illustrate the approximation quality of [ȳ12]

ε for
hort time intervals. For this purpose, we integrate system (6), (9) and (50) for the test model with ε = 0.55, on a short time interval
∈ [0, 1]. The trajectories of y1ε2 and [ȳ12]

ε are almost indistinguishable; the difference becomes visible only at third-order, as shown
n Fig. 2(b).

Although the error y1ε−y10− ε
2
[ȳ12]

ε looks very accurate on short time intervals, the accuracy decreases, as Fig. 2(b) suggest, for long
ime intervals. Fig. 3 reveals how this error increases for long time intervals. Here, we integrated (6), (9) and (50) for ε = 0.53, where
= ε−2.

.1. Comparison of the execution time

As mentioned earlier, the approximation of y1ε by the homogenisation limit y10 comes with a trade-off. The simulation of y10 is faster
han that of y1ε but introduces an approximation error of order O(ε2). This error can be reduced by approximating y1ε by y10 + ε2[ȳ12]

ε ,
.e., the second-order asymptotic expansion derived in Theorem 5.2. The leading-order and second-order errors are discussed in the
revious section. We now discuss the computational costs of the simulations in this section.
Before comparing the total runtime for deriving y1ε , y

1
0 and y10 + ε

2
[ȳ12]

ε , we note that in [ȳ12]
ε
= ȳ12 +[y12]

ε , the function ȳ12 traces the
low, average motion of the second-order correction term and is given as the solution to (50), while [y12]

ε is the explicitly given rapidly
oscillating term of the second-order correction. Moreover, we point out that the derivation of y10 and ȳ12 can be carried out in parallel.
As such, there is little additional simulational overhead in computing the second-order asymptotic expansion [ȳ1]ε .
2
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Fig. 3. The second-order correction [ȳ12]
ε(t) = ȳ12(t)+[y12]

ε(t) and its average motion ȳ12(t) superimposed on y1ε2 (t) = ε−2(y1ε (t)−y10(t)) for t ∈ [0, ε−2
] where ε = 0.53 .

Fig. 4. Graphs of
y1ε2 − [ȳ12]

ε

L∞([0,T ]) versus step size dt2,y1ε for different values of ε. The start of an upwards slope indicates the maximal step size.

To analyse the execution time for simulating y1ε , y
1
0 and y10 + ε2[ȳ12]

ε , we determine the maximal step sizes such that certain
onvergence properties are still satisfied. More precisely, we determine the maximal step size dtmax

0,y1ε
to compute y1ε and dtmax

0,y10
to compute

1
0 such thaty1ε − y10


L∞([0,T ]) = O(ε2) (52)

nd the maximal step size dtmax
2,y1ε

to compute y1ε and dtmax
2,y10,ȳ

1
2
to compute y10 and ȳ12 such that

y1ε − y10 − ε
2
[ȳ12]

ε

L∞([0,T ]) = O(ε3). (53)

o determine, for instance, dtmax
2,y1ε

, we fix ε and derive y10 and ȳ12 with a small but fixed step size dt2,y10,ȳ12 , and solve system (6) for
ncreasingly larger dt2,y1ε . This process results in an error plot as shown in Fig. 4. The error is constant for small step sizes dt2,y1ε and
ncreases after crossing an ε-dependent threshold value. This value expresses the maximal step size dtmax

2,y1ε
which still ensures that

roperty (53) holds. A similar procedure was applied to determine the step size dtmax
0,y1ε

such that property (52) holds, and conversely to
etermine dtmax

0,y10
and dtmax

2,y10,ȳ
1
2
.

With this procedure, we find for ε = 0.5k (k = 2, . . . , 7) the maximal step size such that the properties (52) and (53) are still
atisfied. That is, for the leading-order error (52) we derive dmax

0,y1ε
= O(ε2) and dmax

0,y10
= O(ε), and for the second-order error (53) we

btain dtmax
2,y1ε

= O(ε3) and dtmax
2,y10,ȳ

1
2
= O(ε3/2). The exact maximal step sizes are listed in Tables 3 and 4 in Appendix B.

With these maximal step sizes, we can determine the average runtime for simulating y1ε , y
1
0 and y10+ ε

2
[ȳ12]

ε as depicted in Figs. 5(a)
nd 5(b). Most significantly, we see that the derivation of the leading-order asymptotic expansion in Fig. 5(a) and the second-order
symptotic expansion in Fig. 5(b) are up to two orders of magnitude faster than the simulation of y1ε via (6). This directly reflects
he differences in the maximal step sizes as explained above. Moreover, Fig. 5(b) shows that the execution time for simulating y10
s the leading-order approximation and ȳ12 as the averaged second-order correction are comparable. The minimal difference can be
xplained by the evolution equation (50), which is more complicated than in (9), resulting in an increase of floating points operations
er time-step.
25
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Fig. 5. Total runtime to simulate y1ε from (6), y10 from (9) and ȳ12 from (50). The exact computation times are listed in Tables 3 and 4 in Appendix B.

7.2. Details of the implementation

To compare the runtime of solving system (6) for yε with an accuracy that describes its evolution up to second-order with both the
leading-order approximation (Theorem 2.1) and second-order approximation (Theorem 5.2), one needs a numerical integration scheme
that allows to solve each of the three systems of differential equations (6), (9) and (50).

We note that system (6) and (9) are given as two autonomous, second-order systems of differential equations. As such, a simple
Velocity-Verlet algorithm, which is frequently used in the numerical integration of molecular dynamic systems, can be used to integrate
these systems. However, system (50) is non-autonomous. Thus, a numerical integration scheme from the family of Runge–Kutta
methods could be used to integrate each of the three systems of differential equations. We notice that system (50) resembles Hamilton’s
canonical equations. In particular, the system is separable, which allows for the implementation of efficient partitioned Runge–Kutta
methods. Furthermore, because of the Hamiltonian structure of systems (6) and (9), it seems natural to apply a symplectic partitioned
Runge–Kutta method as an integration scheme for solving the three systems. On that account, the simulations in this article were
derived on the basis of a second-order symplectic partitioned Runge–Kutta method which combines the following Lobatto IIIA (Table 1)
and Lobatto IIIB (Table 2) tableaux (taken from [27, Chapter IV.5]). Sun [28] proved (also see [29]), that this specific method is symplectic.
A detailed description of the implementation can be found in [30, Chapter 8 and 14].
Table 1
Lobatto IIIA.

0 0 0
1/2 1/2

1/2 1/2

able 2
obatto IIIB.

1/2 0
1/2 0

1/2 1/2

. Conclusion

In this article, we studied a class of fast–slow Hamiltonian systems with energy functions given by

Eε =
1
2
|ẏε|2 +

1
2
|żε|2 + V (yε)+

1
2
ε−2

r∑
λ=1

ω2
λ(yε)(z

λ
ε )

2,

where yjε (j = 1, . . . , n) are the slow and zλε (λ = 1, . . . , r) are the non-ergodic fast degrees of freedom and 0 < ε < ε0 < ∞ is a
arameter characterising their typical timescale ratio. A simplified version of one fast and one slow degree of freedom was already
tudied in [11].
In the first part of this article, we introduced a transformation of the fast degrees of freedom into action–angle variables (zε, żε) ↦→

(θε, φε), which also required a transformation of the momenta ẏε ↦→ pε . We derived subsequently the second-order asymptotic
expansion of the transformed degrees of freedom. Furthermore, we showed that these expansions can be decomposed into terms
that oscillate rapidly around zero and slow terms that trace the average motion of the expansion. While the rapidly oscillating terms
are given explicitly, the slow, average terms are given as solutions to an inhomogeneous linear system of differential equations.

In the second part of this article, we studied the fast subsystem characterised by the energy function

E⊥ε =
1
2
|żε|2 +

1
2
ε−2

r∑
ω2
λ(yε)(z

λ
ε )

2.
λ=1
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uided by the thermodynamic theory for ergodic Hamiltonian systems described by Hertz, we regard the dynamics of the fast degrees
f freedom zλε (λ = 1, . . . , r) as a system that is slowly perturbed by the interaction with the slow degrees of freedom yjε (j = 1, . . . , n).
ecause the fast subsystem is not ergodic, we followed along the lines of [14] and replaced the time-average in classical statistical
echanics by an ensemble-average and defined otherwise, following Hertz, the temperature Tε , the entropy Sε and the external force
ε of the fast subsystem.
Together with the second-order asymptotic expansion derived in the first part of this article, we expanded E⊥ε , Tε , Sε and Fε . After

analysing the leading-order asymptotic expansion of these terms, we found that they obey an energy relation akin to the first and
second law of thermodynamics (in the sense of Carathéodory)

dE⊥0 =

n∑
j=1

F j
0dy

j
0 + T0dS0.

In contrast to the case studied in [11], the entropy is not always constant. Indeed, the entropy is constant if and only if all weighted
frequency ratios θλ

∗
ωλ(y0)/ωµ(y0) (λ,µ = 1, . . . , r) are constant. In this case, the fast subsystem’s dynamics is a rigid (quasi-)periodic

motion. We infer that, in the case of a constant entropy, the fast subsystem can be regarded as an adiabatic thermodynamic system,
while in the case of a non-constant entropy, it can be interpreted as a non-adiabatic thermodynamic system.

Remarkably, for the second-order asymptotic expansion we find, for fixed (y0, p0), a thermodynamic energy relation of the form

dĒ⊥2 =

n∑
j=1

F j
0dȳ

j
2 + T0dS̄2.

With a second-order entropy expression S̄2 that is not constant, we can interpret the averaged second-order asymptotic dynamics as a
non-adiabatic thermodynamic process.

Finally, in the third part of this article, we analysed the model problem from a numerical point of view. In particular, we compared by
means of a specific test model the quality of the short- and long-term approximation of yε by the leading-order asymptotic expansion
y0 and by the second-order asymptotic expansion y0+ε2[ȳ2]ε . Most importantly we found that the time interval for which y0+ε2[ȳ2]ε
eases to be a viable approximation of yε is significantly longer than for an approximation by y0 alone. Moreover, we analysed in a
eries of tests how the total runtime of numerically computing yε , y0 and ȳ2 depends on the value of the scale parameter ε. We derived
xperimentally the largest step size so that certain convergence properties are still satisfied. In contrast to system (9) and (50), which
nly require the integration of slow degrees of freedom and thus allow for choosing a relatively large step size, the integration of
ystem (6) requires the choice of a relatively small step size to accurately replicate small-scale oscillations in the numerical solution.
s a consequence, we found that the runtime for simulating y0 and ȳ2, and thus for simulating the second-order asymptotic expansion
0 + ε

2
[ȳ2]ε , is up to two orders of magnitude faster than the simulation of yε from the original system, for a similar accuracy.

The analysis of this article is restricted to a simple Hamiltonian. A significant limitation of the current analysis is the choice of
he interaction potential U in (4). The diagonal structure implies that fast modes interact only indirectly, through slow modes as
ntermediaries, via multiplicative coupling. Such a coupling appears in the Caldeira–Leggett Hamiltonian [31], with Lagrangian

L (y, z, ẏ, ż) =
1
2
Mẏ2 − V (y)+

1
2

r∑
λ=1

mλż2λ −
1
2

r∑
λ=1

mλcλz2λ − y
r∑

λ=1

ωλzλ

with cλ > 0. (Note in the framework of this article, the small parameter would here not be the mass ratio mλ/M , but the limit of
increasing coupling ωλ.) For direct practical applications such as chemical reactions, for example, the evolution of the butane molecule,
an extension of the results presented here to more complex potentials is required. One of the key insights of this paper is the existence
of thermodynamic potentials far from equilibrium, albeit in the special situation of diagonal, or diagonalisable, interaction potentials U .
If this observation holds in greater generality, then this can lead to a better understanding and better computational approaches away
from equilibrium, such as a chain of atoms linked to two reservoirs assigning the outer atoms different temperatures. This is a matter
of future investigation.
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ppendix A. Hertz’ approach to thermodynamics

As mentioned earlier, the authors in [11] analyse a simplified version of the model problem as presented in Section 2 from a
thermodynamic point of view. More precisely, they focus on a system of one fast and one slow degree of freedom, i.e., n = r = 1,
whose fast subsystem is by construction ergodic. That analysis builds on the thermodynamic theory described by Hertz as presented
in [14]. Because of the similarity of the two models, we will focus on the differences in the derivation of the temperature, entropy and
external force as given in (46) and refer the interested reader for a detailed discussion to [11].

A.1. Introduction to thermodynamics for non-ergodic systems

To illustrate the difference in the derivation of the thermodynamic quantities in [11] and here, we recall how the temperature is
derived for the ergodic system studied in [11] and explain why the same approach fails for non-ergodic systems as studied in this
article.

Let us start by analysing the dynamics of a generalised position zε ∈ Rr and momentum ζε ∈ Rr governed by a Hamiltonian of the
form

H⊥

ε (zε, ζε; yε) :=
r∑

λ=1

Hλε (zε, ζε; yε), where Hλε (zε, ζε; yε) :=
1
2
(ζ λε )

2
+

1
2
ω2
λ(yε)(z

λ
ε )

2, λ = 1, . . . , r,

and yε(t) = y(εt) ∈ Rn are slow external parameters with ẏε = O(ε). This setting of a Hamiltonian system which is slowly perturbed
by an external parameter is fundamental in the thermodynamic formulation derived by Hertz. For ε = 0, the unperturbed Hamiltonian
is given by

H⊥

0 (z0, ζ0; y0) =
r∑

λ=1

Hλ0 (z0, ζ0; y0), where Hλ0 (z0, ζ0; y0) =
1
2
(ζ λ0 )

2
+

1
2
ω2
λ(y0)(z

λ
0 )

2, λ = 1, . . . , r,

and y0(t) = y(0) ≡ y∗. With initial values of the form zλ0 (0) = 0 and ζ λ0 (0) =
√
2Eλ

∗
the solutions to the corresponding Hamilton’s

quations are then given for λ = 1, . . . , r by

zλ0 (t) =

√
2Eλ

∗

ω2
λ(y∗)

sin (ωλ(y∗)t) , ζ λ0 (t) =
√
2Eλ

∗
cos (ωλ(y∗)t) . (54)

Moreover, we define the constant total energy

E⊥
∗
:=

r∑
λ=1

Eλ
∗
, where Eλ

∗
:=

1
2
(ζ λ0 )

2
+

1
2
ω2
λ(y∗)(z

λ
0 )

2, λ = 1, . . . , r.

If r = 1, the trajectory of (z0, ζ0) covers the entire energy surface {(z0, ζ0) ∈ R2:H⊥

0 (z0, ζ0; y0) = E⊥
∗
}. Hence, the system is ergodic.

In this case, which corresponds to the model studied in [11], the temperature in thermal equilibrium is defined via the time average,
indicated by angle brackets ⟨·⟩, of twice the kinetic energy. More precisely, we obtain

Tλ(Eλ∗ , y∗) :=
⟨
ζ λ0
∂Hλ0
∂ζ λ0

⟩
= lim

θ→∞

1
θ

∫ θ

0
2Eλ

∗
cos2(ωλ(y∗)t) dt = Eλ

∗
,

which is unique in the case r = 1.
However, if r > 1, the energies Eλ

∗
(λ = 1, . . . , r) form distinct integrals of motion. This implies that the system is non-ergodic. A

naïve application of the definition of temperature above results in distinct temperature expressions that are unsuitable to describe the
thermodynamic state of the whole system, because their values are in general path-dependent, i.e., Tλ = Eλ

∗
̸= Eµ∗ = Tµ for λ ̸= µ

(λ,µ = 1, . . . , r). Therefore, we define as in [14] the temperature for non-ergodic systems via the ensemble-average. This gives a
unique measure for the thermodynamic state of the whole system.

A.1.1. The Birkhoff–Khinchin theorem for non-ergodic systems
A suitable expression for the temperature, which provides a unique measure for the whole system, can be derived if, in addition to

averaging with respect to time, one averages with respect to all uniformly distributed initial values on the energy surface, making the
temperature path-independent. This ensemble average allows us to define a temperature expression as a measure of the average kinetic
motion of the whole system. We follow [14] for the definition of the ensemble average and its application to Hamiltonian systems. Let
x = x(t, x0) be the parametric form of the trajectory in phase-space starting at the point x0. Then, the average value of some function
φ with respect to any phase trajectory x(t), i.e.,

⟨φ(x)⟩ = lim
θ→∞

1
θ

∫ θ

0
φ(x(t, x0)) dt,

depends, in general, on x0. An ensemble of systems is given by varying initial data x0, independent and identically distributed over the
phase region E ≤ H(x) ≤ E +∆E. The probability density of x0 in this region is constant and is equal to (Γ (E +∆E)− Γ (E))−1.

The ensemble average, E.A. ⟨φ⟩, of the function φ is defined by

E.A. ⟨φ⟩ := lim
1

∫
lim

1
∫ θ

φ(x(t, x0)) dt dx0.

∆E→0 Γ (E +∆E)− Γ (E) E≤H(x0)≤E+∆E θ→∞ θ 0

28
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uppose that the order of calculation of the integral over x0 and limθ→∞ can be changed. Then

E.A. ⟨φ⟩ = lim
∆E→0

1
Γ (E +∆E)− Γ (E)

lim
θ→∞

1
θ

∫ θ

0

∫
E≤H(x0)≤E+∆E

φ(x(t, x0)) dx0 dt. (55)

The region E ≤ H(x0) ≤ E+∆E is invariant under the action of the phase flow x(t, x0). Hence, in calculating the integral over x0 in (55),
ne can make a change of the variables x0 ↦→ x. Since the determinant of this transformation is 1 by Liouville’s theorem, we can write∫

E≤H(x0)≤E+∆E
φ(x(t, x0)) dx0 =

∫
E≤H(x)≤E+∆E

φ(x) dx.

Thus, the integral does not depend on time. For small ∆E, this integral is given by∫
E≤H(x)≤E+∆E

φ(x) dx ≈ ∆E
∫
φ(x)

dσ
|∇H|

.

herefore, we arrive at an ‘‘analogous’’ version of the Birkhoff–Khinchin theorem: for any Hamiltonian system

E.A. ⟨φ⟩ =

∫
Σ
φ(x) dσ

|∇H|∫
Σ

dσ
|∇H|

. (56)

his version of the Birkhoff–Khinchin theorem reflects the ‘‘average’’ (with respect to initial data) behaviour of non-ergodic Hamiltonian
ystems and is thus used to define the temperature in non-ergodic systems.

.2. Derivation of thermodynamic relations in non-ergodic systems

As we saw in the previous section, the ensemble average of a function can be derived from the equality

E.A. ⟨φ⟩ =

∫
Σ
φ(x) dσ

|∇H|∫
Σ

dσ
|∇H|

,

here Σ = {(z0, ζ0) ∈ R2r :H⊥

0 (z0, ζ0; y∗) = E⊥
∗
}, dσ is a surface element on the energy surface and

|∇H⊥

0 | =

[
r∑

λ=1

(
∂H⊥

0

∂ζ λ0

)2

+

(
∂H⊥

0

∂zλ0

)2
]1/2

.

he temperature for non-ergodic Hamiltonian systems is defined via the ensemble average by

T (E⊥
∗
, y∗) := E.A.

⟨
ζ λ0
∂H⊥

0 (z0, ζ0; y∗)
∂ζ λ0

⟩
=

∫
Σ

ζ λ0
∂H⊥

0

∂ζ λ0

dσ
|∇H⊥

0 |∫
Σ

dσ
|∇H⊥

0 |

. (57)

he numerator can be evaluated by noting that ∂H⊥

0 /∂ζ
λ
0 is the λth component of the vector ∇H⊥

0 and hence

nλζ :=
∂H⊥

0 /∂ζ
λ
0

|∇H⊥

0 |

s the λth component of the outer unit vector n = ∇H⊥

0 /|∇H⊥

0 | on the energy surface. Therefore, we can write the numerator in the
orm ∫

Σ

ζ λ0
∂H⊥

0

∂ζ λ0

dσ
|∇H⊥

0 |
=

∫
Σ

ζ λ0 n
λ
ζ dσ =

∫
H⊥
0 (z0,ζ0;y∗)≤E⊥∗

dn(z0, ζ0) =: Γ (E⊥
∗
, y∗), (58)

which follows from Gauss’ theorem, where Γ (E⊥
∗
, y∗) is the phase-space volume enclosed by the trajectories of (54). To derive the

enominator in (57), we calculate the derivative of Γ (E⊥
∗
, y∗) with respect to E⊥

∗
and find

Γ (E⊥
∗
+∆E⊥

∗
, y∗)− Γ (E⊥

∗
, y∗) =

∫
E⊥∗ ≤H⊥

0 (z0,ζ0;y∗)≤E⊥∗ +∆E⊥∗

dn(z0, ζ0) ≈
∫
H⊥
0 (z0,ζ0;y∗)=E⊥∗

∆n dσ ,

where ∆n is the distance between the energy surface H⊥

0 (z0 + nz∆n, ζ0 + nζ∆n; y∗) = E⊥
∗
+ ∆E⊥

∗
and H⊥

0 (z0, ζ0; y∗) = E⊥
∗
. A Taylor

xpansion gives ∆n = ∆E⊥
∗
/|∇H⊥

0 | and hence

∂Γ (E⊥
∗
, y∗)

∂E⊥
∗

=

∫
H⊥
0 (z0,ζ0;y∗)=E⊥∗

dσ
|∇H⊥

0 |
. (59)

Combining Eqs. (57)–(59), the temperature T can thus be expressed in terms of the phase-space volume Γ (E⊥
∗
, y∗):

T (E⊥
∗
, y∗) =

Γ (E⊥
∗
, y∗)

⊥ ⊥
. (60)
∂Γ (E
∗
, y∗)/∂E∗
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T

d

imilar to [11] we integrate (60) with respect to E⊥
∗

and obtain for the entropy

S(E⊥
∗
, y∗) = log

(
Γ (E⊥

∗
, y∗)

)
+ f (y∗),

where f (y∗) is a constant of integration with respect to E⊥
∗
. To find the dependence of S on y∗ we follow again the derivation presented

n [11]. Using (56), we calculate for j = 1, . . . , n the external force

Fj(E⊥∗ , y∗) = E.A.
⟨
∂H⊥

0 (z0, ζ0; y∗)

∂yj∗

⟩
=

∫
Σ

∂H⊥

0

∂yj∗

dσ
|∇H⊥

0 |∫
Σ

dσ
|∇H⊥

0 |

. (61)

For the numerator, we calculate the derivative of Γ (E⊥
∗
, y∗) with respect to yj∗. Similarly to before, we have

Γ (E⊥
∗
, y∗ +∆y∗)− Γ (E⊥

∗
, y∗) =

∫
H⊥
0 (z0,ζ0;y∗+∆y∗)≤E⊥∗

dn(z0, ζ0)−
∫
H⊥
0 (z0,ζ0;y∗)≤E⊥∗

dn(z0, ζ0)

≈

∫
H⊥
0 (z0,ζ0;y∗)=E⊥∗

∆n dσ ,

where ∆n indicates the distance between the energy surface H⊥

0 (z0 + nz∆n, ζ0 + nζ∆n; yj∗ + ∆yj∗) = E⊥
∗

and H⊥

0 (z0, ζ0; y∗) = E⊥
∗
. A

aylor expansion gives

∆n = −
1

|∇H⊥

0 |

∂H⊥

0

∂yj∗
∆yj

∗

and we obtain
∂Γ (E⊥

∗
, y∗)

∂yj∗
= −

∫
H⊥
0 (z0,ζ0;y∗)=E⊥∗

∂H⊥

0

∂yj∗

dσ
|∇H⊥

0 |
. (62)

Combining Eqs. (59), (61) and (62) we obtain

Fj(E⊥∗ , y∗) = E.A.
⟨
∂H⊥

0

∂yj∗

⟩
= −

∂Γ (E⊥
∗
, y∗)/∂y

j
∗

∂Γ (E⊥
∗
, y∗)/∂E⊥∗

. (63)

We thus find

S(E⊥
∗
, y∗) = log

(
Γ (E⊥

∗
, y∗)

)
+ C . (64)

The constant C is chosen such that the entropy is dimensionless. This is the key result of Hertz’ thermodynamic formulation: the explicit
derivation of the entropy of a Hamiltonian system under the influence of a slowly varying parameter is (up to a constant) the logarithm
of the phase-space volume.

A.3. Application to the model problem

The analysis of the previous section reveals that thermodynamic properties of Hamiltonian systems are intrinsically connected to
the phase-space volume.

In general, the set {x ∈ Rd
: xTΣ−1x ≤ R2

}, where Σ = diag(a21, a
2
2, . . . , a

2
d) with a1, . . . , ad ∈ R, describes a hyperellipsoid in Rd. Its

-dimensional volume is given by

Γ = Γd|Σ |
1/2Rd, (65)

where Γd is the volume of the d-dimensional hypersphere.
To calculate the phase-space volume for the model problem as presented in Section 2 note, that the set {(z0, ζ0) ∈ R2r :H⊥

0 (z0, ζ0; y∗)
= E⊥

∗
} with

E⊥
∗
=

r∑
λ=1

Eλ
∗
=

r∑
λ=1

1
2
(ζ λ0 )

2
+

1
2
ω2
λ(y∗)(z

λ
0 )

2, (66)

describes a hyperellipsoid in R2r . Eq. (66) can be written in the form E⊥
∗
= xTΣ−1x with x = (z10 , z

2
0 , . . . , z

r
0, ζ

1
0 , ζ

2
0 , . . . , ζ

r
0 ) and

Σ = diag
(
2, 2, . . . , 2,

2
ω2

1(y∗)
,

2
ω2

2(y∗)
, . . . ,

2
ω2

r (y∗)

)
.

Therefore, with d = 2r and R2
= E⊥

∗
, the volume of the hyperellipsoid (66) is according to (65) given by

Γ (E⊥
∗
, y∗) = Γ2r

(
2E⊥

∗

)r∏r
λ=1 ωλ(y∗)

.

We reason by analogy that the ε-dependent phase-space volume, characterised by the energy of the fast subsystem

E⊥ε =

r∑
Eλε =

r∑ 1
2
(ζ λε )

2
+

1
2
ε−2ω2

λ(yε)(z
λ
ε )

2,
λ=1 λ=1
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i

(

t

s given by

Γε(E⊥ε , yε) = εrΓ2r

(
2E⊥ε

)r∏r
λ=1 ωλ(yε)

. (67)

We therefore define, provided that Γε(E⊥ε , yε) ̸= 0, the temperature, normalised entropy and external force, in analogy to (60), (63) and
64), as

Tε(E⊥ε , yε) :=
Γε(E⊥ε , yε)

∂Γε(E⊥ε , yε)/∂E⊥ε
, Sε(E⊥ε , yε) := log

(
Γε(E⊥ε , yε)

)
+ Cε, F j

ε(E
⊥

ε , yε) := −
∂Γε(E⊥ε , yε)/∂y

j
ε

∂Γε(E⊥ε , yε)/∂E⊥ε
,

which become with (67) and Cε = − log((2ε)rΓ2r ) for j = 1, . . . , n

Tε =
1
r

r∑
λ=1

θλε ωλ(yε), Sε =
r∑

λ=1

log
(

E⊥ε
ωλ(yε)

)
, F j

ε = Tε
r∑

λ=1

DjLλε .

Appendix B. Computation times for numerical simulations

For completeness, we present in this section the total computation times corresponding to the maximal step sizes used in the
simulations presented in this article. Tables 3 and 4 illustrate in column y1ε the total runtime for simulations of system (6) with respect
to distinct values of ε and a corresponding maximal step size as discussed in Section 7.1. Similarly, the columns y10 and ȳ12 indicate
the total runtime for simulating systems (9) and (50). We recall that the maximal step size as discussed in Section 7.1 is given for
he leading-order approximation under the theoretical global error (52) by dtmax

0,y1ε
= O(ε2) and dtmax

0,y10
= O(ε), and for the second-order

approximation under the theoretical global error (53) by dtmax
2,y1ε

= O(ε3) and dtmax
2,y10,ȳ

1
2
= O(ε3/2). Note that we always chose identical

step sizes for the derivation of y10 and ȳ12.
The source code for the numerical integration scheme was written in Python version 3.8.5. The simulations of the systems (6), (9)

and (50) as presented in Tables 3 and 4 were performed on a single core Intel R⃝ CoreTM i5-8250U CPU.
Table 3
Computation times in seconds for y1ε and its leading-order asymptotic expansion y10 for maximally viable step sizes that satisfy the theoretical global error (52).

Computation times (s) and maximal step sizes

ε y1ε dtmax
0,y1ε

y10 dtmax
0,y10

0.52 0.0026 1× 10−2 0.00028 6× 10−2

0.53 0.0271 1× 10−3 0.00059 3× 10−2

0.54 0.0488 5× 10−4 0.00182 1× 10−2

0.55 0.2392 1× 10−4 0.00266 7× 10−3

0.56 0.7945 3× 10−5 0.00590 3× 10−3

Table 4
Computation times in seconds for y1ε , its leading-order asymptotic expansion y10 and averaged second-order correction ȳ12 for maximally viable step sizes that satisfy
the theoretical global error (53). The step sizes for deriving y10 and ȳ12 were chosen identical.

Computation times (s) and maximal step sizes

ε y1ε dtmax
2,y1ε

y10 ȳ12 dtmax
2,y10,ȳ

1
2

0.52 0.013 2× 10−3 0.0019 0.0037 1× 10−2

0.53 0.062 4× 10−4 0.0069 0.0121 3× 10−3

0.54 0.303 8× 10−5 0.0258 0.0408 8× 10−4

0.55 6.122 4× 10−6 0.0663 0.1017 3× 10−4

0.56 23.670 1× 10−6 0.1838 0.3041 1× 10−4
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