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1 Introduction

A Cantor set is the result of an infinite process of removing sections of an interval—[0, 1] in this
paper—in an iterative fashion. The set itself consists of the points remaining after the removal of intervals
specified by two parameters: the scale factor N and digit set D. The positive integer N determines how
many equal intervals each extant segment is divided into per iteration, while D C {0, ..., N — 1} enumerates
which of the N intervals of the segments will be preserved in each iteration. Equivalently, a Cantor set
is the subset of [0,1] consisting of numbers whose base-N expansion uses only digits from D. Yet another
description of Cantor sets is given by the invariant set for an iterated function system, which will be our
view in this paper.

Each Cantor set yields a Cumulative Distribution Function (CDF), which we define formally in Defini-
tion 1.2. We denote the class of all such CDFs by .#. We consider the problems of sampling and interpolation
of functions in .%. By sampling, we mean the reconstruction of an unknown function F' € .% from its sam-
ples {F(x;)}ier at known points {z;};cs in its domain (for an introduction to sampling theory, see [1, 2]).
By interpolation, we mean the construction of a function F' € .# that satisfies the constraints F(z;) = y;
for a priori given data {(x;,y;) }ic1. Note that the premise of the sampling problem is that there is a unique
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I € .7 that satisfies the available data, whereas the interpolation problem may not have the uniqueness
property. Depending on the context, I can be either finite or infinite.
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Figure 1. C'(1 0,1) and Fi10,1) Figure 2. C(1,1,0,1) and F(11,0,1)

To be more precise regarding sampling CDFs, we formulate the problem as follows: Fix ¢ C .#. For
which sets of sampling points {z;};c; does the following implication hold:

F,Ge¥%and F(z;) =G(z;) Viel = F=G (1)

In the case where (1) holds, we call {z;} a set of uniqueness for 4.

Our main results in the paper concerning sampling include the following. In Theorem 2.5 we prove that
if ¢ consists of all CDFs for Cantor sets with unknown scale factor IV, but the scale factor is known to be
bounded by K, then there exists a set of uniqueness of size O(K?3). We show that when the scale factor N
is known, there exists a set of uniqueness of size N — 1 that satisfies the implication in (1). We conjecture
that there is a minimal set of uniqueness of size L%J , and prove that the minimal set of uniqueness cannot
be smaller in Proposition 2.5. We also provide evidence of our conjecture by considering a conditional
sampling procedure (meaning that the sampling points are data dependent) that can uniquely identify the
CDF from L%J samples in Theorem 2.2. Additionally, in Section 2.2, we include an interpolation procedure
as an imperfect reconstruction of a CDF from samples, and provide an upper bound on the error that the

reconstruction via interpolation could give.

1.1 Cantor Sets and Their Cumulative Distribution Functions

There are many ways to construct Cantor sets, and consequently many ways to denote a Cantor set.
The Cantor sets we consider in this paper are those that corresponding to restricted digit sets. Thus, our
set is defined by a choice of base (or scale) N and digits D C {0, ..., N — 1} which are allowed. The Cantor
set determined by such an N and D is denoted by Cy. p.

Another notation to describe N, D is to consider a vector § = (bg, b1, ..., bN_1) € (Z2)", where b; = 1
ifieDandb; =0if i ¢ D. We will also write ?(z) = b;. Further, H?H = Zﬁvz_ol b; = |D|. B is referred
to as the binary digit vector, and we denote the Cantor set determined by as Cg. In this sense, both
Cn,p and C§> can be used to describe a Cantor set, and we naturally associate N, D with its corresponding

. Note that in this work, all indexing will start with zero, such that by the first entry of the vector B
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In addition, special cases exist in which a Cantor set will be considered degenerate. In particular, C§ is
not considered when the set is empty, a one-point set, or [0,1]. Under this definition, there does not exist
a Cantor set with N < 3 or || 5| equal to 0, 1, or N. For an example of a legitimate Cantor set, C(1 g 1) is
the well-known ternary Cantor set (Figure 1). We also provide an illustration of the iterative construction
of the Cantor set corresponding to B = (1,1,0, 1) (Figure 2).

Another description of the Cantor sets we consider is as the invariant set for an (affine) iterated function
system (IFS).

Definition 1.1 (Iterated Function System). In general, an IFS is a collection of continuous contraction
maps {pq}acp on a complete metric space. Then, the invariant set C is the non-empty subset (if one
exists) of the metric space satisfying

C= U ¢a(C).

deD

Our Cantor sets Cy,p are invariant sets for an IFS in the following way. Let IV be the scale factor, and let
D be the digit set. For our purpose, we consider the particular IFS {¢4}4ep on R where ¢4(x) = % for
each d € D. We allow ¢p to act on [0, 1], so the invariant set is a subset of [0, 1]. Moreover, there exists an

invariant measure on the invariant set C'n, p.

Theorem 1.1 (Hutchinson, [3]). Let § be a binary digit vector. There exists a unique Borel probability
measure p on [0,1] such that p5(Cxg) =1, p5([0,1\Cx) =0 and pg = IT%}] D dep Mg © (;5;1. That

is, pg s invariant under the iterated function system.

Definition 1.2 (Cumulative Distribution Function). Let B bea binary digit vector. The Cantor set as-
sociated to B has a unique cumulative distribution function (CDF) F :[0,1] — [0, 1] given by

x

Fa) = ng((0.0]) = [ du.

0

The CDF of Cg is denoted Fp.

Note that the CDF of any of our Cantor sets is continuous. When convenient, we will extend Fg to all of
Rby Fz(z) =0ifx <0and 1if 2 > 1. It turns out that the invariant measure yi is actually the pullback
of Lebesgue measure under the CDF F. For any Borel subset A of Cg, ug(A) = m(F3lc,; (4)), where
m is Lebesgue measure.

The Cantor ternary set is the invariant set for the iterated function system ¢o(x) = § and ¢a(x) = ITH
The corresponding CDF is often referred to as the “Devil’s staircase”, and the invariant measure on the
Cantor ternary set is the pullback of Lebesgue measure onto the Cantor set under the CDF.

The Cantor sets we consider in this paper are sometimes referred to as “thin” Cantor sets [4]. The
log | D]
log N *
Next, we describe an algorithm for approximating the CDF of a Cantor set. To be precise, we recursively

Cantor sets we consider have Lebesgue measure 0; indeed, the Hausdorff dimension of C p is

define a sequence of piecewise linear functions {f,} which converges uniformly to the desired CDF. For
this, we need the following definition.

Definition 1.3 (Cumulative Digit Function). Let B = (bo, ...,bn—1) be a binary digit vector. Define g :

i—1
{0,..,N} = {0, ..., H§||} to be the cumulative digit function where g(0) = 0 and g(i) = >, b;Vi €
§j=0
{1,..,N}.

We can define a sequence of piecewise linear functions that approximate a CDF in the following manner.
For the Cantor set C? with cumulative digit function 9p, we define F(Bl ) as the linear interpolation of the
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and define F%l) to be the linear interpolation of S,,. It can be shown that

points

Let

0§a1SN,OSaiSN—lwe{?,...,n}}

l%@:hmF?@

n—oo

where the limit converges uniformly on [0, 1].

1.2 Operations on Cantor Sets and IFS’s

For convenience, we define several operations on Cantor sets and their associated CDF’s and IFS’s. We
recall the Kronecker product of two vectors: Let B = (bg, b1, ...,bpr—1) and 8 = (cg,¢1,-..,cN—1). Then,
the Kronecker product of ? with 8, denoted ? ® 8, is defined as

(ﬁ ® 8)(Z) = bLﬁJ Ci(modN)>»

or equivalently,

(B ® C)(n +mN) = bmen
where n € {0,1,...,N — 1} and m € {0,1,..., M — 1}, such that the product vector has M - N entries [5].
Note that if ? and 8 are binary digit vectors, then B ® C' is another binary digit vector.

Definition 1.4 (Kronecker Product of CDF’s). We define the Kronecker product of two CDFs as follows:
Let I and Fz be the CDFs corresponding to the binary digit vectors B and C', respectively. The Kronecker

product of F§ with F6>, denoted Fl—3> ® Fg, is the CDF whose binary digit vector is ? ® 8

We can define a Kronecker product on digit sets to retain the association of ?, 8 with N1, D1, Na, Ds.

Definition 1.5 (Kronecker Product of digit sets). The Kronecker product of two digit sets D1 and Da,
denoted D1 ® Da, is defined to be the Kronecker product of their associated binary digit vectors. That is, the
scale factor of D1 ® D is N1-Na, and i € D1 ® Dy if and only if b; = 1 for Bl ®§2 = (bo,b1,...bN, .Ny—1-

Lemma 1.1. D1 ® Dy = {¢+bN2 | ¢ € Dy,b € D1} where Ny is the scale factor corresponding to Ds.
The scale factor associated to D1 ® Dsy is N1 Ns.

n times

—_——
Definition 1.6. B®" — B ® B ®..® B. For example, Bet — ﬁ, and B®2 = B ® B.
Some assorted definitions and notations. We let ¢p(A) = e p #a(A) and we will write

(@p)" (A= |J ¢a 0. 064, (A)

diyeeosdn €D
Note, using this notation, (7—,(¢p)™([0,1]) = Cn,p. We denote the exponential function e2™@ by e(z).
Definition 1.7 (Multiplicative Dependence). Two integers r and s are multiplicatively dependent, de-

noted by r ~ s, if there exist integers m and n not both zero such that r™ = s™. Else, if no such integers
exist, then r and s are multiplicatively independent, denoted by r £ s.
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1.3 Related Results

The results we obtain in this paper are the first of their kind, as far as we are aware. However, sampling
of functions that are associated with fractals has been considered previously in various ways.

Sampling of functions with fractal spectrum was first investigated in [6, 7]. In those papers, the authors
consider the class of functions F' which are the Fourier transform of functions f € L?(u). Here, the measure
1 is a fractal measure that is spectral, meaning that the Hilbert space Lz(,u) possesses an orthonormal basis
of exponential functions. Similar sampling theorems are obtained in [8] without the assumption that the
measure is spectral. In higher dimensions, graph approximations of fractals (such as the Sierpinski gasket)
are often considered; sampling of functions on such graphs has been considered in [9, 10].

Sampling of cumulative distribution functions appear in [11, 12] in the context of the Cumulative
Distribution Transform (CDT). The CDT is nonlinear and can provide better separation for classification
problems. Sampling of cumulative distribution functions occurs in the discretization of the CDT. Related
results on interpolation of data using fractal functions and iterated function systems can be found in
[13, 14]. Approximating the moments of the Cantor function is investigated in [15].

A much more general construction of Cumulative Distribution Functions, and approximations thereof,
can be found in [16]. Sampling of probability distributions on Cantor-like sets is considered in [17, 18].

2 Main Results

2.1 Preliminary Theorems
The first Lemma of this section is a very useful invariance identity of the CDF.

Lemma 2.1 (Invariance Equation). Let FB be a CDF with scale factor N and binary digit vector ﬁ, then

N-1
b
Fa(z)=)" ?" Fz(Nz —n). (2)
n=0 | H
where we regard F(x) =0 for all x <0 and F(x) =1 for all x > 1.

Proof. This follows nearly immediately from Theorem 1.1, however, we present the proof anyway. Observe,

Fg(w):/dugz:/dz mu—g@fbdlzzm/dugwdl-
0 0 0

deD deD
Hence under a change-of-variables

o7 () Nz—d
1 . 1
F — JR— — -
3= 2 [ dmeoiten 27D [
$7(0) —d
0 Nx—d Nz—d
1 1
_ang%‘* / 5 | =2 5] /d’”?'
deD d o deD 0

Finally, since ||§|| =|D|, Dc{0,1,..,N—1},and b, =1 for n € D and b,, =0 for n ¢ D,

Nz—d _ Nz—d

1 N-1 b, _Nfl by
Fg(m)—zm b/ dug—nzzoﬁ 0/ dug\—nzzoﬁFg(Nm—d).

deD
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Lemma 2.2. Let Fz be a CDF with scale factor N and binary digit vector ﬁ, then I3 (%) = % for

k €40,..., N}, where g is the cumulative digit function.

Proof. Let ? = (bg, ...,by—1) be the binary digit vector for Fz. Then by the invariance equation 2,

e

(k)_NZl b . n g(k)
g N nzoﬁﬂ § n=0 ” H ?
O

Proposition 2.1. A function g : {0,..., N} — {0,...,d} is a cumulative digit function for some valid CDF
if and only if the following criteria are met.

1. g(0)=0

2. g(N) =d, for somed e {2,..,N —1}

3. 0<gk+1)—g(k) <1 forall k € {0,..., N — 1}.
Moreover, if g satisfies conditions (1), (2), and (3), then the corresponding CDF C— has binary represen-
tation B = (bo, ...,bn—1) such that b =1 if and only if g(k+1) —g(k) =1 and | B|| = d.

Proof. (=) Let g be the cumulative digit function for C. The first condition follows directly from the

N—1
definition of g. Also, g(N) = > b; = d so the second condition holds. By definition of g, g Z b <
7=0
[
Z gli+1),800<g(i+1)—g(4)
- i—1 7
Finally, g(¢) +1= > b; +1> Z g(i + 1) implies the third condition.
3=0 =

(<) Construct a CDF With the binary representation B = (bo, ..., by —1) such that b = 1 if and only
if g(k+1) — g(k) = 1. By the second and third conditions, at least two b; will be 1, and this is a valid CDF.
By the third condition and the range of g, either g(k+1) —g(k) =1 and by = 1 or g(k+1) —g(k) =0 and
bi, = 0. By the first condition, g(0) = 0. For induction, suppose that for 0 < i < N -1, 9(i) = 2 lobk
Then, g(i + 1) — g(i) = 1 if and only if b; = 1. Therefore, g(i +1) = g(i) +1 =, _ Obk + 1 if and only
if b; is 1. Then, g(i + 1) Zk o bk By induction, it follows g is the cumulative digit function of § by
definition.

O

2.1.1 Kronecker Product Results

We define ¢p, o ¢p, (A UdeDl ¢d(Ud,€D2 qﬁd/(A))

Proposition 2.2. Consider Cantor sets C? and CE such that the scale factor and binary digit vector
for § are N;, D;. Then ¢p, o ¢p, = ¢pD, 2D,

Proof. First, y € ¢p, o ¢p, ([0,1]) if and only if there exists x € [0, 1] such that y = ¢p, o ¢p,(x). This
occurs if and only if
%262"'61 _ztetal;

Ny N1 Ny

y:

for some €1 € D1, €3 € Ds.
This is the IFS for scale factor N1 Ny and binary digit vector D3 = {ea+€1 N3 | €2 € D3, €61 € D1} = D1®D>
by definition of the Kronecker product. O

Corollary 2.1. (¢p)"* = ¢paen for alln € ZT.
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Corollary 2.2. Fp = Fgg,.

Proof. Since F is uniquely determined by Cﬁ, and Cﬁ is uniquely determined by the property that
¢p(Cg) = C3, we have that C5 = (¢p)"(Cg) = ¢pen (Cg). Hence C3 satisfies the invariance property
of ppen. Since D®" was defined to retain its association with §®” we have that 'y = Fgzg,. O

Lemma 2.3. Let B = (bo, .., bpr—1) be a binary digit vector with cumulative digit function 95> 8 =
(coy..sen—1) be a binary digit vector with cumulative digit function 9 and 9Be? be the cumulative digit

function for B ® c. Then, for j € {0,..,N}, k€ {0,...., M}, g§®8(kN+]) = ||8Hg§( k) + brge (7)-

Proof. The proof follows by induction on j.
When j =k =0, g§®8(0) =0= ||8Hg§>(0) by definition. When k£ > 1, then

kN — k—1 N—1
9Bge (BN) = Z ?@8) Z (?@8)(n+mN)
kjloNfl N TZO :ff
:Zzbmcnzzcn b
m=0 n=0 n=0 m=0
= [ Cllgg (k)

as desired.
It follows the identity holds for all k& when j = 0. This serves as the base case for induction on j. Now
assume the identity for j. Then,

9B (kN +j+1) =g a(kN +j) + §®8 Y(EN + 7)
= [Cllg3 (k) + brge () + (B  T)(kN +j)
— 1€ g (k) + brg () + biey.

It follows, when by, = 1,
Ipec (kN +j+1) = HBHg—g( )+9a2() e = II8\|9—3> ) +brga (i +1).
Otherwise, when by, = 0,
500N+ +1) = [Cllag (k) = [ Cllgg (k) + begga (G + 1).
O

Proposition 2.3. Let FE be a CDF with scale factor N, binary digit vector ? = (bo,b1,...,bN—1), and
cumulative digit function 95~

o0

For z € (0,1), suchthatx—ZN”anZN,Fﬁ Z(H bnk)?W

=1 =1

Proof. Fix the sequence {n;} C Zx. We have, by Corollary 2.2 and Lemma 2.2, for all j € N

2 - 9B e (Zgﬂ Njfi”i)
i (S5) e (S5 -

i=1

For an inductive base case, by Proposition 2.2,

n nm) (¢ (n;)
Py () = 2150 -3 (T ) 257

_ 7
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For induction on j, suppose that

ra (S 8) =5 (o) 5

Then, with Lemma 2.3 and Lemma 2.2,
J+1 J+1 j+1 +1—i
n; n; Z n; N7
Fy <Z Nz> =Fge, < N1> Faein ( NJ+1 )
i=1 i=1
9§®J+1 (Z]+1n NI+LI= z) gﬁ@]@ﬁ (nlNJ +Z]+1n NI+1- 7,)
| B+ 1B+
1 i [
\§||J9]—3> (n1) +bny 95 0, (Zﬁ n; NI+1= ) - g,—g(m) b, B (Z” n; NI+1- )
|B i+ B 1B R

g§ (nl j+1 /i—1 g( )
H by shifting indices in the inductive hypothesis

1B ?Z I B
g—é(m Z(wa> g5 (n:) Z(H )gfulziy

=2 i=1

Thus, by induction, for all j and n; € Zy

Lo\ 95 (ni)
Fﬁ( )‘ (Hb> 1Bl

i=1

Next, note all 2 € (0,1) have the form Z 1 Nl for some n; € Zy. Since Fﬁ is a continuous function,

J J i—1 nl 0o (nl)
s (52) - (1) 25 -5 1) 250

k=1 i=1 Bl

2.2 Interpolation

Proposition 2.4. Let {(zn,y,)}_; € (QN(0,1)) x (QN(0,1)), i.e. rational pairs in the unit cube, with
Tm # Tn for m # n and ym > Yo whenever x,, > x,. Then there exists a CDF interpolating the data

{(n,yn)}YE_; more specifically, there exists a binary digit vector ﬁ such that Fz(x) = yn for all n.

Proof. We may assume without loss of generality that x1 < x2 < ... < xp. Further, by considering
equivalent fractions, we may assume for all n, that z,, = a" and y, = C” where a;41 —a; > cip1 —¢ +1
for 0 < i < k with the following conventions: ag = ¢y = O, Gpy1 = N7 and cx4+1 = C. We construct the
binary digit vector § of length N as follows:

ﬁ(al :ﬁ (a;+1)=... :g(ai‘i‘cfi_i'_l - —1)=1
B(ai +cit1—¢) = B(ai teip1—c+l)=..= ?(ai_l,_] —1)=0.
Then, we observe the recurrence relation,
Fy(r) = Fy (%) = % =1
Foi(ai41) — Foy (i) = Foy ( z+1) Fy (%) _ gﬁ(ai—&-l)c’* gg(a) _ ciﬂc— Gl

which concludes the proof.
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Remark 2.1. Let {(zn,yn)} be a finite sampling set of rational pairs in the unit cube satisfying the
hypotheses of Proposition 2.4. We note from the proof of the proposition that interpolation by a CDF is not
unique.

Corollary 2.3. Let {(zy,yn)}_; € (0,1) x (QN(0,1)) with x,, # y, for m # n and Yy, > yn whenever
Ty > xp,. Then there exists a CDF that interpolates the data {(xy,yn)}F

~_1: more specifically, there exists

a binary digit vector B such that Fy(xn) = yn for all n.

Proof. We may assume without loss of generality that 0 < x1 < x93 < ... < < 1. Now select a collection

2k

of rational pairs {(zpn,wn)}ae ; such that z; < 21, Ty < 22p < 2op4+1 < Tpg1 for 1 <n <k —1, zx < 2ok,

and way,_1 = way, = Y, for all n. Then, by Proposition 2.4, there exists a binary digit vector § such that
Fg(zn) = w, for all n and, in particular, Fl—3>(xn) = Yn.
O

Corollary 2.4. Let {(zn,yn)}_; be a set of samples of the CDF F=. Suppose C is the collection of binary
digit vectors such that, for 8 €C, Fg (zn) = yn for all n (as guaranteed by Corollary 2.3). Then

sup ( sup |Fg(z) — Fg(m)|> _ma (yn+1 Yn)-

Tec \z€(0,1) L.

Proof. Without loss of generality, let (x1,y1), (z2,y2) be such that

(2 —y) = max  (Yni1—yn)-

Then by adding the interpolation point (r2 — %, y1) to be satisfied by F , the sequence of CDFs Fg
has the property that

1
Jm Py (e g) = w

Since CDFs are by definition increasing, this completes the proof. O

2.3 Sampling

We first show that if we know the scaling factor N, then N — 1 well chosen sample points is enough to
reconstruct Fg.

Lemma 2.4. Form € {0,...,N — 1}, Fz (WT) F (%) if and only if b, = 0.

Proof. Let = (bo, .-, by —1) be the binary digit vector for Fz. By Lemma 2.2, F (mT) —F (%) = ”b?’"u.

Then, F (WT'H) =F (%) if and only if b,, = 0. O
Theorem 2.1. Let 'y be a CDF with H§|| = N. Given {FB(%)}QZR, B can be uniquely determined.
Proof. Since F'5(0) = 0 and F3(1) = 1, this follows from Lemma 2.4. O
Corollary 2.5. If9y = {I'y : H?H = N}, then {(%) ck=1,..,N —1} is a set of uniqueness for 9.

We will now consider the case when we do not know the scale factor.
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2.3.1 Motivating a bound on scale factor

Remark 2.1 and Corollary 2.4 together establish that finite samples will never suffice without some
sort of constraint. We contrast this with with Proposition 2.6 below as this shows a lower bound of O(N)
points is necessary, where NN is the scale factor. The following proposition shows that to be able to uniquely
determine a CDF with a finite number of points, there must be a bound on the scale factor.

Lemma 2.5. Fiz an integer N > 4, and suppose {xn}1<n<i C [0,1] where 0 < zp—1 < zp < 1 for all
n and k < L%J Then there exist two distinct CDFs Fg and Fg, both with scale factor N, such that
Fg(zn) = Fg(an) Vn € {1,.. .k}

Proof. First, we note that there exists an integer ¢ such that z,, ¢ (ﬁ7 %) for all n € {1,2,...,k} by the
pigeon-hole principle.

Next, since N > 4, we also have that there exists an integer j € {0,1,...,N — 1} \ {4,7 4+ 1} such that
Tn & (%, %) for all m € {1,2,...,k}.

We construct two distinct binary digit vectors B = (bg, b1, ...,by—_1) and 8 = (co,€1, -, CN—1) 8S
follows: Let b; = 0, bir1 =1, ¢ =1, ¢i41 =0, b5 =¢; =1, and by, = ¢, = 0 for all m ¢ {i,i+ 1, j}.
Note that both binary digit vectors are nondegenerate since two digits are kept and | B = ||C| = 2.
We note that since HﬁH = ||8H and B + 8, then F # Fz. We conclude the proof by showing that
Fg(wn) = Fg(ay) for all n.

Case 1: i< j
Let z < ﬁ Then by Lemma 2.2

OSF—B>(1“)§F§<;]>— 2‘ =0.

Likewise, Fg(m) = 0. Now let % <z< % Then

1 g9gi+2) i+ 2 j gp(U) 1
Q‘E}‘Fﬁ(;)gﬁ(x)gﬁ(ﬁ)‘ B =g

Likewise, Fg(m) = % Finally let % <z < 1. Then

IO ()

Likewise, Fiz(z) = 1. Thus, Fz(zn) = Fg(z,) for all n.

Case 2: j <1
The argument is analogous to the one given for case 1, and we omit the details.

Figures 3 and 4 depict cases 1 and 2, respectively.
O

The next proposition observes the relationship between the CDFs of the binary digit vector § and its
reverse %, that is %(n) = ?(N —1—mn) for all n where N is the length of B.

Proposition 2.5. Let ? be a binary digit vector. Then,
Fe(r)=1-Fgz(l—2).

Proof. Since F(x) + F3(1 — z) is continuous, it suffices to show the equality on a dense subset of the
unit interval. Specifically, we show the identity on the set of N-adic numbers, that is

1 k—1
{MZ”W

£=0

k‘GN,ngG{Q].,...,N—l}},
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. .
J ik 1
N N

Figure 3. Case 1 — Sketch of piecewise linear approximations of 'z (blue) and F'g (red)

1/2

i ' 1
. Py ° .

iN (+1)N iN (1N (i+2)N

Figure 4. Case 2 — Sketch of piecewise linear approximations of 'z (blue) and F'g (red)
where N is the length of ? We first observe that the simplest case, when k = 1, holds.
N— no— 1

Fg( )+F§(1**> Fg( )*F‘é( > Zlen nz% ?f

We proceed by induction on the power of the N-adic number, assuming the identity is true for k. Then
by Lemma 2.1,

Lk
Iy <Nk+12”fNe + Py Nk+1 ZWNE

£=0
1 k 1 1 k
=Fg (WZHKNZ> + Py <N’€+1+Nk+12(N1W)N£>
Nﬁlb = 1 1 k—1
:Z N|1|nF§<nk Z > |F§< *1fnkfn+m+m (Nlng)]\ﬂ)
n=0 —0 yard
k—1
= HBH ]%J\]llnk bN?ian l ( anN£> +F§ (]\}lk +1ICZ(N17W)NZ>‘|
(=0
HBH - bN71fn,C bN_1-n, [ ( ; Z) ( = £>‘|
B (N |+ F — neN
[El i z Z 7|1

|§H*bN 1—ny, +bN—1—nk

1B .

Thus, the identity holds on the N-adic numbers, and the proof is done.

O
We say that a sampling algorithm is conditional if previously attained samples inform the selection of
the next sample. For the remainder of this section, we describe a conditional sampling algorithm that
completely determines a binary digit vector B given its scale factor N. The algorithm as stated below
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requires at most L%J samples to execute successfully which we note is the minimum number of samples
that is required under non-conditional sampling to discern binary digit vectors of equal scale factor. We

first state the result.

Theorem 2.2. Fiz an integer N > 3, and let § = (bg,b1,...,bN—_1) be a binary digit vector with 2 <
||§H < N — 1. Then there is a conditional sampling algorithm with at most L%J points that completely
determines Fz.

The conditional sampling algorithm that answers Theorem 2.2 is located in the appendix and split into
two parts. Each part considers pairs of digits from § at a time, e.g. (bg,b1), (be,bs3), etc. The role of
Algorithm 1 is to find the first nonzero digit of B. As a consequence of the method, we can also find || B||
from the sampling in Algorithm 1. Then the algorithm terminates if the first nonzero digit occurred in the
last pair, i.e. (by_2,bny—1) if N is even or (by_3,bny_2) if N is odd, as ﬁ is then completely determined;
otherwise, Algorithm 2 applies a similar procedure to B. The sampling in Algorithm 2 is expressed in
terms of F4 which translates to a sampling of F by Proposition 2.5. Then the maximum number of
samples from both Algorithm 1 and Algorithm 2 is precisely the number of paired digits, that is there are
at most LgJ samples. In the proof of the Theorem 2.2, we show that there exists a positive integer ¢ that
is only dependent on N (the smallest positive ¢ such that 2¢** > N — 1 is sufficient) such that Algorithm
1 and Algorithm 2 are well-defined and completely determine ﬁ

Proof. Let m € {1, 2,y L%J } For convenience, we denote

B g§(2m— 1) bam—1

U (z) = + x,
IB| I8

and use the notation 12, = 1, 0 ... 0 9, to represent the composition of ¢ functions. We claim that

l
2 2m —1
Fy <Nm+ N )— L. 3

n=1

The case when ¢ = 0 immediately follows from Lemma 2.2 since

2m _9g(@m) _
(%) iz

To prove identity (3) in general, we proceed by induction, so assume that the identity holds for ¢. Then,
by Lemma 2.1, we find

2m - 2m — 1 iy br 2m
JoEN i L e 22
? NE+2 + Nn Z ‘EH § NEé+1 +

n=1 k=0

=2 (1),
as desired.
There are four cases to consider:
Case 1: by;,—2 = boy,—1 = 0. Then
g=(2m — 2)
V4
=22
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Case 2: byy,—2 = 1; bay,—1 = 0. Then
041 ggm—2)+1
m (1) = T
1B
Case 3: bgm_g = 0; bgm_l = 1. Then
gp(2m—2)+1 g§(2m—2) gp(2m—2)+1 ||§H@_1
Y1) = +Z +opm =)=,
| Bje+ EE | B)je+1 (1B - )| B
Case 4: bgm_g = b27n_1 = 1. Then
l

g5 (2m—2)+2 gg(2m—-2)+1 gp(2m—2)+2 ||§H571
N - g @m—2) 1) .
IS SR T BB (Bl -DIB|

In Algorithm 1, we have 95 (2m —2) = 0. If 51 (1) = 0, then clearly bo,, 2 = bay—1 = 0; else

1 1 I B -2

S ) o< |BIl<N-1}.
{uﬁﬂ Bl 1BI-1 B - 1>\|§ e+

Using some basic algebra, we note that for £ > 1,

! IB) -2
2<|| B <N - 1} M { BI=1 (BI-yIB

n=1

Z+1(1) —

m
n=1

1
{ITT?W 2<|§|<N—1}=@

since the numbers are properly interlaced

0 P4

1 2 1 1 2 1 1
E 27+2ZT_1>E 3£+1 §>E 47n+4€T>§>"'>N_1'
n=1 n=1

Thus, it suffices to find an integer L such that for ¢ > L,

1 EEE B _} { 1
{H?H’nﬁﬂ—l uﬁn—lnﬁufﬂ 2Bl =Nt I B+

The simplest way to find such an L is to take the smallest positive integer L such that 2L+ > N — 1,

2s|§|sw—1}_w.

It follows that we can then determine the parameters (bay,—2, bam—1, \|§H) €{0,1}x{0,1}x{2,3,..., N—1}.
In the validation of Algorithm 2, it is equivalent to consider the three situations:

Situation 1. gz (2m —2) =0

Situation 2. g (2m —2) = | B - 1

Situation 3. 0 < gz (2m —2) < H§|| -1

As for situation 1, we just showed that we may solve for bs,,—o and bo,,—1. It is clear that bgy,—o =
bam—1 = 0 in situation 2 since Algorithm 1 identified a nonzero digit. Under the assumption of situation
3, we have that all of the values of 1‘F1(1) in cases 1 through 4 are distinct. This follows from tedious
algebra, so we only show that Case 2 and Case 3 are different and leave the remainder to the reader to
verify. Since g (2m —2) < | B|| - 1, we have (933 (2m —2) + )(| Bl = 1)+ | B|l < | BJ|I**!. Rearranging
and combining terms, we find

(922m—2) + DB = 1) + 9z 2m— 2| Bl = DI B < (95 2m —2) + D([B] - DI B".

We conclude that Case 2 and Case 3 are distinct from dividing through by (H§H — 1)||§H£+1.

—_— 13
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Remark 2.2. The sampling set

2m ¢ 2m — 1
NE-H + Nn

n=1

SEN

completely determines § up to ambiguity of the last nonzero digit in B That is, suppose that for some
m € {1, 2,y L%J }, we have that by, = 0 for all n > 2m. Then there is ambiguity in the binary digit vector
elements (bap—2,bam—1) as they could be either (1,0) or (0,1) and the samples would agree.

2.3.2 Rationality and the CDF

Lemma 2.6. Let § be a binary digit vector of length N. If x € QN [0,1], then Fz(z) € Q.

Proof. We first note that F'5(0) = 0 and Fz(1) = 1.

o0

Then let z € QN (0, 1), and consider its N-adic representation x = Z

i=1

Since z is rational, the sequence {n;}2, is eventually periodic. Recall from Proposition 2.3 that

a5 ([ ) 222

1=1

v where n; € {0,1,..., N —1}.

If there exists a positive integer ¢ such that b,, = 0, then

0=% (I )

=1 \k=1
which is rational. Note that this is the case if gz (n;) = H§|| for some 7 as we may then take £ = i + 1.
Otherwise, assume that by, = 1 for all k. Then g3 (n;) € {0,1,..., ||§|| — 1} for all 4, and we have the

|§ ||-adic representation,

Zgg n;)

Since the sequence {g3(n;)}72; is eventually peI‘IOdlC it follows that Fz () is rational.
O

Lemma 2.7. Let C3z be a Cantor set and Fg the CDF. For x € Q°N [0,1], € C3 if and only if
Fz(x) € Q°.

Proof. Let B = (bg,...,bn—1) be the binary representation of F—B>

Suppose = € Q°N [0,1]. Since z € (0,1) it follows = = Y72, 1%, for some {n;}52,. Further, since x is

irrational, {n;}72; is never periodic. By Proposition 2.3, F'z(z) = e ( 2211 bnk) gf(]l).

Suppose z € C3. Since z € C, it follows ny, € D, by, = 1, and g(ng) € {0,1,...,| B||— 1} for all k. Then,
g3 (n4)

SHORDIE

Note, g(j +1) > g( ) whenever j € D implies g—B>| p is injective. Then, since {n;}$2, is never periodic and

n; € D, it follows that {g(n;)}$2; is also never periodic. Then, F'z () is a never periodic decimal in base

IB]. Thus, F3(x) € Q°.
Alternatively, suppose = ¢ C3. Then, there exists a smallest K such that ng ¢ D and by, = 0. Then

i1 K gp(n)
k=1 bny, = 0 if and only if i > K and Fg(z) = doiet VB . Thus, Fz(z) € Q. O

Corollary 2.6. Ifx & Cy, then Fz(x) € Q.

Proof. Let x ¢ C3. If x € Q, by Lemma 2.6, Fz3(z) € Q. If z € Q°, by Lemma 2.7, Fz(z) € Q. O



©Allison Byars, Evan Camrud, Steven N. Harding, Sarah McCarty, Keith Sullivan, and Eric S. Weber, Sampling of CDF's of Cantor Sets

2.3.3 Multiplicatively Dependent Scale Factors

Lemma 2.8. Let Fg be a CDF with scale factor N* and F—B> be a CDF with scale factor N, for
L,M,N €N. If§1®§2—§2®§1, thenF—B> _F§

Proof. We first note that the Kronecker product is associative. Let ﬁl ® gg = ﬁg ® ?1.
By Corollary 2.2, F§ = F§®L and F§ = F§®M Then, §®L and §®M have length NLM,

We will show §®L §®M §®M §®L by first showing §® ® § ?2 ® §® by inducting on L.
As the base case, when L =1, ®§2 gu@ﬁ = 2®§ 7§2®
??L ® ?2 ?2 ® §®L Then,

B 9By =B, 0 B @ By = B1® By® BT
:§2®§1®§?L:§2®§?L“.

This proves §®L ® § ﬁg ® §®L

Now we will induct on M. For the base case, when M =1, §®L ® § ?2 ® §®L
g?L ® §®M = §®M ® §®L. Then,

§>®M+1 ® §®L B §®M ® §®L B §®L ® §®M
— B® @ B, @ BEM = BOL @ BOM+1

By induction, B?L ® ﬁ?M = ??M ® ??L Since ??L and B?M have length N&M B?L and ﬁ?M
can be represented as NYM long row vectors. This gives an equivalent definition of the Kronecker product

ﬁ(lgL®§é®M _ §§M®§?L oL _ JBOM . BOM

, either ?1 =cBby" or By = CB?L, for some ¢ € Zo

Now assume

Now assume

on matrices. Since
(see Theorem 24 of [19]). If ¢ = 0, this implies B; = 0 or By = 0, which is a contradiction. Therefore,

BEL = ByM.

c=1, and

Thus,
O

Lem%a 2.9. Let X have scale factor N, and ? and 8 both have scale factor M. If Z ® B = X ® 8,
then B =

Proof. Let X (ag, -y aN—1), § (boy ..., bar—1), and 8 (coy .-, crr—1). From Z ? Z ®8 it
follows a;b; = a;c; Vi, j such that 0 <i <N —1,0 < j < M —1. Since X is a valid binary representation,
A # 0 so 31 such that a; # 0. Then, arb; = ayc; V5 € {0,...,M — 1}, and b; = ¢; Vj € {0,...,M — 1}.
Thus, ﬁ =C. O

Proposition 2.6. Let L, M,N € N. Let S = { 515w }NL+M_1 Let §L be a binary vector of a CDF with
length N* and BM be a binary vector of a CDF with length N™ . Then, Fg (x) = F§>M (z) forallxz € S
if and only if F]—3>L = FE)M

Proof. Let BL = (bo,...,bnyz_1) and BM = (cg,...,cym_1q). Let gp be the cumulative digit function for
1 and gps be the cumulative digit function for B CIf F§> = Fﬁ , clearly FB (z) = F§> (z) when

x € S. Suppose that F§L($) = F§> (z) for all x € S. Let Fg 2B ur be the CDF for gL ®§M7 and gr s
be the cumulative digit function. Therefore

1B ® Barll = 1Bl Ball-

Let k € {0,..., Nt —1}. By Lemma 2.3, gr.ar(kNM) = gr.(k HBM”

15
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It follows from Proposition 2.2 that
Fg o8, (;L) =F3 3. ( ;ﬁi) _ S (ENT)
ERTEN
_a®IBul _ gk, (k) . (k)
IBollBarl  1Bol  Pr\NE) ~ " Ba (NF

since % € S. Then, if F—B>L (%) F—B> (]Hl) since all CDFs are increasing functions, F—B> 2B o (z) =
F—B>L(ac) = F§>M(:1c) for all x € []\fL, NL] Next, suppose Fg (]fL) < Fg (]Hl) By Theorem 2.4,

by = 1, so by Lemma 2.3, for j < NM_ g7\ (kNM + 5) = gL(k)H§M|\ +9m(j)- Also, Fgz s self-similar
on the interval [W’%] Let x € SN (]\fL, ’j\f}). Then, x = % + ﬁ for j € {1,...,NM —1}. It
follows

k 1 j k 1 j
FE*L(I) ~ B (NL) B (NLN“M) ~ B (NL> B (NM) |

~ <% € S and by Proposition 2.2,

Since

gr k‘) 1 g (5) gL(k)H§M|\ +9M(j).

B ke 1 J . -
F§L<>—F§L(NL>+”‘§7|F§M<NM> 1Bl Bl 1Bul - 1Bl Bul

Next, by Proposition 2.2,

- k j ) gn bNM +5) g (B Bull +9m ()
F r) = F — = =F ).
BroBu = FBLeT, (NL CNE) T BBl (Bl Bl 7.1

Therefore, F 3 (z) = Fg, (z) for all z € S.

Further, by switching L and M above, Fz & (z) = F—B>M(x) for all = € S. However, Fg (z) =
Fg (x) for all x € S. Therefore, F—B> 9B, (x) = Fg 9B ur (x) for all x € S, and both have scale factor

NE+M By Corollary 2.1, §M ® § ﬁL ® ﬁM It follows by Lemma 2.8, Fg = F—B> O

2.3.4 Almost nowhere intersection of Cantor Sets

We will use the fact that different Cantor sets have almost no intersection, i.e. the intersection has
measure 0 under either of the invariant measures, to design sampling schemes. Intersections of Cantor sets
have been extensively studied, e.g. [20, 21]. We prove here the property of the intersection of Cantor sets
that we need.

Lemma 2.10. Let hy M, N € N such that M « N. Then, for all L € N, there exists a constant a(M,N) €
(0,1) dependent on M and N such that
L—1 o

Z H |cos(N~FhM™ )| < 2L ~*(MLN),

n=0 k=1

Proof. From Lemma 5 of [22], translated in Lemma 1 of [23], there exists a constant 5(M, N) > 0 dependent

upon M and N such that
L—1 oo

Z H |cos(N~FhM™ )| < 2L —PALN),

n=0 k=1
Since f(x) = 2L'~7 is a decreasing function, if it is true for (M, N) > 1, then it must also be true for
some (M, N) < 1. Then, letting

a(M,N) = {f(M,N) B(M,N) <1 |
p) B(M,N)>1
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it follows
L—1 oo

> I eos(NFham )| < 20t (EN),
n=0 k=1

Lemma 2.11. Let N,t € N. Let D = {eg,...,eq—1} C Zn (and d > 2). Then for any j € N

d—1 |6 ¢ |
2 : 27i a— ©b
e S COoS ('ﬂ—t]w)‘

k=0

Ul =

where €4, €, € D are such that

27m 27— €

+e NJ

“+e NI

27rz 271 %eb‘

max
1,me{0,...,d—

Proof.

d—1
1 2wt L €
— E e NJ
d

k=0

_ % ZZ(zTﬂNJSk'i_eﬂ-A:jen)

k: 0nk

2mi—te 2mi—te 273
e NJ O+6 ~Ni 1

27\'1 € itoeq_
NJd2+e N7 fd-1

)

< s (

1
< m(d(d —1))

.t €atep
. 627” N.i( 2 )

]t
627” e 27 N7 €b

2mm (éa;%) n eQm’ﬁ (M)

cos mgm
NJ

Lemma 2.12. Let Cy be a Cantor set with scale factor N and binary digit vector D = {€0, .-, €4-1}. Let

M,L,h €N with M >1 and M 7 N. Let a(d, M) be defined as in Lemma 2.10 and let 6 = M. Then
the set of x € Cy such that

1
2

t eafeb>’
=1-|cos | 2m— =
’C%(WNJ 2

O

L—1
> 19

has pig -measure of at most 6L~°.

Proof. Adapted from Lemma 3 of [24]. Note, e(Az) is defined and continuous on the interval 0 < z < 1. Let
Z; be the set of non-negative integers less than N containing only digits in D in their base N expansion.
Therefore, by the invariance equation as applied to the push-forward measure p (A) = m(F3(A)) where
m is Lebesgue measure, we can calculate

d—1
1
/ e(Ar)dug = tlirgod_t Z e(AN"t2) = tlggo (dZe (N7 Xe;) > .
j<t

IGC—B> z€Zt

The details of the above calculation are given in [24].
Let €,, €, € D be such that

_t_ it
2771 7 €a +e 274 N7 | —

l,me{0,.. d 1},l#m

—_— 17
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Let r = |eq — €p]. Note, € N, since |D| > 2 and contains only integers. Therefore, following from Lemma
2.11,

/ e(Av)dug| < H | cos(N =9 \rmr)|.

'ECE j=0

Further, |z|? = 2% and e(hM"x) = e(h(—M")z), so for any L € N

L—1 2 L—1L-1
/ Ze(h]\/[”x) dug = Z / e(h(M™ — )z)dpg
weCy MY m=0n=0scc,
L—1L-1
<Xt - g
m=0n=0 |, ¢
L—1L-1
ZZH|COSN Th(M me)mr)|.

Consider [ = min(m,n) and k = max(m,n) — [, so that [ and k determine m and n up to pairs. It follows,

When [ = 0, all terms in the product are cos(0) = 1 and the inner sum is no more than L. Otherwise, by
Lemma 2.10, the inner sum is less than or equal to 2L ~(d:M) where a(d, M) > 0.

L-1L—-1 oo

ﬁ lcos(NIh(M™ = M™rm)| <23 Y ] lcos(N"In(M" = 1)MFrr)|.

1=0 k=0 ;=0

ﬁM‘

Therefore,
L-1 2
> e(hM"z)| < 2L+ LERLTEM)) =2 44127 EM) < g2l M) = 6230,
z€Cy n=0

It follows that the pp-measure of x € Cz such that 25;3 e(hM™z)| > L'~% is no more than % =
6L~ by Chebychev’s inequality. O
Our proof of the following theorem is adapted from [24], and a much stronger result has already been

proven in [25]. See also [26] for a related result regarding the entropy of multiplication by an integer on
R/Z.

Theorem 2.3. Let Cﬁ be a Cantor set. Then pg -almost all x € C§> are normal to every base M > 1
such that M + N.

Proof. Fix M € N. Let § = %7 where « is defined as in Lemma 2 10. Then, 0 < § < 1. Let L; = |e2Vi|.
Then, for 7 > 1, L;‘s < e Vi and fO e~ Vidj < 00, so S
exists J. € N such that
-6
> 6L
Jj=Je

By Lemma 2.12, the sum of the piz-measures of the sets {x : ‘Zﬁf 0 e(M"x )’ > L;_‘s} for some j > J
goes to 0 as J — oo. Therefore, for pg-almost all = there exists J; such that

=0 L; % < c0. It follows for every € > 0 there

Lj—1
> e(M"z)| < Ly for all j > J,,
n=0
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50 |Sniy ! e(Mna)
Further, for every L there exists j;, such that L;, < L < L;, 41. In addition,

=o(L;) as Ly — oo.

L—-1 LJ'Lfl
Z e(M"z) — Z e(M"z)| <L—-Lj,
n=0 n=0

Note, L — L, = o(L) as L — oo, because L; grows slower than a geometric series. Therefore,

L—1
> e(M"z) =o(L)
n=0

as L — oo for pp-almost all .

Note, the set of = such that Zi;é e(M"x) # o(L) for a fixed M € N has pp-measure 0, and the sets
of possible h and M are countable. Then, the set of x such that 25;5 e(M™z) # o(L) for any M € N has
pg-measure 0 because it is the union of a countable number of sets with pg-measure 0. For pig-almost
all x, Zﬁ;é e(hM"z) = o(L) for all M € N such that M » N. By Weyl’s criterion in [10], then for p-
almost all z and any fixed M 4 N, the fractional part of the sequence {M™z}52 , is uniformly distributed.
Therefore, pz-almost all z are normal to all bases M > 1 such that M 5 N. O

Theorem 2.4. Let M, N be scale factors of the Cantor sets Cﬁ, C@, respectively. If M o N, then C]—3> ﬁCEz
is pg-almost empty and B -almost empty.

Proof. Let M, N be scale factors of the Cantor sets CE)’ sz, respectively, and M ¢ N. By Theorem 2.3,
pg-almost all of the elements in Cy are normal in base M. Since normal numbers contain all of the digits,
it follows pz-almost all of the elements in C'y are not in C’@. Similarly, ,uB—almost all of the elements in
sz are normal in base N and likewise are not elements of C§>. Therefore, it follows their intersection is
ug-almost empty and ug—almost empty. O

Note, normality is a stronger condition than necessary to show an element is not in any Cantor set with
scale factor N. In fact, it only must have every digit appear at least once.

Corollary 2.7. For every Cantor set Cg, there exist irrational numbers in Cg normal to every base M
such that M + N.

Proof. There are uncountably many elements in Cz, however, there are only countably many rationals.
Further, by Theorem 2.3, 3 -almost all of the elements in C'z are normal to multiplicatively independent
bases. It follows that pgg-almost all of the elements in Cg must be irrational and normal in multiplicatively
independent bases. O

2.3.5 Using Samples

Lemma 2.13. Let C—B> be a Cantor set with scale factor N. Let Dq,..., Dy be all possible binary digit

vectors of N with cardinality 2, and associate Bl, . ?k with such binary digit vectors. Then for any set
of irrationals {z; € C’ﬁ vi=1,...,k}, D can be uniquely determined from {(z;, F'g (z:))}e_,. In particular,
D =J;cq Di where A= {i| F—B>(xl) € Q°}

Proof. Let D, ..., Dy, be all the digits sets of cardinality 2 for scale factor N. Let § = (bo,...,by—1) be
the binary representation of Cg. Consider z; € C—B> Since z; is irrational and |D;| = 2, the decimal
expansion of x; in base N must contain both digits in D Then, z; € C3 if and only if D; C D. Then, by
Lemma 2.7, Fz(x;) is irrational if and only if D; C D. Let A = {i | Fg(x;) € Q°}. Then, {J;c4 D; C D.
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Next, consider €; € D. Since H?H > 2, there exists an €2 € D, €1 # ez. Further, there exists a j such that
Dj = {e1,e2}. Then, D; C D, z; € Cy and Fgz(z;) will be irrational by Lemma 2.7. It follows j € A,
and therefore Dj C (J,c 4 Da- Thus, €1 € J,c 4 Da- Since €; is arbitrary, it follows (J,c 4 Da = D where
A={i| Fg(z;) € Q°}. O
Theorem 2.5. Given K, there exists a constant M = M(K) such that there exists {zl}f\i(lK) c (0,1)
which is a set of uniqueness for 9x. The constant M(K) = O(K?).

Proof. Let F—B> be a CDF with scale factor N < K. We proceed with Cn,p (instead of C’g notation as it
makes the proof clearer).

For every M, 3 < M < K, there exist (]\24) = % unique Cantor sets Cys, p, such that |D;| = 2.
Further, by Corollary 2.7, each of these Cantor sets contain an irrational element (in fact, almost all
elements) which is normal to all bases multiplicatively independent of M. Then, for every M and |D;| = 2,
there exists x € Cu,p, N Q¢ such that VL o« M,L < K, x in base L has all possible digits in its
representation.

Choose one such element for each Cyr,p,, and denote it x57 p,; let

S| = {l‘M,Di | 3<M< K,|Dl| = 2}

Note, |S1| < w

For any M + N and D; with |D;| = 2, zps,p, contains every possible digit in N. Then, since any x € Cy
cannot contain every digit in base N, xpr,p, & C]—3>. It follows from Corollary 2.6 that F§($ M,D;) € Q.

Suppose now that there exists a CDF with scale factor M passing through all of the points
{(xi7F—B>(:1:i)) | z; € Si}. Since this is true for all D; corresponding with M, by Lemma 2.13 the bi-
nary digit vector of the CDF is be empty, a contradiction. Thus, no such CDF exists and M can be
eliminated as a scale factor.

Thus, all possible scale factors remaining are multiplicatively dependent to N. Therefore, there is a
fixed J € N such that for each possible scale factor N/, N’ = i}LN’ for some Ly € N. Further, by Lemma
2.13, for each N’ there exists at most one binary digit vector, B, such that I’z (z) = = (z) for all z € Sj.

By Proposition 2.6, for all Ly, Ls € N and ?1, ?2 with scale factors JE1, JL2 respectively, either

F§1 = F—B>2 or only one agrees with {(JL%, Fy (JL%)) };LL;MA. Note that for any J, 2 < J < K, there
is Lxg € N such that JI¥ < K < JEx+1 The set of rational numbers expressible with denominator J2Lx
includes the set of rational numbers expressible with denominator J~ for L < 2Lk . Note, JL1, Jl2 < K
implies L1 + Lo < 2Lg.

Since JI& € {2,3,.., K}, sampling at

myM-1
- (3]
M) m=1,Mme{22,32 42 .. K2}
is sufficient to differentiate all mutliplicatively dependent bases no more than K. Hence sampling at

Lr)2_
{ﬁ}i‘;l ' is sufficient for differentiating all bases multiplicatively dependent to J. It follows,
of the remaining CDFs, only CDFs equivalent to Iz will pass through all the points {(z, F'5(z)) | € S2},
and all non-equivalent CDFs can be eliminated.

For any remaining CDFs F, F' = Fz. Thus, S = 51 U 52 is sufficient to reconstruct f3.

Finally, we note that since |Sa| < 12 +22 432 + ... + K2 = K(K'H%(QK'H), |S] < K(K_;)(K_g) +

K(K+D)(2K+1) _ 573 _ 352 | 5p _ 3
%_EK - 3K*+ 5K =0(K?).

O

Corollary 2.8. There exists a set of uniqueness for 9y with sample complexity O(K3).

Remark 2.3. CDFs equivalent to Fz will not be eliminated by the algorithm described in Theorem 2.5,
which only eliminates CDFs which do not pass through all the points. Then, the algorithm will produce all
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equivalent CDFs with scale factor less than K, which includes the CDF with the smallest possible scale
factor, and the smallest possible scale factor can be determined.

Remark 2.4. Since CDFs are equivalent only if their underlying Cantor sets are equal, the algorithm also
reconstructs the underlying Cantor set Cg.

3 Conclusion and Future Research

With a upper scale factor bound of K, and O(K3) points, a CDF of any Cantor set can be completely
reconstructed. While an optimal order on the number of points has not been determined, we have shown
that L%j points is insufficient. Further, many of the points sampled in Theorem 2.5, those in Sp, are not
specific, and must be chosen with true randomness.

If the scale factor N is known, then N — 1 well chosen points is enough to determine the binary digit
vector D. However, this is not the minimum number. A future research question would be to determine
the minimum number of points necessary to determine the binary digit vector.
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Algorithm 1 Finding H§H and the first nonzero digit of B

Since gz (k) = Z;:é b; we have that g(2m — 2) = Z?ZLO_S b; such that we know g(2m — 2) recursively
dependent on sample values and their determination of each b;. We further recall that £ is a large enough
integer, and that the smallest positive ¢ such that 26t > N — 1 is sufficient.
Initialize m =1
while gz(2m —2) =0 do
Sample F at
Mmoo 2m— 1
N1 N7

n=1

if F'z(z) =0 then

b2m—2 =0

b2m—1 =0

m=m-+1
else

if I (x):1/§ forsomeQSggN—lthen
1B =

b27n—2 =1

else if F—B> —1/§ for some2§§§N—1then
|B| =B
bam—2 =10

else

There is an integer 2 < ﬁ < N — 1 such that

Fg(r) = §e+1 Z
1B =B

bom_2 =1
bom_1 =1
end if
Break
end if
end while
if N = 2m then
Return
else if N =2m + 1 then
if g5 (N —1) = | B|| then

bel =0
else
bN_1 =1
end if
else

Proceed to Algorithm 2
end if
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Algorithm 2 Finding the remaining digits of B
Initialize M = | 5 |
form=1,2.... M —mdo
if g<(2m —2) = | B| — 1 then
bN—1-(2m-2) =0

by_1—(2m-1) =0
else

Sample Fe at

2m d 2m —1
xr = W + . N7
if Fe(x) = -"‘E—ﬁ%“%) then
by_1-(2m—2) =
by_1-(2m-1) =0
else if I (z) = %L then
by_1-(2m-2) =1
bN—1-(2m-1) =0
else if , " N
P (s g§(2m—2)+ g4 (2m —
LA TP PR [T
then
by_1-(2m-2) =0
by_1-(2m-1) =1
else
by-1-(2m-2) =1
by_1-(2m-1) =1
end if
end if
end for
if N is odd then
if _—
Z bn + Z b = | Bl
n=2m+1
then
bom =0
else
bom =1
end if

end if
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