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Abstract
We consider the problem of conjugate phase retrieval in Paley–Wiener space PWπ .
The goal of conjugate phase retrieval is to recover a signal f from the magnitudes
of linear measurements up to unknown phase factor and unknown conjugate, mean-
ing f (t) and f (t) are not necessarily distinguishable from the available data. We
show that conjugate phase retrieval can be accomplished in PWπ by sampling only
on the real line by using structured convolutions. We also show that conjugate phase
retrieval can be accomplished in PWπ by sampling both f and f ′ only on the real
line. Moreover, we demonstrate experimentally that the Gerchberg–Saxton method of
alternating projections can accomplish the reconstruction from vectors that do con-
jugate phase retrieval in finite dimensional spaces. Finally, we show that generically,
conjugate phase retrieval can be accomplished by sampling at three times the Nyquist
rate, whereas phase retrieval requires sampling at four times the Nyquist rate.
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1 Introduction

The phase retrieval problem can be stated as follows: can a signal f be reconstructed
from the magnitudes of linear measurements of f ? Naturally, f and α f cannot be
distinguished by the magnitudes of linear measurements, where α is any scalar of
magnitude1. In general, onewishes to design a sampling scheme so that themagnitudes
of linear measurements can distinguish all signals up to the ambiguity of this uniform
phase factor. We consider in the present paper a weaker formulation of the problem:
can a signal f be reconstructed from the magnitudes of linear measurements, up to the
ambiguity of α f and α f ? We refer to this as the conjugate phase retrieval problem.

Let us make precise our problem formulation here. The Paley–Wiener space PWγ

consists of all f ∈ L2(R) such that f̂ (ξ) = 0 for a.e. ξ ∈ R \ [−γ, γ ]. Here, γ

is any positive number. Any f ∈ PWγ has an extension to an entire function on
the complex plane. Moreover, if f ∈ PWγ , then the entire function f � defined by
f �(z) = f (z̄) is in PWγ as well. We define an equivalence relation on PWγ as
follows: for f , g ∈ PWγ

f ∼ g if f = λg, or f = λg� for some |λ| = 1. (1)

Our goals are as follows:

(a) design a sequence of linear functionals (measurements) φn : PWγ → C such that
the mapping from PWγ / ∼ to 	2(Z) given by

f �→ (|φn( f )|)n

is one-to-one,
(b) reconstruct [ f ] from (|φn( f )|)n , where [ f ] denotes the equivalence class in

PWγ / ∼ of f ∈ PWγ .

The phase retrieval problemoriginates in optics [14,15,23–25,27,32].Modern phase
retrieval is often considered in the case of frames [5–7]. Conjugate phase retrieval for
frames was introduced in [13] (see also [11,35]). Phase retrieval in the context of
wavelets and other systems appear in [1,9,28]. Phase retrieval in the Paley–Wiener
space in particular is discussed in [31,34]. In [34] considers the case of real phase
retrieval in PWπ , meaning only real-valued signals f are sampled. The main result
is that if one samples f at twice the Nyquist frequency, then ± f can be recovered
from (| f (tn)|)n . We note here that the reconstruction of ± f given in [34] involves
reconstruction off of the real axis. Similarly, [31] considers the case of (complex)
phase retrieval in PWπ by designing a sampling scheme that occurs off of the real
axis. In particular, the sampling scheme as presented in [31] takes the form

φn( f ) =
∑

j

c j,n f (zn + b j,n) (2)
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for complex scalars c j,n, zn, b j,n . Sampling schemes such as this are referred to as
structured modulations in [31], because the authors there consider the reconstruction
in the Fourier domain, where the shifts become modulations.

2 Conjugate Phase Retrieval

We will design sampling schemes for the conjugate phase retrieval problem in PWπ

(our statements can be modified appropriately for PWγ ). In Sect. 2.2, our sampling
scheme will take the form of structured convolutions. However, we will demonstrate
that by solving the conjugate phase retrieval problem (which is weaker than the phase
retrieval problem), we will be able to both sample and perform the reconstruction on
the real axis. In Sect. 2.5, we will show that the conjugate phase retrieval problem
can be solved by sampling both f and f ′ (on the real axis as well) rather than with
structured convolutions. The main results of this paper were first announced in [26].

2.1 Qualitative Results

While our main focus of the paper is to demonstrate reconstruction algorithms, we first
prove qualitative results concerning conjugate phase retrieval on the Paley–Wiener
space. In particular, for the choice φn( f ) = f (tn + b) − f (tn) we determine in
Theorem 1 when the corresponding mapping on PWγ / ∼ is injective and has a
continuous inverse. Our proofs are based on several elementary and known results.
The first elementary result concerns the square of a signal f ∈ PWγ :

Lemma 1 If f ∈ PWγ , then:

1. f ′ ∈ PWγ ;
2. f f � ∈ PW2γ ;
3. f ′( f ′)� ∈ PW2γ .

The known result we need is the following [29, Theorem 3]:

Theorem A Suppose f , g ∈ PWγ .

1. If 0 < b < γ/π , and for all x ∈ R, | f (x)| = |g(x)| and | f (x + b) − f (x)| =
|g(x + b) − g(x)|, then f ∼ g.

2. If for all x ∈ R, | f (x)| = |g(x)| and | f ′(x)| = |g′(x)|, then f ∼ g.

In Theorem A, f ∼ g is the equivalence relation given in Eq. (1).
Recall that a sequence {tn}n ⊂ R is a set of sampling for PWγ provided that there

exist constants 0 < A, B such that

A‖ f ‖2 ≤
∑

n

| f (tn)|2 ≤ B‖ f ‖2

holds for all f ∈ PWγ . For a set of sampling, there exists a dual sequence {hn}n∈Z ⊂
PWγ such that

f (z) =
∑

n∈Z
f (tn)hn(z) (3)
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with convergence holding both pointwise and in PWγ -norm. See [8,12,22,36] for
more details, as well as [3,4,19] for information on sampling in shift invariant spaces.

We immediately obtain the following theorem:

Theorem 1 Suppose {tn} ⊂ R is a set of sampling for PW2γ . Then the mapping
A : PWγ / ∼→ 	2(Z) ⊕ 	2(Z) defined by

A( f ) = (| f (tn)|, | f (tn + b) − f (tn)|)n∈Z

is one-to-one whenever 0 < b < 2γ , and the mapping Ã : PWγ / ∼→ 	2(Z)⊕	2(Z)

defined by
Ã( f ) = (| f (tn)|, | f ′(tn)|)n∈Z

is one-to-one.

Proof Suppose f , g ∈ PWγ and A( f ) = A(g). We have that

f f �, gg�, ( f (· − b) − f (·))( f (· − b) − f (·))�, (g(· − b) − g(·))(g(· − b) − g(·))� ∈ PW2γ .

Since {tn} is a set of sampling for PW2γ , we have:

f (z) f �(z) =
∑

n

| f (tn)|2hn(z),

( f (z − b) − f (z))( f (z − b) − f (z))� =
∑

n

| f (tn − b) − f (tn)|2hn(z),

g(z)g�(z) =
∑

n

|g(tn)|2hn(z),

(g(z − b) − g(z))(g(z − b) − g(z))� =
∑

n

|g(tn − b) − g(tn)|2hn(z).

As A( f ) = A(g), we have that for all x ∈ R, | f (x)|2 = |g(x)|2 and | f (x + b) −
f (x)|2 = |g(x + b) − g(x)|2. Consequently, by Theorem A, we have that [ f ] = [g]
in PWγ / ∼.

An analogous argument applies for Ã. ��
While the theorem guarantees the invertibility of A, there is no obvious algorithm

for actually reconstructing [ f ] fromA( f ) (or Ã( f )). The only potential reconstruction
given by the proof of Theorem A utilizes Hadamard factorizations of entire function
of finite type, which requires knowledge of the zeros of the function. We are unaware
of numerical methods to find the zeros of the unknown function f fromA( f ). We will
demonstrate a numerical reconstruction algorithm for A (Theorem 3 and Algorithm
1) at the cost of needing to sample more than just the two functions f (t) and f (t +
b)− f (t), and we will demonstrate an alternative theoretical reconstruction algorithm
for Ã (Algorithm 3).
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Theorem 2 The range R(A) is closed. The inverse A−1 is continuous from R(A) to
PWγ / ∼. The same results hold for Ã.

The proof of this is an adaptation of a similar result found in [28]; we include the
argument in the Appendix (Sect. 1). The authors of [28] note that in their numerical
experiments, the reconstruction is not stable. It is proven in [9] that A−1 cannot
be Lipschitz continuous—and thus the reconstruction cannot be stable—because the
space PWγ is infinite-dimensional. However, see [2] where stability can be obtained
by relaxing the phase retrieval problem to allow for multiple unknown phases.

2.2 Conjugate Phase Retrieval Using Structured Convolutions

We will design a sampling scheme to solve the conjugate phase retrieval problem in
PWγ in a manner similar to the scheme in Eq. (2). To do so, we consider the conjugate
phase retrieval problem in finite dimensions. For the remainder of this section, we will
consider the case of PWπ ; all of our results can be extended to PWγ using variable
substitutions.

Definition 1 The vectors {
v1, . . . , 
vn} ⊂ C
K do conjugate phase retrieval if

|〈
x, 
v j 〉| = |〈
y, 
v j 〉| ( j = 1, ..., n)

for 
x, 
y ∈ C
K implies that 
x = eiθ 
y or 
x = eiθ 
y for some θ ∈ R.

If we write the vectors 
v j as column vectors, we will say that the matrix V =[
v1 . . . 
vn
]
does conjugate phase retrieval when the columns of V do conjugate phase

retrieval.

For comparison, we state the classic phase retrieval problem in C
K :

Definition 2 The vectors {
v1, . . . , 
vn} ⊂ C
K do phase retrieval if

|〈
x, 
v j 〉| = |〈
y, 
v j 〉| ( j = 1, ..., n)

for 
x, 
y ∈ C
K implies that 
x = eiθ 
y for some θ ∈ R.

If we write the vectors 
v j as column vectors, we will say that the matrix V =[
v1 . . . 
vn
]
does conjugate phase retrieval when the columns of V do conjugate phase

retrieval.

Note that if {
v1, . . . , 
vn} do phase retrieval, then they necessarily do conjugate
phase retrieval. The converse is not true; however: if the vectors {
v1, . . . , 
vn} ⊂ R

K ,
they can never do phase retrieval, but they can do conjugate phase retrieval as we shall
see in Example 1.

For vectors 
v, 
b ∈ C
K with 
v = (v0, ..., vK−1) and f ∈ PWπ , we define


v ∗ f =
K−1∑

k=0

vk f (· + bk). (4)
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We refer to this as a structured convolution. We can think of the sum in Eq. (4) as the
inner-product of 
v and the vector ( f (· + b0), . . . , f (· + bK−1))

T .
For b0, ..., bK−1 ∈ R we denote by Z(b0, b1, . . . , bK−1) the subgroup of R gener-

ated by the integer multiples of the bk . We recall that the Beurling density of X ⊆ R

is defined by

D(X) = lim
h→∞ inf

x∈R
#(X ∩ [x, x + h])

h

if this limit exists. (We only deal with situations where Beurling’s lower and upper
densities coincide.)

Theorem 3 Let V = [
v0 . . . 
vM−1
]
be a K × M matrix which does conjugate phase

retrieval on C
K . Let {bk}K−1

k=0 ⊂ R be such that the group Z(b0, b1, . . . , bK−1) has
Beurling density greater than one. Suppose {tn}n∈Z ⊂ R is a set of sampling for the
space PW2π . Then the following sampling scheme does conjugate phase retrieval on
PWπ :

{|
vm ∗ f (tn)| : m = 0, 1, . . . , M − 1; n ∈ Z}.

Proof Suppose f , g ∈ PWπ is such that

|
vm ∗ f (tn)| = |
vm ∗ g(tn)|, for m = 0, 1, . . . , M − 1; n ∈ Z. (5)

As in the proof of Theorem 1, since {tn} is a set of sampling for PW2π and |
vm ∗
f |2, |
vm ∗ g|2 ∈ PW2π , we have for m = 0, 1, . . . , M − 1

|
vm ∗ f (x)| = |
vm ∗ g(x)|, for all x ∈ R.

Indeed, we can calculate

|
vm ∗ f (x)|2 =
∑

n

|
vm ∗ f (tn)|2hn(x) and |
vm ∗g(x)|2 =
∑

n

|
vm ∗g(tn)|2hn(x) (6)

using the Sampling reconstruction in Eq. (3). Since the matrix V does conjugate phase
retrieval in CK , for all x ∈ R we have that either

⎛

⎜⎜⎜⎝

f (x + b0)
f (x + b1)

...

f (x + bK−1)

⎞

⎟⎟⎟⎠ = λ1(x)

⎛

⎜⎜⎜⎝

g(x + b0)
g(x + b1)

...

g(x + bK−1)

⎞

⎟⎟⎟⎠ (7)

or ⎛

⎜⎜⎜⎝

f (x + b0)
f (x + b1)

...

f (x + bK−1)

⎞

⎟⎟⎟⎠ = λ2(x)

⎛

⎜⎜⎜⎝

g(x + b0)
g(x + b1)

...

g(x + bK−1)

⎞

⎟⎟⎟⎠ (8)
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for some λ j (x) ∈ C with |λ j (x)| = 1.
For every k = 1, . . . , K − 1 and every x such that Eq. (7) holds, we have that

| f (x + bk) − f (x)| = |λ1(x)g(x + bk) − λ1(x)g(x)| = |g(x + bk) − g(x)|.

Similarly, for x such that Eq. (8) holds, we have that

| f (x + bk) − f (x)| = |λ2(x)g(x + bk) − λ2(x)g(x)| = |g(x + bk) − g(x)|.

Therefore,wehave that | f (x)| = |g(x)| and | f (x+bk)− f (x)| = |g(x+bk)−g(x)|
hold for all k = 1, . . . , K − 1 and all x ∈ R. By the proof of Theorem A contained in
[29], we obtain that there exists a meromorphic function W , unimodular on R, such
that either f = Wg or f = Wg�.Moreover,W is periodicwith period bk for every k =
1, . . . , K −1. For the moment, suppose f = Wg. For every x ∈ Z(b0, b1, . . . , bK−1),
we have f (x) = W (x)g(x) = W (0)g(x), so f andW (0)g agree on a setwithBeurling
density greater than 1. It follows that f = W (0)g everywhere. The same conclusion
holds if f = Wg�. ��

If we assume in the proof of Theorem 3 that the matrix V does phase retrieval on
C

K , then only Eq. (7) can hold. This gives an analogous result for phase retrieval:

Theorem 4 Let V = [
v0 . . . 
vM−1
]
be a K × M matrix which does phase retrieval

on C
K . Let {bk}K−1

k=0 ⊂ R be such that the group Z(b0, b1, . . . , bK−1) has Beurling
density greater than one. Suppose {tn}n∈Z ⊂ R is a set of sampling for the space
PW2π . Then the following sampling scheme does phase retrieval on PWπ :

{|
vm ∗ f (tn)| : m = 0, 1, . . . , M − 1; n ∈ Z}.

For the proof, we need the following elementary lemma.

Lemma 2 Suppose g is an entire function. For fixed {b0, . . . , bK−1} ⊂ R, the set of
x ∈ R for which the vectors

⎛

⎜⎜⎜⎝

g(x + b0)
g(x + b1)

...

g(x + bK−1)

⎞

⎟⎟⎟⎠ and

⎛

⎜⎜⎜⎝

g(x + b0)
g(x + b1)

...

g(x + bK−1)

⎞

⎟⎟⎟⎠

are colinear is either R or has no limit point in R. If the set is R, then there exists
a meromorphic function W which is unimodular on R and periodic by the group
Z(b0, . . . , bK−1) such that g� = Wg.

Proof Fix k ∈ {1, . . . , K − 1}. For any x ∈ R such that the vectors are colinear, we
have

det

[
g(x + b0) g(x + b0)
g(x + bk) g(x + bk)

]
= 0. (9)
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This can be expressed as

g(x + b0)g
�(x + bk) − g(x + bk)g

�(x + b0) = 0.

As the left-hand side is the restriction of an entire function to the real axis, it is
either zero everywhere, or zero only on a set without limit points. It follows that if the
vectors are not colinear for all x ∈ R, then they can be colinear only on a set that has
no limit points.

If the vectors are colinear everywhere, then (9) holds for all x and for all k ∈
{0, . . . , K − 1}. Then [29, Theorem 1] guarantees the existence of a meromorphic W
such that g� = Wg. For every k and every x , we have g�(x+bk) = W (x+bk)g(x+bk)
and also g�(x + bk) = W (x)g(x + bk) by the colinearity assumption. Therefore, W
is periodic with period bk for k = 0, . . . , K − 1. ��
Proof of Theorem 4. Suppose f , g ∈ PWπ is such that

|
vm ∗ f (tn)| = |
vm ∗ g(tn)| for all m = 0, . . . , K − 1, and n ∈ Z.

Since the hypotheses of Theorem 3 hold, we have that either f = λg or f = λg�.
Suppose f = λg�. Then again by Theorem 3, we have that

|
vm ∗ f (x)| = |
vm ∗ g�(x)| for all m = 0, . . . , K1, and x ∈ R.

By our assumption, we then also have

|
vm ∗ g(x)| = |
vm ∗ g�(x)| for all m = 0, . . . , K1, and x ∈ R.

Since the matrix A does phase retrieval on C
K , we must have that the vectors

⎛

⎜⎜⎜⎝

g(x + b0)
g(x + b1)

...

g(x + bK−1)

⎞

⎟⎟⎟⎠ and

⎛

⎜⎜⎜⎝

g(x + b0)
g(x + b1)

...

g(x + bK−1)

⎞

⎟⎟⎟⎠

are colinear for every x ∈ R. Consequently, by Lemma 2, g = Wg� for W meromor-
phic, and periodic by the group Z(b0, b1, . . . , bK−1). As in the proof of Theorem 3,
since g, g� ∈ PWπ , W is constant. Hence, we have f = λg� = (μλ)g with |μ| = 1.
This completes the proof. ��

To demonstrate that Theorem 3 is not vacuous, we present an example here. For
this purpose, we require a result from [13] concerning conjugate phase retrieval in C2

and C
3:

Theorem B If 
v1, 
v2, 
v3 ∈ R
2 is written as

[
v1 
v2 
v3
] =
[
a1 b1 c1

a2 b2 c2

]
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then 
v1, 
v2, 
v3 does conjugate phase retrieval in C2 if and only if

det

⎡

⎢⎢⎣

a21 2a1a2 a22

b21 2b1b2 b22

c21 2c1c2 c22

⎤

⎥⎥⎦ �= 0. (10)

Likewise, if 
v1, . . . , 
v6 ∈ R
3 is written as

[
v1 
v2 . . . 
v6
] =
⎡

⎣
a1 b1 c1 d1 e1 f1
a2 b2 c2 d2 e2 f2
a3 b3 c3 d3 e3 f3

⎤

⎦

then 
v1, . . . 
v6 does conjugate phase retrieval in C3 if and only if

det

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a21 a22 a23 2a1a2 2a1a3 2a2a3

b21 b22 b23 2b1b2 2b1b3 2b2b3

c21 c22 c23 2c1c2 2c1c3 2c2c3
d21 d22 d23 2d1d2 2d1d3 2d2d3

e21 e22 e23 2e1e2 2e1e3 2e2e3

f 21 f 22 f 23 2 f1 f2 2 f1 f3 2 f2 f3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�= 0. (11)

Remark 1 It is demonstrated in [13] that Eq. (10) is equivalent to the three vectors in

v1, 
v2, 
v3 ∈ R

2 being full spark, but Eq. (11) is not equivalent to the six vectors being
full spark.

Example 1 It is easy to check that the following matrix does conjugate phase retrieval
on C3 using Theorem B:

V =
⎡

⎣
1 0 0 1 1 0
0 1 0 −1 0 1
0 0 1 0 −1 −1

⎤

⎦ . (12)

Thus, we choose this matrix V , tn = n
2 , and b0 = 0, b1 = 1

2 , and b2 = 1. We will
demonstrate in Sect. 3.2 the results of numerical experiments involving the recon-
struction algorithm we propose in Sect. 2.3.

Wenote that the condition on the coefficientmatrixV for the structured convolutions
in Theorem4 ismuchmore restrictive than in Theorem3. Indeed, Example 1 illustrates
this distinction. We also note that Theorem 4 generalizes the results in [31] in the
following sense: the structured modulations used in [31] correspond to bk ∈ C (and
in fact, some bk must be non-real), whereas our result applies if bk are real.
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Algorithm 1 Reconstruct [ f ] from structured convolutions
1: Suppose {tn}, {
vm }, {bk }, satisfy the hypotheses of Theorem 3, with Z(b0, . . . , bK−1) a lattice
2: Given |
vm ∗ f (tn)|2 for m = 0, . . . , M − 1, n ∈ Z;
3: Initialize β randomly;
4: choose {xn} = Z(b0, . . . , bK−1);
5: use Equation (6) to calculate

|
vm ∗ f (xn − β)|2, m = 0, 1, . . . , M − 1, n ∈ Z;

6: apply the Gerchberg-Saxton method to calculate


F(xn − β) := λ(xn − β)

⎛

⎜⎜⎜⎝

f (xn + b0 − β)

f (xn + b1 − β)

.

.

.

f (xn + bK−1 − β)

⎞

⎟⎟⎟⎠ (14)

up to the unknown phase λ(xn − β) and unknown conjugation;
7: for n, choose λ(xn − β) and conjugation in Equation (14) so that


F(xn−1 − β) and 
F(xn − β)

are consistent;
8: use Equation 3 to reconstruct either λ f or λ f � (and hence [ f ]) from

{λ f (xn − β) : n ∈ Z} or {λ f (xn − β) : n ∈ Z}

for our choice of uniform phase factor λ and conjugation.

2.3 ReconstructionMethods

The proof of Theorem 3 suggests a reconstruction method. We wish to reconstruct
f ∈ PWπ from the samples

{|
vm ∗ f (tn)| : m = 0, 1, . . . , M − 1; n ∈ Z} (13)

where {tn} and 
vm satisfy the hypotheses of Theorem 3. The strategy of Algorithm 1
is to reconstruct from the samples given in Theorem 3 the function values

{λ f (xn)} or {λ f (xn)}

on a sequence of points {xn} which is a set of sampling for PWπ . We will not be able
to determine λ, nor will we be able to determine whether we reconstruct the function
values or their conjugates; we will reconstruct them up to uniform phase factor λ and
uniform choice of conjugation.
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For the unknown signal f ∈ PWπ , for any x ∈ R, we define the vectors


F(x) =

⎛

⎜⎜⎜⎝

f (x + b0)
f (x + b1)

...

f (x + bK−1)

⎞

⎟⎟⎟⎠ . (15)

Using the arguments fromTheorem3,we can reconstruct for any x the vectorλ(x) 
F(x)

or λ(x) 
F(x) up to unknown phase factor λ(x) and unknown conjugation. We choose
a sequence {xn} that has the following properties:

1. {xn} is a set of sampling for PWπ ;
2. for every n, the vectors 
F(xn−1) and 
F(xn) have at least two entries in common.

In other words, we want

# ({xn−1 + bk : k = 0, . . . , K − 1} ∩ {xn + bk : k = 0, . . . , K − 1}) ≥ 2

Since the vectors λ(xn−1) 
F(xn−1) and λ(xn) 
F(xn) have two entries in common (say
xn + b j and xn + bk), the ambiguity of phase factor and choice of conjugation can
be rectified so that they are consistent, provided the following matrix has nonzero
determinant:

M(xn, j, k) :=
[
f (xn + b j ) f (xn + b j )

f (xn + bk) f (xn + bk)

]
. (16)

By Lemma 2, we have for any choice of distinct b j and bk , the set of {xn} such that
the determinant of the matrix in Eq. (16) is 0 is either countable or all of R. As we
saw in the proof of Theorem 4, if the determinant is 0 for all of R, then f � = λ f for
some uniform phase factor λ, and hence, either choice of conjugation is consistent up
to a phase factor.

Suppose for the moment that f � and f are linearly independent. Since it is still
possible that some, but not all, of the determinants in Eq. (16) could be 0, we choose
a β ∈ R randomly. We then endeavor to reconstruct λ(xn − β) 
F(xn − β) for n ∈ Z

as before, and make successive samples consistent by considering the determinant
of the matrices M(xn − β, j, k) instead. We want β to be chosen so that for every
n ∈ Z, the determinant of this matrix is nonzero. However, we know by Lemma 2 that
(since we are assuming for the moment that f � and f are linearly independent) the
set of β that fails to have this property is at most countable. Therefore, if we choose
β randomly with respect to any continuous probability distribution on R (or [0, 1]),
with probability 1 we will obtain that all of the determinants of M(xn − β, j, k) are
nonzero.

To sum up, after our choice of β, with probability 1, we will either have:

1. det M(xn − β, j, k) �= 0 for all n ∈ Z, j, k = 0, . . . , K − 1;
2. det M(xn − β, j, k) = 0 for all n ∈ Z, j, k = 0, . . . , K − 1.

If the condition of Item 2. holds, then we actually have that det M(x−β, j, k) = 0 for
all x ∈ R. Hence, as observed previously, either choice of conjugation is consistent
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betweenλ(xn−1−β) 
F(xn−1−β) andλ(xn−β) 
F(xn−β). If all of the determinants are
nonzero, then the choice of conjugation is uniquely determined to make the samples
consistent.

We note that in Step 5, we can initialize our choice of phase factor and conjugation
for 
F(x0 − β) arbitrarily, then work outward in both directions for n > 0 and n < 0.
We will discuss the Gerchberg–Saxton method of Step 4 in more detail in Sect. 3.2.

2.4 Specific Structured Convolutions for Conjugate Phase Retrieval

We demonstrate here a sampling scheme using simple structured convolutions and
the corresponding reconstruction as outlined in Algorithm 1 to do conjugate phase
retrieval in PWπ . For convenience, we structure the convolutions so that the bk = k

B ,
for some integer B > 1, K ≥ 3, and tn = n

B . In particular, if we choose B = 2, then
we can use the coefficient matrix V as given in Eq. (12). Note thatZ(b0, b1, b2) = 1

2Z,
and so satisfies the conditions of Theorem 3.

With the lattice structure of the sampling points {tn} and the bk’s also lying on the
same lattice, we obtain that the samples |
v2 ∗ f (tn)| and |
v3 ∗ f (tn)| are repetitions
of the samples |
v1 ∗ f (tn)|. Likewise, the samples |
v6 ∗ f (tn)| are repetitions of the
samples |
v4 ∗ f (tn)|. Thus, we only need to sample the functions |
v1 ∗ f |, |
v4 ∗ f |,
and |
v5 ∗ f |.

We note that this sampling scheme requires sampling 3 functions at twice the
Nyquist rate, and thus our oversampling factor is 6. We can reduce this down to
oversampling by a factor of 3 by incorporating our choice of β into the sampling
scheme:

Algorithm 2 Reconstruct [ f ] from samples at 3 times the Nyquist rate
1: Choose β at random.
2: Sample |
vm ∗ f (n − β)| for m = 1, 4, 5 and n ∈ Z.
3: For each n, use the samples in Step 2 to reconstruct the vector


F(n) = λ(n)

⎛

⎝
f (n + 1 − β)

f (n − β)

f (n − 1 − β)

⎞

⎠

up to unknown phase λ(n) and unknown conjugation.
4: Choose the phase and conjugation for 
F(n + 1) from the choice of phase and conjugation for 
F(n),

since they have 2 entries that coincide.

This algorithm will not work on all signals in PWπ , but only on generic signals
f ∈ PWπ . By this we mean that the set of signals for which this algorithm fails is
meager (i.e., of First Category).

Lemma 3 For a fixed β ∈ R, the set of signals f ∈ PWπ for which Reconstruction
Algorithm 2 fails is meager.
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Proof Reconstruction Algorithm 2 will reconstruct f up to unknown phase and con-
jugation whenever for all n ∈ Z, f (n − β) �= 0 and f (n + 1 − β) f (n − β) −
f (n + 1 − β) f (n − β) �= 0. Clearly the latter condition implies the former. There-
fore, if we consider the set

Fn := { f ∈ PWπ : f (n + 1 − β) f (n − β) − f (n + 1 − β) f (n − β) = 0},

we see that the complement of Fn is open and dense. The lemma follows since ∪nFn

is the set of signals for which the reconstruction fails. ��

It is known that in C
K , a frame must have at least (4 + o(1))K vectors in order to

do phase retrieval [7,20]. For phase retrieval in the Paley–Wiener space, [34] requires
twice the Nyquist rate to do real phase retrieval, and [31] requires four times the
Nyquist rate to do (complex) phase retrieval. In C

K , no lower bound is known for
conjugate phase retrieval, but note that our sampling scheme above suggests that it
should be on the order of 3K . Additionally, it also suggests that the conjugate phase
retrieval problem in the Paley–Wiener space requires less than four times the Nyquist
rate, perhaps as low as three.

2.5 Conjugate Phase Retrieval using Derivatives

In analogy to structured convolutions, conjugate phase retrieval is possible by sampling
the derivative of the unknown signal. Reconstruction of a signal from samples of its
derivatives is gaining interest [17–19]. Recall that Theorem 1 says that if {tn} is a set
of sampling for PW2π , then the mapping

Ã : PWπ/ ∼→ 	2(Z) ⊕ 	2(Z) : f �→ (| f (tn)|, | f ′(tn)|)n

is one-to-one. The next lemma is an immediate consequence of Theorem A (part 2).

Lemma 4 Suppose f and g are entire functions with the property that f f � = gg� and
f ′ f ′� = g′g′�. Then there exists a unimodular scalar λ such that either f = λg or
f = λg�.

We write
f (t) = r(t)eiθ(t) t ∈ R, r(t) ≥ 0, θ(t) ∈ R. (17)

The functions r , θ are differentiable wherever r is non-vanishing. Theorem 1 and
Lemma 4 provide a theoretical reconstruction algorithm as follows.
Of course, this cannot be reasonably done numerically.

We justify the steps of Algorithm 3 as follows. Let the original unknown function f
be written as f (t) = r0(t)eiθ0(t). A function g ∈ PWπ has the property that g ∈ [ f ]
if and only if for some ε ∈ R:

g(t) = r0(t)e
±θ0(t)+ε (18)
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Algorithm 3 Reconstruct [ f ] in PWπ from derivative sampling
1: Given the phaseless samples {| f (tn)|, | f ′(tn)|}, with {tn} a set of sampling for PW2π
2: reconstruct f f � and f ′ f ′� in PW2π ;
3: reconstruct r =

√
f f �;

4: reconstruct

(θ ′)2 = f ′ f ′�
f f �

− [( f f �)′]2
4( f f �)2

on some interval I ;
5: choose a square-root of (θ ′)2 and integrate;
6: expand reiθ as a power series g(z) =∑ anzn on I ; [g] = [ f ] in PWπ / ∼.

Since {tn} is a set of sampling for PW2π , and f f � and f ′ f ′� are in PW2π , we have
from the samples

f (z) f �(z) =
∑

n

| f (tn)|2hn(z); f ′(z) f ′�(z) =
∑

n

| f ′(tn)|2hn(z). (19)

We reconstruct r0(t) = √ f (t) f �(t) from Eq. (19) with hn as given in Eq. (3). We
choose an interval I on which r(t) is non-vanishing. Using Eq. (17), we have the
following calculation:

f ′ f ′�

f f �
− [( f f �)′]2

4( f f �)2
= [r ′

0(t)]2 + [θ ′
0(t)]2[r0(t)]2

[r0(t)]2 − [2r0(t)r ′
0(t)]2

4[r0(t)]4
= [θ ′

0(t)]2.

Therefore, we can reconstruct θ ′
0 on the interval I using Eq. 19. Choosing a square-root

of [θ ′
0(t)]2 and integrating on I gives us θ(t) on I . Thus, we define g(t) = r0(t)eiθ(t)

on I . Note that since [θ ′]2 = [θ ′
0]2, we have θ = ±θ0 + ε for some constant of

integration. Since g satisfies Eq. (18) on I , it must satisfy it on all of R, and so we
have reconstructed a representative of [ f ].

3 Numerical Methods and Experiments

In this section, we will describe our implementation of Algorithm 1 and the results of
numerical experiments. Recall that in Step 5 of Algorithm 1, we used the Gerchberg–
Saxton method to reconstruct 
F(xn − β) (which has phase information about the
samples of the unknown signal f ) from the unphased samples {|
vm ∗ f (xn − β)| :
m = 0, . . . , M −1}. We first consider the results of our numerical experiments of this
method for conjugate phase retrieval in C

K .
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3.1 The Gerchberg–SaxtonMethod of Alternating Projections

For amatrix that does phase retrieval onCK , there aremany reconstruction techniques:
frame methods [5,6]; convex optimization [10,16]; and the Kaczmarz method [33,38]
to name only a few. However, for a matrix V that does conjugate phase retrieval onCK

(but not phase retrieval), there is no known proven method of reconstruction. None of
the previously mentioned reconstruction techniques for phase retrieval extend in an
obvious way to conjugate phase retrieval, because they all utilize the fact that in the
space CK , there is only one linearly independent solution to the inverse problem. In
the case of conjugate phase retrieval, there are two linearly independent solutions to
the inverse problem, namely the original signal and its conjugate.

Despite this shortcoming, we will demonstrate experimentally that the Gerchberg–
Saxton method [15] can be used for reconstruction. Suppose V = [
v0 . . . 
vM−1

]
that

does conjugate phase retrieval on CK . Suppose 
y ∈ C
K ; our aim is to reconstruct [
y]

from |V ∗ 
y|. We begin by choosing phases {α0, . . . , αM−1} ⊂ C, |α j | = 1 and form
the initial estimate


x0 =
⎛

⎜⎝
α0|〈
y, 
v0〉|

...

αM−1|〈
y, 
vM−1〉|

⎞

⎟⎠ .

We let V † be the Moore–Penrose inverse of V ∗ (note that V ∗ must be injective for V
to do conjugate phase retrieval), and we define S : CM → C

M to be the nonlinear
projection onto the set:

{ 
w ∈ C
M : | 
w| = |V ∗ 
y|}.

Following the Gerchberg–Saxton method of alternating projections, we define the
sequence of estimates 
xn by:


xn+1 = SV ∗V †
xn . (20)

Levi and Stark [27] prove that under a particular metric onCK / ∼, the sequence of
estimates given in Eq. (20) converges. However, they do not prove that the sequence
converges to the desired solution, and in fact demonstrate the that alternating pro-
jections method can become stuck in what they refer to as “traps” and “tunnels.”
Recently, [30] prove that the sequence of estimates in Eq. (20) converges to the solu-
tion in expectation provided the matrix V is a Gaussian ensemble. Our matrix V as in
Eq. (12) does not satisfy this condition, however.

We performed the Gerchberg–Saxton method given in Eq. (20) on 1,000 instances
of vectors in C

3 using the matrix V as in Eq. (12). Each instance of input vector

y ∈ C

3 was generated using the rand function in MATLAB. For each instance of
initial vector 
y, we chose initial phases α0, . . . , α5 also using the rand function. For
each instance, we ran 900 iterations of the alternating projections. For each instance

y and each iteration 
xn , we calculated the reconstruction error

εn(
y) = min{‖
y ⊗ 
y − (V †
xn) ⊗ (V †
xn)‖F , ‖
y ⊗ 
y − (V †
xn) ⊗ (V †
xn)‖F }

where ‖ · ‖F is the Fröbenius norm, and 
z is the vector with conjugated entries. Our
target was a reconstruction error satisfying εn(
y) < 10−8. We counted the number of
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Table 1 Experimental results of
the Gerchberg–Saxton Method

# successful reconstructions 850 (85%)

mean # iterations to threshold 185.97

median # iterations to threshold 124
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Fig. 1 a typical error decay of successful reconstructions; b reconstructionwith several iterations of increas-
ing error; c typical error decay of unsuccessful reconstructions

instances for which ε900(
y) < 10−8, and of those instances, the mean and median n
to obtain εn(
y) < 10−8. Our results are tabulated in Table 1.

The instances for which the reconstruction was not successful, meaning ε900(
y) ≥
10−8, illustrate the traps and tunnels phenomenon observed by Levi and Stark. As
the reconstruction errors are decreasing in general (but not always; see Fig. 1b), those
instances whose errors are not converging to 0 exhibit these phenomena.

3.2 Implementation of Algorithm 1

We performed several numerical experiments to instantiate Algorithm 1. Using Theo-
rem3and the discussion leadingup toAlgorithm1,we chose the followingparameters:

tn = xn = n

2
; b0 = 0, b1 = 1

2
, and b2 = 1,

and the coefficient matrix V as in Eq. (12). To begin, we defined a function f ∈ PWπ

by randomly generating complex numbers representing the samples f (−10), . . . ,
f (−1) and f (1), . . . , f (10), and set f (0) = 0. Thus, our signal is

f (t) =
10∑

n=−10

f (n) sinc(t − n). (21)
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Using these samples, we populated the array

P =

⎡

⎢⎢⎣

· · · f ( n+1
2 ) f ( n+2

2 ) · · ·
· · · f ( n2 ) f ( n+1

2 ) · · ·
· · · f ( n−1

2 ) f ( n2 ) · · ·

⎤

⎥⎥⎦ (22)

for n = −40, . . . , 40 via the interpolation formula in Eq. (21). We then used

R = |V T P| (23)

as the input data to Algorithm 1.
We chose β randomly using MATLAB’s rand function. Using the entries of R

and the interpolation formula (25) truncated to n = −40, . . . , 40, we reconstructed
the entries of the matrix

Rβ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · | f ( n+1
2 − β)| | f ( n+2

2 − β)| · · ·
· · · | f ( n2 − β)| | f ( n+1

2 − β)| · · ·
· · · | f ( n−1

2 − β)| | f ( n2 − β)| · · ·
· · · | f ( n+1

2 − β) − f ( n2 − β)| | f ( n+2
2 − β) − f ( n+1

2 − β)| · · ·
· · · | f ( n+1

2 − β) − f ( n−1
2 − β)| | f ( n+2

2 − β) − f ( n2 − β)| · · ·
· · · | f ( n2 − β) − f ( n−1

2 − β)| | f ( n+1
2 − β) − f ( n2 − β)| · · ·

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

Since | f |2 ∈ PW2π , we have

| f (t)|2 =
∑

n∈Z

∣∣∣ f
(n
2

)∣∣∣
2
sinc(2t − n). (25)

Similarly for | f (· + 1
2 ) − f (·)|2 and | f (· + 1

2 ) − f (· − 1
2 )|2.

We applied the Gerchberg–Saxtonmethod of alternating projections as described in
Sect. 3.1 to each column of the matrix in (24) to obtain the estimate λ( n2 −β) 
F( n2 −β)

of the nth column of the matrix

Pβ =

⎡

⎢⎢⎣

· · · f ( n+1
2 − β) f ( n+2

2 − β) · · ·
· · · f ( n2 − β) f ( n+1

2 − β) · · ·
· · · f ( n−1

2 − β) f ( n2 − β) · · ·

⎤

⎥⎥⎦ .

As we observed in Sect. 3.1, the Gerchberg–Saxton method can fail (e.g., Fig. 1c), so
we apply the method to each column of the matrix 100 times, each with a different
(random) seeding. For k = 1, . . . , 100, we utilize 900 iterations of Eq. (20) to obtain
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an estimate 
xk , then choose

λ(
n

2
− β) 
F(

n

2
− β) = V † (argmin k=1,...,100‖
yn − |
xk |‖

)

where 
yn is the nth column of Rβ .
This estimate will be ambiguous up to unknown phase factor and conjugation. As

the n-th and n+1-st columnof Pβ have two entries in common,working from n = −40
to n = 40, we choose λ( n2 − β) and, if necessary, conjugate 
F( n2 − β), so that the
corresponding entries of 
F( n−1

2 ) and λ( n2 − β) 
F( n2 − β) agree. With probability 1,
there is no ambiguity in these choices by Lemma 2.

We ran Algorithm 1 on 100 instances of f ∈ PWπ with randomly generated values
for f (−10), . . . , f (−1), f (1), . . . , f (10). For each instance, we ran Algorithm 1 20
times, each with a different (randomly generated) value of β. We then chose the
reconstruction r of the 20 that minimized the following reconstruction error:

min

{‖ f ⊗ f − r ⊗ r‖F
‖ f ⊗ f ‖F ,

‖ f ⊗ f − r ⊗ r‖F
‖ f ⊗ f ‖F

}

where ‖ · ‖F is the Fröbenius norm, and f and r are the vector of samples

( f (−20), f (−19.5), f (−19), . . . , f (19.5), f (20))T ,

(r(−20), r(−19.5), r(−19), . . . , r(19.5), r(20))T ,

respectively. Over the 100 instances we found that the largest relative reconstruction
error (after choosing the minimizer over the 20 applications of Algorithm 1) was
0.0504.

The main source of error in our experiments seem to be Step 6 in Algorithm 1. In
all of our instances, the function f has the property that f (n) = 0 for |n| > 10, so we
might say that it is sparse in the standard basis {sinc (t − n)}n∈Z. However, to avoid
the fact that f (0) = 0, we shift the reconstruction samples to { n2 −β}n∈Z, but f is not
sparse in this coordinate system (frame) on PWπ . Since we only utilize the samples
{ n2 − β}|n|≤20, we lose some of the energy of f from this truncation.

We illustrate one instance of the signal reconstruction in Fig. 2. MATLAB code
for these numerical experiments are available at bitbucket.org/esweber/
conjugate-phase-retrieval/.

Acknowledgements Eric Weber was supported in part by the National Science Foundation under award
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Appendix

Continuity of the Reconstruction

Given the equivalence relation defined by Eq. (1), we have by Theorem 1 that for
sequences {tn} that are sampling sequences for PW2π the mapping
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Fig. 2 Reconstruction error: ( f -original signal; r -reconstructed signal) ‖ f ⊗ f − r ⊗ r‖F/‖ f ⊗ f ‖F =
0.026 β = 0.2119 (chosen using the MATLAB command rand).

Ã : PWπ/ ∼ → 	2(Z) ⊕ 	2(Z) : f �→ (| f (tn)|, | f ′(tn)|)n (26)

is one-to-one.
We endow the quotient space PWπ/ ∼ with the natural metric

d([ f ], [g]) := inf{‖h1 − h2‖ : h1 ∈ [ f ], h2 ∈ [g]}= inf{{‖ f − αg‖, ‖ f − αg�‖ : |α|=1}.
(27)

In this metric, Ã is continuous, since it is the composition of two continuous maps,
namely the frame operator and the absolute value. Following the idea of [28], we
demonstrate that the inverse is also continuous.

Proposition 1 The range R(Ã) is closed. The inverse of Ã is continuous from R(Ã)

to PWπ/ ∼.

Proof Assume the sequence {(a(k)
n , b(k)

n )n}k ⊂ R(Ã) converges in 	2(Z) ⊕ 	2(Z) to
(a(0)

n , b(0)
n )n . For each k, there exists a fk ∈ PWπ such that (a(k)

n , b(k)
n )n = (| fk(tn)|,

| f ′
k(tn)|)n ; for convenience, denote ( fk(tn), f ′

k(tn))n = (α
(k)
n , β

(k)
n )n . For each fixed

n, the sequence {(α(k)
n , β

(k)
n )}k has a convergent subsequence in C

2; by a standard
diagonalization argument there exists a subsequence that converges for every n. Denote
this subsequence by k j , and the limit (α(0)

n , β
(0)
n ). We claim that

lim
j

(α
k j
n , β

k j
n )n = (α(0)

n , β(0)
n )n

in the 	2-norm.
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For N ∈ N,

√∑

|n|≥N

|α(k j )
n |2 + |β(k j )

n |2 =
√∑

|n|≥N

|a(k j )
n |2 + |b(k j )

n |2

≤
√∑

|n|≥N

|a(k j )
n − a(0)

n |2 + |b(k j )
n − b(0)

n |2

+
√∑

|n|≥N

|a(0)
n |2 + |b(0)

n |2

We are assuming that
∑

n∈Z |a(k j )
n − a(0)

n |2 + |b(k j )
n − b(0)

n |2 → 0 as j → ∞, so we
have that

lim sup
j→∞

√∑

|n|≥N

|α(k j )
n |2 + |β(k j )

n |2 ≤
√∑

|n|≥N

|a(0)
n |2 + |b(0)

n |2.

It follows that

lim sup
j→∞

∑

n∈Z
|α(k j )

n − α(0)
n |2 + |β(k j )

n − β(0)
n |2

≤ lim sup
j→∞

∑

|n|<N

|α(k j )
n − α(0)

n |2 + |β(k j )
n − β(0)

n |2

+ lim sup
j→∞

∑

|n|≥N

|α(k j )
n − α(0)

n |2 + |β(k j )
n − β(0)

n |2

= lim sup
j→∞

∑

|n|≥N

|α(k j )
n − α(0)

n |2 + |β(k j )
n − β(0)

n |2

≤
⎛

⎝
∑

|n|≥N

|a(0)
n |2 + |b(0)

n |2 +
∑

|n|≥N

|α(0)
n |2 + |β(0)

n |2
⎞

⎠ .

Therefore,

lim sup
j→∞

∑

n∈Z
|α(k j )

n − α(0)
n |2 + |β(k j )

n − β(0)
n |2

≤ lim sup
N→∞

⎛

⎝
∑

|n|≥N

|a(0)
n |2 + |b(0)

n |2 +
∑

|n|≥N

|α(0)
n |2 + |β(0)

n |2
⎞

⎠

= 0.

The completes the claim. We have that the sequence {(α(k j )
n , β

(k j )
n )n} j is contained

in the image of the sampling transform, which has closed range, and therefore
(α

(0)
n , β

(0)
n )n is also in the range of the sampling transform, whence there exists an
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f0 ∈ PWπ such that ((α
(0)
n , β

(0)
n )n = ( f0(tn), f ′

0(tn))n from which we obtain that

(a(0)
n , b(0)

n )n = (| f0(tn)|, | f ′
0(tn)|)n ∈ R(Ã). This concludes the proof of the first part.

Define � : PWπ → 	2(Z) ⊕ 	2(Z) : f �→ ( f (tn), f ′(tn))n , the sequence of
phased samples. Now for the continuity: (outline)

1. Fix a sequence 
vn of elements inR(Ã) that converges.
2. For each such element, pick a representative fn where Ã([ fn]) = 
vn .
3. For each subsequence of { fn}, there exists a subsequence such that {�( fn jk

)}
converges in 	2.

4. For this subsequence, { fn jk
} converges in PWπ , therefore [ fn jk

] → [ f ].
To prove continuity, assume Ã([ fk]) = (a(k)

n , b(k)
n )n converges to (a(0)

n , b(0)
n )n =

Ã([ f0]) in the 	2-norm. We prove that every subsequence [ fk j ] has a subsequence
that converges to [ f0]. As before, the sequence

�( fk j ) = ( fk j (tn), f ′
k j (tn))n

has a subsequence fk jl such that �( fk jl ) converges pointwise to a sequence

(α
(0)
n , β

(0)
n ), which is �( f ) for some f . Note that (| f (tn)|, | f ′(tn)|)n = (a(0)

n , b(0)
n )n ,

so f ∈ [ f0]. Now, again by above, we have that �( fk jl ) converges to �( f ) in the

	2-norm; since � has a continuous inverse, we have fk jl converges to f in PWπ . It
follows that [ fk jl ] → [ f0], completing the proof. ��

Conjugate Phase Retrieval in Other Spaces

There are other natural spaces for which it may be possible to extend our methods
(see also [11] for related results). In particular, spaces whose elements are entire
functions are natural to consider, since our methods utilized properties of zeros of
entire functions. Note that other properties of PWπ we used include: there are sets of
sampling for PWπ that have regular structure (in particular, finite unions of lattices);
the squares of elements in PWπ lie in a space that also have sets of sampling; and
PWπ is closed under translations. Spaces that are natural to consider include PW p

γ ;
Bernstein spaces [31]; de Branges spaces [18]; and generalized Paley–Wiener spaces
as defined in [37]. None of these spaces satisfy all of the properties of PWπ that
we use in this paper. The generalized Paley–Wiener spaces need not be closed under
f �→ f �, but do admit a sampling theory [21].

Concluding Remarks

Code for numerical experiments in Sect. 3.1 and 3.2 is available from
bitbucket.org/esweber/conjugate-phase-retrieval/.
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