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Abstract: In recent years, we have seen rapid growth in
the use and adoption of Internet of Things (IoT) devices.
However, some loT devices are sensitive in nature, and
simply knowing what devices a user owns can have secu-
rity and privacy implications. Researchers have, there-
fore, looked at fingerprinting IoT devices and their ac-
tivities from encrypted network traffic. In this paper, we
analyze the feasibility of fingerprinting IoT devices and
evaluate the robustness of such fingerprinting approach
across multiple independent datasets — collected under
different settings. We show that not only is it possible
to effectively fingerprint 188 IoT devices (with over 97%
accuracy ), but also to do so even with multiple instances
of the same make-and-model device. We also analyze the
extent to which temporal, spatial and data-collection-
methodology differences impact fingerprinting accuracy.
Our analysis sheds light on features that are more ro-
bust against varying conditions. Lastly, we comprehen-
sively analyze the performance of our approach under
an open-world setting and propose ways in which an ad-
versary can enhance their odds of inferring additional
information about unseen devices (e.g., similar devices

manufactured by the same company).
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1 Introduction

We live in an increasingly connected world, where we
spend a large part of our time interacting with a wide
range of IoT devices. Examples of such IoT devices in-

clude smart voice assistants, smart surveillance cameras,
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smart TVs, smart thermostats, smart locks and smart
scales. While all of these IoT devices provide conve-
nience through the automation of appliances, such con-
venience often comes with unforeseen security and pri-
vacy risks. For example, simply knowing what devices
a consumer owns by itself can have serious security and
privacy implications. Knowing that there is a heart rate
monitor inside the house tells a lot about the inhab-
itant’s health condition. Similarly, knowing the exact
make and model of a security lock can potentially help
an adversary launch targeted attacks, e.g., exploit un-
patched known vulnerabilities.

Researchers have previously exploited network traf-
fic to infer application and hardware-level metadata
that are often sensitive. For example, researchers have
shown how an adversary can use network traffic to infer
the websites a user visits [10-12, 18, 22], content they
watch [43], applications they run [13, 15, 46, 53, 55],
devices they own [16, 36, 48], and even activities they
perform on their devices [14, 44, 54]. In recent years, re-
searchers have focused on identifying IoT devices [9, 48]
and their device-level activities [36, 44, 54] from net-
work traffic. However, most of these works focus on
building and evaluating models that work well on a rela-
tively small dataset (typically less than 50 devices) and
lack any analysis of how such models generalize to other
datasets, often collected under different settings. More-
over, they lack any comprehensive open-world analysis
— something that an adversary is bound to face in any
real-world setting.

In this paper, we aim to analyze the feasibility of fin-
gerprinting IoT devices and test the robustness of such
fingerprinting approach across independent datasets col-
lected under different settings. In particular, we seek
to answer the following questions: RQ1l: How well
can we fingerprint IoT devices at different gran-
ularities? Existing works conduct a study on a hand-
ful of devices; we perform analysis on 188 IoT devices
— the largest analysis to the best of our knowledge.
We also discuss effectiveness across different granular-
ities, such as the manufacturer or device functional-
ity regardless of vendor, while covering multiple de-
vices of the same make-and-model. RQ2: How well do
the fingerprints generalize across temporally and
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spatially distant datasets? Does the data collec-
tion methodology itself impact fingerprinting ac-
curacy? We evaluate to what extent classifiers are gen-
eralizable across various datasets collected from differ-
ent locations at different timestamps. In other words,
how well a classifier performs when trained and tested
on different datasets. RQ3: How well do the clas-
sifiers perform in an open-world setting? We also
analyze if our approach can effectively operate under
an open-world setting when many of the devices remain
unseen to the classifiers.

To answer these questions, we first collect seven
datasets containing network traffic from a total of 188
IoT devices (of which 120 are unique make-and-model
devices). Two of the datasets are public, while four
datasets were collected by contacting the authors of ex-
isting literature. We also collect our own data. Next,
we build our own device fingerprinting technique us-
ing well-known features, where we achieve similar, if
not better, accuracy even for 3-7 times more devices
than existing works. We then evaluate the robustness of
our classifier under different settings, like analyzing the
extent to which temporal, spatial and data-collection-
methodology differences impact fingerprinting accuracy.
We also perform open-world evaluations of our classifier.
In summary, we make the following contributions:

— To the best of our knowledge, we perform fingerprint-
ing analysis on the largest number of IoT devices (188
devices) to date. Our dataset covers not only different
device types but also multiple instances of the same
make-and-model device. Moreover, our analysis show-
cases fingerprinting accuracy at different granularities
(84).

— We evaluate various factors that can potentially im-
pact accuracy, such as training and testing on dif-
ferent datasets to gauge the generalizability of our
approach (i.e., determine features that are more gen-
eralizable across independent datasets). We analyze
the impact of time, location and data-collection-
methodology on fingerprinting accuracy (§5).

— We also perform a comprehensive analysis of finger-
printing IoT devices under open-world settings. We
identify setups that can potentially boost an adver-
sary’s capability in inferring additional information
about unseen devices. We conduct end-to-end evalu-
ation under this setting (§6).

The remainder of this paper proceeds as follows.
Section 2 describes related work. Section 3 character-
izes the different datasets we use for our evaluations.
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Section 4 investigates scalability of our fingerprinting
approach (RQ1). Section 5 investigates generalizability
of our approach across different datasets (RQZ2). Sec-
tion 6 looks at open-world evaluations (RQ3). Section 7
summarizes our findings and lists the limitations of our
approach. We conclude in Section 8.

2 Background and Related Work

Device fingerprinting is the process of collecting appli-
cation and/or hardware-level information from a remote
computing device for the purpose of identification. De-
vice fingerprinting is typically used for anomaly detec-
tion and digital rights management. However, device fin-
gerprinting has also been used to track users online.

Inference through Network Traffic. There is a
large body of work that exploits network traffic to fin-
gerprint different websites that a given user visits [4, 10—
12, 18, 21, 22, 28, 28, 29, 37, 38, 52, 56, 60]. Others have
tried to infer contents from encrypted VOIP [57, 58],
and video-streaming traffic [43, 47]. Researchers have
also shown that it is possible to reduce the search space
for guessing passwords in SSHv1 by exploiting the tim-
ing delays between subsequent IP packets [51].

Network Monitoring. For Internet-connected hosts,
researchers have exploited TCP timestamps to esti-
mate the clock skew of a device and consequently used
the unique clock skews to detect devices [26, 33] re-
motely. Researchers have also analyzed wireless traffic to
uniquely fingerprint wireless devices [17, 19, 27, 34, 39].
Furthermore, there is a rich literature on utilizing net-
work traffic to detect anomalous activities [23, 25, 35,
50] and malware [6, 41].

Identifying IoT Devices. With the rapid adoption of
IoT devices and their sensitive nature, researchers have
recently explored the possibility of fingerprinting not
only IoT devices but also device-level activities. Most
IoT devices connect to the Internet either through a
WiFi access point or through a hub/bridge (e.g., de-
vices that use Zigbee/Zwave protocols), thus making it
easy for an ISP to observe and potentially infer sensitive
information from network traffic. Ren et al. [44] perform
a comprehensive study on event-level traffic generated
by various IoT devices from both the US and UK. They
identify the various Internet destinations for the traffic
and determine how frequently communications are pro-
tected by encryption. Lastly, for traffic originating in
the US and UK, they contrast regional differences be-



tween these results. Researchers have used DNS queries
to infer IoT devices [8, 42]. They also model traffic char-
acteristics to infer device-level activities. Furthermore,
they propose traffic padding techniques to mitigate vol-
ume and timing-based inference attacks. Sivanathan et
al. [48, 49] also leverage network traffic and build a
multi-layer model to fingerprint IoT devices uniquely.
OConnor et al. [36] and Trimananda et al. [54] both use
packet direction and size to infer device-level activity.
Others have utilized data from different layers of the
network stack to identify IoT devices [31, 32].

Some have focused on specific types of devices
and protocols. For example, Copos et al. [14] investi-
gate network traffic to infer device-level activities from
only Nest Thermostat and Nest Protect. Others fo-
cus on Zigbee/Z-Wave devices and leverage specialized
Zigbee/Z-Wave sniffers [3, 62]. Alrawi et al. perform a
systematic security analysis of IoT devices, where they
assign scores to devices based on various security at-
tributes, e.g., if proper encryption is used in different
communications [5].

Countermeasures against Network Traffic Anal-
ysis. Wright et al. [59] suggest the use of traffic morph-
ing to mitigate the risk of packet length-based inference
techniques. Apthorpe et al. [7, 9] also evaluate VPN-
based traffic shaping techniques to thwart traffic rate
and volume-based attacks. Trimananda et al. [54] sug-
gest a packet padding technique to prevent packet size-
based inference attacks. However, Dyer et al. [18] show
that traffic padding and morphing is still not effective
in hiding critical information.

Distinction from Prior Work. Our work is inspired
by the aforementioned work on fingerprinting IoT de-
vices. However, our primary and differentiating goal is
to evaluate the feasibility and robustness of fingerprint-
ing a larger number of IoT devices (the largest eval-
uation to the best of our knowledge) across multiple
datasets — collected across different settings to shed
light on how well models generalize across different set-
tings. Furthermore, existing literature has mainly per-
formed closed-world evaluations and has suggested high
success rates. We perform open-world evaluations to
showcase the limitations under real-world settings. How-
ever, we also show that an attacker might be able to in-
fer a coarser level of information for previously unseen
devices. Table 20 in Appendix I shows an in-depth com-
parison with existing works in terms of features used,
evaluation settings, detection granularity and datasets
used.
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3 Dataset and Methodology

In this section, we describe the setup of our analysis,
along with the various datasets used and the data pre-
processing steps involved in analyzing network traffic.
We also discuss the features, machine-learning models

and metrics used in our evaluations.

3.1 Threat Model

In this paper, we assume a passive network adversary
who can observe and record all wide-area network traffic
(i.e., encrypted traffic), including traffic coming in and
going out from home gateway routers. The adversary,
however, cannot view any local-area network traffic be-
tween devices behind the gateway router. The adversary
also does not manipulate network traffic. Furthermore,
the adversary does not rely on packet content but in-
stead on traffic metadata extracted from TCP /IP head-
ers and send/receive rates. Lastly, we assume the adver-
sary can collect and analyze IoT traffic by deploying its
own setup. This setup can temporally, geographically
and otherwise be similar or different from the target.
The adversary can also utilize existing publicly avail-
able datasets.

3.2 Datasets

We use seven different datasets in our experiments; two
of them are publicly available, and four were made avail-
able upon request. The remaining one dataset is our
own, where we collect data from IoT devices available
in our lab. The collection setup is similar to existing
approaches, where all of our IoT devices communicate
through a WiFi router running OpenWRT [2] (we used
a Linksys WRT1900ACS router with OpenWRT version
18.06.2). We captured and dumped traffic through the
router in PCAP format on a connected host machine
(using port mirroring). Following is a brief description
of the different datasets used in our evaluations (Table 1
summarizes their traffic-level characteristics).

YourThings Dataset [5]. This dataset is one of the
largest publicly available datasets. It contains continu-
ous traffic generated over a period of 11 days. While the
exact device-level interactions are not explicitly listed,
it covers traffic generated by device autonomously and

through human interaction in a continuous manner.
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Table 1. Characteristics of datasets used. In total we have 120 unique loT device types and 188 loT device instances (some device

types are present multiple times in the same dataset or across different datasets). Some also contain non-loT devices.

Country Capture Capture Unique Total Total Unique Total Fraction | Burst Size | Burst Time
Dataset Acronym (State/city) Period Duration loT loT . Non-loT Destinations Download/ of loT Download/ | Download/ | Type®
(~days) | Devices | Devices Devices Upload Traffic Upload Upload
YourThings [5] YT US (GA) Early 2018 11 45 45 3t 5672 21.7/2331GB | 098 | 07/16KB | 06/83s e
HomeSnitch [36] HS US (FL) Early 2020 12 24 28 0 5600 3.4/47.2 GB 1.0 0.4/1.9KB | 1.4/7.2s C
PingPong [54] PP US (CA) Late 2019 51 17 18 0 1434 0.24/1.65 GB 1.0 0.2/0.8 KB 22/24.4s E
Mon(loT)r_US [44] | NE_US US (MA) | Early 2019 14 41 41 0 1506 0.38/1.93 GB 1.0 06/19KB | 1.4/12s E
Mon(loT)r_UK [44] NE_UK UK (London) | Early 2019 17 29 29 0 1514 0.33/2.18 GB 1.0 0.5/2.1 KB 1.8/1.2s E
UNSW [48] SwW AU (Sydney) | Late 2016 21 19 19 74 5357 9.5/1.7 GB 018 | 05/0.4KB | 4.4/9.1s C
Our Our US (NC) | Early 2020 11 8 8 34 3743 7.4/2.6 GB 089 | 07/1.6KB | 31/289s | C

Combined dataset 120 188

13

*: The numbers may vary slightly from original source as we only consider devices with enough traffic to generate at least 10 samples.
: Android tablet, Printer, MacBook, iPhone, Android phone, Laptop;

T: iPad, iPhone, Android tablet;

UNSW Dataset [48]. This is another publicly avail-
able dataset from UNSW Sydney, Australia. The data
contains continuous traffic traces in PCAP format us-
ing tcpdump. Data replicates a real living smart envi-
ronment that covers data resulting from human inter-
action, e.g., smart bulb turning on by detecting motion
and data that is not affected by human interaction, e.g.,
periodic status updates, DNS, or NTP.

Mon(IoT)r Dataset [44].
data collected from two labs, one located in the US and
another in the UK. We treat this dataset as two sep-
arate datasets and refer to the dataset from their US
Lab as NE__US and the dataset from their UK Lab as
NE_UK. The data is primarily traffic generated from

This dataset consists of

specific device-level events such as asking Alexa to turn
on the light. Each event or activity is separated into a
separately labeled PCAP file.

PingPong Dataset [54]. This dataset consists of only
event-based traffic similar to Mon(IoT)r dataset. Their
dataset also includes internal traffic generated by the
devices, but since we only focus on traffic from the point
of view of an ISP, we ignore such traffic and only focus
on Phone-to-Cloud and Device-to-Cloud traffic.

HomeSnitch Dataset [36].
ously collects data from IoT devices where some traffic

This dataset continu-

result from direct human interactions while some occur
because of periodic updates.

Our Dataset. Our dataset was collected from our
lab setting, which emulates a smart living room. Our
dataset consists of traffic generated through both hu-
man interactions like turning on/off lights through voice
assistants and idle traffic (i.e., no user interaction). For
our dataset, we triggered normal operations (e.g., turn-
ing ON/OFF light/plug, TV or activating motion sensor
and live camera feed) 3—4 times daily.

Table 1 summarizes the different traffic-level char-

acteristics of all the datasets used in our evalua-

¢ C: continuous and E: event-based
% Laptop, Desktop, Android Phone

tions. Across the datasets, we observed increased ac-
tivity /traffic from 11 am to 3 pm (typical for lab set-
tings). Specific activity depends on the mode of inter-
action, e.g., remote operation or in-person activation.
More fine-grained details on exact activities performed
are not provided by the data publishers. We can also
see that some datasets contain more unique destinations
(i.e., lows) and download/upload more data than oth-
ers. For three datasets (i.e., PP, NE_US and NE_ UK),
data is collected in shorter intervals representing device-
level operations like activating lights or voice assistants.
We term these datasets as event-based datasets. The
other four datasets collect data in a more continuous

manner and are termed as continuous.

3.3 Data Pre-processing

We only extract header information from PCAP files.
Such information includes IP addresses, ports, proto-
col number, timestamp and packet size. Next, we filter
out any traffic that does not use any IP-based protocol,
e.g., ARP. We also remove any internal traffic (traffic
only visible to devices connected to the same local net-
work) and consider only traffic visible to an external
passive adversary (e.g., an ISP). In order to train ma-
chine learning models, we label devices using the device
information provided by the different datasets. Some
datasets also contain traditional non-IoT traffic gener-
ated by computers, printers, laptops, tablets and smart-
phones (see Table 1 for more details).

3.4 Feature Extraction

Using the pre-processed data, we extract features using
a 5-minute window for each device-specific traffic. We
determine device-specific flows using the egress IP ad-
dress/port number, destination IP address/port number
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Table 2. List of different types of features used. Some features are single-valued summary statistics, whereas others are derived from
the top most frequent elements in a given distribution (termed as multi-valued feature). The last three columns represent the accuracy,
precision and recall of using each individual feature group derived from the combined dataset. 95% Cl is provided in parentheses. All

these features are extracted based on the 5-minute window.

Feature Group Description ‘ Single/Multi valued ‘ Accuracy Precision Recall
Unique Packet Length Distribution of unique packet sizes Single-valued 95.63 (0.01)  95.05 (0.2)  94.15 (0.15)
Packet Delay Distribution of inter packet delays Single-valued 93.04 (0.02) 91.18 (0.17) 87.63 (0.15)
Protocols Percentage of packets using different protocols | Single-valued 87.97 (0.01) 88.95 (0.24) 84.26 (0.16)
Burst Bytes Total bytes transferred in a burst of packets Single-valued 87.4 (0.01) 92.79 (0.24) 85.63 (0.11)
Packet Size List List of most frequent packet sizes Multi-valued 82.37 (0.02) 91.21 (0.12) 82.64 (0.08)
Total Packets Total number of packets transferred Single-valued 78.97 (0.02) 66.75 (0.12)  65.35 (0.1)
Burst Delay Distribution of inter burst delay Single-valued 76.44 (0.01) 86.04 (0.07) 73.03 (0.08)
Burst Time Distribution of burst duration Single-valued 72.98 (0.05) 87.39 (0.16) 71.58 (0.13)
IP List List of unique IPs (first three octets) Multi-valued 66.21 (0.03) 71.25(0.32) 57.54 (0.1)
Burst Packets Distribution of number of packets in a burst Single-valued 65.86 (0.01) 75.84 (0.15) 62.3 (0.1)
Request-Reply Pair List List of Request-Reply packet sizes Multi-valued 64.12 (0.14) 72.35 (0.22) 58.08 (0.12)
TCP Flags Percentages of TCP Flags in TCP Packets Single-valued 62.22 (0.02) 72.11 (0.16) 56.28 (0.05)
Protocol List List of protocols used in a window Multi-valued 59.28 (0.01) 61.46 (0.25) 46.39 (0.07)
Traffic In and Out Ratio | Ratio of incoming vs. outgoing traffic Single-valued 54.75 (0.03) 50.62 (0.14)  43.5 (0.14)
External Port List List of external ports contacted Multi-valued 49.8 (0.01)  51.19 (0.29) 42.81 (0.08)
HTTP(S) Traffic Traffic to and from port 80 and 443 Single-valued 46.46 (0.02) 54.67 (0.25) 39.22 (0.09)
Hostname List List of host names (TLD+1) contacted Multi-valued 40.6 (0.01)  49.21 (0.36) 30.99 (0.04)
Unique IPs Number of unique IPs contacted Single-valued 39.97 (0.02) 35.93 (0.16) 33.42 (0.1)
Unique Ports Number of unique ports contacted Single-valued 32.27 (0.02) 30.38 (0.14) 26.12 (0.1)
Total Bytes Total bytes transferred in a window Single-valued 29.85 (0.05) 52.28 (0.41) 29.18 (0.12)

and the protocol in use. We tested three traffic window
sizes: 2, 5, and 10-minute windows. The corresponding
classification accuracies on the combined dataset were
97.79%, 97.81% and 98.19%, respectively. Given that
most of the device-level activities were captured in short
bursts (< 5 minutes), we chose a 5-minute window for
our evaluations. Table 2 shows the various types of fea-
tures extracted from a 5-minute window (Table 21 in
Appendix J lists all the features used). All evaluation
metrics are thus computed based on features extracted
from a 5-minute window.

The types of features we extract can broadly be cat-
egorized into single-valued and multi-valued features.
Single-valued features contain various statistical sum-
maries (e.g., total, min, max, median, 25-th percentile,
75-th percentile, 90-th percentile, and standard devia-
tion) computed over a 5-minute window, e.g., the to-
tal number of outgoing packets or the average delay
between TCP outgoing packets. Multi-valued features
are key-value pair objects that count different observed
values or events, e.g., the number of times each do-
main is contacted or the number of times different ports
are used. This is similar to the bag-of-words repre-
sentation used by Sivanathan et al. [48]. For training
and testing machine learning models, we only use at
most the top N frequently observed values (we empir-
ically set N = 500 and N = 1000 for protocol-specific

and protocol-independent multi-valued features, respec-
tively). Multi-valued features are transformed to nu-
meric one-hot encoding for training and testing.

To understand how effective the features are in dis-
tinguishing devices, we generate a scatter plot consider-
ing samples from some of the same make-and-model de-
vices as well as different make-and-model devices (using
the combined dataset). We use t-Distributed Stochastic
Neighbor Embedding (t-SNE) technique [30] to reduce
the dimensionality of our feature vector. Figure 6 in
Appendix B highlights our findings. We can see that,
in general, samples from a given device are clustered
together, irrespective of whether they are of the same
make and model or not. However, the samples overlap
significantly for some devices manufactured by the same
vendor, like Google Home and Google Home Mini (this
may result from using a similar software stack).

3.5 ML-Model and Metrics Used

In terms of machine learning models, we found Random
Forests [40] to be most effective (we also tested SVM
and decision trees). We set the number of trees in the
forest to 100 (i.e., n__estimators=100). We did not use
deep-learning techniques for better explainability, like
understanding why certain features rank at the top. We
also use forward feature selection (FFS) [20, 61] mech-



anism to identify more generalizable features. To eval-
uate the effectiveness of our model, we use well-known
metrics, like accuracy, precision and recall. We perform
5-fold cross-validation to account for the randomness in-
herent in the training data and repeat the whole process
10 times to account for any randomness inherent to the
Random Forest model. We report the mean and 95%
confidence interval (CI) over 10 runs unless mentioned
otherwise.

4 Fingerprinting Devices

In this section, we study the effectiveness of fingerprint-
ing IoT devices at different granularity using multiple
datasets. First, we evaluate the effectiveness of our ap-
proach on each dataset separately. Next, we analyze the
scalability of our approach against not only a larger
number of devices compared to existing works but also
devices that include multiple instances of the same make
and model.

4.1 Effectiveness Across Datasets

As previously mentioned, we conducted our experiments
using seven different datasets. We, therefore, first evalu-
ate how well our proposed approach can fingerprint IoT
devices on individual datasets (i.e., per-dataset basis).
Table 3 summarizes our findings. We can see that, on av-
erage, we have close to 99% accuracy across all datasets
(average precision and recall is close to 98%). Compared
to existing literature, we observed similar performance.
For example, Sivanathan et al. [48] report 99% accuracy
in fingerprinting devices in their dataset. We obtain sim-
ilar results as shown in Table 3 (these numbers can be
considered as a baseline comparison for the remaining
analyses to follow). Table 3 results suggest that IoT de-
vices can be fingerprinted with high accuracy. However,
given the relatively small number of devices available in
each dataset, it still remains unclear whether such an
approach can scale well with higher numbers of devices.
We explore this question in the next section.

4.2 Scalability

In this section, we aim to measure how the classifier’s
performance varies as the number of devices increases.
For this purpose, we merge all the datasets into one con-
solidated dataset (i.e., combined dataset). We consider

— 6

Fingerprinting Internet of Things Devices

Table 3. Fingerprinting accuracy across individual datasets (95%
Cl is provided in parenthesis).

Dataset ‘ Accuracy Precision Recall Devices
UNSW 99.9 (0.0) 99.94 (0.0) 99.0 (0.16) 19
HomeSnitch | 99.85 (0.0) 99.8 (0.01) 99.8 (0.01) 28
YourThings | 97.91 (0.03) 97.89 (0.03) 97.82 (0.03) 45
NE_UK 97.39 (0.12) 96.94 (0.15) 96.52 (0.25) 29
NE_US 08.16 (0.14) 98.25 (0.21)  96.68 (0.35) 41
PingPong | 99.58 (0.02) 93.83 (0.02) 93.92 (0.03) 18
Our 99.79 (0.01)  99.83 (0.0) 99.62 (0.01) 8
Average |  98.94 98.07 97.62

three different settings. In the first case, we only con-
sider one instance of a device, i.e., if two datasets have
the same make-and-model device, we only choose one,
picked randomly on each run of the experiment. This
results in a total of 120 devices (also depicted in Ta-
ble 1). We start with 10 devices chosen randomly and
incrementally increase the number of devices in steps of
10 and perform 5-fold cross-validation over 10 runs per
increment. Figure 1a shows how the accuracy, precision
and recall varies as we increase the number of devices.
We can see that there is a slight decay in the average
metrics. However, even with 120 devices, we can achieve
an average accuracy close to 99%.

In the second case, we want to distinguish between
only the same make-and-model devices, i.e., the same
devices that potentially have different firmware or oper-
ate under different conditions. For this purpose, we first
determined the number of instances per make and model
of an IoT device. Figure 5 (in Appendix A) shows the
distribution of the number of devices with one or more
instances. Most of the devices (80) have only one in-
stance, and the remaining 40 devices have more than one
instance (Table 19 in Appendix H list all unique device
types). In this setting, we only consider the devices with
more than one instance (where each instance gets its
own unique label). We then perform a similar incremen-
tal step with increments of 5 devices and perform 5-fold
cross-validation with 10 runs per increment. Figure 1b
shows the trends observed. Again we see that the av-
erage accuracy decreases slightly, but even with devices
with multiple instances, we can achieve around 98% ac-
curacy. To better understand why the same make-and-
model devices are easily distinguishable, we look at the
classifier’s top features (i.e., based on Gini importance).
For example, for the three instances of ‘Geeni Cameras’
inside the HS dataset, we found that in/out ratios, burst
behavior and IP list (see Table 2 for detail) are the top
features. This implies that devices have slightly differ-
ent fingerprints based on activities, e.g., a camera in the
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Fig. 1. Change in evaluation metrics as we increase the number of devices under different settings. In general, we see that the metrics

decrease ever slightly as we increase the number of devices. However, in all cases the average accuracy is over 97%.

garage might get activated more often than a camera in
the kitchen and hence have different burst and in/out
ratios. Figure 6 in Appendix B also shows how the three
devices form individual clusters.

Finally, for the last setting, we consider all the de-
vice types and instances altogether, which sums up to
a total of 188 devices (where each device, irrespective
of make, model and dataset, gets its own unique label).
We again perform an incremental step of 10 devices,
and perform 5-fold cross-validation over 10 runs. Fig-
ure lc shows the accuracy, precision and recall under
this setting. Again, we see that the average accuracy
reduces as we increase the number of devices, but even
with 188 devices, we can achieve an average accuracy of
around 97%. These results suggest that we can not only
fingerprint many IoT devices but also do so even with
multiple instances of the same make-and-model device.

4.3 Fingerprinting Granularity

In the next series of experiments, we explore the fea-
sibility of fingerprinting IoT devices at different gran-
ularities. For this purpose, we consider five different
levels of granularity: 1) individual device level (indi-
vidual devices, irrespective of make and model, are as-
signed unique identifiers); 2) unique make and model
(devices of the same make and model are grouped to-
gether); 3) company-specific category (devices of similar
functionality, but produced by the same company are
grouped together (e.g., Amazon’s Echo Dot and Echo
Plus grouped together); 4) same company (devices man-
ufactured by the same vendor are grouped together ir-
respective of their functionality (e.g., Amazon Echo Dot
and Amazon Fire TV are both manufactured by Ama-
zon); and 5) device category (devices of similar func-
tionality, irrespective of the manufacturer are grouped
together, e.g., Google Home and Amazon Echo are both

Table 4. Effectiveness of fingerprinting loT devices at different
granularity. Higher accuracy is achieved for the general device
category (95% Cl is provided in parenthesis).

Granularity | Accuracy Precision Recall | # of labels
Individual Device 96.62 (0.01) 96.08 (0.07) 95.55 (0.06) 188
Unique make and model 97.85 (0.01) 97.02 (0.14) 96.05 (0.09) 121*
Company-specific category | 98.91 (0.0)  98.05 (0.18)  96.8 (0.12) 99*
Same company 99.8 (0.01)  99.09 (0.15) 98.05 (0.12) 66*
General-device category 98.89 (0.01) 98.87 (0.01) 98.28 (0.02) 16*

* Including one label for all non-IoT devices.

voice assistants). We then compute accuracy across all
these different levels of granularity. The main goal of
testing across different granularities is to see if we can
get some insight into how device functionality and de-
vice manufacturer play a role in IoT device fingerprint-
ing. As a motivating example, let us consider the case
of Amazon Echo Dot, Amazon Echo Spot and Amazon
Echo Plus. These devices are from the same manufac-
turer and provide similar functionality (i.e., smart voice
assistants). Due to code reuse and similar activity pat-
terns, these devices may generate very similar network
traces and hence be mistaken for one another. We want
to test if grouping such devices together can improve the
performance of the classifier. Table 4 shows the perfor-
mance metrics across the five different levels of granular-
ity. The results show that as we move towards coarser
granularity (i.e., grouping devices of similar function-
ality together), the accuracy does increase slightly but
not with the same proportion with which the number of
labels decreases.

To obtain a better understanding of the sources
of inaccuracies, we plot the confusion matrix in Fig-
ure 12 in Appendix F for ‘general-device category’. We
can see that we obtain near-perfect scores for all the
device categories except for the device category ‘mo-
tion sensors’. Further analysis revealed that the classi-
fier wrongly predicted ‘Belkin motion sensors’ traces as
‘Belkin switches’. This could be an artifact of products



manufactured by the same vendor contacting the same
backend infrastructure [45]. To explore this further, we
performed another experiment in which we grouped all
devices from the same company. Table 4 shows that we
achieve almost perfect accuracy in such a case suggest-
ing that devices from the same vendor possibly have
similar fingerprints in terms of traffic they generate.

Takeaway. The general takeaway from this section is
that our classification approach achieves as good as, if
not better, results compared to existing loT device fin-
gerprinting approaches. Our classifier also scales well
when the number of devices increases to well above what
an average smart home or even a small to medium-sized
office environment might have. Furthermore, we show-
case that our approach can distinguish devices at vari-
ous granularities, including devices manufactured by the
same vendor and even similar functioning devices.

5 Fingerprinting Generalizability

Existing work on fingerprinting IoT devices lacks analy-
sis of generalizability across different real-world factors.
To determine to what extent classifiers are generalizable
across different factors, we first explore whether top-
ranked features are consistent across different datasets.
We use forward feature selection (FFS) [20, 61] to rank
the features for each dataset using accuracy as the per-
formance metric. Figure 7 in Appendix C highlights the
top 20 features across each individual dataset. As we can
see from the figure, very few features are common across
all the datasets. Features such as the maximum incom-
ing packet length (maz_in_len) and the maximum out-
going packet length (maz_out_len) are common across
all datasets, indicating that packet length may be one
of the more useful features. Table 2 also shows similar
results, where we report the accuracy of classifying 120
unique IoT devices (from the combined dataset) using
only one feature group at a time. The lack of overlap
among the top 20 features across different datasets sug-
gests that a classifier tuned for one dataset will likely
not be equally effective on other datasets. In this pa-
per, we analyze the impact of the following factors on
generalizability: 1) temporality, 2) locality and 3) data
collection methodology. Our analysis sheds light on po-
tentially more robust features across different varying
conditions.
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Table 5. Effectiveness of classifier when training and testing on
temporally distant datasets with similar setup.

Train ‘ Test ‘ Accuracy Precision Recall ‘ Devices
Our (2020) | Our (2021) | 94.72 (0.82) 85.01 (1.13) 89.83 (1.14) 8
HS (2020) HS (2021) | 82.61 (3.45) 83.96 (1.27) 82.34 (2.51) 15

5.1 Temporal Impact

We, first, investigate if the fingerprints change tempo-
rally, as a software update, version upgrade, or evolving
backend infrastructure might change the fingerprints.
To evaluate this, we collected another round of data
from our lab in January 2021, and we also obtained an-
other round of data from the HomeSnitch team [36] in
May 2021. We next compare our new datasets to the
old datasets. We trained our model on the 2020 version
of the datasets and tested it on the 2021 version of the
datasets. We found the average accuracy, precision and
recall to be 94.72%, 85.01%, 89.83%, respectively, for
Our dataset and 87.76%, 85.31%, 85.53%, respectively
in the case of the HomeSnitch dataset. This suggests
that the classifier generalizes relatively well even with
possible firmware/software upgrades to the devices. Fig-
ure 8 (in Appendix D) shows the confusion matrix in
this setting for Our dataset. As we can see, inaccuracies
arise from devices from similar companies (e.g., both
Ring and Echo Look are Amazon products) or devices
with similar functionality (e.g., LG TV has a voice assis-
tant built-in). Figure 9 in Appendix D shows the confu-
sion matrix for the HomeSnitch dataset. Upon further
investigation in the inaccuracies, we found that these
were due to drastic changes in traffic patterns compared
to the previous year and/or similar traffic to another de-
vice in the latest version of the dataset. For example, Ul-
traloq Lock Bridge and Lockly Lock Hub had different
patterns in 2020 traffic capture, whereas in 2021, Ul-
traloq Lock Bridge had almost identical traffic patterns
for Lockly Lock Hub; e.g., in/out ratios, packet lengths,
burst times were similar. Similarly, Nightow]l Doorbell
had a 40:60 in/out ratio in 2021, while in 2020, it was
14:86. It also contacted 768 unique ports in 2020, while
in 2021, it only contacted 71, which was closer to Geeni
Camera. Samsung SmartThings Camera also had a dif-
ferent pattern compared to last year, and in 2021 in/out
ratio and bytes sent per burst were similar to Arlo Base
Station. In 2020 it also had 590 unique packet lengths
per window, while in 2021, it only had 101, which was
closer to Arlo Base Station than its older version.
Next, we perform forward feature selection to deter-
mine features that generalize well temporally, and the



Table 6. Top feature groups that achieve the best performance
under temporally generalized settings. Features bolded comprise
the optimal feature set.

Rank  Feature Cum. Acc. ‘ Rank  Feature Cum. Acc.
1 Hostname List 95.53 11 Unique Ports 98.17
2 Unique IPs 96.43 12 Burst Time 97.82
3 External Ports List 98.36 13 Packet In and Out Ratio 97.62
4 HTTP(S) Traffic 96.57 14 Protocols 96.97
5 Packet Sizes List 98.55 15 Unique Packet Lengths 97.05
6 Request-Reply Pkt Sizes 98.72 16 Total Packets 95.76
7 IP List 98.95 17 Packet Delay 96.2
8 TCP Flags 98.87 18 Burst Delay 96.1
9 Protocol List 98.68 19 Burst Packets 95.3
10 Total Bytes 98.35 20 Burst Bytes 93.28

Table 7. Effectiveness of classifier when training and testing on
temporally distant datasets with similar setup using only the opti-
mal features.

Train ‘ Test ‘ Accuracy Precision Recall ‘ Devices
Our (2020) | Our (2021) | 98.94 (0.16) 93.95 (2.44) 95.7 (0.55) 8
HS (2020) HS (2021) | 94.24 (0.28)  89.36 (0.33) 92.88 (0.35) 15

results are summarized in Table 6. As we can see, the
optimal set of features can still achieve an accuracy up
to 99% for Our dataset and 94% for the HomeSnitch
dataset. Delay and burst-based features seem less reli-
able, whereas unique hosts/IPs and packet sizes remain
stable.

5.2 Spatial Impact

Next, we analyze the impact of training and testing
on datasets collected from different geographic regions.
This analysis is important as it will inform the adver-
sary to what extent the training data needs to emulate
a target’s location and highlight more generalizable fea-
tures across different geolocations. This becomes rele-
vant if the adversary is towards the weaker end of the
spectrum and is unable to collect data in the same ge-
ographical location as the target. For this analysis, we
need to select datasets collected around the same time
using a similar setup across two different geographic re-
gions. The NE_ US and NE__ UK datasets are ideal for
[44] state that their devices
were procured from the corresponding countries (US,

this evaluation. Ren et al.

UK) where they performed data collection. 46 devices
were purchased from US stores (US devices) and de-
ployed in the US testbed; 35 were purchased from UK
stores (UK devices) and deployed in the UK testbed.
There were 26 common devices (note that we removed 5
devices because of a low number of data samples) across
the two labs. We use the common devices to analyze the
impact of fingerprinting devices across different geoloca-
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tions. Some devices may have variants based on region,
but the authors do not explicitly confirm or deny this.

Table 8 shows the accuracy when trained and tested
on geographically distant datasets. We can see that the
average accuracy drops to around 80%. Interestingly, we
see better results when trained on NE UK and tested
on NE_US. Ren et al. [44] have shown in their study
that a majority of their IoT device traffic terminated in
the US for both the US and UK labs due to reliance on
infrastructure with limited geodiversity. Thus, while de-
vices from the UK contacted the major US-based cloud
infrastructures, they also contacted some EU infrastruc-
tures. As a result, NE_ UK is in some sense a superset
of NE_ US. However, the diversity in the infrastructure
can still cause errors. Figure 10 and 11 (in Appendix E)
show the confusion matrix when the classifier is trained
on one location and tested on the other. The majority
of the errors resulted from imbalanced data across the
two datasets, e.g., Sousvide device was extensively be-
ing mislabelled when trained on NE_ US and tested on
NE UK but not so much when trained on NE UK and
tested on NE_US. Sousvide device in the UK contacted
AWS 27660 times throughout the data collection period,
whereas it contacted the same service only 92 times in
the US.

To understand which features are more stable across
geographically distant datasets, we also rank the fea-
tures using FFS. For each round of FFS we rank
the feature based on average accuracy across different
train/test combinations. For example, suppose training
on NE_ US and testing on NE_ UK gives 90% accuracy
for a feature and training on NE_ UK and testing on
NE__US gives 92% accuracy. In that case, we consider
the average accuracy to be around 91%. This gives pref-
erence to features that generalize well for different set-
tings instead of a single train/test set. We select the set
of features that return the best accuracy as our opti-
mal feature set. Table 9 shows a ranking of the features.
We can see that most features except for traffic bursts
are more suitable for this setting. To further validate our
feature selection process, we reevaluate the performance
metrics only using the top features (i.e., ones that are
bolded in Table 9). We found the accuracy, precision and
recall to increase to 94.76%, 93.38% and 92.68%, respec-
tively, when trained on NE_ UK and tested on NE_ US.
Similarly, the accuracy, precision and recall improved to
77.71%, 81.85% and 77.65%, respectively, when trained
on NE_ US and tested on NE_ UK. Thus, in both cases
where we only use optimal features, we see performance
improvement compared to using all features.



Table 8. Effectiveness of classifier when training and testing on
geographically distant datasets with similar setup.
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Table 10. Effectiveness of classifier when training and testing on
datasets with different collection characteristics.

Train ‘ Test ‘ Accuracy Precision Recall ‘ Devices Train ‘ Test ‘ Accuracy Precision Recall ‘ Devices
NE_UK | NE_US | 89.4 (1.14) 89.31 (1.09) 85.25 (1.83) 21 NE_US YT 28.32 (0.87) 53.79 (2.56) 31.92 (0.79) 13
NE_US | NE_UK | 69.6 (1.03) 73.46 (2.08) 69.58 (1.08) 21 YT NE_US | 28.89 (2.0) 58.45(2.99) 42.51 (2.04) 13

Table 9. Top feature groups that achieve the best performance
under geographically generalized settings. Features bolded com-
prise the optimal feature set.

Table 11. Top feature groups that achieve the best performance
for datasets with different collection characteristics. Features
bolded comprise the optimal feature set.

Rank  Feature Cum. Acc. ‘ Rank  Feature Cum. Acc. Rank  Feature Cum. Acc. ‘ Rank  Feature Cum. Acc.
1 Request-Reply Pkt Sizes 63.88 11 Unique IPs 80.72 1 Packet Sizes List 71.05 11 Total Bytes 76.71
2 Protocol List 70.59 12 Total Packets 81.01 2 Unique Ports 77.09 12 Burst Packets 74.12
3 Hostname List 73.43 13 Packet In and Out Ratio 80.36 3 HTTP(S) Traffic 78.38 13 TCP Flags 70.53
4 Unique Packet Lengths 77.66 14 Burst Packets 79.03 4 Packet Delay 79.06 14 Burst Time 71.17
5 HTTP(S) Traffic 78.89 15 Protocols 78.0 5 Packet In and Out Ratio 78.71 15 Unique Packet Lengths 65.64
6 IP List 79.88 16 Packet Delay 77.49 6 Hostname List 78.49 16 Burst Bytes 62.4
7 External Ports List 80.35 17 Burst Time 76.43 7 External Ports List 79.49 17 Burst Delay 59.65
8 TCP Flags 81.02 18 Burst Delay 75.25 8 Total Packets 79.37 18 Unique IPs 59.3
9 Total Bytes 80.75 19 Burst Bytes 75.2 9 IP List 77.44 19 Protocol List 51.73
10 Unique Ports 80.9 20 Packet Sizes List 74.81 10 Request-Reply Pkt Sizes 76.96 20 Protocols 41.92

5.3 Impact of Data Collection Approach

We now analyze if the data collection methodology it-
self impacts performance. For this, we train and test
on datasets that have different collection characteris-
tics (e.g., event-based compared to continuous and vice
versa). We selected NE__US and YourThings as our can-
didates for the event-based and continuous dataset, re-
spectively, as they provide the largest number of device
overlap (also both located on the east coast of the US).
While the datasets were collected at a different point in
time, we have already showcased that temporal changes
have minimal impact on our fingerprinting technique in
Section 5.1. We next train and test on datasets that have
different collection characteristics. Table 10 highlights
the fingerprinting accuracy when trained and tested on
different datasets. We see that, on average data collec-
tion method impacts accuracy significantly, leading to
poor classifier performance. Next, we perform forward
feature selection to determine features that generalize
well, and the results are summarized in Table 11. As we
can see, the top set of features can still achieve an ac-
curacy close to 80%. Packet size, hostnames and ports
seem more useful in this setting. To verify that these fea-
tures really boost performance, we reevaluated the re-
sults of Table 10, but this time only using the features
identified in Table 11 (i.e., bolded features). Table 12
highlights our findings. We can see that when training
on YourThings and testing on NE_ US we get slightly
better results compared to the opposite setting. Similar
results were observed when training on other continu-
ous datasets and testing on the event-based datasets.
This indicates that, in general, training on continuous

Table 12. Effectiveness of classifier when training and testing on
datasets with different collection characteristics, but using only
the robust features from Table 11.

Train ‘ Test ‘ Accuracy Precision Recall ‘ Devices
NE_US YT 54.87 (2.15) 53.68 (1.36) 55.06 (1.84) 13
YT NE_US | 50.29 (2.61) 60.25 (0.89) 57.38 (1.7) 13

datasets is advantageous for an adversary as it contains
not only event-specific traffic information but also peri-
odic or idle traffic characteristics.

Takeaway. To the best of our knowledge, we are the
first to study how well IoT device fingerprinting gener-
alizes across different datasets. Our analysis shows that
temporality, locality and data collection method have
varying effects on the generalizability of fingerprinting.
We show that while temporality does not significantly
impact performance, data collection method and local-
ity do to some extent. However, when data collection
methodology, locality and temporality match between
datasets, we can see almost perfect accuracy. For exam-
ple, both our dataset and HS dataset are continuous in
nature and were collected in the US (east coast) during
early 2020. The accuracy, precision and recall across the
two datasets (i.e., even reversing the training and test
sets) is around 98-99% (Table 15 in Appendix E shows
more details). On the other hand, when two or more
of these properties change, the model does not general-
ize well, but certain features are more robust to varying
conditions (see Table 9 and 11).



6 Open-World Evaluations

Previous works on IoT device fingerprinting have mostly
evaluated a classifier where all test samples correspond
to devices included in the training set (i.e., closed-world
setting). In reality, this will not always be the case, as
unseen and new devices will appear, resulting in un-
seen test samples. For example the SmartHomeDB cur-
rently lists 1251 different IoT devices [1]. To tackle this
problem, we perform a series of experiments to first dis-
tinguish between IoT and non-IoT devices, followed by
IoT devices that are known versus unknown to the ad-
versary. The end goal is to infer additional information
about IoT devices that an adversary may not have seen
before. For this analysis, we use the combined dataset as
this provides us with not only the most diverse number
of devices but also non-IoT traffic to emulate real-world
settings (note that not all datasets had non-IoT traffic
as shown in Table 1).

6.1 Distinguishing Known from Unknown

An open-world classifier must distinguish between sam-
ples that are not a part of the training set. For this
purpose, we randomly split the devices into known and
unknown sets. We use the samples from the known set
of devices to train the classifier and then evaluate the
classifier on a test set consisting of both known and
unknown samples. We modify our classifier to use the
probability of the predicted class as a threshold to de-
cide whether a device is known or unknown (i.e., it is
essentially a binary classifier). Next, we compute true
positive (the number of known-device samples classified
as known) and false positive (the number of unknown-
device samples classified as known) rates for different
thresholds of classification probability. We then deter-
mine the optimal threshold using a ROC curve, i.e., the
threshold that minimizes false positives while maximiz-
ing true positives. For open-world evaluations, we only
consider devices of unique make and model (i.e., 120
devices as shown in Table 1).

Basic Setting. To emulate the open-world setting, we
randomly assign 50% of the devices to the known set
and the remaining 50% to the unknown set. Next, we
use 70% of the samples from the known set to train the
classifier, whereas samples from the unknown set are
never seen by the classifier. We then split the remain-
ing 30% data into a test and validation set of equal size
(15% each). Figure 2a highlights the ROC curve over
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10 runs using the validation dataset. The area under
curve (AUC) is 98%, which suggests the classifier can
effectively distinguish between known and unknown de-
vices. The optimal threshold for the binary classifier, in
this case, is around 0.80.
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Fig. 2. ROC curve under open-world setting: a) with 50% random
device split; b) varying base rate; c) strategic setting

Next, we look at how changing the base rate (i.e.,
the fraction of known devices) impacts AUC and the op-
timal threshold. For this purpose, we vary the fraction of
known and unknown devices (e.g., the fraction of known
devices from 1% to 99%) and compute AUC and the



optimal threshold under such settings. We also analyze
how accuracy, precision and recall vary with the base
rate. Figure 2b highlights our findings. We can see that
AUC remains more or less stable for a varying number
of unknown IoT devices. However, the optimal threshold
(in terms of classification probability) increases as we in-
crease the number of unknown devices, which intuitively
makes sense as the classifier only focuses on a very small
number of devices (i.e., less diversity). In terms of per-
formance metrics, we see that recall slowly increases,
while precision starts to descend as we increase the frac-
tion of unknown devices. They both crossover at the
50% base rate, indicating the importance of balanced
samples for the open-world setting. Both precision and
recall suffer when the fraction of known devices is 1%.
However, an attacker can potentially focus on popular
devices, thereby increasing their chance of boosting the
known device portion.

Strategic Setting. We consider the case where in-
stead of randomly splitting the devices, the adversary
adopts a more strategic split with the goal to mazimize
their chance of inferring more meaningful information
about unknown samples. In this setting, the adversary
attempts to cover at least one company-specific device
type, e.g., including one of Amazon’s voice assistants,
among many (like Echo Dot, Echo Plus, Echo Look), in
the known set. In this way, the adversary can maximize
their odds of covering a similar functional device in the
training set. Again devices of similar type are randomly
split between the known and unknown set. For an odd
number of devices belonging to a given category, we as-
sign the extra device to the known and unknown set
alternatively, thus favoring the adversary to cover more
devices in the case of an uneven number of categories
containing an odd number of devices.

Now, such a setting is likely going to adversely im-
pact the classifier’s performance as for each device type
in the known set, there will be a similar device present
in the unknown set (e.g., Google Home is in the known
set and Google Home Mini is in the unknown set). As
a result, unknown samples can be classified as known.
This would also result in a higher optimal threshold for
the binary classifier. We perform a similar open-world
evaluation to test how the strategic setting impacts the
various performance metrics. Around 50% of the de-
vices are known and unknown, even under this setting.!
Figure 2c highlights the ROC curve under this setting.

1 This was possible as we had an even number of device cate-
gories.
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We can see that the average AUC is 97%. The optimal
threshold for the binary classifier changes from 0.80 to
0.88 as we alter from the basic to the strategic setting.
AUC changes from 0.98 to 0.97. In the following section,
we describe how the strategic setting can help an adver-
sary gain more insights about the unknown samples.

6.2 End-to-end Open-world classifier

In this section, we present an end-to-end system that
first determines whether a device sample is an IoT de-
vice or not. Once the adversary knows the device is an
TIoT device, it can then predict if it is a known or un-
known device. If known, they try to predict the actual
device model name. If unknown, they try to infer mean-
ingful information about the unknown test sample from
the predicted labels. We consider two possible outcomes
in this setting: 1) predict the company-specific device
label for the unknown sample (e.g., Amazon voice assis-
tant), and 2) predict the general-device category for the
unknown sample (e.g., voice assistant). Thus, this pro-
cess combines two binary classifiers (i.e., IoT vs. Non-
IoT and known vs. unknown) followed by two multi-
class classifiers, where one predicts the exact device la-
bel if the device is predicted to be known and the other
predicts the company-specific or general-device category
if the device is predicted to be unknown. The latter is
trained using the company-specific/general-device cate-
gory labeling from the training set. Figure 3 highlights
the overall end-to-end process for inferring details on
unknown samples under the open-world setting.

For these experiments, we only consider devices
listed in Table 17 2 and Table 18 3 of Appendix H, i.e.,
devices that can be grouped with at least one other sim-
ilar functioning device. Next, we strategically split de-
vices into known and unknown sets, where the known set
contains at least one device per company-specific cate-
gory or general-device category (i.e., we consider these
two possible settings). For non-IoT devices, we adopt a
similar approach, where we randomly assign one device
type per category to the known and unknown set (e.g.,
iPhone to known and Android phone to unknown set).
Table 1 highlights the different non-IoT device types.
We then repeat experiments 10 times and report the
average metrics with a 95% confidence interval.

2 36 devices for which we found at least another similar func-
tional device from the same company
3 118 devices categorized into 12 different functionalities
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Fig. 3. Overall procedure followed in the end-to-end evaluation
under the open-world setting.

Table 13. Open-world evaluations under strategic setting. Over
45% of the unknown samples are correctly classified at the
company-specific level.

Setting | Prediction | Accuracy Precision Recall
10T vs. Non-loT 03.56 (1.76)  95.35 (1.9)  97.16 (1.49)
Company- | Known vs. Unknown | 90.17 (1.06) 90.18 (1.07) 90.16 (1.17)
specific Known samples 87.81 (1.05) 69.34 (3.27) 74.08 (3.23)
Unknown samples | 45.45 (5.78) 55.51 (7.46) 48.56 (4.76)
IoT vs. Non-loT 95.72 (0.79) 96.68 (0.85) 98.82 (0.65)
General Known vs. Unknown | 95.45 (0.73) 95.39 (0.74)  95.5 (0.74)
category Known samples 94.18 (1.1)  81.37 (1.14) 84.03 (0.92)
Unknown samples 37.56 (3.05) 28.75(3.4) 26.14 (3.54)

Table 13 summarizes the performance of the differ-
ent classifiers under this strategic open-world setting.
Table 13 showcases performance at both the company-
specific and general-device category level. First, the
effectiveness of the binary classifier in distinguishing
IoT devices from non-IoT devices is shown under dif-
ferent settings. We see that the average accuracy is
94% and 96% when devices are split into known and
unknown sets based on company-specific and general-
device categories, respectively. The precision and recall
are around 95% and 97% under company-specific set-
ting, while they are around 97% and 99% under the
general-device setting. Features such as unique packet
length and packet delay are dominant in distinguishing
IoT traffic from non-IoT traffic (see Table 16 in Ap-
pendix G for the ranking of feature groups). Next, for
the binary classifier that distinguishes between known
and unknown IoT devices, we see that the average
accuracy, precision and recall are around 90% under
the company-specific setting, while this number is 95%
when devices are distributed based on general-device
category. These numbers indicate that an adversary can
effectively distinguish known and unknown devices.
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Finally, the table reports the accuracy, precision and
recall of the multi-class classifier for the predicted known
and unknown samples (following the procedure shown
in Figure 3). We see around 88% accuracy in properly
classifying the predicted known samples into individual
device labels (note that the adversary wishes to deter-
mine the exact device label for predicted known sam-
ples, not the company-specific or general-device cate-
gory labels). The errors, in this case, are caused by some
of the unknown samples that are classified as known by
the binary classifier. Upon investigation, we found that
the true unknown samples that are classified as known,
actually belong to similar functional device groups in
the known set (e.g., Google Home mini being labeled as
Google Home — both devices using the same protocols
and ports; only packet size was significantly different).
This is validated by 100% accuracy when we consider
only company-specific device labels for the predicted
known samples. For the predicted unknown samples, we
see that around 45% of them are correctly classified, sug-
gesting the adversary can reasonably identify unknown
samples from similar functional devices (7 times more
accurate than a random guess).? We see similar results
when devices are split into known and unknown sets
based on general-device category (close to 5 times more
accurate than a random guess).® These results suggest
that the adversary can benefit by covering one or more
devices from each company-specific category or general-
device category into the known set.

To obtain deeper insight into the inaccuracies, we
generate the confusion matrix for the unknown sam-
ples. Figure 4 highlights the confusion matrices for the
company-specific categorization and general-device cat-
egorization. We see that in the company-specific cate-
gory, traffic from ‘Harmon Kardon Voice Assistant’ gets
mapped to ‘Roku-TV’. This could be because ‘Roku TV’
has a voice-based remote, which mimics similar func-
tionality as a voice assistant. We also see that ‘With-
ings Health’ and ‘Withings Cameras’ are being labeled
as one another. This observation could be attributed
to a manufacturer-specific software stack (e.g., sending
updates to the same backend server at the same peri-
odic rate). We observed a similar phenomenon in Sec-
tion 4 (in Figure 12), where ‘Belkin Motion Sensors’
were being predicted as ‘Belkin Switches’. We also ob-

4 We had 15 company-specific device category, so a random
guess would be successful 6.67% of the time.

5 We had 13 general-device categories, so a random guess would
be successful 7.69% of the time.



Amazon VA 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.05 0.00 0.03 0.00 0.00 0.00 0.00

Belkin Switches - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Cameras 0.00 0.00 001 001 000 004 000 000 0.11 0.13 004 0.03
Cleaning - 0.07 0.01 0.09 005 0.00 0.00 000 027 000 0.15 031 004 0.00
Cooking - 0.14  0.01 0.11 0.00 000 000 0.00 0.14 000 0.12 0.01 0.02
General Safety - 0.12° 0.00 0.06 0.02 000 0.00 0.00 0.07 0.00 §U=¥® 0.09 0.09 0.02
Health 0.00 0.00 001 000 0.00 000 000 0.19 0.00 0.00 0.00

Indoor Comfort Sensor 0.01 0.00 000 002 020 000 000 0.2 0.10 006 0.04

Light- 0.27 0.00 0.00 001 000 0.00 0.05 0.00 0.00 030 0.17 0.17 004

Actual

Motion Sensors < 0.35° 0.08 0.05 0.00 0.00 000 0.00 004 000 009 003 035 0.01
NoN-IoT - 020 0.00 0.00 0.00 000 001 007 000 000 017 0.17 0.10 027
Smart Hubs - 0.09 0.00 0.00 0.02 0.00 0.00 0.06 000 000 HEES 025 0.02 0.08

Smart TV - 020 0.00 0.00 0.00 0.0 0.00 0.0 000 0.00 0.07 (1.04 0.23

Switches - 037 0.01 0.04 001 000 000 0.12 005 000 0.06

=
1=
I3

026 0.03

Voice Assistants= 0.10 0.00 0.00 0.00 0.00 0.00 002 000 000 009 031 003
. . . . . \ i ' ' . | . T
g 2 2 F £ %8 5§ 8 5 £ z & %
2 g Z 3 8 g 5 z - £ % ]
E § g8 @ I & g %z T § % 3%
© o © % E s Z g 4 2 <

5 E Z @ ]
5 g g £
&} ¢} = >

8

g

<

5

Predicted

(b) Predicted Unknown: General-device category

Fig. 4. Confusion matrix for predicted unknown samples under open-world setting. Adversary is able to perform better when training

data contains similar functional devices from the same vendor.

serve that ‘Ring Camera’ and ‘TP-link Camera’ traf-
fic are predicted as ‘Belkin Switches’ This could result
from cameras being controlled through smart switches.
Another source of error is Google voice assistants being
predicted as Amazon voice assistants. This could be due
to the similar functionality of these devices, for exam-
ple, contacting the same backend services for streaming
news or music. Lastly, we observe multiple devices be-
ing predicted as ‘Roku TV’, this could imply that traffic
from ‘Roku TV’ is noisy and therefore harder to predict.

For the general-device category prediction (Fig-
ure 4b), we again see that devices in the health category
are being labeled as cameras. This is likely due to traces
from ‘Withings Health’ being mislabeled as ‘Withings
Cameras’ (see Table 18). We see similar cases arise
between — ‘cooking’ and ‘motion sensor’ category (be-
cause of ‘Belkin WeMo Crockpot’ and ‘Belkin Motion
Sensors’); ‘cooking’ and ‘switches’ category (because
of ‘Belkin WeMo Switch’ and ‘Belkin WeMo Crock-
pot’); ‘motion sensors’ and ‘switches’ category (because
of ‘Belkin WeMo Motion Sensor’ and ‘Belkin WeMo
Switch’); ‘indoor comfort sensor’ and ‘camera’ category
(because of ‘Nest Thermostat’ and ‘Nest Cam’); ‘mo-
tion sensor’ and ‘camera’ category (because of ‘D-Link
Motion Sensor’ and ‘D-Link Camera’); ‘switches’ and
‘camera’ category (because of ‘TP-Link WiFi plug’ and
“TP-Link Day Night Camera’). Traffic from the ‘clean-
ing’ category also gets matched to the ‘motion sensor’

category, possibly because cleaning devices use motion
sensors to sense their surroundings and periodically send
status updates to the backend server. ‘General Safety’
devices like motion detectors or door/window open de-
tectors are typically controlled through hubs, and thus
we see overlap between ‘General Safety’ and ‘Smart
hubs’. We also see voice assistant traffic being classi-
fied as smart TVs and vice versa; this could be be-
cause most smart TVs have voice assistant functional-
ities nowadays. In general, we see that the adversary
obtains better performance when the training set con-
tains at least one device per company-specific device
category.

6.3 Targeted Attacks

In the real world, an adversary can have many different
goals and likely will not be interested in all devices but
some specific device or group of devices. This group can
be the same make and model devices or devices from
a different vendor of the same functionality. For exam-
ple, an adversary might want to know if this household
has a Google Voice Assistant or a Smart Bulb from any
manufacturer. This could be used to exploit a particu-
lar device vulnerability. Hence, we analyze different pos-
sible groups to demonstrate the performance improve-
ment from previous sections where the adversary is not



Table 14. Effectiveness of classifier under targeted device settings

Group ‘ Accuracy Precision Recall
Geeni Cameras 08.03 (0.44) 89.39 (4.61) 69.26 (10.09)
Google Home Devices | 99.74 (0.12) 99.66 (0.64)  88.98 (5.5)
Roku TV 98.6 (0.38) 91.37 (4.98) 61.42 (12.62)
Ring Doorbells 98.46 (0.47) 99.94 (0.05)  65.9 (10.45)
Amazon Echo Devices | 97.78 (0.53)  88.47 (3.9) 69.72 (9.59)
Belkin WeMo Devices | 99.73 (0.21) 99.68 (0.37)  96.9 (2.48)
Smart Switches 95.29 (0.59) 77.24 (4.86)  60.67 (6.34)

focusing on specific devices. For this, we first select a
target group of devices and label all the samples from
these devices as the target and, consequently, all other
samples from all other devices (IoT or non-IoT) as non-
target. Then we do a standard 80:20 train test split
to test the effectiveness of the classifier. For training,
we randomly select half of the devices from the target
and non-target sets. For example, if we have Google
Home devices as the selected target group, then we se-
lect either Google Home or Google Home Mini (since
this group only has two devices) to train the classifier,
and the other device is unseen during the training phase.
Similarly, from other non-target devices, we do an even
half split, and the classifier does not see half of the de-
vices during the training phase. Finally, we test using
the test dataset and compute the metrics. We have eval-
uated this attack on different groups, including similar
category (i.e., functionality), same company (vendor),
same company-category, and same make-and-model to
illustrate different settings possible under this attack.
Table 14 shows the results.

The accuracy is high across the board. Precision is
on the higher side compared to recall. For certain de-
vices, we see that the recall is comparatively low. These
cases occur for target devices that are spuriously clas-
sified as other devices. For example, from Figure 11 we
can see that Roku TV is mislabelled as other devices
(e.g., as Nest Thermostat). Similarly, Amazon Echo de-
vices are labeled as Samsung SmartThings Hub. Over-
all, however, the results show that an adversary can get
better results when compared to previous approaches
when targeting devices, even when devices are unknown.

Takeaway. Our open-world analysis showcases that an
adversary is able to improve inference by 5-7 times than
a random guess. Alternatively, an adversary can focus
on detecting the presence of a specific device (e.g., with
some known vulnerability) and build device-specific bi-
nary classifiers (i.e., a test sample is either a target
device or not). In general, we see that an adversary
benefits when the training set contains at least one de-
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vice type per company, enabling them to predict the
company-specific device category.

7 Discussion

Summary. We analyze the feasibility of fingerprinting
IoT devices under many real-world settings. This work
advances the state-of-the-art by providing the following
insights: (1) it is possible to fingerprint IoT devices with
high accuracy at different granularities, even with mul-
tiple instances of the same make-and-model devices; (2)
temporality, locality and data collection method affect
the generalizability of fingerprinting; however, some fea-
tures are more resistant to varying datasets; (3) an ad-
versary can increase their odds of inferring meaningful
information about unseen devices by training a model
on at least one IoT device from each company-specific
category or general-device category. We plan to open-
source our dataset and code to the research community.

Potential Countermeasures. We also emulated
how packet padding and traffic morphing (i.e., control-
ling traffic delay and volume through dummy packets)
would impact our device fingerprinting approach. We
emulate the impact of such countermeasures by dis-
abling/dropping features that can be impacted by the
corresponding countermeasure(s) — assuming counter-
measures fully hide a subset of the features. We consider
a closed-world setting to obtain an upper bound suc-
cess rate in the presence of countermeasures. We found
that even when dropping any features related to packet
size, burst or delay, we can still uniquely identify IoT
devices with 96% accuracy when considering the close-
world setting on the combined dataset. When looking at
the remaining features that enabled such high accuracy,
we found that simply using the list of IPs, protocols and
external ports were sufficient to detect devices uniquely.
Thus, a VPN/proxy based approach may be useful in
hiding the remaining useful features. A VPN service
tunnels traffic through an encrypted connection and
routes all traffic from the gateway router to the VPN
service. As a result, an adversary intercepting traffic be-
tween the gateway router and the VPN service will only
see the same set of IPs, protocols, ports and hostnames
for all traffic generated by different IoT devices. How-
ever, full-fledged analysis of the existing countermeasure
may still reveal sensitive information, as demonstrated
by Dyer et al. [18]. We leave such analysis as future
work.



Potential Sources of Errors. In both the open-world
and generalization settings, we observe more false pos-
itives and false negatives when compared to the simple
closed-world approach. Upon further investigation, we
found that these errors arise from a couple of factors,
including but not limited to similar devices (e.g., Google
Home and Google Home Mini, Amazon Echo family),
devices from the same company (e.g., Belkin WeMo de-
vices) and devices from a different company but with
similar functionalities (e.g., Google Home and Amazon
Echo). These errors will always be present, especially in
open-world settings.

Some special cases may create further confusion. For
example, the Alexa app running on a smartphone can be
confused with an Alexa device. However, we found that
their network fingerprints are very different (features
such as packet length, burst vary highly between the
two) even when Alexa is performing the same task, and
hence we could easily distinguish between them with
over 99% accuracy.

Comparison with Website Fingerprinting. Juarez
et al. [24] state that website fingerprinting is prone to
decaying accuracy over time since the content of the
webpage changes very rapidly. According to their paper,
the accuracy falls under 50% in just ten days. However,
in our experiments on IoT devices, we do not observe
a decay or drift for IoT devices because most changes
come from firmware updates that primarily fix small
bugs and do not introduce significant protocol/packet-
level changes, as evident from the traces. We saw that
most devices still had similar delays and packet sizes;
e.g., Smart WiFi Plug had an average packet size of
110.42 previously (in 2020), and in the new dataset (in
2021), it was 110.08. Similarly, the Amazon Echo Plus
previously had an average packet size of 274, and in the
newer dataset, it was 281. In terms of unique destina-
tions contacted, we also saw similar trends where most
devices contacted similar numbers of endpoints, e.g.,
Geeni Camera previously had contacted 5.55 unique
destinations on average in each window, whereas in the
new dataset, it has 5.04. Our analysis on temporal im-
pact showcased that the fingerprints do not change dras-
tically over time, thus allowing an adversary to period-
ically retrain the model (maybe every once a year) and
maintain high accuracy. However, specific categories of
devices may receive more updates over any given span of
time, potentially impacting fingerprint stability. How-
ever, a motivated and resourceful adversary can fre-
quently retrain the model using updated data (whenever
feasible).
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Limitations. There are a few limitations to our work.
First, we manually categorized devices into different
groups based on their functionality, but some devices
have dual functionality, and we had to choose one us-
ing our best judgment. Second, since six of the datasets
were collected from external sources, there is the pos-
sibility that some of the devices are wrongly labeled.
However, looking at the high fingerprinting accuracy on
the combined dataset (Table 4) this is likely negligible.
Thirdly, multiple devices of the same make but differ-
ent models/versions may be labeled as the same device.
This can result in poor generalized accuracy and poor
open-world results in some cases. However, with better
labeling, classification results will likely improve. We
also have a limited number of non-IoT devices in our
dataset, whereas non-IoT traffic is expected to be much
higher in the wild.

8 Conclusion

In this paper, we analyze the feasibility of fingerprint-
ing IoT devices across several diverse datasets. We show
that it is possible to uniquely fingerprint many IoT
devices (188 devices in total) and do so when there
are multiple devices of the same make and model. We
also explore the possibility of predicting devices at dif-
ferent levels of granularity. We, next, analyze the ex-
tent to which temporality, locality and data-collection-
methodology impact classification. Our analysis sheds
light on potentially more robust features across vary-
ing conditions. Lastly, we showcase how an adversary
can design an open-world classifier to obtain additional
insights about unseen devices. We find that an adver-
sary can guess the proper company category seven times
more accurately than a random guess by exploiting the
metadata of encrypted network traffic.
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Table 15. Effectiveness of classifier when training and testing on

different continuous datasets.

Train ‘ Test ‘ Accuracy Precision Recall | Devices
HS Our | 98.43 (0.0) 97.99 (0.0) 98.74 (0.0) 2
Our HS | 99.98 (0.01) 99.98 (0.01) 99.98 (0.01) 2
YT Our | 79.66 (5.24) 83.65 (3.58)  76.94 (6.0) 4
Our YT | 91.67 (3.14) 93.73 (1.97) 92.04 (3.0) 4
YT HS | 33.06 (1.05) 38.03 (4.49) 2259 (2.0) 5
HS YT | 75.41 (4.67) 82.87 (4.23) 74.99 (4.95) 5
YT, Our | HS | 71.82 (1.05) 67.33 (2.81) 55.58 (0.72) 5
HS, Our | YT | 70.85 (3.44) 79.55 (3.29) 71.28 (3.56) 7
HS, YT Our | 59.31 (2.92) 77.95(1.05) 64.3 (2.56) 4
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category. All device categories achieve high accuracy, except for

the ‘motion sensor’ category.
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G 10T vs. Non-loT Classifier

Table 16. Top features for loT vs. Non-loT classifier.

Features Importance |

Unique Packet Lengths 0.16 Burst Delay 0.04
Packet Delay 0.10 Protocol List 0.04
Packet Sizes List 0.08 External Ports List 0.04
Burst Bytes 0.08 Request-Reply Pkt Sizes  0.04
Burst Packets 0.07 Total Packets 0.02
Hostname List 0.07 Unique IPs 0.02
Protocols 0.06 Packet In and Out Ratio  0.02
IP List 0.06 Unique Ports 0.01
Burst Time 0.05 Total Bytes 0.01
TCP Flags 0.04 HTTP(S) Traffic 0.01

H Distribution of loT Devices

Table 17. Company-specific distribution of loT devices where

each categories has at least two devices. We use these devices

for predicting company-specific category labels under open-world

setting.

Nest Cameras

Ring Cameras

Belkin Switches

Nest Cam 1Q
Nest Hello Doorbell
Nest Cam

Ring Doorbell
Ring Doorbell Chime
Ring Doorbell Pro

Belkin WeMo Link
Belkin WeMo Switch
Belkin WeMo Insight

Nest Indoor Comfort Sensor

TP-Link Cameras

Withings Cameras

Nest Thermostat
Nest Protect smoke alarm

TP-Link Kasa Camera
TP-Link Day Night Camera

Withings Home
Withings Smart Baby Monitor

Geeni Cameras

Smarter Cooking

Roku Smart TV

Geeni Doorbell Camera iKettle Roku TV
Geeni Camera Smarter Coffee Machine Roku 4
Philips Hubs Google VA Amazon VA

Philips Hue Bridge
Philips Hue Hub

Google Home
Google Home Mini

Echo, Echo Dot, Dot Kids
Echo Show, Echo Plus
Echo Spot, Echo Look

Harmon Kardon VA

Withings Health

Allure Speaker
Harmon Kardon Invoke

Withings Smart scale

Withings Aura smart sleep sensor




Table 18. Distribution of loT devices into general device cate-

gories where each categories has at least two devices. We use

these devices for predicting general-device category labels under

open-world setting.

Smart TV Switches

Light

LG Smart TV,
Amazon Fire TV,
Apple TV, Roku TV,
Roku 4, nVidia Shield,
Samsung SmartTV

TP-Link WiFi Plug,

Belkin WeMo Link, D-Link Plug,
Belkin WeMo Switch,

Belking WeMo Insight,

Amazon Plug, Smart WiFi Plug

Bulb 1, Koogeek Lightbulb,
TP-Link Smart WiFi LED Bulb,
LIFX Virtual Bulb, Sengled Bulb,
Magichome Strip,Xiaomi Strip
Philips Hue Bulb

Cleaning Health

Motion Sensors

Xiaomi Cleaner,
Roomba,

Withings Smart scale,
Withings Aura smart sleep sensor,

Belkin WeMo Motion Sensor,
Chamberlain myQ Garage Opener,
D-Link Motion Sensor,

General Safety

Indoor Comfort Sensor

Cooking

Ring Security System,
Nest Guard,

Schlage Lock,

D-Link Alarm,

Ecobee Thermostat,

Nest Thermostat,
Netatmo weather station,
Nest Protect smoke alarm,
Honeywell Thermostat,

Smarter Coffee Machine,
Belkin WeMo Crockpot,
iKettle,

Brewer, Fridge,
Sousvide, Microwave

Voice Assistants (VA) ‘ Smart Hubs

Cameras

Allure Speaker, Sengled Hub,

Apple HomePod, Blink Security Hub,
Sonos, Insteon Hub,

Google Home, Wink 2 Hub,

Google Home Mini, Logitech Harmony Hub,
Canary, Philips Hue Hub,

Amazon Echo,
Amazon Echo Dot,
Amazon Dot Kids,
Bose SoundTouch 10,
Amazon Echo Plus,

Amazon Echo Show, Lightify Hub,
Amazon Echo Spot, Xiaomi Hub,
Amazon Echo Look, Arlo Base Station,
iHome, Ultraloq Lock Bridge,

Harmon Kardon Invoke,
Triby Speaker,

Caseta Wireless Hub,
Samsung SmartThings Hub,
Google OnHub,

August Lock Hub,
MiCasaVerde Veralite,

Lockly Lock Hub,
Sifely Lock Hub,
Ring Base Station,
Philips Hue Bridge,
Blink Security Hub,

Belkin Netcam, Cloudcam,

Chinese Webcam, Yi Camera,

Luohe Spycam, Zmodo Doorbell,

Blink Camera, Lefun Cam,

TP-Link Day Night Camera,

Netatmo Welcome, Nest Cam 1Q,
Dropcam, Nest Cam, Piper NV,
Withings Smart Baby Monitor,

Amcrest Cam, Withings Home,

D-Link Camera, Insteon Camera,
Wansview Cam, Charger Camera,
Samsung SmartThings Camera,

Night Owl Doorbell Camera,

Bosiwo Camera, Xiaomi Camera 2,

Ring Doorbell Chime, Netgear Arlo Cam,
TP-Link Kasa Cam, Nest Hello Doorbell,
August Doorbell Cam,

Logitech Logi Circle, Geeni Camera,
Ring Doorbell, Ring Doorbell Pro,

Geeni Doorbell Cam, Microseven Cam,

Table 19. All unique make and model devices grouped into
general-device categories.

Cameras

‘ Smart Hubs

Voice Assistants

Belkin Netcam, Cloudcam
Chinese Webcam, Blink Camera
Yi Camera, Lefun Cam

Luohe Spycam, Zmodo Doorbell
TP-Link Kasa Camera

Ring Doorbell Chime

TP-Link Day Night Cloud camera
Netatmo Welcome, Ring Doorbell
Nest Cam 1Q, Dropcam

Nest Cam, Piper NV

D-Link Camera, Insteon Camera
Netgear Arlo Camera

Bosiwo Camera, Charger Camera
Logitech Logi Circle

Samsung SmartThings Camera
Ring Doorbell Pro

Sengled Hub, Insteon Hub
Blink Security Hub

Philips Hue Bridge

Wink 2 Hub, Lightify Hub
Logitech Harmony Hub
Philips Hue Hub

Caseta Wireless Hub
Samsung SmartThings Hub
Google OnHub, Xiaomi Hub
MiCasaVerde VeraLite
Ring Base Station

Sifely Lock Hub

Arlo Base Station

Ultraloq Lock Bridge
August Lock Hub

Lockly Lock Hub

Allure Speaker, Sonos

Apple HomePod

Triby Speaker, Google Home
Bose SoundTouch 10
Google Home Mini, Canary
iHome, Harmon Kardon Invoke
Amazon Echo

Amazon Echo Dot

Amazon Dot Kids

Amazon Echo Plus

Amazon Echo Show
Amazon Echo Spot

Amazon Echo Look

Health

Withings Smart scale
Withings Aura smart sleep sensor

Amcrest Cam, Withings Home

Indoor Comfort Sensor

Cleaning

Withings Smart Baby Monitor
August Doorbell Cam
Wansview Cam, Geeni Camera
Microseven Camera

Geeni Doorbell Camera

Nest Thermostat

Netatmo weather station
NEST Protect smoke alarm
Ecobee Thermostat
Honeywell Thermostat

Xiaomi Cleaning, Roomba

Light

Xiaomi Camera 2

Smart TV

Nest Hello Doorbell

Night Owl Doorbell Camera
Smart Router

Securifi Almond

Switches

Apple TV, Roku TV
Samsung SmartTV
nVidia Shield

LG Smart TV, Roku 4
Amazon Fire TV

Magichome Strip, Sengled Bulb
Xiaomi Strip, Philips Hue Bulb
Bulb 1, Koogeek Lightbulb
TP-Link Smart WiFi LED Bulb
LIFX Virtual Bulb

Motion Sensors

Belkin WeMo Motion Sensor

Chamberlain myQ Garage Opener

D-Link Motion Sensor

Smart WiFi Plug

Photo Frames

Garden

Amazon Plug

Pix-Star Photo Frame

Rachio Sprinkler

D-Link Plug

Cooking

General Safety

TP-Link WiFi Plug
Belkin WeMo Link
Belkin WeMo Switch
Belkin WeMo Insight

Belkin WeMo Crockpot
iKettle, Sousvide, Brewer
Microwave, Fridge
Smarter Coffee Machine

Nest Guard

Schlage Lock

D-Link Alarm

Ring Security System
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Table 20. Comparison with existing work on loT device fingerprinting. Symbols convey the following meanings — O: not analyzed, ©:

partially analyzed, @: analyzed.

Apthorpe et al. [9]

Ren et al. [44]

Sivanathan et al. [48]

Copos et al. [14]

HomeSnitch [36]

PINGPONG [54]

Our work

Packet timing o [ ] © O [ ] O [ ]

Packet sizes O [} O O [ [ ] [

Traffic direction O O O [} [ ] [ ] [ ]

Burst timing O O O O [} O [ ]

Burst sizes O @] O O [ ] O [ ]

Flow timing [ ) O [} O [} o O

Flow sizes [ ] O [ ] [ ] [ O @]

Features used  External ports O O [ ] O O o [ ]
External IPs O O @] [ ] O O [ ]

External domains O O [ ] O O O [ ]

Protocols O O ©] O O o [

DNS queries [ ) O [} O O O [ ]

NTP queries O O [ ] [ ] O o [ ]

MAC Addresses L] @] (@] (@] O O @]

Evaluation Closed-world [ ] ) [ ] [ ] [ ] [ ] [ ]
settings Open-world O O O O O © [ ]
Device-activity * ) [ ] O [ ] [} [ ) O

Granularity Device make-and-model * [ ) O [} O [} [ ] [
of detection Company-specific © o] O O O O O [ J
General-device T O O O O o o [ ]

Datasets used (geographic origin) 1 (US) 2 (US, UK) 1 (AU) 1 (US) (Us) 3 (US, AU) 7 (US, UK, AU)

Number of unique device types 7 55 28 2 20 19 120

* Inferring individual device-level activity; * Individual devices (different make and model); ® Devices from the same vendor with similar functionality, e.g., Google Home

and Google Home Mini are grouped together; T Company agnostic device category, e.g., Amazon Echo and Google Home are smart voice assistants;

J Full Feature List

Table 21. List of all features grouped

based on different attributes.

Burst Time

Burst Bytes

Burst Packets

Burst Delay

Packet Delay

Unique IPs

Unique Ports

out_mean_bursttime
in_mean_bursttime
out_median_bursttime
in_median_bursttime
out_25per_bursttime
in_25per_bursttime
out_75per_bursttime
in_75per_bursttime
out_90per_bursttime
in_90per_bursttime
out_std_bursttime
in_std_bursttime
out_max_bursttime
in_max_bursttime
out_min_bursttime
in_min_bursttime

out__mean_burstbytes
in_mean_burstbytes
out__median_burstbytes
in_median_burstbytes
out_25per_burstbytes
in_25per_burstbytes
out_75per_burstbytes
in_75per_burstbytes
out_90per_burstbytes
in_90per_burstbytes
out_std_burstbytes
in_std_burstbytes
out_max_burstbytes
in_max_burstbytes
out_min_burstbytes
in_min_burstbytes

out_mean_burstnumpkts
in_mean_burstnumpkts
out_median_burstnumpkts
in_median_burstnumpkts
out_25per_burstnumpkts
in_25per_burstnumpkts
out_75per_burstnumpkts
in_75per_burstnumpkts
out_90per_burstnumpkts
in_90per_burstnumpkts
out_std_burstnumpkts
in_std_burstnumpkts
out__max_burstnumpkts
in_max_burstnumpkts
out_min_burstnumpkts
in_min_burstnumpkts

out_mean_interburstdelay
in_mean_interburstdelay
out__median_interburstdelay
in_median_interburstdelay
out_25per_interburstdelay
in_25per_interburstdelay
out_75per_interburstdelay
in_75per_interburstdelay
out_90per_interburstdelay
in_90per_interburstdelay
out_std_interburstdelay
in_std_interburstdelay
out_max_interburstdelay
in_max_interburstdelay
out_min_interburstdelay
in_min_interburstdelay

mean_interpktdelay
median_interpktdelay
25per_interpktdelay
75per_interpktdelay
90per_interpktdelay
std_interpktdelay
max_interpktdelay
min_interpktdelay

num_unique_ip
num_unique_ip_3octet
num__unique_hostname

in_numuniquesrcport
out_numuniquedstport

Packet Size List

Request-Reply Pair List

External Port List

External Port List
External Port TLSTCP
External Port DNS
External Port UDP
External Port NTP

Packet Sizes TLSTCP
Packet Sizes DNS
Packet Sizes UDP
Packet Sizes NTP

Reqg-Reply Pair TLSTCP
Reg-Reply Pair DNS
Reg-Reply Pair UDP
Reg-Reply Pair NTP

Protocols

Total Packets

Total Bytes

Unique Packet Length

Packet In and Out Ratio

TCP Flags

HTTP(S) Traffic

out__tlslpkts_percentage
in_tlslpkts_percentage
out_tls12pkts_percentage
in_tls12pkts_percentage
out_tcppkts_percentage
in_tcppkts_percentage
out_udppkts_percentage
in_udppkts_percentage
out_dnspkts_percentage
in_dnspkts_percentage
out_ssdppkts_percentage
in_ssdppkts_percentage
out_sslpkts_percentage
in_sslpkts_percentage
out_icmppkts_percentage
in_icmppkts_percentage
out_ntppkts_percentage
in_ntppkts_percentage
out_numuniqueprotocol
in_numuniqueprotocol

out__totalpkts

out__totalbytes

in_totalpkts in_totalbytes
Hostname List IP List
Hostname List IP List

Hostname TLSTCP IP TLSTCP
Hostname DNS IP DNS
Hostname UDP IP UDP
Hostname NTP IP NTP

mean_out__uniquelen
mean_in_uniquelen
median_out_uniquelen
median_in_uniquelen
25per_out_uniquelen
25per_in_uniquelen
75per_out_uniquelen
75per_in_uniquelen
90per_out_uniquelen
90per_in_uniquelen
len_out_uniquelen
len_in_uniquelen
max_out_len
max_in_len
min_out_len

min_in_len

Protocol List

Protocol List

out_percentage
in_percentage

out_tcpack_percentage
out_tcpsyn_percentage
out_tcpfin_percentage
out_tcprst__percentage
out_tcppsh_percentage
out_tcpurg_percentage
in_tcpack_percentage
in_tcpsyn_percentage
in_tcpfin_percentage
in_tcprst_percentage
in_tcppsh_percentage
in_tcpurg_percentage

pkts_80_443_percentage
byte_per_pkt_80_443
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