
ARTICLE IN PRESS 

JID: ECOSTA [m3Gsc; November 14, 2021;22:38 ] 

Econometrics and Statistics xxx (xxxx) xxx 

Contents lists available at ScienceDirect 

Econometrics and Statistics 

journal homepage: www.elsevier.com/locate/ecosta 

Differentially Private Goodness-of-Fit Tests for Continuous 

Variables 

Seung Woo Kwak 

a , Jeongyoun Ahn 

b , Jaewoo Lee 

c , Cheolwoo Park 

d , ∗

a Department of Statistics, Seoul National University, Seoul, 08826, Republic of Korea 
b Department of Industrial & Systems Engineering, KAIST, Daejeon, 34141, Republic of Korea 
c Department of Computer Science, University of Georgia, Athens, GA 30602, USA 
d Department of Mathematical Sciences, KAIST, Daejeon, 34141, Republic of Korea 

a r t i c l e i n f o 

Article history: 

Received 29 January 2021 

Revised 28 September 2021 

Accepted 30 September 2021 

Available online xxx 

Keywords: 

Continuous random variables 

Differential privacy 

Discretization 

Goodness-of fit-test 

a b s t r a c t 

Data privacy is a growing concern in modern data analyses as more and more types of 

information about individuals are collected and shared. Statistical analysis in consideration 

of privacy is thus becoming an exciting area of research. Differential privacy can provide a 

means by which one can measure the stochastic risk of violating the privacy of individuals 

that can result from conducting an analysis, such as a simple query from a database and 

a hypothesis test. The main interest of the work is a goodness-of-fit test that compares 

the sampled data to a known distribution. Many differentially private goodness-of-fit tests 

have been proposed for discrete random variables, but little work has been done for con- 

tinuous variables. The objective is to review some existing tests that guarantee differential 

privacy for discrete random variables, and to propose an extension to continuous cases via 

a discretization process. The proposed test procedures are demonstrated through simulated 

examples and applied to the Household Financial Welfare Survey of South Korea in 2018. 
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1. Introduction 

Each day large quantities of data are collected, analyzed, and released by many institutions, organizations, or companies. 

Researchers or analysts use these data to find patterns, construct models to understand underlying phenomena, and predict 

the future. Accumulation of data at a large scale helps to build better models and make more accurate predictions, but the

risk of leaking private sensitive information is a major concern. 

For instance, large corporations and tech companies regularly collect user data to aid in improving users’ experience 

and providing personalized services. However, such data often contain sensitive information, creating a situation where 

privacy violations can occur. One might think that sanitization, a process of removing sensitive private information from 

data, is sufficient to protect privacy. Nevertheless, it has been known that the anonymization may not be sufficient to keep

private information from adversaries. Narayanan and Shmatikov (2008) demonstrated that it is possible to identify Net- 

flix subscribers based on their reviews and information that can be found from the Internet Movie Database (IMDb). This 

linkage attack is possible because those two websites provide similar information about the users. Another example of pri- 

vacy breach is given in Sweeney (2013) , which used three datasets to identify individuals: the hospitalization database of 

Washington state in 2011, a collection of news stories in the state in 2011, and an online public records service for basic
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demographics on Americans. They made guesses on 81 individuals, 43% of which were correct. These two examples show 

that the anonymization of data before release is not enough to maintain the privacy of individuals when auxiliary data that

contain similar information are available. 

Reiter (2004) pointed out that statistical agencies and organizations should disseminate data that are safe from attacks 

yet still informative and ready for statistical analyses. Providing raw data would keep the utility of the data, but it has a high

risk of leaking private information. Therefore, it has become imperative to develop methods for simultaneously protecting 

privacy and preserving the utility of data in many fields. 

Masking is a natural way of achieving privacy by modifying the content of the original data. It can protect sensitive

information and reduce the risk of disclosure. However, it can also cause information loss due to the changes in the original

data. Another problem of masking is that the disclosure risk still exists even after masking because there is much auxiliary

information to identify individuals’ sensitive information as can be seen in the two examples above. To resolve this problem, 

differential privacy was introduced by Dwork et al. (2006b) . 

Differential privacy is a framework to quantify preserved individual privacy while releasing useful information from data. 

Differential privacy requires near-indistinguishability of whether an individual belongs to a particular dataset or not, based 

on the released information. The essential part of a differentially private algorithm is data perturbation or randomization, 

which makes speculation on a specific individual difficult. A conventional way to perturb data is adding noise to the raw

data. The amount of perturbation is determined so that it is large enough to hide whether a specific individual is included or

not, but small enough to retain important information in the data. A key concept in differential privacy is the sensitivity of

a function, or a statistic. The sensitivity is defined as the maximum change in the value of the function caused by modifying

one observation in the dataset ( Dwork et al., 2006b ). 

Since its introduction, differential privacy has impacted data-releasing designs and noise-adding mechanisms. If there 

exists a possibility of deducing sensitive private information from the results of statistical analysis, differential privacy can be 

an effective solution. For example, from a publicly available machine learning model, a malicious attacker can learn private 

information in the training dataset. Hence, some machine learning methods have been equipped with differentially private 

algorithms( Abadi et al., 2016; McMahan et al., 2018; Beimel et al., 2019; Bun et al., 2020; Kaplan et al., 2020 ). Differential

privacy has also been incorporated into regression analysis ( Zhang et al., 2012; Wang, 2018 ) and parameter estimation ( Amin

et al., 2019; Kamath et al., 2019; Liu and Oh, 2019; Biswas et al., 2020; Brunel and Avella-Medina, 2020; Kamath et al., 2020;

Tzamos et al., 2020 ). 

Our main interest lies in differentially private goodness-of-fit (GOF) tests. The GOF tests determine whether the assumed 

distribution for the population stands true or not based on the collected sample. However, the sample used in testing 

may contain highly sensitive information about subjects, and thus the privacy of individuals can be compromised when 

the results of the test are released. Most of the existing differentially private GOF tests have been developed for discrete

random variables. For example, Rogers and Kifer (2017) and Gaboardi et al. (2016) developed tests based on asymptotic 

or approximate distributions of the differentially private χ2 GOF test statistics with perturbation mechanisms. Cai et al. 

(2017) constructed a GOF test that consists of two differentially private steps. The compositional property of differential pri- 

vacy guarantees that the results of the process satisfy differential privacy. We note that they focus on level α testing even if

their targeted α values are different from a conventional level. Since additional noise has an impact on a test statistic, the

variance of the statistic tends to be larger. As a result, it makes sense that most of differentially private hypothesis tests re-

quire a higher α compared to non-private counterparts. Berrett and Butucea (2020) proposed differentially private GOF tests 

based on local differential privacy. Canonne et al. (2019) proposed algorithms for differentially private hypothesis testing on 

high-dimensional distributions focusing on the product distribution over {±1 } d or the multivariate normal distribution with 

known covariance matrix. 

A main objective of this paper is to give a brief survey on differentially private goodness-of-fit tests for discrete random

variables and develop differentially private tests for continuous random variables. There are GOF tests for continuous cases, 

such as maximum mean discrepancy (MMD, ( Gretton et al., 2012 )), kernelized stein discrepancy (KSD, ( Liu et al., 2016 )), or

Kolmogorov-Smirnov test ( Stephens, 1970 ). However, designing a differentially private GOF test for a continuous variable is 

challenging because of the high sensitivity of the test statistic. Many continuous distributions have a range over (−∞ , ∞ )

or (0 , ∞ ) , which leads to infinite sensitivity for certain statistics. For example, the sensitivity of the sample mean for a

normal distribution is infinite since a change made by a single observation could be unbounded. This would cause large 

noises to be added for perturbation. Subsequently, the information or the signal contained in the original data would be 

perturbed too much, which in turn would make the test too conservative or even unreliable. In such a case, we need more

observations so as not to be dominated by perturbation, or develop a process that can appropriately bound the sensitivity 

of the variable or the test statistic. If a test such as Kolmogorov-Smirnov depends on the differences between two empirical

distribution functions, randomizing the differences can be considered. But in this case, the distances could be negative 

during a randomization process. 

Our strategy to achieve differential privacy of a GOF test for a continuous variable is via discretization of the continuous

distribution by dividing the domain into non-overlapping intervals with the same length. Dividing the domain into bins is 

inspired by the work of Balakrishnan and Wasserman (2019) . They introduce a recursive partitioning scheme for Lipschitz 

densities. The scheme divides a continuous distribution into a multinomial distribution. Their partitioning scheme consists 

of two stages: partitioning, and pruning. In the partitioning procedure, the algorithm divides the domain of a continuous 

distribution based on the probability of each bin. Their algorithm finds the upper and lower bounds of each bin so that the
2 
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volume or probability of each bin is large enough to distinguish distributions. If the probability of a bin is too large, the bin

is divided into two bins. Then, the pruning procedure merges the bins with very small probabilities based on the pruning

level. Hence, the bounds of pruning and dividing are important for their partitioning method since the number of categories 

is determined by the bounds, and the number of bins can be determined automatically. However, the method requires many 

parameters to determine the boundaries, which prevents practitioners from implementing it easily. Also, we note that they 

do not consider differentially private GOF tests. 

The proposed binning procedure with equal probabilities is simple to implement, and its sensitivity is limited by one 

owing to discretization. As mentioned above, the maximum possible change of one observation can be infinite in continuous 

cases, but in a histogram it is just one count difference in a bin. After binning, we apply existing differentially private GOF

tests for discrete random variables to the discretized continuous variable. To our best knowledge, there has been no attempts 

so far to develop differentially private GOF tests for continuous variables. 

The rest of the paper is organized as follows. Section 2 reviews background on differential privacy and some exist- 

ing differentially private GOF test for discrete random variables. In Section 3 , the proposed differentially private GOF tests 

for continuous random variables through discetization is presented. The performance of the proposed test procedures are 

demonstrated via simulated examples in Section 4 , and applied to the Household Financial Welfare Survey of South Korea 

in 2018 in Section 5 . We conclude with some discussion in Section 6 . 

2. Review of Differentially Private GOF Tests for Discrete Variables 

In this section, we briefly review the mathematical framework of differential privacy in Section 2.1 and differentially 

private GOF tests for discrete random variables in Section 2.2 . 

2.1. Differential Privacy 

Differential privacy requires that a randomized algorithm returns similar outputs when executed on similar input 

databases, while protecting sensitive information ( Dwork et al., 2006b ). Hence, differential privacy restricts possible changes 

in the output of a randomized algorithm that can occur by a small change in its input. 

Assume that a database D is a collection of records from X , a set of discrete values that each data value is from. Suppose

each value in the database D can be categorized into one of i ∈ { 1 , 2 , . . . , d } where d denotes the number of categories in

X . Then x ∈ N 

d , in which each entry x i of x represents the number of elements in category i . Here, N is the set of natural

numbers including zero. 

Next, we define a distance that represents the difference between two databases. A natural distance between two 

databases D and D 

′ is the Hamming distance ( Wasserman and Zhou, 2010 ), which counts how many elements are dif-

ferent by comparing the observations in the two databases. Given two databases D = { D 1 , . . . , D n } and D 

′ = { D 

′ 
1 , . . . , D 

′ 
n } , let

κ(D, D 

′ ) denote the Hamming distance between D and D 

′ , i.e., κ(D, D 

′ ) = 

∣∣{ i : D i � = D 

′ 
i 
} ∣∣ where | · | denotes the cardinality

of a set. We say D and D 

′ are neighbors if they are different only by a single observation. We define differential privacy as

follows. 

Definition 2.1 (Differential Privacy, Dwork et al. (2006b,a) ) . A randomized algorithm M with domain on the real line R is

(ε, δ) -differentially private if for all S ⊆ Range (M ) and for all D, D 

′ such that κ(D, D 

′ ) ≤ 1 : 

P r [ M (D ) ∈ S ] ≤ e εP r 
[
M (D 

′ ) ∈ S 
]

+ δ. 

If δ = 0 , M is ε-differentially private. 

The ranges of ε and δ are usually given as ε > 0 and 0 ≤ δ 	 1 / | D | where | D | is the sample size of the given database

D ( Dwork and Roth, 2014 ). By the definition of ε-differential privacy, if ε is very small, the algorithm will return the same

result with a high probability for two neighboring databases. It means that the randomness of the algorithm disguises the 

impact of differences between two datasets on the output of the algorithm. Thus, we can say that a small ε can strongly

protect privacy. Since a change in the output is probabilistically bounded, it is hard to distinguish whether the change comes

from the original data or noise. Hence, an outcome of a differentially private analysis is essentially indistinguishable whether 

an individual is included in the dataset, or not. However, there is a trade-off between utility and privacy because the useful

information in the dataset can also be disguised by the additional randomness to protect privacy. 

In what follows, we introduce the � 1 and � 2 sensitivities, and the Laplace and Gaussian mechanisms to perturb the 

outputs of a function. Denote the � p norm of a vector x with d elements by ‖ x ‖ p = 

(∑ d 
i =1 | x i | p 

) 1 
p 
, and the � p distance of

two vectors x and y having d elements by ‖ x − y ‖ p = 

(∑ d 
i =1 | x i − y i | p 

) 1 
p 
. 

Then, the � p sensitivity is defined as follows. 

Definition 2.2. ( � p -Sensitivity, Dwork et al. (2006b) ) The � p -sensitivity of a function f : N 

d → R 

k is: 

�p f = max 
x , y ∈ N d 
κ( x , y )=2 

‖ 

f (x ) − f (y ) ‖ p . 
3 
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By Definition 2.2 , the sensitivity quantifies the impact of a single observation on the function f in the worst case. This

determines the uncertainty we need to introduce to the output in order to hide the participation of a particular individual.

In other words, the sensitivity determines the variability of noise for perturbation on its output to preserve privacy. Based on

the neighboring databases we use, � 1 -sensitivity of histogram is 2. Using the sensitivity of a function f , the randomization

mechanism can be defined as follows. 

Theorem 2.1. (Randomization Mechanism, Dwork et al. (20 06b , 20 06a )) Given any function f : N 

d → R 

k , the randomization

mechanism is defined as: 

M D (x , f (·) , ε, δ) = f (x ) + (Y 1 , . . . , Y k ) . 

If Y i are i.i.d. random variables from D = Lap(�1 f/ε) and δ = 0 . Then, M D is the Laplacian mechanism satisfying ε-differential

privacy. If Y i are i.i.d. random variables from D = N(0 , σ 2 ) with σ = 

�2 f 
√ 

2 ln (2 /δ) 
ε . Then M D is the Gaussian mechanism satisfying

(ε, δ) -differential privacy. 

The Laplace distribution with scale b, Lap(b) , is p(x | b) = 

1 
2 b 

exp 

(
−| x | 

b 

)
, x ∈ (−∞ , ∞ ) . The Laplace mechanism uses Lapla-

cian noise to perturb statistics. Another type of noise is the Gaussian noise. To satisfy (ε, δ) −differential privacy using the

Gaussian noise, the � 2 sensitivity of a function f , �2 f , is required. 

As with the Laplace mechanism, the Gaussian mechanism adds the noise generated from a normal distribution with 

mean zero and standard deviation determined by the � 2 sensitivity of the function and differential privacy parameters ε
and δ. 

When we compose several differentially private algorithms, the total differential privacy can be obtained by Theorem 2.2 . 

It means that an algorithm can consist of several differentially private ones which satisfy the targeted privacy parameter 

values. 

Theorem 2.2. (Composition of Differentially Private Algorithms, Dwork et al. (2006a) ) Let M i : N 

d → R i be an (εi , δi ) -

differentially private algorithm for i ∈ { 1 , . . . , m } . If M [ m ] : N 

d → ( R 1 , . . . , R m 

) is defined to be 

M [ m ] (x ) = (M 1 (x ) , . . . , M m 

(x )) , 

then M [ m ] is ( 
∑ m 

i =1 εi , 
∑ m 

i =1 δi ) -differentially private. 

Note that the privacy bound in Theorem 2.2 becomes tight when δi are all zero. That is, the approximate DP with δ > 0

does not exactly quantify the privacy guarantee in compositions, unlike the original pure DP that only ε is involved. When 

a differentially private algorithm is composed with a non-private algorithm, it is immune to such post-processing. In other 

words, once an algorithm protects an individual’s privacy, a user cannot increase the privacy loss by applying a non-private 

process to the private algorithm. The following proposition states that composition of a data-independent mapping g with 

an (ε, δ) -differentially private algorithm M is also (ε, δ) -differentially private. 

Proposition 2.1. (Post-Processing, Dwork and Roth (2014) ). Let M : N 

d → R be a randomized algorithm that is (ε, δ) -

differentially private. Let g : R → R 

′ be an arbitrary (randomized) mapping. Then g ◦ M : N 

d → R 

′ is (ε, δ) -differentially private.

Differential privacy is a mathematically rigorous definition of privacy tailored to the analysis of large datasets and 

equipped with a formal measure of privacy loss. Because it considers the biggest possible difference, it adds relatively 

large noise and perturbs much, compared to non-private results. To balance this issue, there are some methods to pro- 

vide tighter bounds compared to the pure differential privacy ( ε-differential privacy) or approximate differential privacy 

( (ε, δ) -differential privacy). 

Zero-Concentrated Differential Privacy (zCDP, Bun and Steinke (2016) ) provides a tighter bound for composition of dif- 

ferentially private algorithms. Since it is comparable to (ε, δ) -differential privacy, the zCDP can be used to develop a differ-

entially private GOF test. The zCDP is defined through the Rényi divergence ( van Erven and Harremoës, 2014 ), which is a

divergence measure between two probability distributions. Let P and Q be two arbitrary distributions on the same measure 

space, and p and q be the corresponding probability density functions, respectively. 

Definition 2.3. (Rényi divergence, van Erven and Harremoës (2014) ). For two probability distributions P and Q defined over 

R , the Rényi divergence of order α > 1 is 

D α(P || Q ) = 

1 

α − 1 

ln E X∼Q 

(
p(X ) 

q (X ) 

)α

, 

where X ∼ Q means that X follows the distribution Q . 

D 1 (P || Q ) is set to be lim α→ 1 D α(P || Q ) , and is equal to the Kullback-Leibler divergence ( van Erven and Harremoës, 2014 ).

The zCDP is defined via the Rényi divergence between two distributions of a randomized algorithm based on two neighbor- 

ing databases. 
4 
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Definition 2.4. (zCDP, Bun and Steinke (2016) ). A randomized mechanism M : N 

d → R 

k is ( ξ , ρ)-zero-concentrated differen-

tially private (henceforth ( ξ , ρ)-zCDP) if, for all D, D 

′ differing on a single entry and all α ∈ (1 , ∞ ) , 

D α(M (D ) ||M (D 

′ )) ≤ ξ + ρα. 

Define ρ-zCDP to be (0 , ρ) -zCDP. 

By taking α → ∞ , we have D ∞ 

(M(D ) | M(D 

′ )) ≤ ε, which results in classic differential privacy ( Mironov, 2017 ). The zCDP

is related to (ε, δ) -differential privacy and ε-differential privacy, as llustrated in Theorem 2.3 . 

Theorem 2.3. ( Bun and Steinke (2016) ) If M is ε-differentially private, M is ε2 

2 -zCDP. Further, if M is ρ-zCDP, then M is

(ρ + 2 
√ 

ρ ln (1 /δ) , δ) -differentially private for every δ > 0 . 

It is known that ρ-zCDP with ρ ≈ ε2 

4 log (1 /δ) 
guarantees to achieve (ε, δ) -DP ( Bun and Steinke, 2016 ). Therefore, we can

compare an (ε, δ) -differentially private algorithm and a ρ-zCDP algorithm applied on a dataset with the same level of

privacy. Theorem 2.4 illustrates that the Gaussian mechanism satisfies ρ-zCDP. 

Theorem 2.4. ( Bun and Steinke (2016) ) For a function f : N 

d → R 

k , the Gaussian mechanism M G for x ∈ N 

d is: 

M G (x , f (·) , ε, ρ) = f (x ) + (Y 1 , . . . , Y k ) , 

where σ = 

�2 f √ 

2 ρ
. 

The following proposition states that post-processing to the results from zCDP maintains the privacy under post- 

processing. 

Proposition 2.2. (Post-Processing, Bun and Steinke (2016) ). Let M : N 

d → R and g : R → R 

′ be (randomized) algorithms. If M
is ρ-zCDP, g ◦ M : N 

d → R 

′ is ρ-zCDP. 

Thus, Propositions 2.1 and 2.2 together guarantee that a GOF test satisfies differential privacy or zCDP when the input 

data satisfy differential privacy or zCDP, respectively. In our method, we develop differentially private GOF tests for contin- 

uous variables via transforming a continuous random variable into a discrete random variable, and applying differentially 

private GOF tests which are based on Propositions 2.1 and 2.2 , and Theorem 2.2 . 

2.2. Differentially Private Goodness-of-Fit Tests for Discrete Variables 

In this section, we review some existing differentially private GOF tests for discrete variables. Suppose there are d bins 

(categories) and we observe the count for each bin. The Private and Sample Efficient Identity Testing (Priv’IT) method for 

discrete variables is introduced by Cai et al. (2017) . The hypotheses of interest are 

H 0 : p = p 

0 vs H 1 : p � = p 

0 , (1) 

where p is the population distribution of a given sample, p 

0 is the hypothesized distribution. This hypothesis test determines 

whether the two distributions are farther apart than a certain threshold, d α . 

The Priv’IT algorithm consists of two steps. The first step is a filtering step that rejects the null hypothesis when the sam-

ple distribution is far enough from p 

0 . In the first step, we reject the null if the deviation between the noise-contaminated

histogram counts and the ones expected under p 

0 is too large. The second step is a statistical step that uses the actually

observed counts. The χ2 -style statistic, Z, is defined as: 

Z = 

2 

n d α
2 

∑ 

i ∈ A 

(N i − np 0 
i 
) 2 − N i 

np 0 
i 

, 

where n is the total number of observations, N i is the observed count in the i th bin, and p 0 
i 

is the proportion of observations

in the i th category that fall within the set defined by the hypothesized distribution p 

0 , A = { i : p 0 
i 

≥ c 1 d α
d 

, where i = 1 , . . . , d} .
We set c 1 = 1 / 4 . Then we reject the null with the following rule. 

P ( Reject H 0 ) = 

{ 

0 if Z ≤ 0 ;
z if 0 < Z < 1 ;
1 if Z ≥ 1 . 

An important aspect of this test is that the filtering step guarantees (0 , c 2 ε/ 4) -differential privacy and the statistical step

guarantees (0 , c 2 ε/ 4) -differential privacy, where Cai et al. (2017) set c 2 = 3 / 40 . By the composition of differential privacy in

Theorem 2.2 , the entire algorithm satisfies (0 , c 2 ε/ 2) -differential privacy, which implies ε-differential privacy for the test.

If the first step does not reject the null, the statistic Z is ε-Lipschitz with respect to the counts. Thus, if two neighboring

input datasets differ by only one observation, then the resulting statistics Z 1 and Z 2 can differ by at most ε. Hence, by

Theorem 2.2 , the test result is ε-differentially private. 
5 
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Gaboardi et al. (2016) proposed two versions of differentially private χ2 (DP χ2 ) GOF tests. One uses Monte Carlo sim- 

ulation to find rejection criteria, and the other uses an asymptotic distribution of the test statistic. Monte Carlo simulation 

can be applied when the noise is generated from a Laplace or a normal distribution, while the asymptotic distribution can

be used for the Gaussian noise case only. The test statistic is 

Q 

2 
D = 

d ∑ 

i =1 

(N i + Y i − np 0 
i 
) 2 

np 0 
i 

, 

where Y i are i.i.d random variables from D . If D is a Laplace distribution, the test is ε-differentially private. If D is a normal

distribution, the test is (ε, δ) -differentially private by Theorem 2.1 . The test statistic Q 

2 
D is similar to the Pearson’s χ2 test

statistic except that the counts are perturbed. 

The algorithm of the Monte Carlo simulation test (MC-DP χ2 GOF) generates noise and computes Q 

2 
D K times. Then, we 

have q (1) , . . . , q (K) which represent a distribution of Q 

2 
D under the null hypothesis where q (t) is the tth order statistic. Thus,

P r(Q 

2 
D > q (t) ) < α where t = � (K + 1)(1 − α) � , and it achieves a level α test. When compared with the non-private χ2 test,

however, the MC-DP χ2 GOF test requires more observations to have the same power and significance level because the 

noise is included in the statistic. Since all elements to generate the null distribution Q D are known, one can easily obtain

the distribution and conduct hypothesis test. 

To illustrate the asymptotic approach (Asymptotic-DP χ2 GOF) in detail, define the random vector U = 

( U 1 , . . . , U d ) 
T where U i = 

N i −np 0 
i √ 

np 0 
i 

, i ∈ { 1 , . . . , d} . Also, define the standardized Gaussian noise random vector, V =

( Y 1 /σ (ε, δn ) , . . . , Y d /σ (ε, δn ) ) 
T ∼ N(0 , I d ) . Let W = 

(
U 

V 

)
. Note that W converges in distribution to N(0 , �′ ) where �′ 

is the 2 d × 2 d block diagonal matrix 

�′ = 

[
� 0 

0 I d 

]
, where � = I d −

√ 

p 

0 
√ 

p 

0 
T 

. 

Note that �′ is idempotent. We can express the differentially private χ2 statistic as a quadratic form Q 

2 = W 

T A W , where

Q 

2 = Q 

2 
D when D is the normal distribution with mean zero, standard deviation σ , and the positive semi-definite 2 d × 2 d

matrix A : 

A = 

[
I d 


 
2 

]
, where 
 = Diag 

( 

σ (ε, δn ) √ 

n p 

0 

) 

. 

Theorem 2.5. ( Gaboardi et al. (2016) ) Let W ∼ N(0 , �′ ) where �′ has rank r ≤ 2 d. Then W 

T A W is distributed as 
∑ r 

i =1 λi χ
2 ,i 
1 

where { λi } r i =1 
are the eigenvalues of B T AB for B ∈ R 

2 d×r such that BB T = �′ and B T B = I r , and { χ2 ,i 
1 

} r 
i =1 

is a set of r independent

χ2 random variables with 1 degree of freedom. 

The result of Theorem 2.5 is used to find a critical value τα: 

Pr 

[ 

r ∑ 

i =1 

λi χ
2 ,i 
1 

≥ τα

] 

= α, 

for a given significance level α. Note that τα is a function of n, ε, δ, α and p 

0 , but not the data. If the critical value in-

cludes the information of the data, it should also be perturbed for privacy purposes. As with the MC-DP χ2 GOF test, the

Asymptotic-DP χ2 GOF test needs a bigger sample size to achieve a level α test compared to non-private χ2 GOF tests 

because of noise. In R , τα can be obtained from the library CompQuadForm . 
The zCDP GOF test ( Rogers and Kifer, 2017 ) utilizes the Gaussian mechanism in Theorem 2.4 and has two types of tests:

projected test and unprojected test. Define the zCDP statistic Z ρ = (Z ρ, 1 , . . . , Z ρ,d ) 
T where 

Z ρ,i = 

N i + Y i − np 0 
i √ 

n 

, (2) 

and Y i are i.i.d. random variables drawn from N(0 , 1 /ρ) . The random vector Z ρn ,i in (2) has the following asymptotic distribu-

tion under the null hypothesis: if nρn → ∞ , Z ρn 

D −→ N(0 , �) where � = Diag{ p 

0 } − p 

0 (p 

0 ) T ; if nρn → ρ > 0 , Z ρn 

D −→ N(0 , �ρ)

where �ρ = � + 1 /ρ · I d . 

The unprojected zCDP GOF test is defined as: 

Q ρn 
= (Z ρn 

) T �−1 
nρn 

Z ρn 
, 

which converges in distribution to χ2 
d 

if nρn → ρ . In contrast, if nρn → ∞ , the unprojected private test statistic does not

approach the χ2 test for fixed ρ , and �nρn converges to a singular matrix. We note that when nρn → ρ , the degrees of

freedom for the χ2 test, d, is greater than that of a non-private test statistic, and subsequently its critical value is greater
6 



S.W. Kwak, J. Ahn, J. Lee et al. Econometrics and Statistics xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: ECOSTA [m3Gsc; November 14, 2021;22:38 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

than the non-private counterparts. Thus, rejecting the null becomes more difficult when the null is false, and the test be-

comes less powerful. To resolve this issue, a projected private test statistic is proposed. 

Note that �ρ has the eigenvalue of 1 /ρ corresponding to the eigenvector 1 = (1 , · · · , 1) T , and that this direction can be

thought as pure noise. Hence, the projection Z ρ onto the subspace orthogonal to 1 can eliminate the impact of pure noise.

This enforces the constraint that the entries in Z ρ add up to 0. Then, the projected zCDP GOF test statistic Q ρ is defined

as: 

Q ρ = ( Z ρ ) T P �−1 
nρ PZ ρ, 

where P = I d − 1 
d 

11 T . The advantage of using the test statistic Q ρ is that it converges in distribution to χ2 
d−1 

instead of χ2 
d 

regardless of whether nρn → ρ > 0 or nρn → ∞ . 

In comparison, the Priv’IT test has better power compared to the DP χ2 and the zCDP GOF tests when the sample

size is small because of the filtering step. Unlike the DP χ2 and the zCDP methods, the rejection of the Priv’IT test is

determined randomly. Sometimes the decision just depends on the probability of getting large noise. However, the test 

procedure produces a quite high false positive rate. 

3. Proposed Differentially Private GOF Tests for Continuous Variables 

In this section, we propose differentially private GOF tests for one-dimensional continuous variables. Recall that we need 

to perturb observations or to randomize the result to satisfy Definition 2.1 . If we perturb a test statistic constructed directly

from a continuous variable, the sensitivity of the test statistic can be infinite. Therefore, our strategy is to convert a continu-

ous variable to a discrete one by partitioning. Then, we apply a differentially private GOF test for discrete random variables

to the discretized data. 

In partitioning, there are two possible approaches: equal length and equal probability. In the equal length approach, the 

domain is divided into equal length intervals. This approach has an advantage that the shape of a discretized distribution is

similar to the shape of the original distribution. But, for a tail bin (the first or the last bin of the discretized distribution), its

probability may be greater than the neighboring bins. Moreover, finding a start or an end bin of a distribution might not be

possible if the domain is unbounded. If we employ the equal probability approach, a set of bin boundaries of the discretized

distribution with d bins can be expressed as: 

H = 

{ 

u i : F X (u i +1 ) − F X (u i ) = 

1 

d 
, for i = 0 , 1 , . . . , d − 1 

} 

, (3) 

where F X is the cumulative function of X , and u 0 is the minimum and u d is the maximum of a random variable X , which

could be −∞ and ∞ , respectively. We propose to take the equal probability approach. 

In conducting a GOF test with the equal probability approach, the hypothesized distribution p 

0 is defined as p 

0 = (
1 
d 
, . . . , 1 

d 

)T 
. Based on H in (3) , we can obtain a set of counts N corresponding to each bin from a dataset D with sam-

ple size n : 

N = { N i : N i = | { z l : u i −1 ≤ z l < u i , z l ∈ D, l = 1 , 2 , . . . , n } | , u i ∈ H, i = 1 , . . . , d } , 
where | D | means the cardinality of a set D and N i is the count in the i th bin. The discretization procedure is concisely

described in Algorithm 1 . 

Algorithm 1 Discretization 

1: input : Hypothesized distribution p 

0 ; dataset x ; the number of bins d 

2: Let F p 0 be the cumulative distribution function corresponding to p 

0 and find u 0 < u 1 < . . . < u d satisfying 

F p 0 (u i ) − F p 0 (u i −1 ) = 

1 

d 
, 

where u 0 and u d are end points of the domain of the distribution p 

0 . 

3: Let N i be the number of observations in the i th category and x k ∈ x . 

4: for i ∈ { 1 , . . . , d} do 

5: for k ∈ { 1 , . . . , n } do 

6: if u i −1 < x k < u i then 

7: return N i ← N i + 1 

8: end if 

9: end for 

10: end for 

Figure 1 shows an example of discretized distributions with d = 100 . The hypothesized distribution is the standard nor-

mal distribution as displayed in the left panel. Using H in (3) computed from the hypothesized distribution, we can trans-

form other continuous distributions into discrete ones. The right panel shows the χ2 distributions with degrees of freedom 
7 
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Fig. 1. The left panel displays the discretization of the standard normal distribution with equal probability and d = 100 . The right panel shows a comparison 

of χ2 distributions with degrees of freedom 2 and 10, the exponential distribution with rate 5, and the student- t distribution with degrees of freedom 2. 

They are discretized by the the boundaries obtained from the standard normal distribution in the left panel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 and 10, the exponential distribution with rate 5, and the student- t distribution with degrees of freedom 2, based on the

boundaries computed from the hypothesized distribution in the left panel. In order to compare the discretized distribu- 

tions, the distributions are scaled by their theoretical mean and standard deviation. In the plot, the bars higher than those

of the hypothesized distribution implies higher probability mass in the corresponding regions. It can be seen that the χ2 

distributions and the exponential distribution have higher probability around the center of the left side. Also, the student- t

distribution has thicker tails than the normal distribution. Using these differences, we can conduct a GOF test. We apply the

Priv’IT, DP χ2 , and zCDP GOF tests introduced in Section 2.2 on the discretized variables to guarantee differential privacy. 

4. Simulation 

We demonstrate the performance of the proposed differentially private GOF tests through simulated examples. We dis- 

cretize continuous data as explained in Section 3 , and apply the differentially private GOF tests discussed in Section 2.2 :

Priv’IT, MC-DP and Asymptotic-DP χ2 , and unprojected and projected zCDP GOF tests. 

4.1. Settings 

We consider various privacy parameters for ε- and (ε, δ) -differential privacy algorithms. The parameter ε is set as 0.1, 

0.2, 0.4, 0.6, or 1.0 and δ is set as 10 −6 or 10 −5 . In the Priv’IT test, d α = 0 . 1 in (1) . The privacy parameter ρ in the zCDP

GOF test is determined by Theorem 2.3 . For the MC-DP χ2 GOF test, the null distribution of the test statistic is obtained

with 100 iterations. The sensitivities are � 1 = 2 and � 2 = 

√ 

2 when one observation moves from a bin to another. The hy-

pothesized distribution p 

0 of the simulation is the standard normal and the alternative distributions are the χ2 distribution 

with degrees of freedom 2 and 10, and the exponential distribution with rate 5. The number of bins is determined as in

Freedman and Diaconis (1981) ; d = Cn 1 / 3 , where n is sample size and C is a positive constant. We consider six sample sizes,

n = 150 0, 30 0 0, 50 0 0, 10 0 0 0, 150 0 0, and 20 0 0 0 with five different C values, 3, 3.5, 4, 4.5, and 5. The noise generated from

the Laplace distribution is used for the Priv’IT and MC-DP χ2 GOF tests. The normal distribution is used to generate the

noise for the MC-DP χ2 and the asymptotic-DP χ2 , and zCDP GOF tests. We note that the Priv’IT test is a level 1 / 3 test,

while the DP χ2 and zCDP GOF tests are level 0.05 tests. Each algorithm is repeated 150 times to compute p-values. 

4.2. Results 

Figure 2 shows the power and type I errors of the Priv’IT GOF test with different numbers of bins for the simulated

data with various sample sizes. In each plot, the hypothesized distribution, standard normal distribution, is displayed with 

the black solid line, and three alternative distributions, χ2 (2) , χ2 (10) , and exp (5) , are displayed with the red dashed, blue

dotted, and orange dot-dashed lines, respectively. The gray dotted line in each plot indicates the significance level guaranteed 

by the test, which is 1/3 in this case. We can see that the Priv’IT test shows high power even for small sample size and the

small number of bins. Also, high power is achieved regardless of the alternative distributions. However, when the sample 

size is small, it can be seen that the false positive rate (black solid line) is somewhat high even though it is still under

the given significance level. The false positive rate becomes lower as the sample size increases. Overall, the Priv’IT GOF test 

shows consistent performance over different numbers of bins and sample sizes. 
8 
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Fig. 2. The plots of power and type I error of the Priv’IT test with different numbers of bins on the simulated data when n = 150 0, 30 0 0, 50 0 0, 10 0 0 0, 

150 0 0, and 20 0 0 0. The hypothesized distribution is the standard normal distribution (black solid) and three alternative distributions, χ 2 (2) (red dashed), 

χ2 (10) (blue dotted) and exp (5) (orange dot-dashed), are considered. The black solid line indicates the false positive rate and the other lines denote the 

true positive rates of the test obtained from 150 repetitions. The gray dotted line in each plot indicates the significance level of the test, 1/3. 

Fig. 3. The plots of power and type I error of the Priv’IT test with ε= 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 when n = 1500. 

 

 

 

 

 

 

Figure 3 shows the proportion of rejection for different ε values for the Priv’IT test. We use the same 150 samples with

sample size 1500, and the results stay almost identical regardless of ε. As ε gets larger, the variance of the noise becomes

smaller and the Priv’IT mechanism depends more on the second step mentioned in Section 2.2 . 

For the MC-DP χ2 GOF test, two types of noise, the Laplace and Gaussian, can be used. Figure 4 shows the results of

applying the MC-DP χ2 test when adding the Laplace noise. We can see that type I errors (black solid) are close to the

given significance level, 0.05 (gray dotted). However, when the alternative distribution is χ2 (10) (blue dotted), the power of 

the test is low for n = 1500 and n = 3000 and decreases over the number of bins even when n = 50 0 0 . When the sample

size is 1500, the power for χ2 (2) (red dashed) and exp (5) (orange dot-dashed) shows a downward trend as the number of
9 
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Fig. 4. The power and type I error of the MC-DP χ2 GOF test with different numbers of bins based on the Laplace noise, when sample sizes are 1500, 

30 0 0, 50 0 0, 10 0 0 0, 150 0 0, and 20 0 0 0. The gray dotted line in each plot indicates the significance level of the test, 0.05. 

Fig. 5. The power and type I error of the Laplacian MC-DP χ 2 GOF test with ε= 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 when n = 1500. The gray dotted line in each plot 

indicates the significance level of the test, 0.05. 

 

 

 

 

 

bins increases. This implies that the sample size and the number of bins are important factors to determine the power of

the MC-DP χ2 GOF test particularly when the sample size is below 10 0 0 0. The type I errors of the MC-DP χ2 GOF test with

the Laplacian mechanism in Figure 5 stays around the nominal significance level regardless of ε when the samples were 

generated from the standard normal distribution. For the other distributions, the power improves as ε increases, and stays 

around 1 when ε ≥ 0 . 6 . 

Figure 6 shows the results of the MC-DP χ2 test with the Gaussian noise added. The type I errors stay stable around

the given significance level. However, we can observe lower power and more downward trends with the number of bins, 

compared to the Laplace noise case in Figure 4 . Since the Gaussian noise has greater variance than the Laplace noise, the

test statistic might be more vulnerable to the Gaussian noise and yield lower power especially when the sample size is
10 
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Fig. 6. The power and type I error of the MC-DP χ2 GOF test with different numbers of bins based on the Gaussian noise, when sample sizes are 1500, 

30 0 0, 50 0 0, 10 0 0 0, 150 0 0, and 20 0 0 0. The gray dotted line in each plot indicates the significance level of the test, 0.05. 

Fig. 7. The power and type I error of the Gaussian MC-DP χ2 GOF test with ε= 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, and δ = 10 −5 when n = 1500. The gray dotted line 

in each plot indicates the significance level of the test, 0.05. 

 

 

 

 

 

 

relatively small. Therefore, the Gaussian mechanism needs a larger sample size than the Laplace mechanism to reduce the 

impact of the noise added to the bin counts. This is supported by the bottom right plot when n = 20 0 0 0 , which shows

stable power over the number of bins. Figure 7 shows the proportion of rejection with ε for the Gaussian MC-DP χ2 GOF

test when n = 1500 and δ = 10 −5 . The type I error stays around the significance level when the population distribution is

normal. However, when ε is small and the number of bins is large, the Gaussian MC-DP χ2 tests yield a low power under

non-normality. It achieves higher power as ε gets larger. 

For the Asymptotic-DP χ2 test, the results in Figures 8 and 9 can be similarly interpreted as those of the Gaussian MC-DP

χ2 GOF test in Figures 6 and 7 . Because the Monte Carlo eventually converges to the asymptotic distribution of the statistic

as n increases, the similarity in the results between the two tests is not surprising. 
11 
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Fig. 8. The power and type I error of the Asymptotic-DP χ2 GOF test with different numbers of bins based on the Gaussian noise, when sample sizes are 

150 0, 30 0 0, 50 0 0, 10 0 0 0, 150 0 0, and 20 0 0 0. The gray dotted line in each plot indicates the significance level of the test, 0.05. 

Fig. 9. The power and type I error of the Asymptotic-DP χ2 GOF test with ε= 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, and δ = 10 −5 when n = 1500. The gray dotted line 

in each plot indicates the significance level of the test, 0.05. 

 

 

 

 

 

 

Figure 10 displays the power and type I error results of the unprojected zCDP GOF test. The results are similar to those

of DP χ2 GOF tests with the Gaussian noise ( Figures 6 and 8 ); although, the power of the unprojected zCDP test is slightly

higher when the sample size is large. Figure 11 shows better performance of the unprojected zCDP GOF test compared to

the Gaussian and Asymptotic MC-DP GOF χ2 tests in terms of power. 

The projected zCDP GOF test in Figure 12 shows quite similar results with those of the unprojected zCDP GOF test in

Figure 10 . Recall the difference between the two zCDP test statistics, Q ρ and Q ρ , is Q ρ − Q ρ = 

ρ
d 

(∑ d 
k =1 Y k 

)2 

. Because we

set small ρ ≈ 0 . 0 0 02 to satisfy (ε, δ) -differential privacy with ε = 0 . 1 and δ = 10 −5 , the difference between the two test
12 
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Fig. 10. The power and type I error of the unprojected zCDP GOF test with different numbers of bins based on the Gaussian noise, when sample sizes are 

150 0, 30 0 0, 50 0 0, 10 0 0 0, 150 0 0, and 20 0 0 0. The gray dotted line in each plot indicates the significance level of the test, 0.05. 

Fig. 11. The power and type I error of the unprojected zCDP GOF test with ε= 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, and δ = 10 −5 when n = 1500. The gray dotted line 

in each plot indicates the significance level of the test, 0.05. 

 

 

 

 

 

statistics stays small. Furthermore, since Y k ∼ N(0 , σ 2 ) , as d increase, 
∑ d 

k =1 Y k /d will converge to zero. We also observe that

Figure 13 and Figure 11 look similar. As we allow more privacy budget (larger ε), the test achieves higher power. 

In Figure 14 , we compare the private tests with the non-private Pearson’s χ2 test with discretization for various popula-

tion distributions and sample sizes. Each row corresponds to the population distribution of samples, N(0 , 1) , χ2 (2) , χ2 (10) ,

and exp (5) , respectively. The non-private test almost always rejects the null hypothesis (normal) when the population distri- 

bution is not a normal distribution, and fails to reject the null when it is a normal distribution. These results show that the

non-private test with discretization performs well on our simulation settings. As sample size gets larger, the private tests 

show similar results to those of the non-private test. We note when the population distribution is χ2 (10) , the gaussian
13 
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Fig. 12. The power and type I error of the projected zCDP GOF test with different numbers of bins based on the Gaussian noise, when sample sizes are 

150 0, 30 0 0, 50 0 0, 10 0 0 0, 150 0 0, and 20 0 0 0. The gray dotted line in each plot indicates the significance level of the test, 0.05. 

Fig. 13. The power and type I error of the projected zCDP GOF test with ε= 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, and δ = 10 −5 when n = 1500. The gray dotted line in 

each plot indicates the significance level of the test, 0.05. 

 

 

 

 

 

 

mechanism based tests, MC-DP χ2 (Gaussian and asymptotic) tests and zCDP (both projected and unprojected) tests, do not 

work well, even when the sample size is as large as 80 0 0. On the contrary, the Laplacian mechanism-based ones produce

the results close to those of the non-private test as sample size increases. 

Overall, the results show that the proposed approach offers differentially private GOF tests for one-dimensional continu- 

ous random variables. The simulation confirms that all three types of tests achieve the given significance level, and the DP

χ2 and zCDP GOF tests have lower type I errors than the Priv’IT test by design. In terms of power, Priv’IT produces high

power regardless of sample size and number of bins compared to the other tests. The MC-DP χ2 GOF test based on the

Laplace noise has greater power ( Figure 4 ) compared to the Gaussian noise ( Figure 6 ). We can also see from Figures 4, 6 ,

and 8 that the Laplacian mechanism shows better performance under the same ε and sample size. This can be viewed as a
14 
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Fig. 14. Discretized GOF test results of Priv’IT, Gaussian MC-DP χ 2 , Laplacian MC-DP χ2 , Asymptotic-DP χ2 , Unprojected zCDP, Projected zCDP, and non- 

private tests. Here, ε= 0.1 and δ = 10 −6 are used. Each row corresponds to the population distribution of samples, N(0 , 1) , χ 2 (2) , χ2 (10) , and exp (5) , 

respectively. The gray lines in each plot indicate the significance level of the test. The gray dotted lines indicate the significance level of 1/3 for Priv’IT and 

gray lines indicate 0.05 for the other tests. 

 

 

 

 

 

comparison of private tests between δ = 0 and δ > 0 because the Laplacian mechanism guarantees (ε, 0) -differential privacy 

while the Gaussian mechanism guarantees (ε, δ) -differential privacy. This may occur due to the large variance noise of the

Gaussian mechanism. As δ gets close to 0, the standard deviation σ 2 (ε, δ) in the Gaussian mechanism becomes large since

the standard deviation is proportional to 
√ 

log (1 /δ) . The (ε, δ) -differential privacy GOF tests and zCDP GOF tests, under the

Gaussian mechanism, exhibit similar patterns in our simulation ( Figures 6–13 ). It is also shown that the unprojected and

projected zCDP GOF tests behave similarly in our settings. 

The simulation also shows a possible drawback of the proposed discretization approach when an alternative distribution 

becomes similar to the hypothesized distribution during the randomization process. For example, when the alternative dis- 

tribution is χ2 (10) , the power of the tests tends to be low even when the sample size is 80 0 0. This is because the difference

between observed and expected counts of the bin gets relatively smaller than perturbation on the bin. In addition, when 
15 
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Table 1 

Non-private GOF test results: Kolmogorov-Smirnov and Anderson-Darling tests, and χ 2 GOF test after discretization. The letter R in the table represents 

the rejection of the null hypothesis. 

Tests K-S test A-D test χ2 GOF test 

80 90 110 120 130 

Total Income R R R R R R R 

Wage and Salary R R R R R R R 

Business Income R R R R R R R 

Property Income R R R R R R R 

 

 

 

 

 

 

 

 

 

 

 

 

 

the sample size is 80 0 0 and the number of bins is 100, the power tends to become a little less than those from smaller

numbers of bins. It indicates that an appropriate number of bins is important in discretization. 

We have conducted an additional simulation study with the Cauchy distribution, mixture of two or three distributions, 

and t distribution with small and large degrees of freedom and non central parameters. The main lessons from the results

based on these distributions are consistent with those presented in this section. Hence, we have included the additional 

simulation results in Supplementary Material. 

5. Real Data Analysis 

In this section, we apply the proposed differentially private approach to real data. The dataset is from the Household 

Financial Welfare Survey of South Korea in 2018, which was collected by Statistics Korea (KOSTAT), Financial Supervisory 

Service (FSS), and Bank of Korea. The dataset can be freely downloaded from Microdata Integrated Service ( https://mdis. 

kostat.go.kr/eng/index.do ). The dataset includes assets and income of 18,640 South Koreans, and we focus on the income 

variable. 

Income is the household income, which is the sum of the following types: wage and salary income, business income, 

property income, and transfer income. Wage and salary income is a house earning from working. Business income is earned 

from any business activity including house rent and equipment rental. Property income is income received by: virtue of 

owning properties such as land rent, owning financial assets such as interest, and ownership of capital equipment such 

as profit. Transfer income can be obtained from public or non-public sources. The public source is mainly government. 

Non-public sources include relatives, patrons, or sponsors. To conduct the private GOF tests, we consider not only the total 

income, but also wage and salary income, business income, and property income separately, which consist of about 80% 

of the total income. Figures 15 (a)–(d) display the histograms of four log-transformed income variables. The zero values of 

wage and salary income, business income, and property income are removed from analysis. We note that all four histogram 

show a skewed shape. 

In conducting the differentially private GOF tests, we consider the following hypotheses, 

H 0 : p = p 

0 v s H 1 : p � = p 

0 , 

where p 

0 is a log-normal distribution. While a log-normal distribution is commonly used to describe the income distribu- 

tion, there are other possible options( Campano and Salvatore, 2006 ). 

We first conduct non-private GOF tests using the Kolmogorov-Smirnov test ( Stephens, 1970 ), Anderson-Darling test 

( Anderson and Darling, 1954 ), and χ2 GOF test, and then compare their results with those of the proposed differentially

private GOF test. The Kolmogorov-Smirnov test and Anderson-Darling test can be directly applied to the continuous income 

variables; and, the non-private χ2 GOF test is applied after the same equal probability discretization process described in 

Section 3 with the number of bins d = 80 , 90 , . . . , 130 . Table 1 reports the test results for the total income, wage and salary

income, business income, and property income variables. All non-private tests conclude that all the variables considered in 

the tests do not follow a log-normal distribution. 

Next, we conduct the proposed differentially private tests using the Priv’IT, MC-DP (Laplace and Gaussian) and 

Asymptotic-DP χ2 , and unprojected and projected zCDP GOF tests. Because a randomization process is involved in differen- 

tially private tests, all tests are repeated 150 times to compute the proportion of rejection. 

The proportion of rejection for the total income, wage and salary income, business income, and property income variables 

are drawn in Figure 16 for the six tests. In Figure 16 (a), the proportion of rejection for the total income variable suggest that

the total income variable does not follow a log-normal distribution. It can be seen that the proportion of rejection stays

around 1 or close to 1 for the MC-DP χ2 and Priv’IT tests. However, it decreases with the number of bins for the zCDP

and DP χ2 GOF tests using the Gaussian mechanism, varying from 0.92 to 0.487. As discussed in Section 4 , the Gaussian

mechanism adds noise with larger variance compared to the Laplace mechanism. 

The wage and salary income variable explains a large proportion of the total income variable since it has a large corre-

lation coefficient ( r = 0 . 749 ) and accounts for 52% of the total income. As can be seen in Figure 16 (b), the proportion of

rejection stays close to 1 (from 0.947 to 1) for all tests and for the given range of number of bins. The second largest pro-

portion of the total income comes from business income, which accounts for about 20%. From Figure 16 (c), the proportion

of rejection also stays close to 1 (from 0.867 to 1) for all tests and for the number of bins. The results for the property
16 
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Fig. 15. Four log-transformed income variables. 

 

 

 

 

 

 

income variable in Figure 16 (d) also show that all tests yield high proportions of rejection, varying from 0.94 to 1 over the

number of bins. The results for the three sub-variables coincide with the non-private tests that the variables do not follow

a log-normal distribution, regardless of the tests and the number of bins. 

6. Discussion 

We develop differentially private GOF tests for continuous random variables by combining the equal probability dis- 

cretization and differentially private GOF tests for discrete random variables such as Priv’IT, DP χ2 , and zCDP GOF tests. The

discretization of a continuous random variable is essential to control the sensitivity of continuous variables. By discretizing 

a continuous distribution, the sensitivity becomes small and we can apply a differentially private GOF test for a discrete ran-

dom variable to the discretized variable. The simulation results demonstrate that the discretization is an effective approach 

to achieve differential privacy of GOF tests for a one-dimensional continuous random variable. For the real data analysis, the 

conclusions of the differentially private GOF tests are consistent with those of the non-private GOF tests. 

From the simulation and real data analysis, it can be seen that the number of bins affects the performance of some

of the tests we consider. The proposed approach roughly determines the number of bins based on the sample size, while

the recursive partitioning scheme of Balakrishnan and Wasserman (2019) computes it in a process of diving the domain. 

If we provide an appropriate number of bins for the discretization, the differentially private GOF tests would guarantee 

reasonable power of test while satisfying the level of test. Moreover, the proposed approach cannot be easily extended to 

high-dimensional continuous variables due to the curse of dimensionality. We propose differential privacy of GOF tests for 

high-dimensional continuous random variables as our future work. 
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Fig. 16. Results from differentially private tests for four income variables. 

 

 

 

 

 

 

 

 

In this work, we assume that observations are standardized thus do not need to estimate the location and scale param-

eters in the distributions. For sun-standardized data, one could apply a DP parameter estimation method ( Amin et al., 2019;

Kamath et al., 2019; Liu and Oh, 2019; Biswas et al., 2020; Brunel and Avella-Medina, 2020; Kamath et al., 2020; Tzamos

et al., 2020 ). If DP GOF test results are released along with DP estimates, a separate privacy budget needs to be allocated

for the entire procedure to satisfy (ε, δ) -differential privacy, based on the composition theorem. 
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