
Demonstr. Math. 2021; 1

Research Article Open Access

Allison Byars, Evan Camrud, Steven N. Harding, Sarah McCarty, Keith Sullivan, and Eric
S. Weber*

Sampling and Interpolation of Cumulative
Distribution Functions of Cantor Sets in
[0, 1]

DOI: DOI, Received ..; revised ..; accepted ..
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1 Introduction
A Cantor set is the result of an infinite process of removing sections of an interval—[0, 1] in this

paper—in an iterative fashion. The set itself consists of the points remaining after the removal of intervals
specified by two parameters: the scale factor N and digit set D. The positive integer N determines how
many equal intervals each extant segment is divided into per iteration, while D ⊂ {0, ..., N−1} enumerates
which of the N intervals of the segments will be preserved in each iteration. Equivalently, a Cantor set
is the subset of [0, 1] consisting of numbers whose base-N expansion uses only digits from D. Yet another
description of Cantor sets is given by the invariant set for an iterated function system, which will be our
view in this paper.

Each Cantor set yields a Cumulative Distribution Function (CDF), which we define formally in Defini-
tion 1.2. We denote the class of all such CDFs by F . We consider the problems of sampling and interpolation
of functions in F . By sampling, we mean the reconstruction of an unknown function F ∈ F from its sam-
ples {F (xi)}i∈I at known points {xi}i∈I in its domain (for an introduction to sampling theory, see [1, 2]).
By interpolation, we mean the construction of a function F ∈ F that satisfies the constraints F (xi) = yi
for a priori given data {(xi, yi)}i∈I . Note that the premise of the sampling problem is that there is a unique
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F ∈ F that satisfies the available data, whereas the interpolation problem may not have the uniqueness
property. Depending on the context, I can be either finite or infinite.

Figure 1. C(1,0,1) and F(1,0,1) Figure 2. C(1,1,0,1) and F(1,1,0,1)

To be more precise regarding sampling CDFs, we formulate the problem as follows: Fix G ⊂ F . For
which sets of sampling points {xi}i∈I does the following implication hold:

F,G ∈ G and F (xi) = G(xi) ∀i ∈ I ⇒ F = G (1)

In the case where (1) holds, we call {xi} a set of uniqueness for G .
Our main results in the paper concerning sampling include the following. In Theorem 2.5 we prove that

if G consists of all CDFs for Cantor sets with unknown scale factor N , but the scale factor is known to be
bounded by K, then there exists a set of uniqueness of size O(K3). We show that when the scale factor N
is known, there exists a set of uniqueness of size N − 1 that satisfies the implication in (1). We conjecture
that there is a minimal set of uniqueness of size

⌊
N
2
⌋
, and prove that the minimal set of uniqueness cannot

be smaller in Proposition 2.5. We also provide evidence of our conjecture by considering a conditional
sampling procedure (meaning that the sampling points are data dependent) that can uniquely identify the
CDF from

⌊
N
2
⌋
samples in Theorem 2.2. Additionally, in Section 2.2, we include an interpolation procedure

as an imperfect reconstruction of a CDF from samples, and provide an upper bound on the error that the
reconstruction via interpolation could give.

1.1 Cantor Sets and Their Cumulative Distribution Functions

There are many ways to construct Cantor sets, and consequently many ways to denote a Cantor set.
The Cantor sets we consider in this paper are those that corresponding to restricted digit sets. Thus, our
set is defined by a choice of base (or scale) N and digits D ⊂ {0, . . . , N −1} which are allowed. The Cantor
set determined by such an N and D is denoted by CN,D.

Another notation to describe N,D is to consider a vector −→B = (b0, b1, ..., bN−1) ∈ (Z2)N , where bi = 1
if i ∈ D and bi = 0 if i /∈ D. We will also write −→B (i) := bi. Further, ‖

−→
B‖ :=

∑N−1
i=0 bi = |D|. −→B is referred

to as the binary digit vector, and we denote the Cantor set determined by −→B as C−→
B
. In this sense, both

CN,D and C−→
B

can be used to describe a Cantor set, and we naturally associate N,D with its corresponding
−→
B . Note that in this work, all indexing will start with zero, such that b0 the first entry of the vector −→B .



Allison Byars, Evan Camrud, Steven N. Harding, Sarah McCarty, Keith Sullivan, and Eric S. Weber, Sampling of CDF’s of Cantor Sets 3

In addition, special cases exist in which a Cantor set will be considered degenerate. In particular, C−→
B

is
not considered when the set is empty, a one-point set, or [0, 1]. Under this definition, there does not exist
a Cantor set with N < 3 or ‖−→B‖ equal to 0, 1, or N . For an example of a legitimate Cantor set, C(1,0,1) is
the well-known ternary Cantor set (Figure 1). We also provide an illustration of the iterative construction
of the Cantor set corresponding to −→B = (1, 1, 0, 1) (Figure 2).

Another description of the Cantor sets we consider is as the invariant set for an (affine) iterated function
system (IFS).

Definition 1.1 (Iterated Function System). In general, an IFS is a collection of continuous contraction
maps {φd}d∈D on a complete metric space. Then, the invariant set C is the non-empty subset (if one
exists) of the metric space satisfying

C =
⋃
d∈D

φd(C).

Our Cantor sets CN,D are invariant sets for an IFS in the following way. Let N be the scale factor, and let
D be the digit set. For our purpose, we consider the particular IFS {φd}d∈D on R where φd(x) = x+d

N for
each d ∈ D. We allow φD to act on [0, 1], so the invariant set is a subset of [0, 1]. Moreover, there exists an
invariant measure on the invariant set CN,D.

Theorem 1.1 (Hutchinson, [3]). Let −→B be a binary digit vector. There exists a unique Borel probability
measure µ−→

B
on [0, 1] such that µ−→

B
(C−→

B
) = 1, µ−→

B
([0, 1]\C−→

B
) = 0 and µ−→

B
= 1
‖
−→
B‖

∑
d∈D µ−→B ◦ φ

−1
d . That

is, µ−→
B

is invariant under the iterated function system.

Definition 1.2 (Cumulative Distribution Function). Let −→B be a binary digit vector. The Cantor set as-
sociated to −→B has a unique cumulative distribution function (CDF) F : [0, 1]→ [0, 1] given by

F (x) = µ−→
B

([0, x]) =
x∫

0

dµ−→
B
.

The CDF of C−→
B

is denoted F−→
B
.

Note that the CDF of any of our Cantor sets is continuous. When convenient, we will extend F−→
B

to all of
R by F−→

B
(x) = 0 if x < 0 and 1 if x > 1. It turns out that the invariant measure µ−→

B
is actually the pullback

of Lebesgue measure under the CDF F−→
B
. For any Borel subset A of C−→

B
, µ−→

B
(A) = m(F−→

B
|C−→
B

(A)), where
m is Lebesgue measure.

The Cantor ternary set is the invariant set for the iterated function system φ0(x) = x
3 and φ2(x) = x+2

3 .
The corresponding CDF is often referred to as the “Devil’s staircase”, and the invariant measure on the
Cantor ternary set is the pullback of Lebesgue measure onto the Cantor set under the CDF.

The Cantor sets we consider in this paper are sometimes referred to as “thin” Cantor sets [4]. The
Cantor sets we consider have Lebesgue measure 0; indeed, the Hausdorff dimension of CN,D is log |D|

logN .
Next, we describe an algorithm for approximating the CDF of a Cantor set. To be precise, we recursively

define a sequence of piecewise linear functions {fn} which converges uniformly to the desired CDF. For
this, we need the following definition.

Definition 1.3 (Cumulative Digit Function). Let −→B = (b0, ..., bN−1) be a binary digit vector. Define g :

{0, ..., N} → {0, ..., ‖−→B‖} to be the cumulative digit function where g(0) = 0 and g(i) :=
i−1∑
j=0

bj ∀i ∈

{1, ..., N}.

We can define a sequence of piecewise linear functions that approximate a CDF in the following manner.
For the Cantor set C−→

B
with cumulative digit function g−→

B
, we define F (1)

−→
B

as the linear interpolation of the
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points

S1 =

{(
i

N
,
g(i)
‖
−→
B‖

)∣∣∣∣∣ i ∈ {0, 1, ..., N}
}
.

Let

Sn =

{(
n∑
i=1

ai
N i

,

n∑
i=1

g(ai)
‖
−→
B‖i

)∣∣∣∣∣ 0 ≤ a1 ≤ N, 0 ≤ ai ≤ N − 1 ∀i ∈ {2, ..., n}

}
and define F (n)

−→
B

to be the linear interpolation of Sn. It can be shown that

F−→
B

(x) = lim
n→∞

F
(n)
−→
B

(x)

where the limit converges uniformly on [0, 1].

1.2 Operations on Cantor Sets and IFS’s

For convenience, we define several operations on Cantor sets and their associated CDF’s and IFS’s. We
recall the Kronecker product of two vectors: Let −→B = (b0, b1, ..., bM−1) and −→C = (c0, c1, ..., cN−1). Then,
the Kronecker product of −→B with −→C , denoted −→B ⊗−→C , is defined as

(−→B ⊗−→C )(i) = bb iN cci(modN),

or equivalently,
(−→B ⊗−→C )(n+mN) = bmcn

where n ∈ {0, 1, ..., N − 1} and m ∈ {0, 1, ...,M − 1}, such that the product vector has M ·N entries [5].
Note that if −→B and −→C are binary digit vectors, then −→B ⊗−→C is another binary digit vector.

Definition 1.4 (Kronecker Product of CDF’s). We define the Kronecker product of two CDFs as follows:
Let F−→

B
and F−→

C
be the CDFs corresponding to the binary digit vectors −→B and −→C , respectively. The Kronecker

product of F−→
B

with F−→
C
, denoted F−→

B
⊗ F−→

C
, is the CDF whose binary digit vector is −→B ⊗−→C .

We can define a Kronecker product on digit sets to retain the association of −→B,−→C with N1, D1, N2, D2.

Definition 1.5 (Kronecker Product of digit sets). The Kronecker product of two digit sets D1 and D2,
denoted D1⊗D2, is defined to be the Kronecker product of their associated binary digit vectors. That is, the
scale factor of D1⊗D2 is N1 ·N2, and i ∈ D1⊗D1 if and only if bi = 1 for −→B 1⊗

−→
B 2 = (b0, b1, . . . bN1·N2−1.

Lemma 1.1. D1 ⊗ D2 = {c + bN2 | c ∈ D2, b ∈ D1} where N2 is the scale factor corresponding to D2.
The scale factor associated to D1 ⊗D2 is N1N2.

Definition 1.6. −→B⊗n :=

n times︷ ︸︸ ︷−→
B ⊗

−→
B ⊗ ...⊗

−→
B . For example, −→B⊗1 = −→B , and −→B⊗2 = −→B ⊗−→B .

Some assorted definitions and notations. We let φD(A) =
⋃
d∈D φd(A) and we will write

(φD)n(A) :=
⋃

d1,...,dn∈D

φd1 ◦ ... ◦ φdn(A).

Note, using this notation,
⋂∞
n=1(φD)n([0, 1]) = CN,D. We denote the exponential function e2πix by e(x).

Definition 1.7 (Multiplicative Dependence). Two integers r and s are multiplicatively dependent, de-
noted by r ∼ s, if there exist integers m and n not both zero such that rm = sn. Else, if no such integers
exist, then r and s are multiplicatively independent, denoted by r 6∼ s.
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1.3 Related Results

The results we obtain in this paper are the first of their kind, as far as we are aware. However, sampling
of functions that are associated with fractals has been considered previously in various ways.

Sampling of functions with fractal spectrum was first investigated in [6, 7]. In those papers, the authors
consider the class of functions F which are the Fourier transform of functions f ∈ L2(µ). Here, the measure
µ is a fractal measure that is spectral, meaning that the Hilbert space L2(µ) possesses an orthonormal basis
of exponential functions. Similar sampling theorems are obtained in [8] without the assumption that the
measure is spectral. In higher dimensions, graph approximations of fractals (such as the Sierpinski gasket)
are often considered; sampling of functions on such graphs has been considered in [9, 10].

Sampling of cumulative distribution functions appear in [11, 12] in the context of the Cumulative
Distribution Transform (CDT). The CDT is nonlinear and can provide better separation for classification
problems. Sampling of cumulative distribution functions occurs in the discretization of the CDT. Related
results on interpolation of data using fractal functions and iterated function systems can be found in
[13, 14]. Approximating the moments of the Cantor function is investigated in [15].

A much more general construction of Cumulative Distribution Functions, and approximations thereof,
can be found in [16]. Sampling of probability distributions on Cantor-like sets is considered in [17, 18].

2 Main Results

2.1 Preliminary Theorems

The first Lemma of this section is a very useful invariance identity of the CDF.

Lemma 2.1 (Invariance Equation). Let F−→
B

be a CDF with scale factor N and binary digit vector −→B , then

F−→
B

(x) =
N−1∑
n=0

bn

‖
−→
B‖

F−→
B

(Nx− n). (2)

where we regard F (x) = 0 for all x ≤ 0 and F (x) = 1 for all x ≥ 1.

Proof. This follows nearly immediately from Theorem 1.1, however, we present the proof anyway. Observe,

F−→
B

(x) =
x∫

0

dµ−→
B

=
x∫

0

d
∑
d∈D

1
‖D‖

µ−→
B
◦ φ−1

d =
∑
d∈D

1
‖D‖

x∫
0

dµ−→
B
◦ φ−1

d .

Hence under a change-of-variables

F−→
B

(x) =
∑
d∈D

1
‖D‖

φ−1
d

(x)∫
φ−1
d

(0)

dµ−→
B
◦ φ−1

d ◦ φd =
∑
d∈D

1
‖D‖

Nx−d∫
−d

dµ−→
B

=
∑
d∈D

1
‖D‖

 0∫
−d

dµ−→
B

+
Nx−d∫

0

dµ−→
B

 =
∑
d∈D

1
‖D‖

Nx−d∫
0

dµ−→
B
.

Finally, since ‖−→B‖ = ‖D‖, D ⊂ {0, 1, ..., N − 1}, and bn = 1 for n ∈ D and bn = 0 for n 6∈ D,

F−→
B

(x) =
∑
d∈D

1
‖
−→
B‖

Nx−d∫
0

dµ−→
B

=
N−1∑
n=0

bn

‖
−→
B‖

Nx−d∫
0

dµ−→
B

=
N−1∑
n=0

bn

‖
−→
B‖

F−→
B

(Nx− d).
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Lemma 2.2. Let F−→
B

be a CDF with scale factor N and binary digit vector −→B , then F−→
B

(
k
N

)
= g(k)
‖
−→
B‖

for
k ∈ {0, ..., N}, where g is the cumulative digit function.

Proof. Let −→B = (b0, ..., bN−1) be the binary digit vector for F−→
B
. Then by the invariance equation 2,

F−→
B

(
k

N

)
=
N−1∑
n=0

bn

‖
−→
B‖

F−→
B

(k − n) =
k−1∑
n=0

bn

‖
−→
B‖

= g(k)
‖
−→
B‖

.

Proposition 2.1. A function g : {0, ..., N} → {0, ..., d} is a cumulative digit function for some valid CDF
if and only if the following criteria are met.
1. g(0) = 0
2. g(N) = d, for some d ∈ {2, ..., N − 1}
3. 0 ≤ g(k + 1)− g(k) ≤ 1 for all k ∈ {0, ..., N − 1}.
Moreover, if g satisfies conditions (1), (2), and (3), then the corresponding CDF C−→

B
has binary represen-

tation −→B = (b0, ..., bN−1) such that bk = 1 if and only if g(k + 1)− g(k) = 1 and ‖−→B‖ = d.

Proof. (⇒) Let g be the cumulative digit function for C−→
B
. The first condition follows directly from the

definition of g. Also, g(N) =
N−1∑
j=0

bj = d so the second condition holds. By definition of g, g(i) =
i−1∑
j=0

bj ≤

i∑
j=0

bj = g(i+ 1), so 0 ≤ g(i+ 1)− g(i)

Finally, g(i) + 1 =
i−1∑
j=0

bj + 1 ≥
i∑

j=0
bj = g(i+ 1) implies the third condition.

(⇐) Construct a CDF with the binary representation −→B = (b0, ..., bN−1) such that bk = 1 if and only
if g(k+1)−g(k) = 1. By the second and third conditions, at least two bi will be 1, and this is a valid CDF.
By the third condition and the range of g, either g(k+ 1)− g(k) = 1 and bk = 1 or g(k+ 1)− g(k) = 0 and
bk = 0. By the first condition, g(0) = 0. For induction, suppose that for 0 ≤ i ≤ N − 1, g(i) =

∑i−1
k=0 bk.

Then, g(i + 1) − g(i) = 1 if and only if bi = 1. Therefore, g(i + 1) = g(i) + 1 =
∑i−1
k=0 bk + 1 if and only

if bi is 1. Then, g(i + 1) =
∑i
k=0 bk. By induction, it follows g is the cumulative digit function of −→B by

definition.

2.1.1 Kronecker Product Results

We define φD1 ◦ φD2(A) =
⋃
d∈D1

φd
(⋃

d′∈D2
φd′(A)

)
.

Proposition 2.2. Consider Cantor sets C−→
B 1

and C−→
B 2

such that the scale factor and binary digit vector
for −→B i are Ni, Di. Then φD1 ◦ φD2 = φD1⊗D2

Proof. First, y ∈ φD1 ◦ φD2 ([0, 1]) if and only if there exists x ∈ [0, 1] such that y = φD1 ◦ φD2(x). This
occurs if and only if

y =
x+ε2
N2

+ ε1

N1
= x+ ε2 + ε1N2

N1N2

for some ε1 ∈ D1, ε2 ∈ D2.
This is the IFS for scale factor N1N2 and binary digit vector D3 = {ε2+ε1N2 | ε2 ∈ D2, ε1 ∈ D1} = D1⊗D2
by definition of the Kronecker product.

Corollary 2.1. (φD)n = φD⊗n for all n ∈ Z+.
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Corollary 2.2. F−→
B

= F−→
B⊗k

.

Proof. Since F−→
B

is uniquely determined by C−→
B
, and C−→

B
is uniquely determined by the property that

φD(C−→
B

) = C−→
B
, we have that C−→

B
= (φD)n(C−→

B
) = φD⊗n(C−→

B
). Hence C−→

B
satisfies the invariance property

of φD⊗n . Since D⊗n was defined to retain its association with −→B⊗n we have that F−→
B

= F−→
B⊗n

.

Lemma 2.3. Let −→B = (b0, ..., bM−1) be a binary digit vector with cumulative digit function g−→
B
, −→C =

(c0, .., cN−1) be a binary digit vector with cumulative digit function g−→
C
, and g−→

B⊗
−→
C

be the cumulative digit
function for −→B ⊗−→C . Then, for j ∈ {0, ..., N}, k ∈ {0, ...,M}, g−→

B⊗
−→
C

(kN + j) = ‖−→C ‖g−→
B

(k) + bkg−→C (j).

Proof. The proof follows by induction on j.
When j = k = 0, g−→

B⊗
−→
C

(0) = 0 = ‖−→C ‖g−→
B

(0) by definition. When k ≥ 1, then

g−→
B⊗
−→
C

(kN) =
kN−1∑
i=0

(−→B ⊗−→C )(i) =
k−1∑
m=0

N−1∑
n=0

(−→B ⊗−→C )(n+mN)

=
k−1∑
m=0

N−1∑
n=0

bmcn =
N−1∑
n=0

cn

k−1∑
m=0

bm

= ‖−→C ‖g−→
B

(k)

as desired.
It follows the identity holds for all k when j = 0. This serves as the base case for induction on j. Now
assume the identity for j. Then,

g−→
B⊗
−→
C

(kN + j + 1) = g−→
B⊗
−→
C

(kN + j) + (−→B ⊗−→C )(kN + j)

= ‖−→C ‖g−→
B

(k) + bkgC(j) + (−→B ⊗−→C )(kN + j)

= ‖−→C ‖g−→
B

(k) + bkg−→C (j) + bkcj .

It follows, when bk = 1,

g−→
B⊗
−→
C

(kN + j + 1) = ‖−→C ‖g−→
B

(k) + g−→
C

(j) + cj = ‖−→C ‖g−→
B

(k) + bkg−→C (j + 1).

Otherwise, when bk = 0,

g−→
B⊗
−→
C

(kN + j + 1) = ‖−→C ‖g−→
B

(k) = ‖−→C ‖g−→
B

(k) + bkg−→C (j + 1).

Proposition 2.3. Let F−→
B

be a CDF with scale factor N , binary digit vector −→B = (b0, b1, ..., bN−1), and
cumulative digit function g−→

B
.

For x ∈ (0, 1), such that x =
∞∑
i=1

ni
Ni

, ni ∈ ZN , F−→
B

(x) =
∞∑
i=1

(
i−1∏
k=1

bnk

)
g(ni)
‖
−→
B‖i

.

Proof. Fix the sequence {ni} ⊂ ZN . We have, by Corollary 2.2 and Lemma 2.2, for all j ∈ N

F−→
B

(
j∑
i=1

ni
N i

)
= F−→

B⊗j

(
j∑
i=1

ni
N i

)
=
g−→
B⊗j

(∑j
i=1 N

j−ini

)
‖
−→
B‖j

.

For an inductive base case, by Proposition 2.2,

F−→
B

(n1
N

)
=
g−→
B

(n1)

‖
−→
B‖

=
1∑
i=1

(
i−1∏
k=1

bnk

)
g−→
B

(ni)

‖
−→
B‖i

.
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For induction on j, suppose that

F−→
B

(
j∑
i=1

ni
N i

)
=

j∑
i=1

(
i−1∏
k=1

bnk

)
g−→
B

(ni)

‖
−→
B‖i

.

Then, with Lemma 2.3 and Lemma 2.2,

F−→
B

(
j+1∑
i=1

ni
N i

)
= F−→

B⊗j+1

(
j+1∑
i=1

ni
N i

)
= F−→

B⊗j+1

(∑j+1
i=1 niN

j+1−i

N j+1

)

=
g−→
B⊗j+1

(∑j+1
i=1 niN

j+1−i
)

‖
−→
B‖j+1

=
g−→
B⊗j⊗

−→
B

(
n1N

j +
∑j+1
i=2 niN

j+1−i
)

‖
−→
B‖j+1

=
‖
−→
B‖jg−→

B
(n1) + bn1g−→B⊗j

(∑j+1
i=2 niN

j+1−i
)

‖
−→
B‖j+1

=
g−→
B

(n1)

‖
−→
B‖

+ bn1

‖
−→
B‖

g−→
B⊗j

(∑j+1
i=2 niN

j+1−i
)

‖
−→
B‖j

=
g−→
B

(n1)

‖
−→
B‖

+ bn1

‖
−→
B‖

j+1∑
i=2

(
i−1∏
k=2

bnk

)
g−→
B

(ni)

‖
−→
B‖i−1

, by shifting indices in the inductive hypothesis

=
g−→
B

(n1)

‖
−→
B‖

+
j+1∑
i=2

(
i−1∏
k=1

bnk

)
g−→
B

(ni)

‖
−→
B‖i

=
j+1∑
i=1

(
i−1∏
k=1

bnk

)
g−→
B

(ni)

‖
−→
B‖i

.

Thus, by induction, for all j and ni ∈ ZN

F−→
B

(
j∑
i=1

ni
N i

)
=

j∑
i=1

(
i−1∏
k=1

bnk

)
g−→
B

(ni)

‖
−→
B‖i

.

Next, note all x ∈ (0, 1) have the form
∑∞
i=1

ni
Ni

for some ni ∈ ZN . Since F−→
B

is a continuous function,

F−→
B

(x) = lim
j→∞

F−→
B

(
j∑
i=1

ni
N i

)
= lim
j→∞

j∑
i=1

(
i−1∏
k=1

bnk

)
g−→
B

(ni)

‖
−→
B‖i

=
∞∑
i=1

(
i−1∏
k=1

bnk

)
g−→
B

(ni)

‖
−→
B‖i

.

2.2 Interpolation

Proposition 2.4. Let {(xn, yn)}kn=1 ⊂ (Q∩ (0, 1))× (Q∩ (0, 1)), i.e. rational pairs in the unit cube, with
xm 6= xn for m 6= n and ym ≥ yn whenever xm ≥ xn. Then there exists a CDF interpolating the data
{(xn, yn)}kn=1; more specifically, there exists a binary digit vector −→B such that F−→

B
(xn) = yn for all n.

Proof. We may assume without loss of generality that x1 < x2 < ... < xk. Further, by considering
equivalent fractions, we may assume for all n, that xn = an

N and yn = cn
C where ai+1 − ai ≥ ci+1 − ci + 1

for 0 ≤ i ≤ k with the following conventions: a0 = c0 = 0, ak+1 = N , and ck+1 = C. We construct the
binary digit vector −→B of length N as follows:

−→
B (ai) = −→B (ai + 1) = ... = −→B (ai + ci+1 − ci − 1) = 1

−→
B (ai + ci+1 − ci) = −→B (ai + ci+1 − ci + 1) = ... = −→B (ai+1 − 1) = 0.

Then, we observe the recurrence relation,

F−→
B

(x1) = F−→
B

(a1
N

)
= c1
C

= y1

F−→
B

(xi+1)− F−→
B

(xi) = F−→
B

(ai+1
N

)
− F−→

B

(ai
N

)
=
g−→
B

(ai+1)− g−→
B

(ai)
C

= ci+1 − ci
C

= yi+1 − yi

which concludes the proof.
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Remark 2.1. Let {(xn, yn)} be a finite sampling set of rational pairs in the unit cube satisfying the
hypotheses of Proposition 2.4. We note from the proof of the proposition that interpolation by a CDF is not
unique.

Corollary 2.3. Let {(xn, yn)}kn=1 ⊂ (0, 1)× (Q ∩ (0, 1)) with xm 6= xn for m 6= n and ym ≥ yn whenever
xm ≥ xn. Then there exists a CDF that interpolates the data {(xn, yn)}kn=1; more specifically, there exists
a binary digit vector −→B such that F−→

B
(xn) = yn for all n.

Proof. We may assume without loss of generality that 0 < x1 < x2 < ... < xk < 1. Now select a collection
of rational pairs {(zn, wn)}2kn=1 such that z1 < x1, xn < z2n < z2n+1 < xn+1 for 1 ≤ n ≤ k − 1, xk < z2k,
and w2n−1 = w2n = yn for all n. Then, by Proposition 2.4, there exists a binary digit vector −→B such that
F−→
B

(zn) = wn for all n and, in particular, F−→
B

(xn) = yn.

Corollary 2.4. Let {(xn, yn)}kn=1 be a set of samples of the CDF F−→
B
. Suppose C is the collection of binary

digit vectors such that, for −→C ∈ C, F−→
C

(xn) = yn for all n (as guaranteed by Corollary 2.3). Then

sup
−→
C∈C

(
sup

x∈(0,1)
|F−→
B

(x)− F−→
C

(x)|

)
= max
n=1,...,k−1

(yn+1 − yn).

Proof. Without loss of generality, let (x1, y1), (x2, y2) be such that

(y2 − y1) = max
n=1,...,k−1

(yn+1 − yn).

Then by adding the interpolation point (x2 − 1
n , y1) to be satisfied by F−→

Bn
, the sequence of CDFs F−→

Bn
has the property that

lim
n→∞

F−→
Bn

(
x2 −

1
n

)
= y1.

Since CDFs are by definition increasing, this completes the proof.

2.3 Sampling

We first show that if we know the scaling factor N , then N − 1 well chosen sample points is enough to
reconstruct F−→

B
.

Lemma 2.4. For m ∈ {0, ..., N − 1}, F−→
B

(
m+1
N

)
= F−→

B

(
m
N

)
if and only if bm = 0.

Proof. Let −→B = (b0, ..., bN−1) be the binary digit vector for F−→
B
. By Lemma 2.2, F

(
m+1
N

)
−F

(
m
N

)
= bm
‖
−→
B‖

.

Then, F
(
m+1
N

)
= F

(
m
N

)
if and only if bm = 0.

Theorem 2.1. Let F−→
B

be a CDF with ‖−→B‖ = N . Given {F−→
B

( kN )}N−1
k=1 , −→B can be uniquely determined.

Proof. Since F−→
B

(0) = 0 and F−→
B

(1) = 1, this follows from Lemma 2.4.

Corollary 2.5. If GN = {F−→
B

: ‖−→B‖ = N}, then {
(
k
N

)
: k = 1, ..., N − 1} is a set of uniqueness for GN .

We will now consider the case when we do not know the scale factor.
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2.3.1 Motivating a bound on scale factor

Remark 2.1 and Corollary 2.4 together establish that finite samples will never suffice without some
sort of constraint. We contrast this with with Proposition 2.6 below as this shows a lower bound of O(N)
points is necessary, where N is the scale factor. The following proposition shows that to be able to uniquely
determine a CDF with a finite number of points, there must be a bound on the scale factor.

Lemma 2.5. Fix an integer N ≥ 4, and suppose {xn}1≤n≤k ⊂ [0, 1] where 0 ≤ xn−1 ≤ xn ≤ 1 for all
n and k <

⌊
N
2
⌋
. Then there exist two distinct CDFs F−→

B
and F−→

C
, both with scale factor N , such that

F−→
B

(xn) = F−→
C

(xn) ∀n ∈ {1, ..., k}.

Proof. First, we note that there exists an integer i such that xn /∈
(
i
N ,

i+2
N

)
for all n ∈ {1, 2, ..., k} by the

pigeon-hole principle.
Next, since N ≥ 4, we also have that there exists an integer j ∈ {0, 1, ..., N − 1} \ {i, i+ 1} such that

xn /∈
(
j
N ,

j+1
N

)
for all n ∈ {1, 2, ..., k}.

We construct two distinct binary digit vectors −→B = (b0, b1, ..., bN−1) and −→C = (c0, c1, ..., cN−1) as
follows: Let bi = 0, bi+1 = 1, ci = 1, ci+1 = 0, bj = cj = 1, and bm = cm = 0 for all m /∈ {i, i + 1, j}.
Note that both binary digit vectors are nondegenerate since two digits are kept and ‖−→B‖ = ‖−→C ‖ = 2.
We note that since ‖−→B‖ = ‖−→C ‖ and −→B 6= −→C , then F−→

B
6= F−→

C
. We conclude the proof by showing that

F−→
B

(xn) = F−→
C

(xn) for all n.

Case 1: i < j

Let x ≤ i
N . Then by Lemma 2.2

0 ≤ F−→
B

(x) ≤ F−→
B

(
i

N

)
=
g−→
B

(i)
2 = 0.

Likewise, F−→
C

(x) = 0. Now let i+2
N ≤ x ≤ j

N . Then

1
2 =

g−→
B

(i+ 2)
2 = F−→

B

(
i+ 2
N

)
≤ F−→

B
(x) ≤ F−→

B

(
j

N

)
=
g−→
B

(j)
2 = 1

2 .

Likewise, F−→
C

(x) = 1
2 . Finally let j+1

N ≤ x ≤ 1. Then

1 =
g−→
B

(j + 1)
2 = F−→

B

(
j + 1
N

)
≤ F−→

B
(x) ≤ 1.

Likewise, F−→
C

(x) = 1. Thus, F−→
B

(xn) = F−→
C

(xn) for all n.

Case 2: j < i

The argument is analogous to the one given for case 1, and we omit the details.

Figures 3 and 4 depict cases 1 and 2, respectively.

The next proposition observes the relationship between the CDFs of the binary digit vector −→B and its
reverse ←−B , that is ←−B (n) = −→B (N − 1− n) for all n where N is the length of −→B .

Proposition 2.5. Let −→B be a binary digit vector. Then,

F←−
B

(x) = 1− F−→
B

(1− x).

Proof. Since F←−
B

(x) + F−→
B

(1 − x) is continuous, it suffices to show the equality on a dense subset of the
unit interval. Specifically, we show the identity on the set of N -adic numbers, that is{

1
Nk

k−1∑
`=0

n`N
`

∣∣∣∣∣ k ∈ N, n` ∈ {0, 1, ..., N − 1}

}
,
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Figure 3. Case 1 — Sketch of piecewise linear approximations of F−→
B

(blue) and F−→
C

(red)

Figure 4. Case 2 — Sketch of piecewise linear approximations of F−→
B

(blue) and F−→
C

(red)

where N is the length of −→B . We first observe that the simplest case, when k = 1, holds.

F←−
B

(n0
N

)
+ F−→

B

(
1− n0

N

)
= F←−

B

(n0
N

)
+ F−→

B

(
N − n0
N

)
=
n0−1∑
n=0

bN−1−n

‖
−→
B‖

+
N−n0−1∑
n=0

bn

‖
−→
B‖

= 1.

We proceed by induction on the power of the N -adic number, assuming the identity is true for k. Then,
by Lemma 2.1,

F←−
B

(
1

Nk+1

k∑
`=0

n`N
`

)
+ F−→

B

(
1− 1

Nk+1

k∑
`=0

n`N
`

)

= F←−
B

(
1

Nk+1

k∑
`=0

n`N
`

)
+ F−→

B

(
1

Nk+1 + 1
Nk+1

k∑
`=0

(N − 1− n`)N `

)

=
N−1∑
n=0

bN−1−n

‖
−→
B‖

F←−
B

(
nk − n+ 1

Nk

k−1∑
`=0

n`N
`

)
+ bn

‖
−→
B‖

F−→
B

(
N − 1− nk − n+ 1

Nk
+ 1
Nk

k−1∑
`=0

(N − 1− n`)N `

)

= ‖
−→
B‖ − bN−1−nk

‖
−→
B‖

+ bN−1−nk

‖
−→
B‖

[
F←−
B

(
1
Nk

k−1∑
`=0

n`N
`

)
+ F−→

B

(
1
Nk

+ 1
Nk

k−1∑
`=0

(N − 1− n`)N `

)]

= ‖
−→
B‖ − bN−1−nk

‖
−→
B‖

+ bN−1−nk

‖
−→
B‖

[
F←−
B

(
1
Nk

k−1∑
`=0

n`N
`

)
+ F−→

B

(
1− 1

Nk

k−1∑
`=0

n`N
`

)]

= ‖
−→
B‖ − bN−1−nk

‖
−→
B‖

+ bN−1−nk

‖
−→
B‖

= 1.

Thus, the identity holds on the N -adic numbers, and the proof is done.

We say that a sampling algorithm is conditional if previously attained samples inform the selection of
the next sample. For the remainder of this section, we describe a conditional sampling algorithm that
completely determines a binary digit vector −→B given its scale factor N . The algorithm as stated below
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requires at most
⌊
N
2
⌋
samples to execute successfully which we note is the minimum number of samples

that is required under non-conditional sampling to discern binary digit vectors of equal scale factor. We
first state the result.

Theorem 2.2. Fix an integer N ≥ 3, and let −→B = (b0, b1, ..., bN−1) be a binary digit vector with 2 ≤
‖
−→
B‖ ≤ N − 1. Then there is a conditional sampling algorithm with at most

⌊
N
2
⌋
points that completely

determines F−→
B
.

The conditional sampling algorithm that answers Theorem 2.2 is located in the appendix and split into
two parts. Each part considers pairs of digits from −→B at a time, e.g. (b0, b1), (b2, b3), etc. The role of
Algorithm 1 is to find the first nonzero digit of −→B . As a consequence of the method, we can also find ‖−→B‖
from the sampling in Algorithm 1. Then the algorithm terminates if the first nonzero digit occurred in the
last pair, i.e. (bN−2, bN−1) if N is even or (bN−3, bN−2) if N is odd, as −→B is then completely determined;
otherwise, Algorithm 2 applies a similar procedure to ←−B . The sampling in Algorithm 2 is expressed in
terms of F←−

B
which translates to a sampling of F−→

B
by Proposition 2.5. Then the maximum number of

samples from both Algorithm 1 and Algorithm 2 is precisely the number of paired digits, that is there are
at most

⌊
N
2
⌋
samples. In the proof of the Theorem 2.2, we show that there exists a positive integer ` that

is only dependent on N (the smallest positive ` such that 2`+1 > N − 1 is sufficient) such that Algorithm
1 and Algorithm 2 are well-defined and completely determine −→B .

Proof. Let m ∈
{

1, 2, ...,
⌊
N
2
⌋}

. For convenience, we denote

ψm(x) =
g−→
B

(2m− 1)

‖
−→
B‖

+ b2m−1

‖
−→
B‖

x,

and use the notation ψ`m = ψm ◦ ... ◦ ψm to represent the composition of ` functions. We claim that

F−→
B

(
2m
N `+1 +

∑̀
n=1

2m− 1
Nn

)
= ψ`+1

m (1). (3)

The case when ` = 0 immediately follows from Lemma 2.2 since

F−→
B

(
2m
N

)
=
g−→
B

(2m)

‖
−→
B‖

= ψm(1).

To prove identity (3) in general, we proceed by induction, so assume that the identity holds for `. Then,
by Lemma 2.1, we find

F−→
B

(
2m
N `+2 +

`+1∑
n=1

2m− 1
Nn

)
=
N−1∑
k=0

bk

‖
−→
B‖

F−→
B

(
2m
N `+1 +

[∑̀
n=1

2m− 1
Nn

]
+ 2m− 1− k

)

=

[2m−2∑
k=0

bk

‖
−→
B‖

]
+ b2m−1

‖
−→
B‖

F−→
B

(
2m
N `+1 +

∑̀
n=1

2m− 1
Nn

)

=
g−→
B

(2m− 1)

‖
−→
B‖

+ b2m−1

‖
−→
B‖

ψ`+1
m (1)

= ψ`+2
m (1),

as desired.
There are four cases to consider:

Case 1: b2m−2 = b2m−1 = 0. Then

ψ`+1
m (1) =

g−→
B

(2m− 2)

‖
−→
B‖

.
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Case 2: b2m−2 = 1; b2m−1 = 0. Then

ψ`+1
m (1) =

g−→
B

(2m− 2) + 1

‖
−→
B‖

.

Case 3: b2m−2 = 0; b2m−1 = 1. Then

ψ`+1
m (1) =

g−→
B

(2m− 2) + 1

‖
−→
B‖`+1

+
∑̀
n=1

g−→
B

(2m− 2)

‖
−→
B‖n

=
g−→
B

(2m− 2) + 1

‖
−→
B‖`+1

+ g−→
B

(2m− 2) ‖
−→
B‖` − 1

(‖−→B‖ − 1)‖−→B‖`
.

Case 4: b2m−2 = b2m−1 = 1. Then

ψ`+1
m (1) =

g−→
B

(2m− 2) + 2

‖
−→
B‖`+1

+
∑̀
n=1

g−→
B

(2m− 2) + 1

‖
−→
B‖n

=
g−→
B

(2m− 2) + 2

‖
−→
B‖`+1

+(g−→
B

(2m−2)+1) ‖
−→
B‖` − 1

(‖−→B‖ − 1)‖−→B‖`
.

In Algorithm 1, we have g−→
B

(2m− 2) = 0. If ψ`+1
m (1) = 0, then clearly b2m−2 = b2m−1 = 0; else

ψ`+1
m (1) ∈

{
1
‖
−→
B‖

,
1

‖
−→
B‖`+1

,
1

‖
−→
B‖ − 1

+ ‖
−→
B‖ − 2

(‖−→B‖ − 1)‖−→B‖`+1

∣∣∣∣∣ 2 ≤ ‖−→B‖ ≤ N − 1

}
.

Using some basic algebra, we note that for ` ≥ 1,{
1
‖
−→
B‖

∣∣∣∣∣ 2 ≤ ‖−→B‖ ≤ N − 1

}⋂{
1

‖
−→
B‖ − 1

+ ‖
−→
B‖ − 2

(‖−→B‖ − 1)‖−→B‖`+1

∣∣∣∣∣ 2 ≤ ‖−→B‖ ≤ N − 1

}
= ∅

since the numbers are properly interlaced∑̀
n=1

1
2n + 2

2`+1 = 1 >
∑̀
n=1

1
3n + 2

3`+1 >
1
2 >

∑̀
n=1

1
4n + 2

4`+1 >
1
3 > ... >

1
N − 1 .

Thus, it suffices to find an integer L such that for ` ≥ L,{
1
‖
−→
B‖

,
1

‖
−→
B‖ − 1

+ ‖
−→
B‖ − 2

(‖−→B‖ − 1)‖−→B‖`+1

∣∣∣∣∣ 2 ≤ ‖−→B‖ ≤ N − 1

}⋂{
1

‖
−→
B‖`+1

∣∣∣∣∣ 2 ≤ ‖−→B‖ ≤ N − 1

}
= ∅.

The simplest way to find such an L is to take the smallest positive integer L such that 2L+1 > N − 1.

It follows that we can then determine the parameters (b2m−2, b2m−1, ‖
−→
B‖) ∈ {0, 1}×{0, 1}×{2, 3, ..., N−1}.

In the validation of Algorithm 2, it is equivalent to consider the three situations:

Situation 1. g−→
B

(2m− 2) = 0

Situation 2. g−→
B

(2m− 2) = ‖−→B‖ − 1

Situation 3. 0 < g−→
B

(2m− 2) < ‖−→B‖ − 1

As for situation 1, we just showed that we may solve for b2m−2 and b2m−1. It is clear that b2m−2 =
b2m−1 = 0 in situation 2 since Algorithm 1 identified a nonzero digit. Under the assumption of situation
3, we have that all of the values of ψ`+1

m (1) in cases 1 through 4 are distinct. This follows from tedious
algebra, so we only show that Case 2 and Case 3 are different and leave the remainder to the reader to
verify. Since g−→

B
(2m− 2) < ‖−→B‖− 1, we have (g−→

B
(2m− 2) + 1)(‖−→B‖`− 1) + ‖−→B‖ < ‖−→B‖`+1. Rearranging

and combining terms, we find

(g−→
B

(2m− 2) + 1)(‖−→B‖ − 1) + g−→
B

(2m− 2)(‖−→B‖` − 1)‖−→B‖ < (g−→
B

(2m− 2) + 1)(‖−→B‖ − 1)‖−→B‖`.

We conclude that Case 2 and Case 3 are distinct from dividing through by (‖−→B‖ − 1)‖−→B‖`+1.
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Remark 2.2. The sampling set{
2m
N `+1 +

∑̀
n=1

2m− 1
Nn

∣∣∣∣∣m ∈
{

1, 2, ...,
⌊
N

2

⌋}}
completely determines −→B up to ambiguity of the last nonzero digit in −→B . That is, suppose that for some
m ∈

{
1, 2, ...,

⌊
N
2
⌋}

, we have that bn = 0 for all n > 2m. Then there is ambiguity in the binary digit vector
elements (b2m−2, b2m−1) as they could be either (1, 0) or (0, 1) and the samples would agree.

2.3.2 Rationality and the CDF

Lemma 2.6. Let −→B be a binary digit vector of length N . If x ∈ Q ∩ [0, 1], then F−→
B

(x) ∈ Q.

Proof. We first note that F−→
B

(0) = 0 and F−→
B

(1) = 1.

Then let x ∈ Q∩ (0, 1), and consider its N -adic representation x =
∞∑
i=1

ni
Ni

where ni ∈ {0, 1, ..., N − 1}.

Since x is rational, the sequence {ni}∞i=1 is eventually periodic. Recall from Proposition 2.3 that

F−→
B

(x) =
∞∑
i=1

(
i−1∏
k=1

bnk

)
g−→
B

(ni)

‖
−→
B‖i

.

If there exists a positive integer ` such that bn` = 0, then

F−→
B

(x) =
∑̀
i=1

(
i−1∏
k=1

bnk

)
g−→
B

(ni)

‖
−→
B‖i

,

which is rational. Note that this is the case if g−→
B

(ni) = ‖−→B‖ for some i as we may then take ` = i + 1.
Otherwise, assume that bnk = 1 for all k. Then g−→

B
(ni) ∈ {0, 1, ..., ‖

−→
B‖ − 1} for all i, and we have the

‖
−→
B‖-adic representation,

F−→
B

(x) =
∞∑
i=1

g−→
B

(ni)

‖
−→
B‖i

.

Since the sequence {g−→
B

(ni)}∞i=1 is eventually periodic, it follows that F−→
B

(x) is rational.

Lemma 2.7. Let C−→
B

be a Cantor set and F−→
B

the CDF. For x ∈ Qc ∩ [0, 1], x ∈ C−→
B

if and only if
F−→
B

(x) ∈ Qc.

Proof. Let −→B = (b0, ..., bN−1) be the binary representation of F−→
B
.

Suppose x ∈ Qc ∩ [0, 1]. Since x ∈ (0, 1) it follows x =
∑∞
i=1

ni
Ni

, for some {ni}∞i=1. Further, since x is
irrational, {ni}∞i=1 is never periodic. By Proposition 2.3, F−→

B
(x) =

∑∞
i=1

(∏i−1
k=1 bnk

)
g−→
B

(ni)
‖
−→
B‖i

.

Suppose x ∈ C−→
B
. Since x ∈ C−→

B
, it follows nk ∈ D, bnk = 1, and g(nk) ∈ {0, 1, ..., ‖−→B‖−1} for all k. Then,

F−→
B

(x) =
∑∞
i=1

g−→
B

(ni)
‖
−→
B‖i

.
Note, g(j + 1) > g(j) whenever j ∈ D implies g−→

B
|D is injective. Then, since {ni}∞i=1 is never periodic and

ni ∈ D, it follows that {g−→
B

(ni)}∞i=1 is also never periodic. Then, F−→
B

(x) is a never periodic decimal in base
‖
−→
B‖. Thus, F−→

B
(x) ∈ Qc.

Alternatively, suppose x 6∈ C−→
B
. Then, there exists a smallest K such that nK 6∈ D and bnK = 0. Then∏i−1

k=1 bnk = 0 if and only if i > K and F−→
B

(x) =
∑K
i=1

g−→
B

(ni)
‖
−→
B‖i

. Thus, F−→
B

(x) ∈ Q.

Corollary 2.6. If x 6∈ C−→
B
, then F−→

B
(x) ∈ Q.

Proof. Let x 6∈ C−→
B
. If x ∈ Q, by Lemma 2.6, F−→

B
(x) ∈ Q. If x ∈ Qc, by Lemma 2.7, F−→

B
(x) ∈ Q.
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2.3.3 Multiplicatively Dependent Scale Factors

Lemma 2.8. Let F−→
B 1

be a CDF with scale factor NL and F−→
B 2

be a CDF with scale factor NM , for
L,M,N ∈ N. If −→B 1 ⊗

−→
B 2 = −→B 2 ⊗

−→
B 1, then F−→B 1

= F−→
B 2

.

Proof. We first note that the Kronecker product is associative. Let −→B 1 ⊗
−→
B 2 = −→B 2 ⊗

−→
B 1.

By Corollary 2.2, F−→
B 1

= F−→
B⊗L1

and F−→
B 2

= F−→
B⊗M2

. Then, −→B⊗L1 and −→B⊗M2 have length NLM .

We will show −→B⊗L1 ⊗
−→
B⊗M2 = −→B⊗M2 ⊗

−→
B⊗L1 , by first showing −→B⊗L1 ⊗

−→
B 2 = −→B 2⊗

−→
B⊗L1 by inducting on L.

As the base case, when L = 1, −→B⊗1
1 ⊗

−→
B 2 = −→B 1 ⊗

−→
B 2 = −→B 2 ⊗

−→
B 1 = −→B 2 ⊗

−→
B⊗1

1 .
Now assume −→B⊗L1 ⊗

−→
B 2 = −→B 2 ⊗

−→
B⊗L1 . Then,

−→
B⊗L+1

1 ⊗
−→
B 2 = −→B 1 ⊗

−→
B⊗L1 ⊗

−→
B 2 = −→B 1 ⊗

−→
B 2 ⊗

−→
B⊗L1

= −→B 2 ⊗
−→
B 1 ⊗

−→
B⊗L1 = −→B 2 ⊗

−→
B⊗L+1

1 .

This proves −→B⊗L1 ⊗
−→
B 2 = −→B 2 ⊗

−→
B⊗L1 .

Now we will induct on M . For the base case, when M = 1, −→B⊗L1 ⊗
−→
B 2 = −→B 2 ⊗

−→
B⊗L1 .

Now assume −→B⊗L1 ⊗
−→
B⊗M2 = −→B⊗M2 ⊗

−→
B⊗L1 . Then,

−→
B⊗M+1

2 ⊗
−→
B⊗L1 = −→B 2 ⊗

−→
B⊗M2 ⊗

−→
B⊗L1 = −→B 2 ⊗

−→
B⊗L1 ⊗

−→
B⊗M2

= −→B⊗L1 ⊗
−→
B 2 ⊗

−→
B⊗M2 = −→B⊗L1 ⊗

−→
B⊗M+1

2 .

By induction, −→B⊗L1 ⊗
−→
B⊗M2 = −→B⊗M2 ⊗

−→
B⊗L1 . Since −→B⊗L1 and −→B⊗M2 have length NLM , −→B⊗L1 and −→B⊗M2

can be represented as NLM long row vectors. This gives an equivalent definition of the Kronecker product
on matrices. Since −→B⊗L1 ⊗

−→
B⊗M2 = −→B⊗M2 ⊗

−→
B⊗L1 , either −→B⊗L1 = c

−→
B⊗M2 or −→B⊗M2 = c

−→
B⊗L1 , for some c ∈ Z2

(see Theorem 24 of [19]). If c = 0, this implies −→B 1 = 0 or −→B 2 = 0, which is a contradiction. Therefore,
c = 1, and

−→
B⊗L1 = −→B⊗M2 .

Thus,
F−→
B 1

= F−→
B⊗L1

= F−→
B⊗M2

= F−→
B 2
.

Lemma 2.9. Let −→A have scale factor N , and −→B and −→C both have scale factor M . If −→A ⊗ −→B = −→A ⊗ −→C ,
then −→B = −→C .

Proof. Let −→A = (a0, ..., aN−1), −→B = (b0, ..., bM−1), and −→C = (c0, ..., cM−1). From −→A ⊗ −→B = −→A ⊗ −→C , it
follows aibj = aicj ∀i, j such that 0 ≤ i ≤ N − 1, 0 ≤ j ≤M − 1. Since −→A is a valid binary representation,
−→
A 6= 0 so ∃I such that aI 6= 0. Then, aIbj = aIcj ∀j ∈ {0, ...,M − 1}, and bj = cj ∀j ∈ {0, ...,M − 1}.
Thus, −→B = −→C .

Proposition 2.6. Let L,M,N ∈ N. Let S = { m
NL+M }N

L+M−1
m=1 . Let −→BL be a binary vector of a CDF with

length NL and −→BM be a binary vector of a CDF with length NM . Then, F−→
BL

(x) = F−→
BM

(x) for all x ∈ S
if and only if F−→

BL
= F−→

BM
.

Proof. Let −→BL = (b0, ..., bNL−1) and −→BM = (c0, ..., cNM−1). Let gL be the cumulative digit function for
−→
BL and gM be the cumulative digit function for −→BM . If F−→

BL
= F−→

BM
, clearly F−→

BL
(x) = F−→

BM
(x) when

x ∈ S. Suppose that F−→
BL

(x) = F−→
BM

(x) for all x ∈ S. Let F−→
BL⊗

−→
BM

be the CDF for −→BL⊗
−→
BM , and gLM

be the cumulative digit function. Therefore,

‖
−→
BL ⊗

−→
BM‖ = ‖−→BL‖‖

−→
BM‖.

Let k ∈ {0, ..., NL − 1}. By Lemma 2.3, gLM (kNM ) = gL(k)‖−→BM‖.
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It follows from Proposition 2.2 that

F−→
BL⊗

−→
BM

(
k

NL

)
= F−→

BL⊗
−→
BM

(
kNM

NL+M

)
= gLM (kNM )
‖
−→
BL‖‖

−→
BM‖

= gL(k)‖−→BM‖
‖
−→
BL‖‖

−→
BM‖

= gL(k)
‖
−→
BL‖

= F−→
BL

(
k

NL

)
= F−→

BM

(
k

NL

)
since k

NL
∈ S. Then, if F−→

BL

(
k
NL

)
= F−→

BL

(
k+1
NL

)
, since all CDFs are increasing functions, F−→

BL⊗
−→
BM

(x) =
F−→
BL

(x) = F−→
BM

(x) for all x ∈
[
k
NL

, k+1
NL

]
. Next, suppose F−→

BL

(
k
NL

)
< F−→

BL

(
k+1
NL

)
. By Theorem 2.4,

bk = 1, so by Lemma 2.3, for j < NM , gLM (kNM + j) = gL(k)‖−→BM‖+ gM (j). Also, F−→
BL

is self-similar
on the interval

[
k
NL

, k+1
NL

]
. Let x ∈ S ∩

(
k
NL

, k+1
NL

)
. Then, x = k

NL
+ j

NL+M for j ∈ {1, ..., NM − 1}. It
follows

F−→
BL

(x) = F−→
BL

(
k

NL

)
+ 1
‖
−→
BL‖

F−→
BL

(
NL j

NL+M

)
= F−→

BL

(
k

NL

)
+ 1
‖
−→
BL‖

F−→
BL

(
j

NM

)
.

Since j
NM
∈ S and by Proposition 2.2,

F−→
BL

(x) = F−→
BL

(
k

NL

)
+ 1
‖
−→
BL‖

F−→
BM

(
j

NM

)
= gL(k)
‖
−→
BL‖

+ 1
‖
−→
BL‖

· gM (j)
‖
−→
BM‖

= gL(k)‖−→BM‖+ gM (j)
‖
−→
BL‖‖

−→
BM‖

.

Next, by Proposition 2.2,

F−→
BL⊗

−→
BM

(x) = F−→
BL⊗

−→
BM

(
k

NL
+ j

NL+M

)
= gLM (kNM + j)
‖
−→
BL‖‖

−→
BM‖

= gL(k)‖−→BM‖+ gM (j)
‖
−→
BL‖‖

−→
BM‖

= F−→
BL

(x).

Therefore, F−→
BL⊗

−→
BM

(x) = F−→
BL

(x) for all x ∈ S.
Further, by switching L and M above, F−→

BM⊗
−→
BL

(x) = F−→
BM

(x) for all x ∈ S. However, F−→
BM

(x) =
F−→
BL

(x) for all x ∈ S. Therefore, F−→
BM⊗

−→
BL

(x) = F−→
BL⊗

−→
BM

(x) for all x ∈ S, and both have scale factor
NL+M . By Corollary 2.1, −→BM ⊗

−→
BL = −→BL ⊗

−→
BM . It follows by Lemma 2.8, F−→

BM
= F−→

BL
.

2.3.4 Almost nowhere intersection of Cantor Sets

We will use the fact that different Cantor sets have almost no intersection, i.e. the intersection has
measure 0 under either of the invariant measures, to design sampling schemes. Intersections of Cantor sets
have been extensively studied, e.g. [20, 21]. We prove here the property of the intersection of Cantor sets
that we need.

Lemma 2.10. Let h,M,N ∈ N such that M 6∼ N . Then, for all L ∈ N, there exists a constant α(M,N) ∈
(0, 1) dependent on M and N such that

L−1∑
n=0

∞∏
k=1

| cos(N−khMnπ)| ≤ 2L1−α(M,N).

Proof. From Lemma 5 of [22], translated in Lemma 1 of [23], there exists a constant β(M,N) > 0 dependent
upon M and N such that

L−1∑
n=0

∞∏
k=1

| cos(N−khMnπ)| ≤ 2L1−β(M,N).

Since f(x) = 2L1−x is a decreasing function, if it is true for β(M,N) ≥ 1, then it must also be true for
some α(M,N) < 1. Then, letting

α(M,N) =

{
β(M,N) β(M,N) < 1
1
2 β(M,N) ≥ 1

,
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it follows
L−1∑
n=0

∞∏
k=1

| cos(N−khMnπ)| ≤ 2L1−α(M,N).

Lemma 2.11. Let N, t ∈ N. Let D = {ε0, ..., εd−1} ⊂ ZN (and d ≥ 2). Then for any j ∈ N∣∣∣∣∣1d
d−1∑
k=0

e2πi t

Nj
εk

∣∣∣∣∣ ≤
∣∣∣∣cos

(
πt
|εa − εb|
N j

)∣∣∣∣
where εa, εb ∈ D are such that∣∣∣e2πi t

Nj
εa + e2πi t

Nj
εb
∣∣∣ = max

l,m∈{0,...,d−1},l 6=m

∣∣∣e2πi t

Nj
εl + e2πi t

Nj
εm
∣∣∣ .

Proof. ∣∣∣∣∣1d
d−1∑
k=0

e2πit t

Nj
εk

∣∣∣∣∣ =

∣∣∣∣∣∣1d · 1
2(d− 1)

d−1∑
k=0

∑
n6=k

(
e2πi t

Nj
εk + e2πi t

Nj
εn

)∣∣∣∣∣∣
≤ 1

2d(d− 1)

( ∣∣∣e2πi t

Nj
ε0 + e2πi t

Nj
ε1
∣∣∣+ ...+

∣∣∣e2πi t

Nj
εd−2 + e2πi t

Nj
εd−1

∣∣∣ )
≤ 1

2d(d− 1) (d(d− 1))
∣∣∣e2πi t

Nj
εa + e2πi t

Nj
εb
∣∣∣

= 1
2 ·
∣∣∣∣e2πi t

Nj

(
εa+εb

2

)∣∣∣∣ ∣∣∣∣e2πi t

Nj

(
εa−εb

2

)
+ e

2πi t

Nj

(−(εa−εb)
2

)∣∣∣∣
= 1 ·

∣∣∣cos
(

2π t

N j

εa − εb
2

)∣∣∣ =
∣∣∣∣cos

(
πt
|εa − εb|
N j

)∣∣∣∣

Lemma 2.12. Let C−→
B

be a Cantor set with scale factor N and binary digit vector D = {ε0, ..., εd−1}. Let
M,L, h ∈ N with M > 1 and M 6∼ N . Let α(d,M) be defined as in Lemma 2.10 and let δ = α(d,M)

3 . Then
the set of x ∈ C−→

B
such that ∣∣∣∣∣

L−1∑
n=0

e(hMnx)

∣∣∣∣∣ ≥ L1−δ

has µ−→
B
-measure of at most 6L−δ.

Proof. Adapted from Lemma 3 of [24]. Note, e(λx) is defined and continuous on the interval 0 ≤ x ≤ 1. Let
Zt be the set of non-negative integers less than N t containing only digits in D in their base N expansion.
Therefore, by the invariance equation as applied to the push-forward measure µ−→

B
(A) = m(F−→

B
(A)) where

m is Lebesgue measure, we can calculate∫
x∈C−→

B

e(λx)dµ−→
B

= lim
t→∞

d−t
∑
z∈Zt

e(λN−tz) = lim
t→∞

∏
j<t

(
1
d

d−1∑
i=0

e(N−jλεi)

)
.

The details of the above calculation are given in [24].
Let εa, εb ∈ D be such that∣∣∣e2πi t

Nj
εa + e2πi t

Nj
εb
∣∣∣ = max

l,m∈{0,...,d−1},l 6=m

∣∣∣e2πi t

Nj
εl + e2πi t

Nj
εm
∣∣∣ .
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Let r = |εa − εb|. Note, r ∈ N, since |D| ≥ 2 and contains only integers. Therefore, following from Lemma
2.11, ∣∣∣∣∣∣∣

∫
x∈C−→

B

e(λx)dµ−→
B

∣∣∣∣∣∣∣ ≤
∞∏
j=0
| cos(N−jλrπ)|.

Further, |z|2 = zz and e(hMnx) = e(h(−Mn)x), so for any L ∈ N

∫
x∈C−→

B

∣∣∣∣∣
L−1∑
n=0

e(hMnx)

∣∣∣∣∣
2

dµ−→
B

=

∣∣∣∣∣∣∣
L−1∑
m=0

L−1∑
n=0

∫
x∈C−→

B

e(h(Mn −Mm)x)dµ−→
B

∣∣∣∣∣∣∣
≤

L−1∑
m=0

L−1∑
n=0

∣∣∣∣∣∣∣
∫

x∈C−→
B

e(h(Mn −Mm)x)dµ−→
B

∣∣∣∣∣∣∣
≤

L−1∑
m=0

L−1∑
n=0

∞∏
j=0

∣∣cos(N−jh(Mn −Mm)rπ)
∣∣ .

Consider l = min(m,n) and k = max(m,n)− l, so that l and k determine m and n up to pairs. It follows,

L−1∑
m=0

L−1∑
n=0

∞∏
j=0
| cos(N−jh(Mn −Mm)rπ)| ≤ 2

L−1∑
l=0

L−1∑
k=0

∞∏
j=0
| cos(N−jh(M l − 1)Mkrπ)|.

When l = 0, all terms in the product are cos(0) = 1 and the inner sum is no more than L. Otherwise, by
Lemma 2.10, the inner sum is less than or equal to 2L1−α(d,M) where α(d,M) > 0.
Therefore,∫

x∈C−→
B

∣∣∣∣∣
L−1∑
n=0

e(hMnx)

∣∣∣∣∣
2

≤ 2(L+ L(2L1−α(d,M))) = 2L+ 4L2−α(d,M) < 6L2−α(d,M) = 6L2−3δ.

It follows that the µ−→
B
-measure of x ∈ C−→

B
such that

∣∣∣∑L−1
n=0 e(hM

nx)
∣∣∣ ≥ L1−δ is no more than 6L2−3δ

L2(1−δ) =
6L−δ by Chebychev’s inequality.

Our proof of the following theorem is adapted from [24], and a much stronger result has already been
proven in [25]. See also [26] for a related result regarding the entropy of multiplication by an integer on
R/Z.

Theorem 2.3. Let C−→
B

be a Cantor set. Then µ−→
B
-almost all x ∈ C−→

B
are normal to every base M > 1

such that M 6∼ N .

Proof. FixM ∈ N. Let δ = α(d,M)
3 , where α is defined as in Lemma 2.10. Then, 0 < δ < 1. Let Lj = be2

√
jc.

Then, for j > 1, L−δj ≤ e−δ
√
j , and

∫∞
0 e−δ

√
jdj <∞, so

∑∞
j=0 L

−δ
j <∞. It follows for every ε > 0 there

exists Jε ∈ N such that
∞∑
j=Jε

6L−δj < ε.

By Lemma 2.12, the sum of the µ−→
B
-measures of the sets

{
x :
∣∣∣∑Lj−1

n=0 e(Mnx)
∣∣∣ ≥ L1−δ

j

}
for some j ≥ J

goes to 0 as J →∞. Therefore, for µ−→
B
-almost all x there exists Jx such that∣∣∣∣∣∣

Lj−1∑
n=0

e(Mnx)

∣∣∣∣∣∣ < L1−δ
j for all j ≥ Jx,
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so
∣∣∣∑Lj−1

n=0 e(Mnx)
∣∣∣ = o(Lj) as Lj →∞.

Further, for every L there exists jL such that LjL ≤ L < LjL+1. In addition,∣∣∣∣∣∣
L−1∑
n=0

e(Mnx)−
LjL−1∑
n=0

e(Mnx)

∣∣∣∣∣∣ ≤ L− LjL .
Note, L− LjL = o(L) as L→∞, because Lj grows slower than a geometric series. Therefore,

L−1∑
n=0

e(Mnx) = o(L)

as L→∞ for µ−→
B
-almost all x.

Note, the set of x such that
∑L−1
n=0 e(M

nx) 6= o(L) for a fixed M ∈ N has µ−→
B
-measure 0, and the sets

of possible h and M are countable. Then, the set of x such that
∑L−1
n=0 e(M

nx) 6= o(L) for any M ∈ N has
µ−→
B
-measure 0 because it is the union of a countable number of sets with µ−→

B
-measure 0. For µ−→

B
-almost

all x,
∑L−1
n=0 e(hM

nx) = o(L) for all M ∈ N such that M 6∼ N . By Weyl’s criterion in [10], then for µ−→
B
-

almost all x and any fixed M 6∼ N , the fractional part of the sequence {Mnx}∞n=1 is uniformly distributed.
Therefore, µ−→

B
-almost all x are normal to all bases M > 1 such that M 6∼ N .

Theorem 2.4. LetM,N be scale factors of the Cantor sets C−→
B
, C−→

C
, respectively. IfM 6∼ N , then C−→

B
∩C−→

C

is µ−→
B
-almost empty and µ−→

C
-almost empty.

Proof. Let M,N be scale factors of the Cantor sets C−→
B
, C−→

C
, respectively, and M 6∼ N . By Theorem 2.3,

µ−→
B
-almost all of the elements in C−→

B
are normal in base M . Since normal numbers contain all of the digits,

it follows µ−→
B
-almost all of the elements in C−→

B
are not in C−→

C
. Similarly, µ−→

C
-almost all of the elements in

C−→
C

are normal in base N and likewise are not elements of C−→
B
. Therefore, it follows their intersection is

µ−→
C
-almost empty and µ−→

B
-almost empty.

Note, normality is a stronger condition than necessary to show an element is not in any Cantor set with
scale factor N . In fact, it only must have every digit appear at least once.

Corollary 2.7. For every Cantor set C−→
B
, there exist irrational numbers in C−→

B
normal to every base M

such that M 6∼ N .

Proof. There are uncountably many elements in C−→
B
, however, there are only countably many rationals.

Further, by Theorem 2.3, µ−→
B
-almost all of the elements in C−→

B
are normal to multiplicatively independent

bases. It follows that µ−→
B
-almost all of the elements in C−→

B
must be irrational and normal in multiplicatively

independent bases.

2.3.5 Using Samples

Lemma 2.13. Let C−→
B

be a Cantor set with scale factor N . Let D1, ..., Dk be all possible binary digit
vectors of N with cardinality 2, and associate −→B 1, ...,

−→
B k with such binary digit vectors. Then for any set

of irrationals {xi ∈ C−→B i : i = 1, ..., k}, D can be uniquely determined from {(xi, F−→B (xi))}ki=1. In particular,
D =

⋃
i∈ADi where A = {i | F−→

B
(xi) ∈ Qc}

Proof. Let D1, ..., Dk be all the digits sets of cardinality 2 for scale factor N . Let −→B = (b0, ..., bN−1) be
the binary representation of C−→

B
. Consider xi ∈ C−→

B i
. Since xi is irrational and |Di| = 2, the decimal

expansion of xi in base N must contain both digits in Di. Then, xi ∈ C−→B if and only if Di ⊆ D. Then, by
Lemma 2.7, F−→

B
(xi) is irrational if and only if Di ⊆ D. Let A = {i | F−→

B
(xi) ∈ Qc}. Then,

⋃
i∈ADi ⊆ D.
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Next, consider ε1 ∈ D. Since ‖−→B‖ ≥ 2, there exists an ε2 ∈ D, ε1 6= ε2. Further, there exists a j such that
Dj = {ε1, ε2}. Then, Dj ⊆ D, xj ∈ C−→B and F−→

B
(xj) will be irrational by Lemma 2.7. It follows j ∈ A,

and therefore Dj ⊆
⋃
a∈ADa. Thus, ε1 ∈

⋃
a∈ADa. Since ε1 is arbitrary, it follows

⋃
a∈ADa = D where

A = {i | F−→
B

(xi) ∈ Qc}.

Theorem 2.5. Given K, there exists a constant M := M(K) such that there exists {xi}M(K)
i=1 ⊂ (0, 1)

which is a set of uniqueness for GK . The constant M(K) = O(K3).

Proof. Let F−→
B

be a CDF with scale factor N ≤ K. We proceed with CN,D (instead of C−→
B

notation as it
makes the proof clearer).

For every M , 3 ≤ M ≤ K, there exist
(
M
2
)

= M(M−1)
2 unique Cantor sets CM,Di such that |Di| = 2.

Further, by Corollary 2.7, each of these Cantor sets contain an irrational element (in fact, almost all
elements) which is normal to all bases multiplicatively independent of M . Then, for every M and |Di| = 2,
there exists x ∈ CM,Di ∩ Qc such that ∀L 6∼ M,L ≤ K, x in base L has all possible digits in its
representation.

Choose one such element for each CM,Di , and denote it xM,Di ; let

S1 = {xM,Di | 3 ≤M ≤ K, |Di| = 2}

Note, |S1| ≤ K(K−1)(K−3)
2 .

For anyM 6∼ N andDi with |Di| = 2, xM,Di contains every possible digit inN . Then, since any x ∈ C−→
B

cannot contain every digit in base N , xM,Di 6∈ C−→B . It follows from Corollary 2.6 that F−→
B

(xM,Di) ∈ Q.
Suppose now that there exists a CDF with scale factor M passing through all of the points

{(xi, F−→B (xi)) | xi ∈ S1}. Since this is true for all Di corresponding with M , by Lemma 2.13 the bi-
nary digit vector of the CDF is be empty, a contradiction. Thus, no such CDF exists and M can be
eliminated as a scale factor.

Thus, all possible scale factors remaining are multiplicatively dependent to N . Therefore, there is a
fixed J ∈ N such that for each possible scale factor N ′, N ′ = JLN′ for some LN ′ ∈ N. Further, by Lemma
2.13, for each N ′ there exists at most one binary digit vector,

−→
B′, such that F−→

B
(x) = F−→

B′
(x) for all x ∈ S1.

By Proposition 2.6, for all L1, L2 ∈ N and −→B 1,
−→
B 2 with scale factors JL1 , JL2 , respectively, either

F−→
B 1

= F−→
B 2

or only one agrees with
{(

m
JL+M , F−→B

(
m

JL+M

))}JL+M−1
m=1 . Note that for any J , 2 ≤ J ≤ K, there

is LK ∈ N such that JLK ≤ K < JLK+1. The set of rational numbers expressible with denominator J2LK

includes the set of rational numbers expressible with denominator JL for L ≤ 2LK . Note, JL1 , JL2 ≤ K

implies L1 + L2 ≤ 2LK .
Since JLK ∈ {2, 3, ..,K}, sampling at

S2 =
{m
M

}M−1

m=1,M∈{22,32,42,...,K2}

is sufficient to differentiate all mutliplicatively dependent bases no more than K. Hence sampling at{
m

(JLK )2

}(JLK )2−1

m=1
is sufficient for differentiating all bases multiplicatively dependent to J . It follows,

of the remaining CDFs, only CDFs equivalent to F−→
B

will pass through all the points {(x, F−→
B

(x)) | x ∈ S2},
and all non-equivalent CDFs can be eliminated.

For any remaining CDFs F , F = F−→
B
. Thus, S = S1 ∪ S2 is sufficient to reconstruct F−→

B
.

Finally, we note that since |S2| ≤ 12 + 22 + 32 + ... + K2 = K(K+1)(2K+1)
6 , |S| ≤ K(K−1)(K−3)

2 +
K(K+1)(2K+1)

6 = 5
6K

3 − 3
2K

2 + 5
3K = O(K3).

Corollary 2.8. There exists a set of uniqueness for GK with sample complexity O(K3).

Remark 2.3. CDFs equivalent to F−→
B

will not be eliminated by the algorithm described in Theorem 2.5,
which only eliminates CDFs which do not pass through all the points. Then, the algorithm will produce all
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equivalent CDFs with scale factor less than K, which includes the CDF with the smallest possible scale
factor, and the smallest possible scale factor can be determined.

Remark 2.4. Since CDFs are equivalent only if their underlying Cantor sets are equal, the algorithm also
reconstructs the underlying Cantor set C−→

B
.

3 Conclusion and Future Research
With a upper scale factor bound of K, and O(K3) points, a CDF of any Cantor set can be completely

reconstructed. While an optimal order on the number of points has not been determined, we have shown
that bK2 c points is insufficient. Further, many of the points sampled in Theorem 2.5, those in S1, are not
specific, and must be chosen with true randomness.

If the scale factor N is known, then N − 1 well chosen points is enough to determine the binary digit
vector D. However, this is not the minimum number. A future research question would be to determine
the minimum number of points necessary to determine the binary digit vector.
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Algorithm 1 Finding ‖−→B‖ and the first nonzero digit of −→B

Since g−→
B

(k) =
∑k−1
j=0 bj we have that g(2m − 2) =

∑2m−3
j=0 bj such that we know g(2m − 2) recursively

dependent on sample values and their determination of each bj . We further recall that ` is a large enough
integer, and that the smallest positive ` such that 2`+1 > N − 1 is sufficient.

Initialize m = 1
while g−→

B
(2m− 2) = 0 do

Sample F−→
B

at

x = 2m
N `+1 +

∑̀
n=1

2m− 1
Nn

.

if F−→
B

(x) = 0 then
b2m−2 = 0
b2m−1 = 0
m = m+ 1

else
if F−→

B
(x) = 1/−→B for some 2 ≤ −→B ≤ N − 1 then

‖
−→
B‖ = −→B
b2m−2 = 1
b2m−1 = 0

else if F−→
B

(x) = 1/−→B
`+1

for some 2 ≤ −→B ≤ N − 1 then
‖
−→
B‖ = −→B
b2m−2 = 0
b2m−1 = 1

else
There is an integer 2 ≤ −→B ≤ N − 1 such that

F−→
B

(x) = 2
−→
B
`+1 +

∑̀
n=1

1
−→
B
n

‖
−→
B‖ = −→B
b2m−2 = 1
b2m−1 = 1

end if
Break

end if
end while
if N = 2m then

Return
else if N = 2m+ 1 then
if g−→

B
(N − 1) = ‖−→B‖ then

bN−1 = 0
else
bN−1 = 1

end if
else

Proceed to Algorithm 2
end if
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Algorithm 2 Finding the remaining digits of −→B

Initialize M =
⌊
N
2
⌋

for m = 1, 2, ...,M −m do
if g←−

B
(2m− 2) = ‖−→B‖ − 1 then

bN−1−(2m−2) = 0
bN−1−(2m−1) = 0

else
Sample F←−

B
at

x = 2m
N `+1 +

∑̀
n=1

2m− 1
Nn

if F←−
B

(x) = g←−
B

(2m−2)
‖
−→
B‖

then
bN−1−(2m−2) = 0
bN−1−(2m−1) = 0

else if F←−
B

(x) = g←−
B

(2m−2)+1
‖
−→
B‖

then
bN−1−(2m−2) = 1
bN−1−(2m−1) = 0

else if

F←−
B

(x) =
g←−
B

(2m− 2)

‖
−→
B‖`+1

+
∑̀
n=1

g←−
B

(2m− 3)

‖
−→
B‖n

then
bN−1−(2m−2) = 0
bN−1−(2m−1) = 1

else
bN−1−(2m−2) = 1
bN−1−(2m−1) = 1

end if
end if

end for
if N is odd then
if

2m−1∑
n=0

bn +
N−1∑

n=2m+1
bn = ‖−→B‖

then
b2m = 0

else
b2m = 1

end if
end if
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