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Because the normal operation of the eye depends on sensitive morphogenetic processes for its eventual
shape, developmental flaws can lead to wide-ranging ocular defects. However, the physical processes and
mechanisms governing ocular morphogenesis are not well understood. Here, using analytical theory and
nonlinear shell finite-element simulations, we show, for optic vesicles experiencing matrix-constrained
growth, that elastic instabilities govern the optic cup morphogenesis. By capturing the stress amplification
owing to mass increase during growth, we show that the morphogenesis is driven by two elastic instabilities
analogous to the snap through in spherical shells, where the second instability is sensitive to the optic cup
geometry. In particular, if the optic vesicle is too slender, it will buckle and break axisymmetry, thus,
preventing normal development. Our results shed light on the morphogenetic mechanisms governing the
formation of a functional biological system and the role of elastic instabilities in the shape selection of soft
biological structures.
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Eye development is a complex, multiscale morphoge-
netic process that couples cell growth, division, and
biological signaling at cellular scales, with large deforma-
tion and shape changes. The eye organogenesis begins with
formation of the optic vesicles (OVs), nearly spherical
shells that undergo invagination—a process that locally
reverses the curvature of tissues from convex to concave
[1], to form the optic cup (OC), a cavity that eventually
houses the eye. It is well established that many congenital
eye disorders arise from disruptions in embryonic eye
development, including anophthalmia or microphthalmia
[2], aniridia [3], coloboma [4], retinal dysplasia [5], and
retinal detachment [6].
In the embryonic stage of eye development, the OV

bilaterally protrudes from the forebrain and contacts the
surface ectoderm (SE). The OV and the SE epithelium are
attached to each other through the stiff extracellular matrix
(ECM) secreted by both SE and OV, which thickens to form
the lens placode and retinal placode. These placodes
invaginate, such that curvature of the inner portion of
the OV (IOV) changes sign compared to its outer portion
(OOV) as shown in Fig. 1(a), to form the lens vesicle and
OC, respectively [7,8]. Despite recent efforts [9,10],
important questions remain open as to what mechanisms
govern OC morphogenesis during and after invagination
[5,11–17] and how growth of the IOV and OOV, and
evolution of their mechanical properties, impact the mor-
phogenetic processes.
In this Letter, we advance two novel points that

contribute to the physics of OC morphogenesis. First,
the morphogenetic process is driven by two elastic insta-
bilities that are analogous to snap-through instabilities in
spherical shells. These occur at different times during OC

development, corresponding to invagination and rapid
deepening observed in biological experiments [13,18].
Second, we demonstrate that the second morphogenetic
instability is sensitive to OC geometry. Specifically, for
certain geometries, the OC buckles rather than snaps during
the second instability, which breaks axisymmetry, and
prevents normal OC morphogenesis. This result suggests
that some congenital eye disorders, such as glaucoma in
newborn infants [19], may be due to OC geometry during
morphogenesis.
The OV geometry motivates a simplification of their

initial shape to a spherical shell. The ECM and IOV form a

(a)

(b) (c)

FIG. 1. (a) Simplified schematic of the OC morphogenesis.
(b) Thickness change ratio of IOV center wall λIOV as function of
the normalized time tn. (c) Invagination depth D normalized by
OC horizontal radius r as function of tn. (b) and (c) show
comparisons of our model with existing experimental data [9],
using R=h ¼ 5 and α ¼ 40° with primary and secondary invagi-
nation at t1stn and t2ndn .
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bilayer cap that subtends an opening angle α, while
the OOV is a monolayer covering the rest of the sphere
[Fig. 1(a)]. We modeled the mechanical response of the OC
as a multilayer Kirchhoff-Love (KL) shell [20], which
assumes the 3D shell may be represented by its 2D
midsurface. Each layer of the KL shell (ECM, IOV, and
OOV) is, in contrast to recent works using shells to study
biological morphogenesis [29–31], allowed to undergo
large strains and rotations and change thickness, via the
plane-stress condition, during deformation while being
modeled by a compressible neo-Hookean material
model [32,33], which takes the energy density form
Ψ0 ¼ ðλ=4ÞðJ2m − 1− 2 logJmÞþ ðμ=2ÞðIm1 − 3− 2 logJmÞ
with Lamé constants λ and μ, and invariants Im1 and Jm of
the elastic right Cauchy-Green tensor. To account for large
strains and rotations during growth, we utilize the well-
established multiplicative decomposition of deformation
gradient F into growth Fg and elastic deformation Fm parts
[34–37]. Each layer of the OC is subject to isotropic area
growth via Fg ¼ ðe; e; 1Þ where e is the in-plane expansion
factor due to growth [20]. We simulate the OC formation
process by solving two coupled balance equations: linear
momentum balance to determine elastic deformation via
Fm and mass balance to account for growth via Fg. These
equations are solved numerically using the isogeometric
analysis method, a modern finite-element-like method that
is well suited for shell problems due to its ability to provide
an accurate shell midsurface description [38].
We model the differential growth during OC

formation by imposing different mass sources on the
ECM, IOV, and OOV in the manner of density-
preserving growth [9], such that the three regions have
different (experimentally measured) growth rates [9], i.e.,
eECMðtnÞ ¼ 1, eIOVðtnÞ ¼ 1þ 5tn, and eOOVðtnÞ ¼
1þ 1.5tn as a function of the normalized time tn ¼ t=τ,
where τ ¼ 20 hours is the experimentally measured time-
scale for OC morphogenesis. The fluidlike components
surrounding the OV are neglected [39–41], based on
previous studies showing that instabilities of spherical
shells are not suppressed by the surrounding fluid envi-
ronment [42].
A critical, but often neglected, feature in morphogenetic

modeling is the effect that mass addition during growth
has on the state of stress of the growing body. We find that
[see Supplemental Material (SM) for detailed derivation
[20] ], if the added material during density-preserving
growth is the same as the existing material in the
body, the stress Σij generated in the growing body is
amplified as

Σij ¼ e2
∂Ψ0

∂ϵij ; ð1Þ

where Ψ0 is the neo-Hookean strain energy density, and ϵij
is the strain tensor. Thus, e2 acts as a stress amplification

factor on the internal stress due to mass change from
growth, in which ∂Ψ0=∂ϵij is the standard representation
for the internal stress [43]. This stress amplification factor
e2 generalizes previous works [44], as shown in the
SM [20].
First, we show that our computational model can capture

existing experimental data for OC morphogenesis in a
chick embryo [9,10], as shown in Figs. 1(b) and 1(c). The
geometric and material parameters for the chick OVs
followed previous experiments [9,10,45], i.e., opening
angle α ¼ 40°, initial radius (R) of 50 μm, and radius to
total thickness ratio (R=h) of 5. The bilayer cap has ECM
thickness ðhECMÞ of h=10 and IOV thickness ðhIOVÞ of
9h=10 whose ratio is m ¼ hECM=hIOV ¼ 1=9, and the
monolayer OOV has thickness ðhOOVÞ of h. The shear
moduli for the ECM and the IOV and OOV are 11 kPa
ðμECMÞ and 220 Pa (μIOV and μOOV), respectively, whose
ratio is n ¼ μECM=μIOV ¼ 50 on the bilayer cap. Poisson’s
ratio for all regions was set to ν ¼ 0.45 based on biologi-
cally observed data showing that eye tissue is not incom-
pressible [46,47].

Figures 1(b) and 1(c) show the simulation results of OC
formation with and without accounting for the effect of
mass change during growth on the stress, where neglecting
the mass change corresponds to taking e2 → 1 in (1). By
comparing to the experimental results [9], it is clear that our
model accurately captures the evolution of thickness
change ratio of the IOV center wall ðλIOVÞ as well as
invagination depth (D) normalized by OC horizontal radius
(r), which are geometric parameters that characterize the
OC size and shape. Therefore, the stress amplification from
mass addition significantly impacts the local and inhomo-
geneous growth and enables the accurate simulation of
experimentally observed OC growth. This also demon-
strates that there is no need to prescribe hypothetical
stiffness or growth property gradients as in previous OC
growth modeling [9,10].
The OV thickness is known to vary with diverse

biological cues, such as protein-2 alpha [48–50], which
implies that the radius-thickness ratio R=h of initial OC
shape also varies with different biological situations. To
account for these unknown thickness variations, we
performed numerical simulations at α ¼ 40° with different
R=h within the biologically relevant range (5 to 20)
[51–53]. This initial geometry is characterized using a
single, dimensionless parameter θ̄ ¼ α

ffiffiffiffiffiffiffiffiffi
R=h

p
, which

describes the depth and slenderness of the bilayer cap
region relative to the angular width of the boundary
layer [54].
For all values of θ̄ examined, the shells exhibit two

distinct shape–shifting events (Fig. 2). At early times, the
apex of the OC inverts, resulting in the formation of a
cuplike shape, which we refer to as primary invagination
(Fig. 2, i → ii, I → II). As tn increases, we observe a
second shape-shifting event that is sensitive to the initial
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geometry. For lower θ̄, i.e., thicker shells, we observe a
rapid deepening of the OC which preserves axisymmetry—
we refer to this as secondary invagination (Fig. 2, ii → iii).
For higher θ̄, i.e., thinner shells, we observe that the second
shape-shifting event consists of a loss of axisymmetry
(Fig. 2, II → III). We note that, for simulations that neglect
mass changes, the symmetry-breaking event (II → III)
occurred for all θ̄, which means the normal morphogenesis
process resulting in an axisymmetric OC cannot be
modeled without mass addition. See SM [20] for OC
formation movies.
To analyze, rationalize, and predict the qualitative

features underlying the different shape-morphing pathways
of OC morphogenesis, we used a shell model which
accounts for growth as a stimulus that changes the rest
length, i.e., natural stretch, and curvature, i.e., natural
curvature of the shell’s midsurface. The strain energy
stored in the shell during growth is estimated based on
updated rest midsurfaces. As a result, the natural curvature
in the cap acts like a torque along the intersection between
the cap and OOV to deform the OC [20]. When these
natural quantities are homogeneous over some segment of
shells, they can be represented by scalar values of Λ
(stretch) and κ (curvature) whose specific values are
calculated for each segment of the OC based on the
experimentally measured growth characteristics (see SM
for detailed derivation [20]), i.e., eECM and eIOV for the
bilayer cap, and eOOV for the OOV. As a result, the cap and
OOV have their own scalar values of natural stretch and
curvature. The presence ofΛ and κ imparts residual stresses
in the growing OC, and these quantities play a similar role
as external loads and torques do in classical mechanics,
which can destabilize shells [55,56]. This suggests that OC
morphogenesis may be governed by instabilities which
result from residual stress that builds up during growth.
In the cap region, experimental observations note that the

ECM and IOV grow at different rates. This through-
thickness differential growth induces a natural curvature

that changes the apex of the OC from convex to concave.
However, the inversion of this cap is resisted by the OOV
which is a monolayer growing homogeneously and has to
bend to accommodate the deforming cap. Open spherical
shells experiencing an evolving natural curvature may
exhibit a snap-through instability that everts the shell at
a critical curvature [55]. Here, the OC is not an open shell,
as the deformation of the cap will be resisted by the OOV.
However, since the OOV is resisting bending, and there-
fore, resisting rotations imparted by the growth-induced
torque along the intersection, we treated the OOV as an
effective rotational spring [Fig. 3(a)]. Therefore, by way of
a simple mechanical analogy, we model the full OC as an
open spherical shallow shell, whose geometry is the same
as the bilayer cap, experiencing an equivalent edge torque
as shown in Fig. 3(a). The natural curvature in the cap due
to differential growth, κcap, has to overcome the bending
rigidity of the effective rotational spring [20], resulting in
an equivalent natural curvature given by

κeq ∼ κcap − Γ
Δθffiffiffiffiffiffi
Rh

p ; ð2Þ

where Γ is a dimensionless ratio of bending rigidities, i.e.,
Γ ¼ BOOV=½2Bcapð1þ νÞ� (Γ ¼ 0.06 for the OC) with
bending rigidities Bcap and BOOV of the cap and OOV,
respectively, and Δθ is angle change along the OOV
boundary layer as shown in Fig. 3(b). Here, we assumed
most of the OOV deformation occurs within its boundary
layer as bending [57], and the second term on the rhs of (2)
describes the amount that acts to bend the OOV boun-
dary layer.
Open spherical shallow shells undergo snapping under

homogeneous positive natural curvature when the boun-
dary tangent vector in the colatitude direction becomes
approximately horizontal, which results in κeqR ∼ θ̄ at the
snapping [55]. Our numerical experiments here on closed
spherical shells exhibit qualitatively similar behavior when
the primary invagination occurs via snapping. That is, the
primary invagination occurs when the colatitude-direction
tangent vector at the intersection between the cap and OOV
becomes approximately horizontal, which leads to Δθ ∼ α
in (2) at the primary invagination. This results in a scaling
law of the critical natural curvature in the cap at the primary
invagination as

(a) (b)

FIG. 2. (a) Simulation results varying R=h at α ¼ 40°, consid-
ering mass changes. Diamond means the first instability point
while triangle and square are the second instability. At θ̄ ¼ 2.51
(θ̄b), the shape-morphing mechanism changes from secondary
invagination (triangle) to buckling (square). (b) Representative
OC formation process: normal OC (top row) and abnormal OC
shape due to buckling (bottom row).

FIG. 3. (a) Equivalent natural curvature. (b) Geometrical char-
acteristics on the OOV bending-dominated boundary layer.
(c) Characteristic span of each separated cap and OOV.
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κcap1 R ¼ a1ð1þ ΓÞθ̄ þ b1; ð3Þ

where a1 and b1 are scaling coefficients determined by our
numerical simulations, which confirms the linear scaling
with θ̄, and identifies the scaling coefficients as a1 ¼ 1.55
and b1 ¼ −0.95 [black solid line in Fig. 4(a)]. As with open
shells, the primary invagination via snapping will only
occur if θ̄ > θ̄sð¼ ½10=ð1 − ν2Þ�1=4Þ where θ̄s ¼ 1.88 for
the OC [20], in good agreement with prior work [55] as the
bending-dominated boundary layer covers the entire shell
for θ̄ < θ̄s.
Following this primary invagination, growth and devel-

opment of the OC continue until a second shape-shifting
event occurs, which appears to be strongly correlated to the
OC geometry. Thicker shells undergo a secondary invagi-
nation, forming a deep cup that facilitates normal eye
development, while slender shells lose axisymmetry, form-
ing a shape that may hinder normal OC morphogenesis.
First, we consider the onset of secondary invagination. The
magnitude of the torque at the intersection between the cap
and OOV continues to increase due to the continued
differential growth of the ECM and IOV. The OOV is
not rigid, and therefore, the torque can either bend the OOV
or further bend the cap. Building on the concept of a
geometric composite [58], we can consider the growing cap
and OOV as separate structures and, then, determine how
they will deform when combined together. The cap, when
removed from the OC, would form a shallow shell that
spans a characteristic distance Scap [Fig. 3(c)—yellow]. The
OOV, when removed from the OC, would form a deep
spherical shell of radius R0 ¼ eOOVR, which is current
radius as a result of growth. From our numerical simu-
lations, we note that the extent of the OOV boundary layer,
where bending deformations are concentrated, is constant
until the secondary invagination occurs. We can estimate

the characteristic span SOOVbl of the OOV from the extent of
its boundary layer [Fig. 3(c)—blue], and observe that,
during secondary invagination, the OOV boundary layer
increases in length and curvature. Therefore, we posit that
when the span of the cap exceeds the span of the OOV
boundary layer, the OC will undergo secondary invagina-
tion to account for this excess length.
The characteristic span of this OOV segment scales as

SOOVbl ∼ R0 sinðαþ θOOVbl Þ where θOOVbl is angle subtended
by the OOV boundary layer, which scales as θOOVbl ∼

ffiffiffiffiffiffiffiffiffi
h=R

p
for spherical shells [54]. The span of the cap scales as
Scap ∼ Rα½1þ χð1þ νÞhκcap�, where χ ¼ ½1þmð3n −
2Þ�=ð6mnÞ [20]. If we suppose that the critical point occurs
when the spans are equivalent, i.e., SOOVbl ¼ Scap, we obtain
that the critical natural curvature is proportional to the shell
geometry as κcapR ∝ R=h from which the critical natural
curvature in the cap at secondary invagination can be
estimated as

κcap2 R ∝
R
h
¼ a2

θ̄2

α2
þ b2; ð4Þ

where a2 and b2 are obtained from simulations to be
a2 ¼ 0.86 and b2 ¼ 0.22. These parameters capture well
the secondary invagination via the dashed color line in
Fig. 4(a). Notably, unlike the primary invagination given by
(3), the secondary invagination depends on opening angle α.
While our model predicts the morphogenetic process of

OC formation via the experimentally observed [9,10] two-
step (primary and secondary) invagination, it also indicates
that very slender initial OC geometries will undergo an
elastic instability that breaks axisymmetry, leading to
abnormal OC development. This loss of the OC axisym-
metry has been observed for glaucoma in newborn infants
[19]. Secondary invagination occurs when the OOV boun-
dary layer is flexible enough to bend to accommodate the
excess length of the growing cap. If the OOV is too stiff, the
cap must bend, instead. If we presume that the loss of
axisymmetry for slender optic cups is due to a buckling
instability, then the critical natural curvature can be
analytically calculated via a linear stability analysis, which,
for a circular plate with natural curvature κp and radius Rp,
gives κph ¼ �abðh=RpÞ2 with ab ¼ χð5þ 3νÞ=ð1 − ν2Þ at
the buckling instability (ab ¼ 4.17 for the OC) [20]. To
connect this critical natural curvature to open spherical
shallow shells, we substitute Rp → Rα. This gives us
κeqR ∼ ab=θ̄2 þ 1, which is similar to [55]. Furthermore,
the spherical shell’s geometry under a torque induced by
natural curvature leads to Δθ ∼

ffiffiffiffiffiffiffiffiffi
R=h

p
in (2) at the

buckling instability [20]. Then, the critical natural curvature
in the cap at the buckling instability is given by

κcapb R ¼ bb

�
ab
θ̄2

þ 1þ Γα2
θ̄2

α2

�
þ cb; ð5Þ

(a) (b)

FIG. 4. (a) Phase diagram of instabilities during OC formation
for varying R=h at α ¼ 40°. The blue region denotes the
invaginated cup shape, and the lime and red regions are the
normal (secondary invagination) and abnormal (buckling) OC,
respectively. (b) Phase diagram for varying R=h and α. For (a) and
(b), the symbols refer to simulation results, with diamonds
symbolizing primary invagination, triangles for secondary invagi-
nation, and squares for buckling. The lines represent the scaling
law of (3), (4), and (5). The black dotted line in (b) shows the
buckling transition point θ̄b of (6).
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where α2ð¼ π − αÞ is a prefactor to treat the deep
OOV shell, and bb and cb are scaling coefficients
which provide the best fit with our simulations through
bb ¼ 4.72 and cb ¼ −5.50 via the solid color line in
Fig. 4(a).

As our numerical experiments indicate that both secon-
dary invagination and symmetry-breaking buckling cannot
occur for the same initial geometry, the intersection
between (4) and (5) gives us the transition point from
secondary invagination to buckling as

θ̄b ¼

4α2bbabða2 − α2bbΓÞ þ α4ðcb − b2 þ bbÞ 2

p
þ α2ðcb − b2 þ bbÞ

2ða2 − α2bbΓÞ

s
; ð6Þ

where θ̄b ¼ 2.46 is calculated at α ¼ 40°, in agreement
with the numerical results ðθ̄b ¼ 2.51Þ.
Similar to the various R=h in biological situations, it is

natural to think that the opening angle will also vary with
diverse biological cues. The simulation results with various
opening angles for a wide range from 30° to 50° are plotted
on a phase diagram in Fig. 4(b) which fully characterizes
the instability-induced shape morphing of the OC during its
morphogenesis for a variety of initial geometries, showing
that the proposed scaling laws work well for all α. Above
the value of θ̄b, denoted as the dashed black line via (6), the
final OC shape is abnormal for each α.
In summary, we revealed the significant role that elastic

instabilities play during OC morphogenesis. Because our
model is predictive based on the initial geometry, we hope
that our study will motivate experimental efforts to measure
radius R, thickness h, and opening angle α of the initial OV
to investigate their effects on OC morphogenesis and to
verify the accuracy of our model predictions.
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I. SHELL KINEMATICS

The mechanical system for the optic cup (OC) formation is modeled as a nonlinear Kirchhoff–Love shell. When a
curved surface (shell) with thickness h is considered in three–dimensional space, its material points are described by a
general mapping from a parametric domain on the mid-surface [1]. The general mapping of the current shell configura-
tion Ω from the parametric domain is expressed by r = x |ξ3=0= r(ξα) using the curvilinear coordinates ξi embedded
in the thin surface where r and x are the position vectors on the mid-surface and the 3D surface body, respectively.
In this letter, Latin indices take 1,2,3, and Greek indices are restricted to 1,2. Based on the parameterization, the
covariant tangent vectors are obtained on the mid-surface by (S1) using the parametric derivative.

aα = r,α =
∂r

∂ξα
(S1)

Then, the surface normal vector is calculated using the covariant tangent vectors by (S2), which is called the director
in the Kirchhoff-Love shell theory.

n = a3 = a3 =
a1 × a2

‖ a1 × a2 ‖
(S2)

Using the obtained tangent vectors, the 2D metric tensor (first fundamental form) with covariant and contravariant
components are calculated by (S3) and (S4). These contain information about lateral distances between material
points on the mid-surface.

aαβ = aα · aβ (S3)

[aαβ ] = [aαβ ]−1 (S4)

To express information about the local curvature of the mid-surface, the curvature tensor (second fundamental
form) is calculated by (S5).

bαβ = n · aα,β = −n,β · aα (S5)

In the same manner, the mid-surface definitions on the initial shell configuration Ω0 can be calculated using the

initial position vector r0 instead of r, such as åαβ and b̊αβ , with the overcircle denoting quantities associated with
the initial body.

To deal with multi–layer shell problems, the 3D stored strain energy is, in this letter, projected onto the mid-surface
[2], in accordance with the stress constitutive equations derived from the first two thermodynamics laws. The physical
meaning of this concept is to integrate the stress constitutive equation through the thickness direction with respect
to each layer using the relation between the 3D metric tensor gij and the 2D fundamental forms of aαβ and bαβ with
the chain rule. Based on one of the Kirchhoff-Love shell assumptions, i.e. that vectors which are initially normal to
the mid-surface remain normal to the mid-surface after deformation, the current 3D position vector x is analytically
expressed as x = r + λ3ξ

3n with the thickness-direction coordinate ξ3 : [−h/2, h/2] where λ3 is a quantity which
describes the thickness change during deformation. Then, the 3D metric tensor of the current surface has covariant
components as gij = (∂x/∂ξi) · (∂x/∂ξj) leading to its in-plane components of gαβ = aαβ − 2λ3ξ

3bαβ + O(h2) with
zero values for the out-of-plane shear deformation as

[gij ] =

[
(gαβ)2×2 0

0 (λ3)2

]
. (S6)

∗ parkhs@bu.edu
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Using the relation between the 3D metric tensor and the 2D fundamental forms, the projected stress constitutive
equations for the multi-layer surface are derived to calculate resultant stresses on the mid-surface, i.e. the membrane

stress ταβσ and the bending stress ταβM as

ταβσ =
∑
l

∫
hl

Σγδ
∂gγδ
∂aαβ

dξ3 (S7a)

ταβM =
∑
l

∫
hl

Σγδ
∂gγδ
∂bαβ

dξ3 (S7b)

where the subscription l denotes the layer number, and
∑
l means that the resultant membrane and bending stresses

on the mid-surface are the net stresses of the second Piola-Kirchhoff stress tensor Σij for all layers projected on the
mid-surface. Moreover, the thickness change-related quantity λ3 can be analytically calculated based on the plane-
stress condition, i.e. Σ33 = 0, resulting from the Kirchhoff-Love shell assumptions, as shown in Fig. S1 which clearly
shows that the change in thickness occurs differently in different parts of the OC (i.e. ECM, iOV, and oOV) due
to differences in the mechanical properties and growth characteristics in each region. From the definition of the 3D
metric tensor in the surface normal direction, the actual value of the thickness change in a layer during deformation

can be obtained as (
∫ ht

hb
λ3 dξ

3)/(ht − hb) where ht and hb are the top and bottom thickness coordinates of the layer,

respectively.

FIG. S1. The thickness change-related quantity λ3 calculated through the plane-stress condition at the completion of the
optic cup morphogenesis for initial radius-thickness ratio R/h = 5 and opening angle α = 40◦, accounting for mass change.

In this letter, the hyperelastic neo-Hookean constitutive model is used for the stress constitution to consider the
non-linear material behavior of compressible, soft elastic materials. The strain energy density is given by

Ψ0 =
λ

4
(J2
m − 1− 2 log Jm) +

µ

2
(Im1 − 3− 2 log Jm) (S8)

where λ = Eν
(1+ν)(1−2ν) and µ = E

2(1+ν) are Lamé constants with Young’s modulus E and Poisson’s ratio ν, and Im1

and Jm are respectively the first and third (Jacobian) invariants of the right Cauchy-Green tensor Cm = F T
mFm based

on the multiplicative decomposition of the deformation gradient F = FmFg in which Fm and Fg are respectively
the mechanical and growth parts. The first term on RHS vanishes with Jm = 1, which gives the incompressible
neo-Hookean form of Ψ0 = µ

2 (Im1 − 3) as the isochoric elastic response, whereas the second term goes to zero for Cm

= J
2/3
m I with the 3D identity tensor I as the volumetric elastic response. These shell kinematics and constitution are

applied to solve the linear momentum balance equation to calculate the deformations of shells.

II. EXPANSION FACTOR DUE TO GROWTH e

Based on the multiplicative decomposition of the deformation gradient F = FmFg in which Fm and Fg are respec-
tively the mechanical and growth parts, Fg is utilized to construct the intermediate (stress-free) shell configuration

Ω̃ assuming isotropic area growth, as Fg = eI + (1− e)n0⊗n0 with the expansion factor e owing to the mass change
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during growth and the unit normal vector to the initial shell n0. In order to calculate the expansion factor e, which
depends on the mass change during growth, the mass balance equation including mass source and flux is first solved
for each layer as

d

dt

∫
Ω

(hρ) da =

∫
Ω

(hS) da−
∫
∂Ω

(hf ·m) ds (S9)

where ρ is the current mass density (i.e. the current mass divided by the current volume), S and f are the mass
source and flux, respectively, m is the outward unit normal vector to the current boundary curve, and da and ds are
the area and line element of the current shell, respectively.

Changes in the shell area, which are modeled using isotropic in-plane growth, occur due to mass increase or decrease
that is associated with a specific amount of volume depending on the material density. As such, the expansion factor
e associated with the isotropic area growth can be calculated by means of the volume of a unit mass vm as

e =
√

1 + vm(Jρ− ρ0) (S10)

where ρ0 is the initial mass density (i.e. the initial mass divided by the initial volume), and J is the Jacobian for
F . Note that density-preserving growth can be implemented as vm = 1/ρ0. Then, the intermediate (stress-free) 3D

metric tensor is calculated as g̃αβ = ãαβ − 2ξ3b̃αβ through ãαβ = e2åαβ , b̃αβ = e2̊bαβ for isotropic area growth, with
the overtilde denoting quantities associated with the intermediate (stress-free) configuration of each layer in the 3D
surface body, i.e.

[g̃ij ] =

[
(g̃αβ)2×2 0

0 1

]
. (S11)

As described in the main text, the extracellular matrix (ECM), inner optic vesicle (iOV), and outer optic vesicle
(oOV) all have different expansion factors depending on their biological growth rates that are prescribed based on
experimental observations for each region [3].

III. STRESS AMPLIFICATION ACCORDING TO MASS CHANGE FROM GROWTH

0 0.5 1
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2

3
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λ
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V

w/ mass change
w/o mass change
ref [3]: exp.
ref [3]: growth grad.
ref [3]: stiffness grad.

0 0.5 1
−1

−0.5

0

t1stn t2ndn

r

D

tn

D
/r

(a) (b)

FIG. S2. Comparison of the OC formation characteristics for R/h = 5 and α = 40◦ with and without the mass change effect,
as in the current work, or assumed stiffness and material property gradients [3], for (a) center iOV thickness change ratio
(λiOV ), and (b) normalized invagination depth (D/r).

Because mass is a variable that impacts the strain energy density over the initial configuration of the body, it is clear
that any mass increase from growth should modify the internal stress of the body as the internal stress is calculated
as the derivative of the strain energy density with respect to the strain. Because the internal stress is required to
solve the balance of linear momentum, modifications of the stress due to added mass from growth may result in
different deformation pathways as compared to when mass changes due to growth are neglected. In this section, we
explain how mass changes due to growth alter the strain energy density and the stress, and apply this to the case
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which corresponds to the case of OC formation (where the mass that is added during density-preserving growth is
the same as the previously existing material). Here, we consider the effect of mass addition on the strain energy
density and the stress for the biological growth case where the added mass has comparable mechanical properties,
such as stiffness, to the existing material. From thermodynamics laws, the second Piola-Kirchhoff stress tensor Σij

is calculated as Σij = (Jρ)∂ψ/∂εij with the deformation-dependent free energy per mass ψ and the Green-Lagrange
strain εij = 1

2 (gij − g̃ij). When growth induces the change in mass of a body with the initial mass M0 and volume
V0, Jρ is no longer the same as the initial density ρ0 = M0/V0 but can be expressed as Jρ = M/V0 = (M0 + ∆M)/V0

where M and ∆M are the current mass and the amount of mass change from growth, respectively. This results
in Σij = (ρ0)∂ψ/∂εij + (∆M/V0)∂ψ∆M/∂εij in which the first term represents the standard second Piola-Kirchhoff
stress, and the second term is an added term arising from the effect of the mass change from growth. Here, the
superscript in ψ∆M indicates that this free energy corresponds to the material type associated with the newly added
mass ∆M from growth. If the material type of the added mass from growth is the same as the existing initial material
in the body, the mass change effect on the internal stress exists in the form of

Σij = (Jρ)
∂ψ

∂εij
=

(
Jρ

ρ0

)
∂Ψ0

∂εij
(S12)

where Ψ0 = ρ0ψ is the free energy density that is standard in continuum mechanics [4]; we utilize the neo-Hookean
free energy of (S8) in this work. Thus, the key result of (S12) is that mass change due to growth results in a stress
amplification factor of Jρ/ρ0 that modifies the state of stress in the body compared to standard continuum mechanics
which does not account for mass change, assuming that the added material is the same as that of the original body.
Note that density-preserving growth leads to (Jρ)/ρ0 = Jg = e2 where Jg is the growth Jacobian for Fg, which
coincides with Eq. (1) in the main text, as Jmρ = ρ0 from the definition of density-preserving growth where Jm is
the mechanical Jacobian for Fm. In this letter, we applied the amplified stress for the constitution to calculate the
resultant mid-surface stresses of (S7).

Previous works modeling OC formation were done by prescribing either hypothetical stiffness or growth property
gradients [3, 5]. In contrast, a key feature of the current approach is that the OC formation is obtained only considering
stress amplification effects resulting from mass change during growth. We show in Fig. S2 that simply accounting
for the mass change through the resulting stress amplification described in (S12) enables us to accurately capture
experimental measurements of both the center iOV thickness change ratio (λiOV ) and the normalized invagination
depth (D/r) as a function of time without the hypothetical growth property gradients.

We note that previous works [6] have obtained a stress amplification similar to that shown in (S12), with the
factor being J = detF . This extra factor is the same as the one in (S12) for a specific situation where 1) growth is
density-preserving; 2) the added mass during growth is the same as the existing one; and 3) elastic deformation is
incompressible. That is, the stress amplification factor e2 in the optic cup case generalizes previous works [6]. However,
because our study has considered the optic cup components to be compressible materials, based on experimental data,
both the resulting physical interpretations and the mathematical origins of the stress amplification in (S12) are different
than in reference [6].

Furthermore, since the approach in reference [6] computes the extra factor using elastic strains from the grown,
and not reference state, it always gives the same stress amplification (= J) for all types of stimuli, such as heating,
swelling, and growth, because it only depends upon the change in area or volume of the material under consideration.
For a simple example of why this may cause issues, consider a material that is swelling by water. This material will
be softer (i.e. its stiffness deceased). On the other hand, if this material is growing by mass addition using the same
material as the existing one in the manner of density-preserving growth, this material’s stiffness will be the same
as before. However, using the amplification of Ben Amar and Goriely would lead to the same stress amplification
for these very different physical situations. In contrast, the stress amplification we derived that is represented by
the density ratio (Jρ/ρ0 which goes to e2 in the case of the optic cup growth) can describe the stiffness difference
between the stimulus types in terms of the mass addition as Jρ = ρ0 for the cases where there is no mass addition
with comparable mechanical properties. For example, as heating does not induce a change in mass, there is no stress
amplification, which is consistent with the mass balance equation when Jρ = ρ0 such that the stress amplification
factor Jρ/ρ0=1. For swelling, because the stiffness of the absorbed fluid is negligible, this leads to the mass balance
equation Jρ = ρ0 such that the stress amplification factor Jρ/ρ0=1.

IV. SHELL ENERGY WITH EXTERNAL LOADS INDUCED BY GROWTH

Biological growth gives rise to residual stresses in the body, and these stresses dictate deformations [7]. This fact
implies that growth plays a role equivalent to external loading. In this section, the contribution of growth is described
as external loads with reference to natural stretching Λ and curvature κ, which contain information related to the
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rest length and curvature of the mid-surface, and applied to the problem of OC formation. This helps to understand
how differential growth during OC formation works in terms of mechanical deformations.

The shell energy W stored by deformations induced by growth can be calculated by employing Non-Euclidean shell
theory [8]. Here, the membrane strain is Ēαβ = 1

2 (aαβ − āαβ) and the bending strain is K̄αβ = bαβ − b̄αβ in which an

updated rest mid-surface defined with āαβ and b̄αβ is used to represent an equivalent stress-free shell configuration Ω̄
depending on the growth profile of the body. This results in a shell energy of

W =

∫
Y

2
(νāαλāβµĒλαĒµβ + (1− ν)āαλāβµĒλβĒµα) +

B

2
(νāαλāβµK̄λαK̄µβ + (1− ν)āαλāβµK̄λβK̄µα) dā (S13)

where Y = Eh
1−ν2 and B = Eh3

12(1−ν2) are respectively the membrane and bending rigidities, and dā is the area element

of the updated rest shell. For homogeneous natural stretching and curvature over some shell segment, the natural

fundamental forms can be written as āαβ = Λ2åαβ and b̄αβ = Λ2̊bαβ + Λ2κ̊aαβ . The specific values of Λ and κ depend
on the segment’s growth characteristics. After some algebra utilizing the linear terms of the membrane and bending
strains with respect to displacement, this shell energy can be rewritten in order to embody external loads induced by
growth, which for spherical shells is

W = Λ−2WK − P bulkY − P edgeY − P bulkB − P edgeB (S14a)

P bulkY =

∫
Y (1 + ν)

1

R

(
1− Λ−2

)
w da0 (S14b)

P edgeY =

∮
Y (1 + ν)

1

2

(
1− Λ−2

)
u ·m0 ds0 (S14c)

P bulkB =

∫
2B(1 + ν)

(
1− Λ−2 − κR

) w
R3

da0 (S14d)

P edgeB =

∮
B(1 + ν)

1

R

(
1− Λ−2 − κR

) (u
R
− q
)
·m0 ds0 (S14e)

where WK is the standard Koiter shell potential energy based on deformations between the current and initial shell
configurations [9], w and u are respectively the normal and in-plane displacements, m0 is the outward unit normal
vector to the initial boundary curve, q is the rotation vector representing the rotation of an element of the shell, and
da0 and ds0 are the area and length element of the initial shell, respectively. Note that the prefactor Λ−2 in front
of WK comes from considering the undeformed, reference configuration as a stress-free configuration to be consistent
with conventional continuum mechanics. From these non-mechanical load terms in (S14b-S14e), one can confirm
that the natural stretching and curvature act like pressure, traction and boundary torques, i.e. external loads due to
growth, to morph the body. For spherical shells with h/R � 1, Y ∝ h and B ∝ h3 yield that the contribution of

P edgeB in terms of q ·m0 is dominant among the external terms, i.e.

W = Λ−2WK −
∮

B(1 + ν)
1

R

[
κR− (1− Λ−2)

]
q ·m0 ds0 (S15)

which indicates that the natural stretching and curvature act like a torque along the open edge of the shell as q ·m0

gives a change in the tangent angle of the shell [10].

V. Λ AND κ ON THE OPTIC CUP

Based on the differential growth rate of the OC, its geometry can be divided into two parts: the cap region
(iOV+ECM) and the oOV, and each part has its own homogeneous natural quantities Λ and κ according to their
experimentally measured growth characteristics. In this section, we derive analytical equations to calculate Λ and
κ for specific growth characteristics of bi-layer surfaces with consideration for the mass changes during growth. We
then apply the derived equations for the cap region and the oOV to obtain their natural quantity set, i.e. {Λcap, κcap}
for the cap and {ΛoOV , κoOV } for the oOV, in which the potential energy stored during OC morphogenesis can be
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calculated as WOC = W cap +W oOV where W cap and W oOV are the energies of the cap and oOV that are obtained
by inserting their natural quantity set into (S15). A few equations for the natural quantities have been proposed, for
example, [11] via the linear geometrical projection and [12] via 1D beam theory. However, both [11] and [12] did not
consider the multidimensional features of shells as well as the mass change effect from biological growth.

As previously discussed, the isotropic area growth of a surface layer with expansion factor e locally has the stress-

free shell configuration represented by the 3D metric tensor g̃αβ = e2(̊aαβ − 2ξ3̊bαβ) for its in-plane components.
Then, when an infinitesimal bi-layer shell element with thickness h is growing with e1 and e2 on the upper and lower
layers, respectively, the Koiter-like strain energy density Ψproj between the deformed and stress-free body can be
calculated using the in-plane components of the Green-Lagrange strain εαβ = 1

2 (gαβ− g̃αβ) via the thickness-direction
integration with the plane-stress condition as

Ψproj =

∫ h/2

h/2−h1

1

2

(
ρrAαβγδεαβεγδ

)
1
dξ3 +

∫ −h/2+h2

−h/2

1

2

(
ρrAαβγδεαβεγδ

)
2
dξ3 (S16)

where the subscript numbers 1 and 2 denote the upper and lower layer, respectively, and ρr = Jρ/ρ0 is the density ratio
which is the stress amplification factor due to the mass change as stated above, and Aαβγδ = λg̃αβ g̃γδ + µ(g̃αγ g̃βδ +
g̃αδ g̃βγ) is the elasticity tensor with g̃αβ = [g̃αβ ]−1.

Based on the definition of the rest mid-surface, the shell becomes a stress-free state for both (S13) and (S16) such
that for mid-surface stresses, 2∂Ψproj/∂aαβ = 0 of the membrane stress and ∂Ψproj/∂bαβ = 0 of the bending stress
at aαβ = āαβ and bαβ = b̄αβ with an assumption of small thickness change. Then, the natural quantities Λ and κ can
be derived with respect to the thickness ratio m = h1/h2 and the moduli ratio n = µ1/µ2 = E1/E2 for thin spherical
shells, i.e. h/R� 1 as

Λ2 =
e2

1e
8
2m

4n2ρr21 + e4
1e

4
2mn

(
e2

1(3m(m+ 1) + 1) + e2
2(m(m+ 3) + 3)

)
ρr1ρ

r
2 + e8

1e
2
2ρ
r2
2

e8
2m

4n2ρr21 + 2e4
1e

4
2m(m(2m+ 3) + 2)nρr1ρ

r
2 + e8

1ρ
r2
2

(S17)

κ = − 1

h

3e4
1e

4
2

(
e2

1 − e2
2

)
m(m+ 1)2nρr1ρ

r
2

(e8
2m

4n2ρr21 + 2e4
1e

4
2m(m(2m+ 3) + 2)nρr1ρ

r
2 + e8

1ρ
r2
2 ) Λ2

. (S18)

In the case of the density-preserving and isotropic area growth we are considering in this letter, the density ratio
ρr corresponds to ρr1 = e2

1 and ρr2 = e2
2 for each layer as aforementioned above, whereas ρr1 = ρr2 = 1 means to

ignore the mass change. Note that since these calculations have been locally done on the infinitesimal shell element,
this derivation process shall be carried out without consideration for the surface compatibility constraints like the
Gauss-Codazzi-Mainardi equations.

Therefore, inserting specific values of e1 → eECM and e2 → eiOV gives the natural quantities (Λcap and κcap) for
the cap region with consideration for the mass change effect. Additionally, these analytical equations can be also
applied for mono-layer surfaces by using m → 0 to calculate their natural stretching and curvature. Then, inserting
e2 → eoOV with m→ 0 yields that ΛoOV = eoOV and κoOV = 0 for the mono-layer oOV.

From these calculated natural quantities on the OC, one can get 1−Λcap
−2 � κcapR and 1−ΛoOV

−2 � κcapR due
to the OC growth characteristics, i.e. eECM = 1, eiOV = 1 + 5tn, and eoOV = 1 + 1.5tn. Therefore, the OC potential
energy can be finally obtained as

WOC = Λcap
−2

W cap
K + ΛoOV

−2

W oOV
K −

∮
its

Bcap(1 + ν)κcapq ·m0 ds0 (S19)

where
∮
its

denotes the contour integration along the intersection between the cap and oOV, and Bcap is an effective
bending rigidity of the bi-layer cap region. It shows that the main contribution for the OC formation is a torque along
the intersection between the cap and the oOV, associated with κcap.

Note that the effective bending rigidity Bcap can be estimated by projection of the 3D potential energy density
onto the mid-surface for bi-layer shells. Utilizing the thickness ratio m and the moduli ratio n with the same notation
as above, the potential energy of bi-layer shells can be expressed as

W bi =

∫ ∫ h/2

h/2−h1

E2n

(1− ν2)
Ψ dξ3da0 +

∫ ∫ −h/2+h2

−h/2

E2

(1− ν2)
Ψ dξ3da0 (S20)

where Ψ is the 3D potential energy density. Meanwhile, the bi-layer shell’s potential energy can be also expressed by
using an effective Young’s modulus Eeff as

W bi =

∫ ∫ h/2

−h/2

Eeff

(1− ν2)
Ψ dξ3da0 (S21)
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in which equating (S20) and (S21) yields Eeff = E2(1 + mn)/(1 + m). Then, the effective Young’s modulus of the
cap Ecap can be estimated as E2 → EiOV where EiOV is the Young’s modulus of the iOV, i.e. Ecap = EiOV (1 +

mn)/(1 +m), which can be utilized to calculate Bcap = Ecaph3

12(1−ν2) .

VI. ON THE EQUIVALENT SYSTEM OF THE OPTIC CUP AS AN OPEN SPHERICAL SHELL

In this letter, to analyze the elastic instabilities of OC morphogenesis, the entire OC is replaced with an equivalent
system using an open spherical shell by treating the oOV as an effective rotational spring along the edge of the cap
under the assumption that most of the oOV deformation occurs within its boundary layer as bending, as shown in
Fig. (3) of the main text. This treatment physically means that the whole OC geometry consisting of the cap and the
oOV is replaced by an open spherical shell, whose geometry is the same as the cap, with an equivalent edge torque
whose magnitude is associated with the remaining value of κcap after overcoming the bending rigidity of the effective
rotational spring. As a result, the natural quantity in the cap κcap relevant to the intersection torque of (S19) is
equivalently transposed into κeq acting on a free-standing cap as written in Eq. (2) in the main text. In this section,
we present the details of the derivation whereby we collect the entire OC potential energy into the cap region.

The OC potential energy WOC of (S19) has two portions for the internal potential energy depending on deformations
from the initial body in terms of the cap region (W cap

K ) and the oOV (W oOV
K ). For the oOV deformation, it is reasonable

to postulate that the oOV deformation mainly occurs within its boundary layer which is bending dominated [13]. As

the width of the boundary layer is scaled as
√
Rh [10], the oOV colatitude-direction characteristic curvature in the

boundary layer can be estimated using the angle change ∆θ within the oOV boundary layer, i.e. b11 ∼ ∆θ/
√
Rh.

Assuming the oOV colatitude-direction bending strain is much larger than the azimuthal one within the boundary
layer, the oOV potential energy can be scaled as

ΛoOV
−2

W oOV
K ∼ BoOV

2
b1

2

1 A
oOV
bl ∼ παBoOV ∆θ2

√
R

h
(S22)

where BoOV is the oOV bending rigidity, and AoOVbl is the area of the oOV boundary layer region. As ∆θ can be
scaled as the change in the tangent angle at the intersection between the cap and the oOV, ∆θ ∼ q ·m0 with the
rotation vector q at the intersection [10]. Then, the OC potential energy can be collected into the cap region building
on that the length of the intersection is 2πRα for small α, as (S23) which represents a free-standing cap region with
an equivalent edge torque,

WOC = Λcap
−2

W cap
K −

∮
ed

Bcap(1 + ν)∆θ

[
κcap − BoOV

2Bcap(1 + ν)

∆θ√
Rh

]
ds0 (S23)

where
∮
ed

denotes the contour integration along the boundary edge of the free-standing cap region. That is, the whole
OC is replaced by a free-standing cap with an equivalent edge torque associated with an equivalent natural curvature
κeq that can be written as

κeq = κcap − Γ
∆θ√
Rh

(S24)

where Γ = BoOV

2Bcap(1+ν) , which coincides with Eq. (2) in the main text and is used to obtain the scaling laws for the

critical natural curvature at the elastic instabilities governing OC formation as drawn on the phase diagrams of Fig.
(4) in the main text.

VII. ON THE PRIMARY INVAGINATION VIA SNAP-THROUGH INSTABILITY

When a positive natural curvature is homogeneously imposed on an open spherical shell, the shell deforms to
turn itself inside out. This eversion occurs via rapid, but smooth curvature change or rather sudden discontinuous
displacement jump (i.e. snapping) depending on the shell geometry. Our numerical simulations of OC morphogenesis
show that except for thicker shells, the primary invagination for most of the initial OC geometries occurs via the
snap-through instability. Specifically, Fig. S3 shows that the apex displacement rate (dc/dt) of the OC in the insets
is not constant during the two-step (primary and secondary) invagination as the snapping of the elastic shell proceeds
with increasing speed [14], indicating that the phenomena we observe are snapping, and not rapid bending.

In this letter, the observation that the colatitude-direction tangent vector at the intersection between the cap and
oOV becomes approximately horizontal, i.e. ∆θ ≈ α, at the primary invagination was used to get the scaling law for
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FIG. S3. The distance c from the apex to the bottom of the deforming OC with θ̄ = 2.21 as a function of the normalized
time. The inset shows the distance rate of the two-step invagination during the morphogenetic process of OC formation.

κcapR at the snapping instability point corresponding to Eq. (3) in the main text. In reality, the exact horizontal
tangent vector is, however, only corresponding to the case where the shells are smoothly everted. So, in order to find
the limit point θ̄s between the snapping and the smooth eversion, the minimum potential energy method is applied to
the separated cap region that is a shallow shell. The displacement components on the deformed configuration can be
obtained by minimizing (S14a) with the natural quantity set of the cap. Calculating the change in the tangent angle
∆θ = q ·m0 with the obtained displacement at the boundary and equating it to α gives a value of natural curvature
κcaph which makes the tangent vector exactly horizontal as

κcaph =
10h2

(
Λ2(1 + ν)

(
α2(1 + ν) + 9

)
− α2(1 + ν)2 − 9ν − 3

)
+ 3α2

(
1− Λ2

)
R2
(
1− ν2

) (
3α2(1 + ν) + 20

)
2Λ2R(1 + ν) (5h2 (α2(1 + ν) + 6)− 3α4R2 (1− ν2))

(S25)

in which ∆θ is calculated by using the stationary displacement components up to the fifth order for ξ1 and the leading
order for α.

Then, the fact that the tangent vector is not exactly horizontal for the snapping shell implies that the shells need
an infinitely large κcaph to make the tangent vector horizontal before the snapping, i.e. 1/κcaph = 0, and this hypothesis
yields the transition point with O(α2) as

θ̄s =

(
10

1− ν2

)1/4

(S26)

which is noted in the main text. This transition point θ̄s dictates the limit in initial geometry that separates smooth
eversion and snap-through instability for the primary invagination.

VIII. ON CIRCULAR PLATE ANALYSIS

Due to the shallowness of the cap region of the OC, analyzing the symmetry-breaking buckling of bi-layer circular
plates allows for a better understanding of the second instability phenomenon during OC morphogenesis. In this letter,
the characteristic span and the buckling point of the bi-layer circular plate with the thickness-direction differential
growth are utilized to analyze the secondary invagination and the symmetry-breaking buckling of the OC corresponding
to Eq. (4-5) in the main text, and the detail of those derivations is dealt with in this section. Accordingly, the linear
stability analysis is carried out in order to get an analytical equation for the critical natural curvature κp at the
symmetry-breaking buckling of circular plates with radius Rp and thickness h, and the displacement solution obtained
by the minimum potential energy method is applied for the characteristic span Sp of the deformed plate.

By following Koiter’s work [16], a quadratic energy functional is obtained as

W2[û; Λ, κ] =

∫
Y

2

[
νεααε

γ
γ + (1− ν)εαβε

β
α

]
+
B

2

[
ν%αα%

γ
γ + (1− ν)%αβ%

β
α

]
+ ταβσ ξαβ + ταβM ζαβ da0 (S27)
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FIG. S4. The symmetry-breaking buckling natural curvature for circular plates with different Rp/h. The solid line is the
analytical equation of (S35) while the dashed line is the one proposed in [15]. The circles denote numerical simulation results
at m = 1/9, n = 50, and ν = 0.45 corresponding the OC properties.

where û is the displacement vector from the fundamental (equilibrium) configuration, and εαβ and %αβ are the linear
membrane and bending strains with respect to the fundamental configuration, and ξαβ and ζαβ are the nonlinear
second-order membrane and bending strains with respect to the fundamental configuration.

Building on the fact that ξ1 and ξ2 are respectively the radial and polar coordinates, the displacement component
on the fundamental configuration can be obtained by minimizing (S14a) and inserting the plate’s natural quantity
set, i.e. {Λp, κp}, and R→∞ under the axisymmetry condition as

us1 = −1

2
(1 + ν)ξ1(1− Λp

2

) ; us2 = 0 (S28a)

ws =
1

2
(1 + ν)ξ12

κpΛp
2

(S28b)

where usα and ws are the solutions of the displacement components on the fundamental configuration as us =
usαå

α + wsn0 with the initial dual vector åα. Then, this gives the membrane and bending stresses caused by the
natural stretching and curvature as

τ22
σ =

Y
(

1− Λp
2
) (

1− ν2
)

2Λp4ξ12 ; τ11
σ = τ12

σ = τ21
σ = 0 (S29a)

τ22
M = −

Bκp
(
1− ν2

)
Λp2ξ12 ; τ11

M = τ12
M = τ21

M = 0 (S29b)

In this section, it is assumed that the components of û have forms based on the first term of a Fourier series as

û1 = Cus1 sin(n1ξ
2) = −1

2
C(1 + ν)ξ1(1− Λp

2

) sin(n1ξ
2) (S30a)

û2 = Cus2 sin(n2ξ
2) = 0 (S30b)

ŵ = Cws sin(n3ξ
2) =

1

2
C(1 + ν)ξ12

κpΛp
2

sin(n3ξ
2) (S30c)

where C is a constant real number, and n1, n2, and n3 are integer numbers.
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Then, with the small deformation assumption, the Donnell-Mushtari-Vlasov theory gives the linear and nonlinear
second-order strains [10], as

εαβ =
1

2
(∇αûβ +∇β ûα)− b̊αβŵ (S31a)

%αβ = ∇α∇βŵ, (S31b)

ξαβ =
1

2
∇αŵ∇βŵ (S32a)

ζαβ = ∇γ ûγ∇β∇αŵ −∇γŵ∇β∇αûγ (S32b)

such that the resulting balance equation obtained via the first variation of (S27) with the integration domain ξ1 : [0, Rp]
and ξ2 : [0, π/2] leads to the critical natural curvature including Λp at the symmetry-breaking buckling as

κp
2

=
2
(

1− Λp
2
)

(4(ν + 1) sin (πn1) + n1 ((ν − 1)n1 (πn1 + sin (πn1))− 4π(ν + 1)))

Rp2Λp4 (1− ν2)n1n3 (πn3 + sin (πn3))
(S33)

which is obtained by Taylor expanding κp
2

up to the first order in h.
Since the natural stretching Λp and curvature κp are both functions of the differential growth characteristics on

each layer of the bi-layer surface, for the case where the upper layer is passive (i.e. e1 = 1) like the cap region of the
OC, solving (S17) and (S18) with respect to e2 up to the first order and equating those to each other gives a relation
equation as

Λp
2

=
hκp(1 +m(3n− 2))

3mn
+ 1 (S34)

which yields the normalized critical natural curvature in the main text, not including Λp, with n1 = 1 and n3 = 2 to
make it minimum as

κph = ±χ (5 + 3ν)

(1− ν2)

(
h

Rp

)2

. (S35)

where χ = (1 + m(3n − 2))/(6mn). This analytical equation was utilized to estimate the critical natural curvature
at the symmetry-breaking buckling for open spherical shallow shells by using Rp → Rα for large radius R and small
opening angle α, which is extended to Eq. (5) in the main text.

In addition, using (S28a) and (S34) gives the characteristic span of the deformed circular plate with ξ1 = Rp as

Sp = Rp (1 + χ(1 + ν)hκp) (S36)

This length can be generalized to the span of open spherical shallow shells by using Rp → Rα, which implies that the
characteristic span of the cap region of the OC will scale as Scap ∼ Rα(1 +χ(1 + ν)hκcap) that is utilized to estimate
the secondary invagination point of Eq. (4) in the main text.

Note that our analytical equation for the critical κph gives similar results with the one proposed via an energy

comparison approach in [15] as κph = ±
√

10 + 7
√

2(h/Rp)2, and is well-matched with the numerical simulation
results for the symmetry-breaking buckling of bi-layer circular plates with different Rp/h as shown in Fig. S4.

IX. THE SCALING OF ∆θ AT THE SYMMETRY-BREAKING BUCKLING INSTABILITY

In the main text, the angle change ∆θ along the oOV boundary layer at the symmetry-breaking buckling instability
is scaled as

√
R/h of Eq. (6) in the main text. In this section, this scaling is derived. When an open spherical shell is

under an edge torque Medge, we can write its shell energy using the assumption that the deformation mainly occurs

within its boundary layer and is bending dominated, i.e. b11 ∼ ∆θ/
√
Rh [13], as

W ∼ B

2
b1

2

1 Abl −
∮

Medge∆θ ds0 ∼ παB∆θ2

√
R

h
− 2πRαMedge∆θ. (S37)

where Abl is the area of the boundary layer region in the open spherical shell. Then, the minimum potential energy
dW
d∆θ = 0 yields ∆θ ∼ Medge

√
Rh/B. If natural curvature are the origin of the edge torque, Medge ∼ Bκ can be used

according to (S15). Then, since κ ∼ 1/h based on (S18), ∆θ ∼
√
R/h is obtained.
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X. THE EFFECT OF DIFFERENT MATERIAL PROPERTIES
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FIG. S5. (a) The OC invagination depth change with different material properties, the moduli ratio n and the Poisson ratio
ν. (b) Normalized residual stress contour for the colatitude-direction component as 10−10Σ11/EiOV .

The analysis for OC morphogenesis in the main text focused on the effects of the initial OC geometry with material
properties chosen following previous experimental studies [3, 5, 17], modeling the eye tissue as a compressible elastic
material [18, 19]. Here, we present the results of numerical simulations where different material properties were
considered to examine their effects on OC morphogenesis.

For θ̄ = 1.56 with α = 40◦ and accounting for mass changes, various values of the shear modulus of the ECM
were considered by varying the moduli ratio n = µECM/µiOV as well as different Poisson’s ratios ν, noting that the
OVs shear modulus µiOV = µoOV = 220Pa. As shown in Fig. S5(a), the invagination depth of the OC is affected by
both the moduli ratio and the Poisson’s ratio as the larger moduli ratio and the smaller Poisson’s ratio result in a
shallower depth. Fig. S5(b) shows the residual stresses in the ECM, iOV, and oOV for different material properties
and invagination depths. These snapshots show that, in general, the residual stresses are larger and more widely
distributed for deeper invagination depths. This residual stress contour, in which the growing iOV and oOV are in
compression whereas the passive ECM is in tension, follows the general trend of residual stresses induced by growth
as growing bodies involve compressive stresses for local, differential growth cases [7]. Furthermore, in contrast to the
cup shape formation through invagination, in good agreement with prior work [3] OC formation fails for n ≤ 10, as
the contribution of the ECM constraint becomes too small, resulting in evagination, as shown in Fig. S6(a).

Additionally, as our computational model for OC formation is performed based on the nonlinear, compressible
neo-Hookean constitutive model, we investigated the effect of Poisson’s ratio on the critical natural curvature at the
second instability points for thick (θ̄ = 1.85) and thin (θ̄ = 3.04) shells with α = 40◦ within the biologically-relevant
range of 0.4 ≤ ν ≤ 0.49 for eye tissues [18, 19], including incompressible limit of ν = 0.5 with a constraint Jm = 1.
As a result, the secondary invagination and the symmetry-breaking buckling occurred regardless of the Poisson’s
ratio for the thick and thin shells, respectively, as shown in Fig. S6(b). This indicates that material compressibility
is not required for the secondary invagination and symmetry-breaking buckling to occur during OC morphogenesis.
Furthermore, the simulation results in Fig. S6(b) show that Poisson’s ratio merely shifts the critical natural curvature
for both secondary invagination and symmetry-breaking buckling to occur. Based on these results, for the main
text we chose the previously experimentally-reported value of 0.45 for the Poisson’s ratio, and focused on the effect
of initial geometries on the critical natural curvature to analyze the instability-induced OC morphogenesis via our
scaling laws of Eq. (3,5-6) and Fig. (4) in the main text.
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[14] S. Höhn, A. R. Honerkamp-Smith, P. A. Haas, P. K. Trong, and R. E. Goldstein, Dynamics of a volvox embryo turning

itself inside out, Physical review letters 114, 178101 (2015).
[15] M. Pezzulla, G. P. Smith, P. Nardinocchi, and D. P. Holmes, Geometry and mechanics of thin growing bilayers, Soft Matter

12, 4435 (2016).
[16] W. T. Koiter and A. Van Der Heijden, WT Koiter’s elastic stability of solids and structures (Cambridge University Press

Cambridge, UK; New York, NY, USA, 2009).
[17] G. Xu, P. S. Kemp, J. A. Hwu, A. M. Beagley, P. V. Bayly, and L. A. Taber, Opening angles and material properties of

the early embryonic chick brain, Journal of biomechanical engineering 132 (2010).
[18] E. Uchio, S. Ohno, J. Kudoh, K. Aoki, and L. T. Kisielewicz, Simulation model of an eyeball based on finite element

analysis on a supercomputer, British Journal of Ophthalmology 83, 1106 (1999).
[19] I. A. Sigal, J. G. Flanagan, and C. R. Ethier, Factors influencing optic nerve head biomechanics, Investigative ophthalmology

& visual science 46, 4189 (2005).


	2021_Lee_PRL.pdf
	opticcup_supplemental_material.pdf

