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In a monolayer semimetal, low carrier densities combined with 
reduced dimensionality provide the conditions for strong corre-
lation effects. One possible form of such correlations is pairing of 

electrons and holes in the equilibrium state to form excitons. At low 
temperatures, such excitons could condense to form an excitonic 
insulator1–4. However, exciton formation is expected to be easily dis-
rupted by free carriers (which screen the binding interaction) and 
thus occur only at low temperatures and near charge neutrality. A 
number of materials have been mooted as excitonic insulator candi-
dates5–10, but there is no consensus as to whether any of them truly 
contains excitons in equilibrium, either as an incoherent gas or as a 
coherent condensate, except in the case of bilayer heterostructures 
at high magnetic fields11–14.

WTe2 is a layered semimetal, but an exfoliated WTe2 monolayer 
behaves15–17 as a two-dimensional (2D) topological insulator, exhib-
iting helical conducting edge modes, and becomes superconducting 
when electrostatically doped18,19. The monolayer has the 1T′ struc-
ture shown in Fig. 1a. Its bands are spin degenerate due to inver-
sion symmetry and, near the Fermi energy EF, there is a valence (v) 
band maximum at Γ flanked by two conduction (c) band minima 
located at kx = ±kΛ, as sketched in Fig. 1b. Some tunnelling spec-
troscopy measurements20, angle-resolved photoemission20,21 and 
density functional theory (DFT) calculations20–23 point to a positive 
bandgap, Eg, of the order of 50 meV, while others suggest overlap-
ping bands15,24. Noting that, in the photoemission spectra, the v and 
c band photoemission features are broad enough that they overlap 
at least somewhat, we use thick lines in the sketch to signify this 
uncertainty in Eg.

This band structure immediately invokes the possibility that exci-
tons could occur in equilibrium in monolayer WTe2, and therefore 

that the insulating state might not be a simple band insulator25–28. 
In this Article we argue that the behaviour of the conductivity and 
the electron chemical potential, even well above 100 K, is impos-
sible to reconcile with an independent particle picture and strongly 
indicates the presence of excitons in the equilibrium state. Our 
first-principles calculations of exciton dispersion and Bohr radius 
support this conclusion. The insulating behaviour below 100 K 
suggests a charge-ordered state, but in an excitonic insulator one 
would normally expect charge density waves, no signs of which are 
seen in scanning tunnelling microscopy or Raman spectroscopy. To 
explain this, we show that the entanglement of spin, orbital and val-
ley degrees of freedom hides the charge order, as the contributions 
to the density wave paired through time reversal cancel out.

The measurements were made on exfoliated monolayer 
WTe2 flakes with platinum contacts, encapsulated by hexagonal 
boron nitride (hBN), with graphite gates either below or above 
(Supplementary Section 1). To study the sheet conductivity while 
excluding edge conduction, we used the approach illustrated in Fig. 
1c. As indicated in the insets, a bias V is applied to one contact and 
the current I flowing to ground through an opposite contact is mea-
sured. When the intervening side contacts are grounded, this cur-
rent must flow through the bulk. The edge current, which produces 
the plateau at low Vg, is thereby eliminated and the ‘partial conduc-
tance’ Gp ≡ I/V reflects the sheet conductivity σ via G−1

p ≈ β/σ + Rc, 
where β is a geometrical factor considerably larger than one and Rc 
is the contact resistance. The gate-induced areal number density ng 
is deduced from the voltages applied to the graphite gate(s) and the 
geometric capacitances.

Figure 1d shows measurements of Gp versus ng and temperature 
T. These characteristics are not measurably affected by either a  
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normal displacement field or a normal magnetic field of 14 T, con-
firming the rejection of edge conduction, which is highly sensitive 
to magnetic field at low temperatures29. (A recent paper30 reports 
surprising quantum oscillations at low ng, but we have not seen 
these in any device.) On cooling from room temperature to 100 K, 
Gp versus np develops a sharp ‘V’ shape centred close to ng = 0. We 
have seen consistent behaviour across a dozen monolayer devices, 
although the sharpness of the V varies, probably as a result of vari-
able sample homogeneity. We also note that a similar sharp V 
occurs in bilayer WTe2 but at temperatures about five times lower31 
(Supplementary Section 7). As shown in the inset, for positive ng 
smaller than a value nce ≈ +5 × 1012 cm−2, Gp decreases monotoni-
cally on cooling, whereas for ng > nce it initially increases. For nega-
tive ng (hole doping), a similar but less clearcut transition occurs 
around ncp ≈ −10 × 1012 cm−2. As indicated in the band at the bottom 
of Fig. 1d, these values of nce and ncp are consistent with the thresh-
olds for metallic behaviour reported in previous work, where it was 
found that the metallic state at ng > nce becomes superconducting 
below ~0.8 K.

Below 100 K, as T decreases Gp collapses over an increasingly 
wide range of ng. This insulating behaviour, which allows the edge 

conduction to dominate in normal geometries, is consistent with 
the findings in ref. 26. We used microwave impedance microscopy32 
(MIM; Supplementary Section 2) on devices with no top gate to con-
firm that this is not a contact effect, as well as to detect any cracks in 
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Fig. 1 | Bulk conduction measurements on monolayer WTe2.  
a, 1T′ structure of monolayer WTe2. The x axis is taken to be along the 
zigzag W chains. b, Schematic Brillouin zone (above) and bands near EF 
(below). c, The technique used to exclude edge conduction: when the side 
contacts are grounded, the measured current between top and bottom 
contacts must flow through the interior and the edge conduction plateau 
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the monolayer WTe2 that could invalidate the measurements. Figure 
2a is a MIM image of device MW10 at 11 K. Red dashed lines mark 
the edges of the monolayer WTe2 flake, and the wiggly bright lines 
are cracks. Figure 2b shows the MIM-derived conductivity σMIM, 
measured in the centre of the white dashed square. Like Gp, it col-
lapses over a range of ng that grows as T falls, indicated by the dotted 
white contour which is drawn at σMIM ≈ 0.1 μS. The drop-off of Gp 
at low temperatures, even at large ng, as is evident in Fig. 1d, can 
be explained by the fact that the monolayer adjacent to the metal 
contacts is partially screened from the gates and so is less doped and 
remains insulating. In addition, the contact pattern in MW10 was 
aligned with the crystal axes, as determined by Raman spectroscopy 
(Fig. 2a inset and Supplementary Section 3), allowing us to compare 
conductivities along the x and y axes (Fig. 2c,d and Supplementary 
Section 4). We see that there is substantial gate-dependent anisot-
ropy, with the lowest conductivity occurring for p-doping parallel to 
the x axis. This is consistent with the direction in which the valence 
band edge has a large effective mass.

To measure the chemical potential, we study a device includ-
ing a separately contacted graphene sheet in parallel with the WTe2 
monolayer, as shown in Fig. 3a. Briefly, the WTe2 is almost an equi-
potential because it has finite conductivity and carries no current. 
With both the graphene and bottom gate grounded, a voltage Vg 
is applied to the top gate relative to the WTe2 and the voltage VW  
on the WTe2 is adjusted to bring the graphene conductance to a 

minimum. This keeps the graphene neutral and maintains zero 
electric field beneath the WTe2. The electrostatic potential in the 
WTe2 is thus in effect fixed to that of the graphene, so the change in 
VW is due to the change in chemical potential, Δμ = −eΔVW, asso-
ciated with the gate-induced charge density −eng = εrε0Vg/d, where 
d is the distance to the gate εr is the hBN dielectric constant and 
ε0 the vacuum permitivity. From VW versus Vg we thereby obtain 
μ(ng), choosing the zero of μ at each temperature for convenience.  
Figure 3b shows measurements of both μ (black) and Gp (red) ver-
sus ng made on device MW12. As usual, Gp forms a sharp V as a 
function of ng at 100 K. Meanwhile, μ exhibits a step at the centre of 
the V that is still discernible at room temperature and which grows 
on cooling, saturating at ~40 meV in height below ~50 K. The same 
behaviour was seen in two devices (Supplementary Section 5).

The variations of Gp and μ with ng are impossible to recon-
cile with a single-particle picture, as can be shown by an ele-
mentary calculation: in such a picture, μ and ng are related by 
ng =

∫
+∞

−∞

D (E) f (E) dE, where D(E) is the total electron density 
of states and f(E) = [1 + exp{(E − μ)/kT}]−1. To match the variation 
of μ with ng at low temperatures, for energies in the relevant range, 
D(E) must have roughly the form shown in Fig. 3c: a constant value, 
D0, in the conduction band to give a uniform slope for ng > 0; a gap, 
Eg; and a large spike at the valence band edge (E = 0). The latter is 
needed to pin μ to the valence band edge and thus make it inde-
pendent of ng when ng < 0, to be consistent with the data at 25 K 
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and 10 K. In Fig. 3d we plot the chemical potential calculated at the 
same temperatures as the measurements in Fig. 3b, using this D(E) 
with best-fit parameters D0 = 3.7 × 1011 cm−2 meV−1 and Eg = 43 meV. 
At 150 K the step is washed out; in fact, no choice of D(E) can  
yield a distinct step in μ whose height is less than kT as is needed to 
match the measurements at T ≥ 150 K. In particular, states in the gap 
will only smear the step more. We also plot (dotted lines) the calcu-
lated populations of electrons in the conduction band, n, and holes 

in the valence band, p = ng − n, to contrast their thermally smeared 
dependence on ng with the sharp V shape seen in the conductance 
when T ≥ 100 K.

The contradictions between the single-particle picture and 
the observed dependence of μ and G on ng and T can be largely 
resolved simply by positing that some electrons and holes are 
bound as neutral excitons with density nx so that the conductiv-
ity is σ = μee(n − nx) + μhe(p − nx), the sum of the contributions of 
n − nx free electrons and p − nx free holes with respective mobilities 
μe and μh. In Fig. 4 we compare predictions based on this equa-
tion with data from Fig. 3 (Supplementary Section 6 provides more 
details). When nx = 0 we just have σ = μeen + μhep, which is ther-
mally smeared for any choice of D(E). To illustrate this, in Fig. 4a 
we plot p and n calculated using the same D(E) shown in Fig. 3c, 
at 100 K, and in Fig. 4b we plot the calculated σ for nx = 0 (blue 
dotted), using a mobility ratio chosen to obtain the best match to 
the measured conductance at 100 K (black line). However, when 
nx takes its maximal value, determined by the number of minority 
carriers nx = min(n, p), then for ng > 0 we have σ = μee(n − p) = μeeng 
while for ng < 0 we have σ = μhe(p − n) = μheng. The result is a sharp, 
asymmetric V shape (red dashed line) that matches the measure-
ments much better. Note that, in this limit, where only the unbal-
anced gate-induced charge is free to move, the detailed form of 
D(E) becomes immaterial.

As T is increased from 100 K, the conductance at ng = 0 rises and 
the sides of the V become shallower. This is illustrated in Fig. 4c, 
where we replot the conductance at 150 K (black line). The behav-
iour remains highly incongruous with the single-particle model 
(nx = 0, blue dotted line), and is again more similar to the calcula-
tion for the case of maximal nx with slightly decreased mobilities 
(red dashed line). However, there is now a discrepancy in the form 
of a vertical shift, equivalent to an extra gate-independent contribu-
tion to the conductance. The vertical shift cannot be accounted for 
by varying nx; to illustrate this we also plot (green dash-dotted line) 
the result of assuming that nx varies with gate voltage according to 
a chemical equilibrium condition, nx = K(n − nx)(p − nx), where K 
is an equilibrium constant. It also cannot be reproduced by using 
a single-electron spectrum, for example with overlapping bands.  
A more sophisticated treatment of the correlated-electron system 
may therefore be needed to understand this aspect of the behaviour.

Excitons that persist in equilibrium at 100 K and at doping lev-
els above 1 × 1012 cm−2 must have binding energy much larger than 
the thermal energy of ~10 meV and small size to survive screen-
ing by free charges. To see whether this is plausible, we solved the 
exciton (Bethe–Salpeter) equation of motion from first principles, 
building on the DFT band structure (Fig. 5a) and including spin–
orbit effects in a non-perturbative way (Methods). The resulting 
excitation energy versus momentum q is shown in Fig. 5b. As the 
binding energy only weakly depends on Eg because the gap is indi-
rect2,10, and the value of Eg is uncertain, we tuned the DFT hybrid 
functional to make Eg vanish. The dielectric function was evalu-
ated in the random phase approximation, and the uncertainty 
induced by the numerical discretization of k space is shown by 
the error bars. The excitation energy is negative for all q, rang-
ing from −100 meV for direct excitons at q = 0 to a minimum of 
−330 meV for indirect excitons made of a hole at Γ and an electron 
at Λ. In Fig. 5c,d we plot the spatial profile of an exciton in the 
centre-of-mass frame. The exciton radius is as small as 4 nm. This 
is comparable with the typical electron separation at the critical 
doping nce−1/2

= 4.5 nm, suggesting that excitons could play a role 
in the insulator–metal transition at nce.

In interpreting the situation below 100 K in terms of an excitonic 
insulator, formed by condensation of the excitons, we face two prob-
lems. First, at low temperatures, insulating behaviour sets in over a 
wide doping range, approaching ncp < ng < nce. Conventional neutral 
excitonic insulator theory provides no mechanism for localizing the 
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unbalanced charge. Nevertheless, it seems possible that the Coulomb 
interaction, which has a long range for these doping values, could 
stabilize both the excitonic phase10 and the Wigner crystallization 
of unbound carriers, whose effective mass is enhanced by the open-
ing of a many-body gap. Second, the exciton condensate is naively 
expected to exhibit a charge density wave (CDW) with wavevector 
kΛ, but CDWs are not seen in tunnelling microscopy20,24,33 and our 
detailed temperature-dependent Raman spectra show no evidence 
of any CDW transition (Supplementary Section 3). One possible 
explanation is that the condensate is made of direct excitons having 
q = 0, as predicted25 for the T′ phase of monolayer MoS2. We have 
checked that this leads to no substantial symmetry breaking, due 
to the anisotropic character of the WTe2 band structure (Methods 
and Supplementary Fig. 8). However, this state would have higher 
energy than a condensate made of indirect excitons with finite q. A 
more likely possibility is that the peculiar symmetries of excitons 
with q = ±kΛ prevent the condensate from exhibiting charge order.

A mean-field theory of this condensate (Methods), which builds 
on the knowledge of indirect excitons obtained from first principles 
and takes into account both spin and valley degrees of freedom, 
shows that there is no CDW with momentum q = kΛ. We find that 
the charge order is hidden by the combined effect of time-reversal 
symmetry and spin–orbit interaction, which is ultimately related 
to the topological properties of WTe2 (ref. 15). The CDW may be 
unveiled by breaking time-reversal symmetry; practically, one may 
split the hole states that sustain the density wave through Zeeman 

coupling with the magnetic field, as the hole spin is polarized along 
x close to Γ. Finally, the ground state exhibits a spin density wave 
of momentum q = kΛ, plus a weak charge modulation of period 
q = 2kΛ. These features were also found in ref. 28 by adding an inter-
valley scattering term to a two-band model, in the absence of which 
different ordered states would have been degenerate. In contrast, the 
hidden order we predict here is inherent to all possible spin sym-
metries of the condensate, and hence robust.

We also consider the behaviour of μ versus ng. We start by put-
ting forward the following heuristic argument. At low temperatures 
(T ≲ 50 K), where every minority carrier is paired, for ng < 0 when 
an electron is added to the system it pairs with a hole, reducing 
the addition energy by the exciton binding energy and leading to 
diverging compressibility and self-consistent pinning of μ (in the 
charge-ordered state). For ng > 0, the added electron does not pair 
and so μ is not affected by the binding energy; the result is a step in μ 
at ng = 0 whose height is related to the binding energy. The decrease 
in the height of the step for T ≳ 100 K could be because the exciton 
binding weakens due to screening by the free carriers.

This scenario is supported by simulating the behaviour of an exci-
tonic insulator in the presence of free charge carriers (Fig. 5e), with 
both μ and the many-body gap being computed self-consistently 
(Methods). Here the gap has a purely excitonic origin, as the start-
ing non-interacting phase is a semimetal. The step in μ remains 
clearly visible up to 100 K, in contrast with the smeared profile  
of the independent-electron model (Fig. 3d). This is a peculiar  
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(blue dashed lines) is computed self-consistently as the population of the c and v bands, respectively, which are renormalized by the presence of  
the condensate.
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consequence of exciton condensation, as electrons injected for ng > 0 
fill in the lowest c states blockading the formation of e–h pairs—an 
effect due to the Pauli exclusion principle and suppressed with tem-
perature34. At even higher T the step is smeared anyway, because the 
condensate is depopulated by thermal excitations and the excitonic 
gap melts. The simulation of Fig. 5e was performed for direct exci-
tons for the sake of illustration25, but indirect excitons will exhibit 
the same qualitative features.

In conclusion, examination of the conductivity and thermo-
dynamics of monolayer WTe2 provides evidence that neutral 
excitons are present in thermal equilibrium, not only at low tem-
peratures where they probably form a collective excitonic insula-
tor state, but also even at temperatures above 100 K when they 
coexist with free carriers. The size of the step in chemical poten-
tial and theoretical calculations suggest that the exciton binding 
energy is at least 40 meV.
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Methods
Ground-state calculations from first principles. We obtained the ground-state 
electronic structure within DFT with a plane wave basis set, as implemented in the 
Quantum ESPRESSO package35. We fixed a kinetic energy cutoff of 80 Ry for the 
wavefunctions and used fully relativistic norm-conserving pseudopotentials36 to 
include the spin–orbit interaction. We optimized the lattice parameters and atomic 
positions using the PBE exchange-correlation functional, the final cell parameters 
being a = 3.52 Å and b = 6.29 Å. We set the cell side along z to 15 Å. We obtained 
the band structure using a PBE0 pseudopotential, for which we considered a small 
fraction of exact exchange, 2%.

Excitation energies and exciton wavefunctions from first principles. We calculated 
the excitation energies of excitons as well as the dispersion of the lowest-energy 
exciton within the framework of many-body perturbation theory37–39, by solving the 
Bethe–Salpeter equation through the YAMBO code40,41 and including spin–orbit 
interaction in a non-perturbative way42. We considered the PBE0 electronic structure 
as a starting point and calculated the static screening in the direct term within the 
random phase approximation, with inclusion of local field effects, and we employed 
the Tamm–Dancoff approximation for the Bethe–Salpeter Hamiltonian. To avoid 
spurious interactions among layers, we employed a truncated Coulomb cutoff 
technique43. We obtained converged excitation energies considering, respectively, 
two valence and two conduction bands in the Bethe–Salpeter matrix, the irreducible 
Brillouin zone being sampled up to a 48 × 24 × 1 k-point grid. We extrapolated the 
excitation energy of the lowest exciton with momentum q = 0 to the limit of a dense 
k-point grid, as shown in Supplementary Fig. 7.

Excitonic insulator ground state from indirect excitons and synopsis of theory. 
From the first-principles solution of Bethe–Salpeter equation we find that the 
lowest-energy exciton with q = kΛ (or −kΛ) is three-fold degenerate and separated by 
20 meV from a non-degenerate first excited state. This energy splitting is due to the 
residual exchange interaction, present despite the strong spin–orbit coupling. These 
excitons are made of electrons and holes that populate, respectively, the lowest c and 
highest v band, with momentum k lying near the ΓΛ line. Along this high-symmetry 
line, both c and v Bloch spinors, each doubly degenerate, may be chosen as the 
eigenstates of the two-fold screw-axis rotation, which has complex conjugated values 
as irreducible representations. We label these Bloch spinors as ζ = ±i and use them 
to write explicitly the exciton wavefunctions within a minimal two-band model, 
which includes both spin and orbital degrees of freedom (Spinful two-band model). 
In addition to the rotational symmetry, we may classify the excitons according to 
their triplet- or singlet-like character, that is, whether they respectively maximize 
or minimize the electron–hole spatial overlap. In fact, Bloch spinors labelled by 
ζ transform like spins polarized along the x axis under the two-fold rotation, 
even if their actual spin polarization away from Γ is zero. Specifically, the exciton 
wavefunctions that are even with respect to the screw-axis rotation are

|±⟩ =
1
√
2
∑

kx,ky

ψ±

(k)
[

c†i
(

kx + kΛ , ky
)

vi (k) ± c†
−i

(

kx + kΛ , ky
)

v−i(k)
]

|0⟩,

where +/− stands for singlet/triplet-like symmetry, c†ζ (k) creates and vζ (k) 
destroys an electron of momentum k and screw-axis symmetry ζ in the c and v 
band, respectively, |0〉 is the non-interacting ground state with all v states filled 
and c states empty, and ψ is the exciton wavefunction in reciprocal space in the 
centre-of-mass frame, which is nodeless and even in ky (and, approximately, in kx): 
ψ(kx, ky) = ψ(kx, −ky).

In the excitonic insulator phase, the condensate is macroscopically occupied 
by excitons, hence the expectation value of the operator that creates an electron–
hole pair, 

⟨

c+ζ vζ′

⟩

, has finite magnitude ϕζζ′ and arbitrary phase θζζ′; that is, the 
complex wavefunction of the condensate is ϕζζ′exp(iθζζ′) (here ⟨…⟩ is the average 
over the many-body ground state). As excitons with q = (kΛ, 0) and (−kΛ, 0) are 
degenerate, they may separately condense, so the wavefunction of the condensate 
has two valley components of equal magnitude, whose respective phases are 
related by time-reversal symmetry10. Furthermore, both condensate and exciton 
wavefunctions share the same screw-axis and spin-like symmetries3, as well as 
the same parity in k space. These fundamental constraints relate all components 
of the condensate to a unique wavefunction magnitude, ϕ(k), and phase, θ. If the 
excitonic ground state has triplet-like symmetry, one has

⟨

c†ζ
(

kx ± kΛ , ky
)

vζ′ (k)
⟩

= ± [σz]ζζ′ exp (±iθ) ϕ−

(k).

For the singlet-like ground state, one replaces the 2 × 2 Pauli matrix σz with the 
identity matrix 1, the right-hand side of the equation then reading 1exp(±iθ)ϕ+(k). 
The charge/spin density wave of the excitonic insulator is dictated by the interband 
contribution to the expectation value of the corresponding density operator, 
which is proportional to the left-hand side of the above equation. Therefore, we 
may assess the occurrence of charge order in the excitonic phase without actually 
computing ϕ±(k), which is given by a gap equation10 that depends on Eg. Indeed,  
ϕ only provides the intensity of the density modulation, whereas θ rigidly shifts  
the density wave with respect to the frame origin.

Spinful two-band model. The spinful two-band model provides the 
non-interacting, doubly degenerate c and v Bloch states of crystal momentum 
k that comply with the symmetry group of monolayer WTe2 (the T′ structure 
is centrosymmetric and non-symmorphic). Within the 4D spin/orbital space, 
the Hamiltonian is a 4 × 4 Hamiltonian matrix, HQSH(k), whose off-diagonal 
elements are the spin–orbit interaction terms. Here the orbital degree of freedom 
identifies the c and v Bloch states at Γ, whose energies are ‘inverted’ with respect 
to the usual order of bulk semiconductors. These two states have been variously 
identified in the literature as a pair of orbitals having either opposite15,25 or like29,44 
parities under spatial inversion, leading to two different forms of the spin–orbit 
interaction: we label the corresponding model Hamiltonians, respectively, as 
HQSH,1(k) and HQSH,2(k). We find that the charge order is hidden in the condensate 
of indirect excitons, regardless of the model. The reason is that the screw-axis 
rotation (around the W atom chain direction) maintains the same form within the 
spin/orbital space, entangling the degrees of freedom of its eigenstates, labelled by 
ζ = ±i. This is pivotal to the discussion of the main text.

In the following we detail the Hamiltonians HQSH,1(k) and HQSH,2(k).  
The first model, HQSH,1(k), is taken from refs. 15,25 with minor adjustments.  
The Hamiltonian, written in the present reference frame with the W atom  
chain parallel to the x axis, reads

HQSH,1 (k) = 1
2
[

ϵu (k) + ϵg (k)
]

1τ ⊗ 1σ + 1
2
[

ϵu (k) − ϵg (k)
]

τz ⊗ 1σ

+h̄v2kxτx ⊗ σy,

where v2 is the spin–orbit coupling parameter, τx, τy, τz and σx, σy, σz are 2 × 2 Pauli 
matrices in orbital and spin space, respectively, and the 2 × 2 unit matrices are 
1τ and 1σ. The diagonal matrix elements, εl(k) with l = u, g, are the band energies 
in the absence of spin–orbit interaction, which are inverted at Γ and cross at the 
points ±kΛ of the ΓX line in the Brillouin zone. The energies εl(kx, ky) are even 
with respect to both kx and ky axes. The corresponding Bloch states transform 
like px and dxz orbitals at Γ. The functional dependence of εl on k differs from the 
effective-mass expression given in ref. 25, but its precise form is irrelevant to the 
discussion of the main text, solely based on symmetry arguments. We discard the 
off-diagonal spin–orbit term linear in σx considered in ref. 25, the Hamiltonian 
being now even in ky, HQSH,1(kx, ky) = HQSH,1(kx, −ky). This choice agrees with the 
evidence that the spin–orbit field lies in the x–z plane29, as also predicted by ref. 45.  
Furthermore, we find that the spin–orbit term proportional to σy provides a 
good matching with the strongly anisotropic DFT bands, as we checked through 
comparison with our own first-principles calculations. In the spin/orbital space, 
the inversion operator reads I = −τz ⊗ 1σ and the screw-axis rotation around 
the x axis is C2x = iτz ⊗ σx exp(ikxa/2), with a being the lattice constant in the 
direction parallel to the W chains.

The second model, HQSH,2(k), is taken from ref. 29 and builds on the four-band 
tight-binding Hamiltonian proposed in ref. 44 to improve the matching between 
model and DFT bands. The c and v orbital states are Wannier functions, respectively 
an antibonding combination of dx2−y2-type orbitals localized on W atoms (energy 
εW(k)) and a bonding superposition of px-type orbitals localized on Te atoms (εTe(k)). 
These Wannier functions have the same parities under inversion but opposite parities 
under the screw-axis two-fold rotation, like the Bloch states at Γ of our own DFT 
calculations. The Hamiltonian is

HQSH,2 (k) = 1
2 [ϵW (k) + ϵTe (k)] 1τ ⊗ 1σ + 1

2 [ϵW (k) − ϵTe (k)] τz ⊗ 1σ

+λSOτy ⊗ σy,

where λSO > 0 is the spin–orbit coupling parameter, which is independent of k.  
For the sake of simplicity, here we have neglected the spin–orbit term proportional 
to σz proposed by ref. 29. Within the envelope function approximation, the band 
energies εW(k) and εTe(k) are provided by the tight-binding calculation of ref. 44  
and are even with respect to both kx and ky axes. The inversion operator now 
reads I = 1τ ⊗ 1σ whereas the screw-axis rotation around the x axis is again 
C2x = iτz ⊗ σx exp(ikxa/2).

Eigenstates of the screw-axis rotation. The eigenvectors of HQSH,1(k) that were 
explicitly given in ref. 25 are spin-polarized along the direction perpendicular to 
the W atom chains. Here we use the notation |k, λ⟩ to identify these eigenvectors, 
which belong to either the c or v band and have spin polarization λ = ↑,↓. In the 
main text we introduced an alternative, equally legitimate set of eigenvectors, 
which are simultaneous eigenstates of HQSH,1(k) and C2x (the latter with eigenvalues 
ζ = ±i), by applying a unitary rotation of the basis for any wavevector k. Explicitly,

|k, ζ = −i⟩ = (i |k, ↑⟩ + |k, ↓⟩)/√2,

|k, ζ = +i⟩ = (−i |k, ↑⟩ + |k, ↓⟩) /√2,

with

C2x |k, ζ = −i⟩ = −i exp(ikxa/2) |k, ζ = −i⟩
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and

C2x|k, ζ = +i⟩ = i exp(ikxa/2) |k, ζ = +i⟩,

as may be checked by direct substitution (followed by rotation of the original 
frame axis of ref. 25). Importantly, the states ζ = ±i are not spin-polarized 
(except at k = 0), because the spin and orbital degrees of freedom are now 
entangled. Note that |k, ζ = −i⟩ and |−k, ζ = +i⟩ are time-reversal mates, with 
Θ |k, ζ = −i⟩ = i |−k, ζ = +i⟩, the time-reversal operator being Θ = i1τ ⊗ σyK  
(K is the complex conjugation operator).

The simultaneous eigenvectors of HQSH,2(k) and C2x that we use to 
build the excitonic insulator ground state (within the envelope function 
approximation) are as follows. The c band state with k = (0, kΛ) and ζ = +i 
is (−1 + i)/(2

√
2)[1, 1, 1,−1], and the v band state with k = 0 and ζ = +i is 

(approximately) 
(

1/
√
2
)

[0,−1, 0, 1]. The states with ζ = −i as well as those with 
k = (0, −kΛ) are obtained through time-reversal and inversion transformations. 
Here the first and third (second and fourth) components of the 4D vector, 
[uW,↑, vTe,↑, uW,↓, vTe,↓], correspond to a spinor whose orbital part is a Wannier 
function localized on W (Te) atoms in the crystal unit cell.

Condensate of indirect excitons and charge/spin order. We assess the charge 
(spin) order of a permanent condensate of indirect excitons of momentum 
q = (±kΛ, 0) within the multivalley framework developed in ref. 10. This approach, 
in turn, relies on the scheme to decouple the equations of motion for Green 
functions of ref. 46. The theory, which deals with spinless electrons, may be 
straightforwardly generalized to spinors labelled by the screw-axis symmetry 
=±i. Indeed, for any given electron and hole species ζ and ζ′, the structure of the 
equations of motion for Green functions that govern the condensate component 
⟨

c+ζ vζ′

⟩

 remains the same, because ζ electrons pair with ζ′ holes only. As far as 
pairing is concerned, ζ spinors behave as if they were spinless fermions. Therefore, 
the k-dependent spinless Bogoliubov–Valatin-like creation operator that defines 
the excitonic insulator ground state in equations (20) and (21) of ref. 10 is simply 
replicated for ζ = ±i, provided one specializes equation (21) to the present case 
of two valley components and chooses the condensate phases as shown above 
(Excitonic insulator ground state from indirect excitons and synopsis of theory). 
Finally, we compute the expectation value of the charge (spin) density operator 
over the excitonic ground state, after making the spin/orbital structure of ζ Bloch 
states given in the previous section explicit, the derivation being lengthy but 
straightforward. As discussed above, to simply assess the occurrence of charge 
(spin) order without computing the density wave modulation intensity, it is  
not necessary to evaluate explicitly the coherence coefficients u0k and v0k that  
occur in equation (21) of ref. 10 (these are provided by the self-consistent gap  
in equation (3)).

Condensate of direct excitons and simulation of Fig. 5e. We obtain the results 
shown in Fig. 5e within the spinful two-band model HQSH,1(k) described above, 
the band energies εl(k) being parametrized through comparison with our own 
DFT calculations (l = u, g). The non-interacting ground state, in the absence of 
spin–orbit interaction, is taken to be a semimetal with a band overlap of 38 meV. 
The energy parametrization relies partly on the tight-binding model of ref. 44 
(table III therein) and partly on ad hoc parameters. In detail, we correct the 
tight-binding energies by adding the terms 2

(

t′l − t′′l
)

cos 2kx + 2t′′l cos 2 |k|, 
with t′g = 0.149 eV, t′u = 0.075 eV (ref. 23), t′′g = 0.049 eV and t′′u = 0.055. The 
spin–orbit parameter is v2 = 1 × 1014 Å s−1, and the strength of the Coulomb 
interaction is fixed by the 2D polarizability, α2D = 5.5 (the notation of ref. 25).  
To compute the chemical potential μ versus charge density ng in the many-body 
excitonic phase, we adapt the theory of ref. 25, which deals with a condensate of 
direct excitons in an intrinsic semiconductor, to the case of a doped system, by 
means of a fully self-consistent calculation of both the excitonic order parameter, 
ΔX(k), and μ. Furthermore, we assume that the Coulomb interaction remains 
long-ranged for any doping value, which is supported by the evidence that 
charge carriers localize in a wide doping interval at low T. The free carriers 
populating the renormalized bands of the excitonic insulator are conventionally 
taken as non-interacting, which is the origin of the unphysical behaviour of μ  
for small, positive values of ng at T = 25 K (dμ/dng is negative close to the axis 
origin in Fig. 5e).

We have checked that the observable effects related to the breaking of inversion 
symmetry, due to the condensation of excitons with q = 0, are negligible for 
WTe2, in contrast to the case of T′-MoS2. This is related to the limited extent 
of the excitonic order parameter, ΔX(k), along the Brillouin zone direction 
perpendicular to the ΓΛ line, which is in turn caused by the strong anisotropy of 
the non-interacting c and v bands close to Λ (compare Fig. 5a with Supplementary 
Fig. 8). In particular, the real part of ΔX(k) is negligible, so the c and v bands, 
renormalized by electron–hole pairing, each remain doubly degenerate.

Data availability
The datasets generated during and/or analysed during the current study are 
available from the corresponding authors on reasonable request. Source data  
are provided with this paper.

Code availability
Many-body perturbation theory calculations were performed using the codes 
YAMBO (http://www.yambo-code.org/) and Quantum ESPRESSO (http://www.
quantum-espresso.org), which are both open-source software. Results for the 
two-band model were obtained through custom Fortran codes that are available 
from M.R. upon reasonable request.
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