
Improving the Spatial Resolution of Solar Images Using Generative Adversarial Network
and Self-attention Mechanism*

Junlan Deng1, Wei Song1,2,3 , Dan Liu1, Qin Li4,5, Ganghua Lin2,6, and Haimin Wang4,5,7
1 School of Information Engineering, Minzu University of China, Beijing 100081, People’s Republic of China; songwei@muc.edu.cn

2 Key Laboratory of Solar Activity, Chinese Academy of Sciences (KLSA, CAS), Beijing 100081, People’s Republic of China
3 National Language Resource Monitoring and Research Center of Minority Languages, Minzu University of China, Beijing 100081, People’s Republic of China

4 Center for Solar-Terrestrial Research, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982, USA
5 Institute for Space Weather Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982, USA

6 National Astronomical Observatories, Chinese Academy of Sciences (NAOC, CAS), Beijing 100081, People’s Republic of China
7 Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314-9672, USA

Received 2021 July 31; revised 2021 September 17; accepted 2021 September 20; published 2021 December 13

Abstract

In recent years, the new physics of the Sun has been revealed using advanced data with high spatial and temporal
resolutions. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory has
accumulated abundant observation data for the study of solar activity with sufficient cadence, but their spatial
resolution (about 1″) is not enough to analyze the subarcsecond structure of the Sun. On the other hand, high-
resolution observation from large-aperture ground-based telescopes, such as the 1.6 m Goode Solar Telescope
(GST) at the Big Bear Solar Observatory, can achieve a much higher resolution on the order of 0 1 (about 70 km).
However, these high-resolution data only became available in the past 10 yr, with a limited time period during the
day and with a very limited field of view. The Generative Adversarial Network (GAN) has greatly improved the
perceptual quality of images in image translation tasks, and the self-attention mechanism can retrieve rich
information from images. This paper uses HMI and GST images to construct a precisely aligned data set based on
the scale-invariant feature transform algorithm and t0 reconstruct the HMI continuum images with four times better
resolution. Neural networks based on the conditional GAN and self-attention mechanism are trained to restore the
details of solar active regions and to predict the reconstruction error. The experimental results show that the
reconstructed images are in good agreement with GST images, demonstrating the success of resolution
improvement using machine learning.

Unified Astronomy Thesaurus concepts: Solar photosphere (1518); Neural networks (1933); Solar active
regions (1974)

Supporting material: animation

1. Introduction

Solar activity has a significant impact on Earth. For example,
coronal mass ejections generated by solar eruptions may cause
geomagnetic storms and accelerate solar energetic particles.
Those space weather events may affect radio communications,
the operation of satellites, as well as power grids. Therefore, the
study of solar activity is one of the most important subjects in
solar physics. Modern observations clearly show that solar
features have rich structures below 1″, for example, penumbral
filaments and umbral dots. Spatial resolution below 0 1 is
needed to study these small-scale structures.

To achieve higher resolution, several meter-class large
ground-based solar telescopes have been built. The Goode
Solar Telescope (GST) of Big Bear Solar Observatory (BBSO)
is one of the most capable solar telescopes. For the observation
of the solar photosphere, the wave band used is TiO at a
wavelength of 7057Å. Diffraction-limited images are routinely
obtained using a high-order adaptive optics (AO) system and
speckle reconstruction. The nominal pixel size of GST/TiO
images is 0 034 (Table 1).

As discussed above, using AO and with increased telescope
apertures, the spatial resolution of solar observations by ground-
based telescopes has been greatly improved. However, due to the
limited availability of daytime and local climate, the Sun cannot

be observed continuously for an extended time. In addition, the
high-resolution observation has a very limited field of view. In
contrast, space solar observation has the advantage of observing
round the clock, without interruptions caused by bad weather.
Since its launch in 2010, the Helioseismic and Magnetic Imager

(HMI) on board the Solar Dynamic Observatory (SDO) has
obtained observations of the entire Sun with a cadence between
45 s and 12 minutes, which is used to study the oscillation and
magnetic fields in the solar photosphere (Fleck et al. 2011). It has
an aperture of 14 cm, using a spectral line of Fe I 617.3 nm. The
detector system is a 4096 by 4096 pixel CCD, achieving a pixel
resolution of 0 5 (Schou et al. 2012; Couvidat et al. 2016).
Many solar research works, such as morphological and dynamics

studies of filaments, faculae, and sunspots, are based on full-disk
observations provided by HMI. However, the resolution of an HMI
image is limited by the diffraction effect of the telescope aperture,
so it is difficult to analyze smaller-scale activity. In addition, the air
currents and temperature and humidity variations in the optical path
of telescope will degrade the images (Wachter et al. 2012). Various
optical aberrations and stray light cause additional smearing in
images (Yeo et al. 2014).
In recent years, deep learning has provided a new way to

reconstruct solar images. The structures of granulation and
sunspots observed by GST and HMI are similar. Therefore,
although HMI images are blurred, due to the inherent defects of
the recording instrument and the influence of turbulence, we
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can use precisely aligned GST images and HMI images as a
training set, use deep neural network to learn the corresponding
relationship between them, and then reconstruct HMI images
with higher resolution. Such an improved resolution would
have a high impact in research. For example, using the time-
sequence high-resolution data covering entire solar active
regions will allow researchers to derive flow fields, which play
an important role in building energy for solar flare onset
(Scherrer et al. 2012).

The rest of the paper is organized as follows: Section 2
introduces the traditional methods of solar image reconstruction
and popular neural network models of single-image super-
resolution (SISR). Section 3 introduces the data set registration
process. Section 4 mainly describes the structure of the generator
and discriminator, and introduces the theory of attention module
in detail. Section 5 shows the test and validation results of super-
resolution reconstruction and uses peak signal-to-noise ratio
(PSNR), structural similarity (SSIM), rms, power spectrum curve,
scatter plot, and gray histogram for quantitative analysis.

2. Background of Super-resolution Tools

2.1. Traditional SR Method

To eliminate the spatial resolution degradation caused by the
point-spread function (PSF) and restore the details of the solar
images, many different image reconstruction methods have
been developed. The simplest super-resolution (SR) method is
a shift-and-add method. The image is sampled to the target
resolution, and the average is obtained by shifting on a
common grid (Mboula et al. 2015). At present, the main
traditional method of solar image reconstruction is speckle
imaging and speckle phase diversity, which are quite effective
in removing atmospheric turbulence. Speckle imaging was
successfully applied to solar images starting in the 1970s (Von
der Lühe 1993) and gradually developed into the Labeyrie
method, Knox Thompson method, and speckle mask method.
The three methods estimate the PSF by atmospheric imaging
theory and linear theory and then deconvolute it from the
average energy spectrum, average cross-spectrum, and triple
correlation of a group of short-exposure images, respectively
(Wöger et al. 2008), to obtain the Fourier amplitude and phase
of the target image.

The blind-deconvolution-based speckle phase diversity
algorithm finds the closest instantaneous PSF through an
optimization algorithm and deconvolutes it in the optimization
process. Compared with the speckle imaging method, the phase
diversity method does not need the PSF function information,
but the solution strongly depends on the prior assumption
(Ramos et al. 2018). When the constraints are not complete, the
reconstruction has difficulty converging, and even incorrect
results will be reconstructed. Speckle imaging has good

performance, but there are also some limitations: the PSF is
rarely spatially invariant and is difficult to measure, and it takes
dozens or even hundreds of frames to recover a frame of image
(Puschmann & Sailer 2006).
Although these traditional methods are effective in removing

atmospheric turbulence, the spatial resolution can only approach but
cannot exceed the diffraction limit of the telescope. Miura et al.
proposed a theoretical method to reconstruct solar images with two
times the SR (Miura et al. 1999). K.G. Puschmann found that
although Miura et al.’s method can enhance the contrast of the
solar image, the improved spatial resolution does not exceed the
diffraction limit, because the solar image is an extended target, not a
point source (Puschmann & Kneer 2005). Extending the resolution
beyond the diffraction limit means obtaining images with the same
resolution as those observed by larger-aperture telescopes. With the
development of deep learning, deep convolution neural networks
can transform different aperture telescope images without any prior
information, which provides a method for the SR reconstruction of
solar images.

2.2. SR Method Based on Deep Learning

In deep learning, the SR problem is treated as a regression
problem, that is, updating the parameters of the deep neural
network to minimize the distance between the predicted value
and the real value. The first SR convolution network, the Super-
Resolution Convolution Neural Network (SRCNN), was pro-
posed by Dong et al., and its performance is obviously better than
all traditional SR algorithms (Dong et al. 2015). To further
develop the advantages of deep neural networks in single-image
SR, various networks have been proposed. Very Deep Super-
Resolution used global residuals so that the network only needs
to learn the different high-frequency details of a low-resolution
(LR) image and a high-resolution (HR) image (Kim et al. 2016a).
In the same year, the Deeply Recursive Convolutional Network
used the same module to recurse 25 times and enhanced the
representation of the network without adding network parameters
(Kim et al. 2016b).
Lim et al. constructed Enhanced Deep Super-Resolution

using 32 modified residual blocks with 256 channels and won
the NSIR challenge “New Trends in Image Restoration and
Enhancement” in 2017 (Lim et al. 2017). To pursue the visual
quality of the image, a Generative Adversarial Network (GAN)
is proposed. Its goal is to improve the visual perception quality
of the image. The first breakthrough work in this respect is
Super-Resolution GANs (Ledig et al. 2017). Then, a Cascading
Residual Network uses a variant of the residual block with
three convolution layers to cascade (Ahn et al. 2018). The
concept of channel attention mechanism, which is mainly used
in image classification, was introduced into the field of SR
through Residual Channel Attention Networks (Zhang et al.
2018).

Table 1
Property Comparison of GST and HMI

Instrument Target line Aperture Pixel size CCD FOV Cadence
Name (Å) (m) (arcsec) (pix) (arcsec) (seconds)
(1) (2) (3) (4) (5) (6) (7)

GST 7057 1.6 0.034 1843 × 1843 62.7 15
HMI 6173 0.14 0.505 4096 × 4096 2068.5 45

Note. This table shows the property comparison between HMI and GST. Their spectral line is similar. The spatial resolution of GST image is about 16 times higher
than HMI, but the field of view is much smaller than HMI.
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In the past, SISR methods were trained on synthetic LR
images (such as bicubic downsampling of images). Recently,
an increasing number of researchers have paid attention to the
problem of SR reconstruction in real scenarios. Wang proposed
the Text Super-Resolution Network based on a real scene text
SR data set (Wang et al. 2020), and the experimental results
were 13% higher than using a synthetic SR data set. Wei et al.
proposed the method of component divide and conquer to deal
with the real-world SR problem (Wei et al. 2020).

2.3. Self-attention Mechanism

The self-attention mechanism calculates the response at a
position in a sequence by attending to all positions within the
same sequence. In the problem of SR reconstruction, GANs
can generate styles and textures that are difficult to distinguish
as true or false, but the boundary of the overall structure of the
object is prone to deviation. This is probably because the long-
range dependency of general GANs is only realized by a
multilayered convolution, and it is difficult for the network to
carefully coordinate multiple layers to capture the long-range
dependency. Therefore, the network can only use local regions
with a fixed shape to generate details, but it is difficult to use
the features of all positions to generate HR details.

Inspired by traditional nonlocal mean filtering algorithms, Wang
et al. linked the self-attention mechanism in machine translation
with nonlocal operations in computer vision to simulate the
temporal and spatial dependence of video sequences (Wang et al.
2018b). Ding et al. proposed the Nonlocal Recurrent Network,
which introduced nonlocal operations into recurrent neural
networks for image restoration for the first time. Self-attention
GANs introduced the self-attention mechanism into GANs to
perform long-distance modeling (Zhang et al. 2019). The second-
order channel attention module and nonlocally enhanced residual
block were proposed in the Second-order Attention Network to
better use image structure cues for SR tasks (Dai et al. 2019).
Nonlocal operations are extended to multiple scales by Mei et al.,
and the performance was improved (Mei et al. 2020). The
application of nonlocal attention mechanisms to solve various
computer vision problems has gradually become a trend.

Our work is inspired by CJ Díaz Baso et al. (Baso &
Ramos 2018). They used a solar photosphere image simulated
by a magnetohydrodynamic model as the HR image, applied
PSF convolution and downsampling on the HR image to
generate the corresponding LR image, and used the full
convolutional network on HMI to perform SR reconstruction.
Peng et al. downsampled NVST/TiO images to obtain LR
images and restored the images based on CycleGAN (Jia et al.
2019). The work of this paper is different in that it uses a real
solar data set and generates higher-resolution solar images
based on a GAN and a self-attention mechanism. Real solar
images are more diverse in degraded forms and are noisy.
Super-resolution reconstruction using real solar image data sets
is more challenging but practical.

3. Data Set

As a powerful nonlinear function approximator, deep neural
networks usually require a large amount of paired data for
training. In the task of SR reconstruction of the solar image,
this work targets the construction of an SR data set composed
of lower-resolution HMI images and higher-resolution GST
images.

First, select the GST image and the HMI image as the HR
and LR image pairs, and then use the scale-invariant feature
transform (SIFT) to achieve precise alignment of the GST and
HMI data. If the LR image and the HR image are not accurately
aligned, the network may learn the wrong pixel correspondence
information, resulting in obvious artifacts.
SIFT is a classic image-matching method based on feature

points. There are three main steps in using SIFT: feature point
identification, feature point matching, and registration para-
meter determination. In the stage of feature point identification,
the location of the rotation, translation, and scaling (RTS)
invariant feature points is obtained by comparing adjacent
layers of the image multiscale Gaussian pyramids. After low-
contrast feature points and unstable feature points are removed
by high-order function fitting, 128 dimensional feature vectors
of the feature point are obtained through the image gradient.
Feature point matching establishes the matching relationship

between the SIFT feature point descriptors in two images to be
matched. The general nearest neighbor method is to minimize
the Euclidean distance between the SIFT descriptors. When the
ratio of the nearest distance to the second-nearest Euclidean
distance is less than a certain threshold (set as 0.7 in this paper),
the feature points are regarded to be matching. In the stage of
registration parameter determination, the homogeneous coordi-
nate transformation equations are solved by matching points to
obtain the RTS value. In the process of solving, the sampling
consensus algorithm (RANSAC) is used to eliminate the
influence of the mismatch.
The experiment uses the OpenCV library to realize the

identification and matching of feature points. It should be noted
that the GST and HMI image resolutions are very different, and
the GST data need to be downsampled and Gaussian-blurred to
a resolution similar to that of the HMI before registration (Ji
et al. 2019). For example, the HMI on 2015 January 5 obtained
788 feature points through the SIFT algorithm, and the
preprocessed GST obtained 68 feature points. Through KNN
nearest neighbor matching, 20 pairs of feature points are
screened out and used to calculate the affine transformation
matrix. Finally, the HMI image is rotated, translated, and
zoomed to obtain an image that is precisely aligned with the
GST image (Figure 1).
Based on the above method, 1597 pairs of accurately

registered images from 2011 to 2020 were obtained. The spatial
resolution of the original GST image was downsampled to
0 126, and 240× 240 pixel patches cropped from the center of
preprocessed images were used as the data set. One hundred
pairs of image data that are more than one day apart from other
training images are randomly selected as the test set. The
amount and diversity of data sets are enough to represent the
different evolution processes of solar activity and the different
degradation processes in the light path.

4. Network Structure

4.1. Generator Structure

A Conditional Generative Adversarial Network (CGAN) that
added the self-attention mechanism (Isola et al. 2017) is used to
reconstruct the solar image (Figure 2). Input the HMI image to
generate an HR solar image that is similar to a GST image. The
basic structure of the generator follows U-Net, which is suitable
for scenes with similar structures between input and output
images. The unique structure allows the network to transmit
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contextual information to higher layers for full integration. The
shallow feature map usually contains low-frequency information
of the image, such as the overall information of the image. The
deep feature maps usually contain high-frequency information of
the image, such as the edges and textures of the image. U-Net
cascades high-level features and low-level features together
through skip connection so that different levels of detailed
information can be well preserved and integrated.

The downsampling part of the generator plays the role of
feature extraction (Equation (1)):

F H H H H I . 1d d d d d4 4 3 2 1 LR= ( ( ( ( )))) ( )

Among them, ILR represents the input of the network and Hd

represents the downsampling layer, consisting of a convolution
kernel with a size of 4 and a stride of 2, a batch normalization,
and a LeakyReLU activation function. After four downsampling
layers, the feature map is represented as a latent variable Fd4, and
the number of feature maps gradually doubles.

The upsampling part of the generator plays the role of feature
fusion (Equation (2)):

F H S F F . 2uk uk k u k d k1 5= +- -( ( ) ) ( )( ) ( )

Among them, Fuk represents the output result of the upsampling
of the kth layer. Hu represents the upsampling module, which
consists of a deconvolution kernel with a size of 4 and a stride of
2, batch normalization, and a ReLU activation function. In order
to make the output match the input distribution of [−1, 1], the
upsampling module of the last layer changes the activation
function to tanh. The upsampling result Fu in each layer
combines two features: the context information extracted from
the corresponding side of downsampling Fd(5−k) and the self-
attention map of the upper layer Sk(Fu(k−1)), where S represents
the self-attention module.
The training and testing of the network take a 240× 240 patch

as input, the range of pixel value is standardized to [−1, 1], the
optimizer uses Adam, and the learning rate is set to 2× 10−4.

Figure 1. Image alignment results between GST and HMI data on 2015 January 5. (a) is the original GST image. (b) is the aligned GST image and blurred to HMI
resolution. (c) is the original HMI image. The red box indicates the location of the GST image in the original HMI image. (d) is the HMI image obtained by the SIFT
algorithm. The coordinates represent the range of pixels.

4

The Astrophysical Journal, 923:76 (12pp), 2021 December 10 Deng et al.



4.2. Self-attention Mechanism

The self-attention mechanism refers to the weighted
summation of the features of all nodes to obtain the response
of a node in the network (Equation (3)):

S x y
x x

x x
g x

exp

exp
. 3i i

j

N
i

T
i

j
N

i
T

i
j

1 1
å f j

f j
= =

å= =

( ) ( ( )) ( )
( ( ( )) ( ))

( ) ( )⎛

⎝
⎜

⎞

⎠
⎟

Among them, the functions g(·), f(·), j(·) are unary functions,
implemented by a 1*1 convolution. Map the xi and xj features to
different feature spaces through f(·) and j(·), and then do the
dot product operation to get the feature similarity. Standardiza-
tion is realized through softmax operation, and the result
indicates the degree of attention paid to location j when the
network synthesizes location i. Multiply the attention map with
g(xj) and get the final self-attention feature map yi.

In order not to damage the original network structure when
the attention map is superimposed on the network, the attention
feature map y is multiplied by a learnable weight γ and
initialized to 0. Use the skip connection to pass the upper
deconvolution result x to the output (Equation (4)):

S x y x. 4g= +( ) ( ) ( )

This makes the network first rely on the clues of local operations
and then gradually learn to assign more weights to nonlocal
attention, and finally make the feature map contain the global
dependency of any two positions.

4.3. Discriminator Structure

The discriminator of the network uses PatchGAN with the
self-attention mechanism. G(x) is obtained through the HMI
image and generator G. After being combined with the HMI
image based on the channel dimension, G(x) is put into the
discriminator D to predict the probability value. In addition, the
real image GST and HMI are also combined based on
the channel dimension and input to the discriminator D to
obtain the probability prediction value. In order to facilitate
discriminator to combined HMI and GST based on channel, ILR
is the HMI image after four times bilinear interpolation.
PatchGAN finally outputs a feature matrix with a size of

28× 28 (Table 2), which means that it evolves from predicting
the true or false of the entire image to predicting the true or
false of small areas. In addition, the discriminator adds a self-
attention module, which can check whether similar features of
the image at a distance are consistent and impose complicated
geometric constraints on the global image structure.

Figure 2. Generator network structure is divided into the downsampling part of feature extraction and the upsampling part of the feature fusion. N represents the
number of channels, ILR represents the HMI image upsampled four times in advance. The blue module represents the convolution layer, the green module represents
the deconvolution layer, the gray module represents the self-attention module, the yellow module is Max pooling, and the red module is softmax.
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The training effects of the network when using different loss
functions are explored, such as L1 loss, L2 loss, CGAN loss,
and Perceptual loss (Table 3). GAN loss is essential for GAN
networks; CGAN loss and other losses are combined with a
certain weight. L1 and L2 losses, both pixel losses, can
accurately capture low-frequency information. Perceptual loss
obtains the perceptual information of the image through a
pretrained image classification network. The feature map of the
seventh convolution of the VGG16 network is used as the
perceptual information V(x) of the image x. The definition of
these losses are

L E D x y E D x G xlog , log 1 , , 5x y xCGAN ,= + -[ ( )] [ ( ( ( )))] ( )

L E G x y , 6l x y1 ,= -[∣ ( ) ∣] ( )

L E G x y , 7l x y2 ,
2= -[( ( ) ) ] ( )

L E V G x V y . 8x yperception ,
2= -[( ( ( )) ( )) ] ( )

In the test results using L2 loss, some images are excessively
smooth because Euclidean distance minimizes the loss by
averaging all possible outputs, resulting in blur. In the test
results using perceptual loss, the visual effect is similar to L1
loss, but L1 loss is better in terms of the index value.

5. Results Analysis

5.1. Evaluation Index

In order to evaluate the proposed method, we conducted
extensive experiments on the data set. The model was trained on
RTX 2080Ti for 4 hr, and then 100 images were tested and
evaluated. Figure 3 shows some of these examples; the field of
view is about 30″× 30″. The first two rows mainly contain
granulation in the quiet Sun and a small pore, and the last three
rows are for active regions, focusing on sunspots. From the
perspective of subjective evaluation, the reconstructed image can
recover a lot of detailed information on the basis of keeping the
contour edge of the HMI image. The boundary of the granulation
structure in the quiet area is more obvious after the reconstruc-
tion, the contrast and brightness are consistent with the GST
image, and the sharpness is greatly improved. In order to

examine the reconstruction of small-scale structures, Figure 4
shows test result patches of pernumbral filaments, umbral dots,
and granulation. Structures less than 1″ can be observed, which
achieves our initial goal.
To further verify the details of the recovery, we used entire

9-day images from 2017 September 1–9 for testing and made
these images into an animation (Figure 5). The presented video
shows much better the typical dynamics of a sunspot, such as
materials moving away from the sunspot in the outer part of the
penumbra and inward in the inner part.
The objective evaluation of the results uses three indicators:

the PSNR between the predicted image and the target image,
SSIM, and rms. PSNR (Equation (9)) is used to measure the
ratio of the signal to noise in signal systems and is often used as
a quantitative evaluation index for image compression and
image SR reconstruction tasks. It is defined as

M

I i I i
PSNR 10 log . 9

t i
t10

2

1
1 LR SR

2
=

å -= ( ( ) ( ))
( )

⎛

⎝
⎜

⎞

⎠
⎟

The PSNR value is determined by the maximum pixel value M
of the image and the pixel mean square error MSE between ILR
and IHR. t represents the total number of pixels in the image.
For ordinary 8 bit deep images, the value of M is 255.
PSNR focuses on the difference of pixels and does not

consider the structural information of the image. SSIM
(Equation (10)) proposes to evaluate the SSIM of the image
by comparing the contrast μ, brightness σ, and structural details

Table 2
Structure of the Neural Network

Structure Layer Filter Stride Normalization Activation Output Size
(1) (2) (3) (4) (5) (6) (7)

Input L L L L 240 × 240 × 1
d1:Conv 4 × 4 2 L Leaky ReLU 120 × 120 × 64
d2:Conv 4 × 4 2 BN Leaky ReLU 60 × 60 × 128
d3:Conv 4 × 4 2 BN Leaky ReLU 30 × 30 × 256

Generator d4:Conv 4 × 4 2 BN ReLU 15 × 15 × 512
u1:Deconv+attention 4 × 4 2 BN ReLU 30 × 30 × 256
u2:Deconv+attention 4 × 4 2 BN ReLU 60 × 60 × 128
u3:Deconv+attention 4 × 4 2 BN ReLU 120 × 120 × 64

u4:Deconv 4 × 4 2 L Tanh 240 × 240 × 1

Input L L L L 240 × 240 × 2
p1:Conv 4 × 4 2 L Leaky ReLU 120 × 120 × 64

Discriminator p2:Conv +attention 4 × 4 2 BN Leaky ReLU 60 × 60 × 128
p3:Conv +attention 4 × 4 2 BN Leaky ReLU 30 × 30 × 256
p4:Conv +attention 4 × 4 1 BN Leaky ReLU 29 × 29 × 512

p5:Conv 4 × 4 1 L Sigmoid 28 × 28 × 1

Note. The convolution kernel size and activation function used in each layer of the generator and discriminator are described in detail in the table.

Table 3
Test Results of Different Loss Functions

Function Type PSNR/dB SSIM
(1) (2) (3)

L1 loss + CGAN loss 23.75 0.50
L2 loss + CGAN loss 22.32 0.45
perception loss + CGAN loss 22.77 0.45

Note. This table shows the average value of the PSRN and SSIM of the test
results when using different loss functions.
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of the image. It is defined as

c c

c c
SSIM

2
. 10LR SR 1 LRSR 2

LR
2

SR
2

1 LR
2

SR
2

2

m m s
m m s s

=
+ +

+ + + +

( )( )
( )( )

( )

The brightness and contrast are obtained by calculating the
average and standard deviation of image pixels. c1 and c2 are
constant. μLRSR represents the covariance of ILR and IHR.
The rms (Equation (11)) does not need an HR image as a

reference, and I is the average of the pixel values (Popowicz et al.

Figure 3. Testing results. The images from left to right correspond to the input HMI image, super-resolution reconstructed image, and target GST image. The field of
view is about 30″ × 30″.
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2017; Denker et al. 2018):

I I IRMS . 11
N i

N1
1

2å= -
=

( ) ( )

Although its sensitivity is related to the structure and content of
the image, it is the most common method in solar image quality
evaluation (Deng et al. 2015; Huang et al. 2019).

Figure 4. The test results of small-scale structures of the solar penumbra (top), umbra (middle), and granulation (bottom) are displayed respectively. The first row is
the HMI image, the second row is the reconstructed image, and the third row is the GST image.
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Figure 5. An animation of the super-resolution reconstructed results from 2017 September 1–9, comparing the input HMI images (left) to the SR images (right). The
animation runs for 56 s, showing the much better typical dynamics of a sunspot from the reconstructed images. These improved dynamics include materials moving
away from sunspots in the outer part of the penumbra and inward in the inner part.

(An animation of this figure is available.)

Figure 6. PSNR, SSIM, and rms index of test results. The black line in (a), (b), and (c) represents the index of the HMI image and GST image, and the red line
represents the index of the SR image and GST image. (d) shows the SSIM index of the HMI image and GST image, as well as the index of the HMI image and the
degraded SR image.
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5.2. Comparative Experiment

Figure 6 provides the PSNR, SSIM, and rms measurement
values of all test images. The quantitative results show that

compared with the original HMI image, the similarity between
the output image and the GST image in terms of pixels and
structure has been improved. In order to explore the effect of
the self-attention mechanism, a comparative experiment was

Figure 7. The three rows are a comparison of the power spectrum, scatter plot, and gray histogram between an SR image and GST image on 2020 June 20 at 17:29:57
UT, respectively. The dotted lines in the scatter plot represent the auxiliary lines with slopes of 0.5, 1, and 2. The left column compares the HMI image, reconstructed
image, and GST image. The right column compares the HMI image, blurred reconstructed image, and blurred GST image.
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set up between the model in this paper and the basic model
without attention. The test results showed that the average
PSNR value of the improved CGAN network on the test set
increased by 0.82, and the SSIM index increased by 0.03, with
better performance.

The reason why the improved CGAN network has a high
performance is that there are many similar texture structures in
the HMI image, and the self-attention mechanism can directly
search for high-frequency details from the LR image, so that
the network has the ability to find similar patches from the
image. At the same time, the fine details of each position in the
image are coordinated with the details of other positions in the
image. The network excavates as much as possible the inherent
priors of the image, thereby obtaining rich structural clues in
the image features and reconstructing more texture.

In order to compare the information content of each
frequency of HMI image, SR reconstruction image, and GST
image, the paper draws the azimuthally average power
spectrum of the three images, i.e., first, square the amplitude
of the two-dimensional Fourier transform of the image, and
then calculate the average value on the ring of constant
frequency after polar coordinate transformation (Wedemeyer-
Böhm & van der Voort 2009). The power spectrum of
Figure 3(e) is shown in Figure 7(a), and the resulting unit is
converted to dB. It can be observed that the midfrequency of
the HMI image is very low, indicating little detail in the image.
After SR reconstruction, the mid-to-high frequency is improved

to a certain extent, which is consistent with the GST data, and
the high frequency is slightly higher than the GST and HMI,
meaning that the basic structure of the image is enhanced and
some details are restored. However, at the frequency of 85, the
curve has fluctuations and deviations, which indicate the noise
of the generated image.
The pixel value of the generated image reflects the intensity

fluctuation in the solar photosphere. In order to compare the
pixel values of the corresponding points between the generated
image and the target image, Figures 7(c) and (e) show the
scatter plot and histogram between the reconstructed image and
GST image in Figure 3(e), respectively. The gray points
indicate the correlation between the HMI data and GST data,
and the cross-correlation value is 0.88. The blue points indicate
the correlation between the super-resolution image intensity
and GST image intensity, and the cross-correlation value has
been improved to 0.92. The results show that most of the blue
points are distributed near the line with a slope of 1, and the
pixel values of the generated image and GST image show a
linear relationship without significant error. The gray histogram
also shows the consistency of pixel distribution between the
reconstructed image and GST image.
In addition to the reconstructed image and the target image

needing to be as similar as possible, the degraded SR image
should also be consistent with the input image. To check the
inverse process, the GST images and reconstructed images are
blurred by a Gaussian kernel to the resolution of HMI. Figure 7(b)

Figure 8. The first row, from left to right, shows the HMI image, the reconstructed image blurred to the HMI resolution, and the residual image, respectively. The
second row, from left to right, shows the GST image, reconstructed image, and predicted residual image, respectively. The residual image shows the difference
between the pixel values of the two images.
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shows that the power spectrum of the degraded image is almost
the same as that of the HMI image. Figure 7(d) indicates that the
inversed image and HMI image have a strong linear relationship.
The reason for the difference in the histogram in Figure 7(f) is that
the GST image is taken as the reconstruction target, and the
contrast of the image is changed after reconstruction. The SSIM
value in Figure 6(d) demonstrates that the degraded reconstructed
image maintains a highly similar image structure to the input
image.

For scientific applications, estimating the errors of a reconstruc-
tion image is as important as the reconstruction itself (Gitiaux
et al. 2019). In order to estimate the reconstruction error and
uncertainty, an existing network was trained with HMI images
and the residual images, which are calculated from the
reconstruction images and GST images. The test results show
that the difference between the reconstruction results and GST
images will be greater at the junction of the umbra and other
regions. The predicted results are similar to the real difference
between the blurred reconstructed results and the HMI images
(Figure 8). A possible explanation is that although the small-scale
structure observed by the Fe I spectral line and TiO spectral line is
consistent, there are some differences in the intensity distribution
of the observed values.

6. Conclusion

This paper proposes an SR reconstruction model of the solar
images based on CGAN and the self-attention mechanism to
improve the resolution of images by a factor of around 4 with
an average cross-correlation of 91.6% in active regions. The
network combines nonlocal operations and convolution opera-
tions to effectively capture the local and nonlocal features of
the image.

One immediate usage of our data is to derive accurate flow
fields by tracking moving features. Wang et al. (2018a)
demonstrated that using HR data, the tracked velocity is much
higher than that from lower-resolution data. Our next step is to
apply the same technique to train vector magnetograms to
improve the resolution of magnetograms of the HMI. Those
improved magnetograms will disclose more clearly the flux
emergence and cancellation in detail, which may be the
primary triggering mechanism of solar eruptions (Toriumi &
Wang 2019).

For the methodology aspect, future work will focus on
creating a larger and more diversified data set from solar
images, making the network have better generalization
capabilities, and studying some different quantitative perfor-
mance indicators to evaluate our method. In the future, even
higher-resolution observations for the 4 m DKISK can be used
for a similar kind of training to improve the resolution of GST.
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supported by US NSF under grants AGS-1927578 and AGS-
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Key Laboratory of Solar Activity (grant No: KLSA202114)
and the cross-discipline research project of Minzu University of
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