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We performed dynamic pressure buckling
experiments on defect-seeded spherical shells
made of a common silicone elastomer. Unlike in
quasi-static experiments, shells buckled at ostensibly
subcritical pressures, i.e. below the experimentally
determined critical load at which buckling occurs
elastically, often following a significant delay
period from the time of load application. While
emphasizing the close connections to elastic shell
buckling, we rely on viscoelasticity to explain our
observations. In particular, we demonstrate that
the lower critical load may be determined from the
material properties, which is rationalized by a simple
analogy to elastic spherical shell buckling. We then
introduce a model centred on empirical quantities
to show that viscoelastic creep deformation lowers
the critical load in the same predictable, quantifiable
way that a growing defect would in an elastic shell.
This allows us to capture how both the deflection
at instability and the time delay depend on the
applied pressure, material properties and defect
geometry. These quantities are straightforward to
measure in experiments. Thus, our work not only
provides intuition for viscoelastic behaviour from
an elastic shell buckling perspective but also offers
an accessible pathway to introduce tunable, time-
controlled actuation to existing mechanical actuators,
e.g. pneumatic grippers.

2021 The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction
Shell structures are lightweight and flexible. Largely owing to their curvature, they offer
considerable strength with little material. As a result, shells are abundant in nature (e.g. eggshells
and blood vessels) and design (e.g. fuel tanks and soda cans). However, slenderness also brings
susceptibility to abrupt and often catastrophic deformations. Clearly, understanding how a thin,
curved structure will lose stability—and in particular at what load value this will occur, i.e. the
critical load—is crucial. We restrict our attention to spherical shells in the present work. The first-
known quantitative prediction for the critical load Pc in a perfect, spherical, elastic shell subjected
to uniform pressure was produced by Zoelly in 1915 via linear eigenvalue analysis, and is given as

Pc = 2E√
3(1 − ν2)

η−2, (1.1)

for a shell with Young’s modulus E, Poisson’s ratio ν and radius (R) to thickness (h) ratio
η ≡R/h.

Although this result is still widely accepted today, it severely overpredicts the buckling load
observed in experiments. Recognizing this disrepancy, which is due to the extreme sensitivity
to imperfections inherent to thin shells, scientists at the space agency NASA and collaborators
introduced the knockdown factor (kd) in 1930. The quantity is defined as the ratio of the observed
critical load Pe

c to that predicted by the theory, i.e. kd ≡ Pec/Pc. Based on surveyed experimental
results [1,2], engineers at NASA settled for the extremely conservative design code of kd ≈ 0.2 for
spherical shell structures [3].

Over the decades that followed, extensive work was dedicated to correcting the persistent
overprediction of the critical pressure. This involved studies of the post-buckling behaviour [4,5],
and the imperfection sensitivity [6–11] of thin spherical shells. Yet, marked success arrived only
recently, after Lee et al. developed a new fabrication technique for polymeric spherical caps [12].
The authors used this method to create dominant dimple-like defects (larger than those naturally
occurring in the shell) with systematic size variations [1]. These experiments, validated with
finite-element modelling (FEM) and numerical analysis, quantitatively showed for the first time
how the imperfection depth lowers the critical load.

Other contributions followed, including studies on spheres with similar dimple defects
and sinusoidal equatorial undulations [13], large-amplitude dimples [14], through-thickness
defects [15] (a notable predecessor is [16]), dent defects [17], and probing force imperfections [18],
which collectively clarify the effect of the type of defect on the knockdown factor for spherical
shells. More broadly, this long-awaited breakthrough provoked a new surge of progress in
spherical shell theory (e.g. [13,19–21]). These developments afford engineers the opportunity to
design sturdy structures with more specific—and permissive [2]—lower bounds on the load-
carrying capacity. This was the initial goal. In more recent years, though, a community of
researchers has adopted, in a sense, the opposite goal: to design structures that buckle and snap
on command [22,23] for functions like colloidal self-assembly [24], encapsulation [25], inflatable
snapping actuation [26,27] and artificial muscle actuation [28].

The new understanding of defect sensitivity in a different light demonstrates the tunability of
spherical shell buckling, and thus serves this ‘buckliphilic’ [23] community equally. In particular,
the geometry and placement of a dominant defect prescribe, respectively, the buckling strength
and the spot where an instability localizes. Recent extensions of this concept couple geometric
defects with differentially swelling [29] or magneto-responsive [30] materials to modify the
knockdown factor over time. Relatedly, a more general study showed how a homogeneous
natural curvature—which can be a proxy for nonmechanical stimuli like thermal expansion,
changes in pH, or differential growth—acts to raise or lower the knockdown factor in spherical
shells [31].

Besides control over when instability occurs—which depends on geometry, loading, and
mechanics—mechanical actuators generally rely on reversibility. Repeatable actuation calls for
robust, elastic materials and silicone rubbers like polydimethylsiloxane and vinyl polysiloxane
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have answered this call in mechanics research [32]. In addition to their elastic behaviour, these
elastomers are readily accessible and allow for fast, easy fabrication [12].

Recently, Djellouli et al. combined these ingredients to produce a mechanical swimmer [33].
Quasi-static pressure cycles drove the device, a defect-seeded spherical shell made of the
elastomer Dragon SkinTM 30, to propel forward through a viscous fluid by buckling and
unbuckling controllably. The authors propose that maintaining dimensionless quantities constant
would allow for miniturization, with implications for drug delivery. A natural extension of this
work, and the motivation for the present study, is to seek control over the speed of swimming
by adjusting the frequency and/or amplitude of pressure cycles. Largely because shell and fluid
motion are highly coupled in swimming, and because of possible resonance with post-buckling
oscillations [34], we expect this phase space to be complex. Thus, we set out to first isolate the shell
buckling response, independent of fluid motion, to dynamic loading at pressures in the vicinity
of the critical load.

We fabricated imperfect spherical shells like those in [33], and fixed them in place surrounded
by air. A small nozzle allows for internal pressure control, through which we step-load the
shells—that is, we abruptly apply, and then maintain, a pressure load. Explicitly, we reduce
the pressure inside the shell cavity, creating a negative inside–outside differential pressure.
For simplicity, we will refer to this pressure difference in terms of its magnitude. These
straightforward experiments produced surprisingly rich results. Even for loads below the
experimentally measured elastic critical pressure (which we loosely call ‘subcritical’ herein), we
consistently observe buckling. Furthermore, this buckling at subcritical loads occurs suddenly,
often after an extended period of very slow deformation perhaps mistakeable for stability, i.e.
a time delay between the application of the pressure load and the buckling event. We observe
singular thresholds and a delay time which increases monotonically as pressure decreases—this
contrasts the findings of a recent numerical study on dynamic step loading of spherical shells
which are much thinner than our own [35].

As discussed, geometric imperfections can lead to buckling at lower-than-expected loads. In
this case, though, the shell defects are already accounted for. Devoid of any plausible geometric
explanation for this strange buckling behaviour, our results require a closer examination of the
materials. Although silicone elastomers are selected precisely because they behave elastically
in most settings, they are in fact prone to time-dependent molecular rearrangement, and hence
are viscoelastic [36–38]. Thus, they behave differently depending on how fast they are loaded,
and exhibit both stress-relaxation (softening when subjected to a constant strain) and creep
(deformation over time under constant stress).

In the present work, we rely on this viscoelasticity to account for our observations, while
emphasizing the close connections to elastic spherical shell buckling. The structure is as follows.
First, we introduce key aspects of our experiments in §2. Specifically, we report the viscoelastic
material properties, describe the geometry of our imperfect spherical shells, and briefly introduce
our experimental set-up. In §3, we present an overview of our findings. We address the critical
pressure conundrum in §4 by defining two pressure thresholds: the elastic critical pressure,
and the lower viscoelastic critical pressure, which can be related through the limiting material
properties. These thresholds separate three regimes: immediate buckling, delayed buckling, and
no buckling (stable). In §5, we introduce an analogy wherein viscoelastic creep deformation
lowers the critical load in the same way that a growing dimple-like defect would in an elastic shell.
This provides insight about the pre-buckling deformation (§5a), and reveals how the delay time
preceding buckling depends on the imposed pressure, shell geometry and material properties
(§5b). Finally, we offer concluding remarks in §6.

2. Material, geometry and methods
We have performed dynamic, step-loaded pressure buckling experiments on soft, viscoelastic
spherical shells. Here, we briefly summarize the material properties, shell fabrication and
geometry and dynamic loading methods.
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(a) Material characterization
The shells used in our experiments are made of the elastomer Dragon SkinTM 30 (manufactured
by Smooth-On; Poisson’s ratio ν = 0.5 [33]). We assume that our viscoelastic material can be
described by the standard linear solid (SLS) model, the simplest linear model that captures
both stress-relaxation (the decreasing stress response over time for a structure subjected to a
constant strain) and creep (deformation under a prolonged constant stress) [39]. The SLS model
describes limited creep behaviour, i.e. creep deformation does not progress indefinitely, nor does
the modulus eventually go to zero.

According to the SLS model, the modulus relaxes over time according to

E(t) ≡ σ (t)
ε

= E∞ + E1 e−t/τσ , (2.1)

where σ (t) is the time-varying stress, ε the constant strain, and τσ the relaxation time. The
parameter E1 ≡E0 −E∞ quantifies the total stiffness lost as the elastic modulus E0 decreases
to the long-term (equilibrium) modulus E∞, where E0 ≥E∞. The function (2.1) is known as
the relaxation modulus. It is related by Laplace transform to the creep compliance function,
which describes the temporally increasing strain ε(t) of the SLS element under imposed constant
stress σ [40]:

J(t) ≡ ε(t)
σ

= J0 + J1
(
1 − e−t/τε

)
, (2.2)

where J0 = E−1
0 , J1 ≡ J∞ − J0 with J∞ = E−1∞ ≥ J0, and τε is the retardation time.

We performed uniaxial tension and stress-relaxation tests using the tensile testing machine
Instron 5943 to identify the parameters in equation (2.1) (details are provided in appendix A).
We found the relaxation time to be τσ = 0.78 ± 0.49 s. As for the moduli, we determined
E0 = 0.59 ± 0.04 MPa and E∞ = 0.54 ± 0.08 MPa. Reported errors throughout the text correspond
to one standard deviation unless otherwise noted.1 The resulting ratio of the mean long-term
modulus to the mean instantaneous one is Ē≡ E∞/E0 = 0.91, which is central to the analysis
beginning in §4.

Since our materials have a relatively low relaxation strength, defined as � =E1/E∞ [40],
equation (2.1) and the inverse of equation (2.2) differ negligibly, i.e. J−1(t) ≈E(t) (see appendix A,
figure 7). While creep is the relevant process in our experiments, our primary aim is to draw
connections to elastic shell theory, which relies on the modulus E. Thus, we will use this
convenient fact to interchange the representation of these two mechanisms in our analysis.

(b) Shell geometry
Spherical shells were fabricated following the bi-moulding method from [33], which is detailed in
appendix B. The shells, made of two hemispheres seamed with a thin layer of diluted polymer, all
have an outer radius of Ro =R+ h/2 = 25 mm. The thickness h∈ [1 mm, 5 mm], such that η ∈ {24.5,
12.0, 6.6, 4.5}.

To control the location and direction of buckling, each shell is seeded with an imperfection,
where the thickness is reduced by an amount δ ∈ [0.40, 0.81] mm, such that δ̄ ≡ δ/h ∈ [0.08, 0.76]
in a circular region spanning a half-angle of β0 ≈ π/24 radians. The shell parameters are shown
schematically in figure 1b, and the effect of this defect is discussed further in appendix C.

Following e.g. [1], we also introduce the parameter λ, defined as

λ = (
12(1 − ν2)

)1/4
η1/2β0, (2.3)

which describes the defect geometry in the context of spherical caps [41,42]. For our shells in order
of increasing thickness, λ ∈ {1.038, 0.716, 0.612, 0.492}.

1For quantities with few measurements, the approximate standard deviation is reported as one-fourth of the error range.
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(a) (b)

R d
b0

h

Pin

Patm

Figure 1. (a) The experimental set-up for step pressure loading of a clamped elastomer shell with an inlet for pressure control.
Flexible tubing connects the shell to a differential pressure sensor (not shown) and a 50 l vacuum tank via an electrovalve.
Opening the valve causes air inside the shell to rapidly escape to the vacuum, reducing the pressure inside the shell Pin to
below the surrounding atmospheric pressure Patm (see b), i.e. P≡ |Pin − Patm| > 0. A high-speed camera records a side view
of the resulting shell deformation, which initiates at the defect-seeded pole (opposite the clamp). (b) Schematic of the clamped
shell with a reduced-thickness defect. The relevant parameters are labelled: the nominal thickness h and midline radius R,
imperfection depth δ and half-angular width of the imperfectionβ0. (Online version in colour.)

(c) Step loading
Our experimental set-up is shown in figure 1a. A flexible tube was connected on one end to
the inside of the shell, and on the other to a vacuum tank. An electrovalve interrupting this
channel allowed us to abruptly remove air from the inner volume of the shell, creating a pressure
difference of magnitude P∈ [0.3 kPa, 46.5 kPa] which we monitor with a pressure sensor. The
pressure load is maintained for either the time it takes the shell to buckle, or thold ∈ [5 s, 360 s]. For
details on the experimental set-up, see appendix D.

3. Three regimes
For each of our shells, the immediate response to any non-negligible pressure load was
qualitatively the same: the shell compresses as soon as the pressure is felt, and deformation
quickly localizes at the unclamped pole (in the vicinity of the imperfection), forming a dimple-
like depression with a deflection depth w (figure 2a). Beyond this early behaviour, which occurs
in approximately the first 0.05 s, three regimes were evident from our experiments.

If the imposed pressure is high, the initial fast rate of pole deformation is maintained, and
the shell quickly buckles—that is, the pole inverts, driving global collapse (figure 2(i)). In post-
buckling, which we do not study in detail here, the pole region is completely inverted and
oscillations occur before stability is reached again when w≈ 2R. We refer to this regime, wherein
the shell behaves elastically throughout deformation, as the immediate buckling regime. The lowest
pressure at which we observe this buckling behaviour defines the experimental elastic critical load
Pe
c. Due to the seeded defects and the non-negligible thickness of our shells, the experimentally

determined value Pec differs from the theoretical critical pressure Pc (equation (1.1)) for thin,
perfect elastic shells. For details, see appendix C.

At slightly lower pressures, the deformation rate slows considerably following the fast
response to loading, at a transition time (t≈ 0.05 s). The dimple slowly deepens (i.e. w increases;
see figure 2(ii)), before an abrupt acceleration after some time tc ∈ [0.09 s, 17.09 s] signifies
buckling. We define this intermediate regime as the delayed buckling regime.
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20 mm

t = 0 s 0.05 s 0.07 s 0.075 s 0.085 s 0.095 s 0.25 s

t = 0 s 0.05 s 1.255 s 1.26 s 1.265 s 1.275 s 1.50 s

t = 0 s 0.05 s 2 s 4 s 10 s 15 s 20 s

10−2 10−1

10−1

1

normalized pole deflection w

10−2 10−1 1

10−1

1

10−2 10−1 1 10

10−1

1

t (s)

(a) (b)
(i)

(ii)

(iii)

(i)

(ii)

(iii)

w = wc

P
–

= 1.02

P
–
=0.93

P
– 

= 0.90

–
P

Figure 2. (a) Selected high-speed camera images and (b) corresponding plots of the pole deflection normalized by the shell
thickness, i.e. w̄ = w/h, show the typical response of a shell (η = 6.6) to step loading at relatively (i) high (supercritical), (ii)
moderate (subcritical) and (iii) lowpressures. Thepole deflectionw ismeasured fromthe initial state,marked ina(i) by theupper
dashed grey line. At or above the elastic buckling pressure (e.g. P̄≡ P/Pec = 1.02), the shell quickly buckles (tc ≈ 0.07 s). The
corresponding critical pole deflectionwc (i.e. that at the onset of buckling) is indicated in a(i). Even at subcritical pressures, e.g.
P̄ = 0.93, the shell eventually buckles (tc ≈ 1.26 s). This collapse follows a deceleration in the pole deformation at t≈ 0.05 s,
and a subsequent period of slow, constant-rate deformation. For pressures below a second threshold, e.g. P̄ = 0.90, the shell
does not buckle. (Online version in colour.)

At still-lower pressures, slow pole motion eventually stops, and the shell settles into indefinite
stability for as long as the load is maintained. We call this third regime the stable regime
(figure 2(iii)).

The value of the pressure which separates the delayed buckling and stable regimes, and hence
marks the boundary of whether collapse will occur, is clearly of interest. This lower pressure
threshold was more or less constant for all of our shells when normalized by the elastic load. In
other words, the reduced critical pressure is independent of geometry. With this nudge toward
the materials, we proceed to rationalize these findings.

4. Pressure thresholds via modulus ratio
Since we know our materials are viscoelastic, we can presume that the slow pole deformation
under constant pressure is an exhibition of creep. This would situate our observations in the
terrain of creep buckling. Creep buckling was introduced in the literature in 1951 [43]. The
bulk of the work in this field was developed in the thirty or so years that followed, and was
aimed at understanding creep collapse that occurred on timescales of hours or even days in
metallic, mono-resin materials, and reinforced concrete. However, general theories emerged,
which are illuminating when applied to our elastomer shells. In particular, Hayman [44,45] and
others [46,47] proposed that a viscoelastic structure that buckles due to creep may be treated
as an equivalent elastic structure with a lower critical load. The main result is that the lower
threshold—which we will henceforth refer to as the viscoelastic critical pressure Pv

c—is directly
related to the long-term modulus. For spherical shells, the lower critical pressure Pv

c may be found
by simply replacing Young’s elastic modulus E with E∞ in calculating the elastic critical load
(equation (1.1)). Denoting normalization by the experimentally measured elastic critical pressure
Pec with an overbar, i.e. P̄≡ P/Pe

c and P̄v
c ≡ Pv

c /P
e
c, this implies:

P̄v
c = Ē. (4.1)

In figure 3, we show that (4.1) agrees with our experimental data very well, solidifying the
notion that viscoelasticity is indeed the cause for the subcritical buckling we observe. The dashed
line marks the theoretical lower limit where creep buckling may be observed, P̄v

c = Ē, which for
our materials (see §2a and appendix A) is 0.91.
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100.5 10 101.5

0.85

0.90

0.95

1.00

1.05 immediate

delayed

stable

Ē

h

P̄

Figure 3. Phase plot depicting the three regimes, separated by two pressure thresholds. The elastic critical pressure (thin
dotted line, P̄ = 1) was experimentally determined as the minimum pressure at which a slowdown of dynamics does not
precede buckling. We expect ‘immediate’ (elastic) buckling for an imposed pressure P̄ ≥ 1, which corresponds to the green,
upper region. The theoretical viscoelastic critical pressure P̄vc = Ē (thick dashed line at P̄ = 0.91) is determined from (4.1) using
the material parameters measured independently in stress-relaxation tests (see §2a). Between P̄ = 1 and P̄vc (yellow, middle
region), viscoelastic creep can explain delayed instability at subcritical pressures. Below P̄ = Ē (red, lower region), limited
creep for our material is insufficient to cause buckling, so we expect indefinite stability. Green triangles, yellow circles and red
squares represent, respectively, experiments which buckled elastically, buckled after a time delay, and did not buckle. Error bars
represent 1 s.d. (Online version in colour.)

Explicitly, equation (4.1) ignores the actual mechanism that leads to instability, creep
deformation, in favour of a straightforward way to determine the minimum buckling pressure
for creep-limited materials, which is perhaps the most crucial information for any design goal.
Given the elastic (viscoelastic) critical pressure and the experimentally determined instantaneous
and long-term moduli, the ratio in equation (4.1) readily predicts the viscoelastic (elastic) critical
pressure.

This view is effective and completely general with respect to geometry and material properties.
However, it provides no information about deformation or the time delay that precedes buckling.
Besides that these features are of fundamental interest, understanding this delay mechanism will
offer a route to including controllable delays in elastomer device design. We address these open
questions in the following section.

5. Creep deformation as an evolving defect
As we have seen, the efficient, modulus-based approach in §4 connects the limiting critical
pressure of a viscoelastic shell to that of the equivalent elastic shell. It leaves questions, however,
about the critical time, i.e. the time it takes a subcritically loaded shell to buckle, and the
underlying pre-buckling deformation. Traditional analytical approaches to capture the critical
time and/or the associated critical deflection (that is, the deflection at the onset of instability)
for creep buckling involve incorporating calculated quantities for stress and strain into the
constitutive model (in our case equation (2.2)). Instability may be identified by solving the
eigenvalue problem of the governing differential equations, or by the quasi-static ‘critical strain
approach’ [48] wherein the strain state at the point of buckling must be known or assumed
a priori, and the corresponding time is directly solved for [49]. These methods require precise
representations of the stresses and strains throughout deformation, and have met moderate
success in capturing experimental behaviour for simple structures like columns [50,51], trusses
and arches [52], plates and even cylinders [48]. (See [49] for a review of the relatively recent work
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a 
(fi

t)

l
0.3 0.5 0.7 0.9 1.1

0.6

0.7

0.8

0.9

h = 24.5
h = 12.0
h = 6.6
h = 4.5
a = 1.08 – 0.44l

(a) (b)
(i)

(ii)

d

t wc

Figure 4. Pre-buckling pole deformation (w≤ wc) is qualitatively similar to a geometric defect of increasing depth δ. (a)(i)
Schematic of dimple-like defect in an elastic spherical shell, after e.g. [1]. (ii) Edge contours from high-speed images at t= 0,
0.07, 0.14, 0.21, 0.28 s and tc = 0.35 s (darkening blue corresponds to increasing time) for η = 4.5 and P̄ ≈ 0.97. After initial
compression, deformation localizes to the pole and progresses. (b) Our fitting parameter a≈ f (λ)= 1.08− 0.44λ. (Online
version in colour.)

on creep buckling of shell structures, or [46] for an earlier review on creep buckling of plates and
shells.)

A clear problem with these approaches is that it is generally assumed that a shell undergoing
creep will lose stability at the same strain as its elastic counterpart [53,54]. However, it has
been noted that this assumption often leads to underprediction of the critical displacement and
time [55]. Indeed, although the immediate and delayed buckling regimes appear qualitatively
very similar in terms of deformation in our experiments (figure 2(i)(ii)), we observe that shells
which creep for longer sustain more deformation before buckling.

Complex geometries like imperfect spherical shells and their nonlinear deformations introduce
significant analytical difficulties of their own. Creep buckling in spherical caps and complete
spherical shells has primarily been studied with numerical analyses [56–60], which do not
produce closed-form solutions for when instability occurs. Few experiments exist for comparison
to these results, and attempts to replicate limited experimental creep buckling behaviour for
spherical shells have largely been unsuccessful [57,61].

A more enlightening approach relies on the observation that the pre-buckling deformation
approximately amplifies the initial defect (figure 4a). This suggests that we may be able to draw
an analogy between creep deformation and a growing imperfection in an elastic shell. This
concept was proposed by Hayman in 1981, but the author conjectured that while his ‘locus of
critical points’ approach offered intuition, it lacked predictive power for all but simple, statically
determinate structures [45]. To our knowledge, the approach has not been implemented besides
in the original work, when it was validated against a small number of experiments on concrete
three-pin arches.

One key challenge was that the effect of the defect must be quantifiable. Indeed, as discussed
in §1, the imperfection sensitivity of shell structures has only recently become experimentally
tractable. In what follows, we rely on the work of Lee et al. [1], and centre our analysis upon
quantities that are readily determined through experiments, to derive a practical and predictive
model for creep buckling in our shells.

Knowing that an imperfection ‘knocks down’ the critical load in an elastic structure, in this
view quasi-static creep deformation has the same effect. In other words, creep deformation
behaves like an evolving imperfection by progressively knocking down the critical load. It follows
that creep collapse occurs when the critical load associated with the ‘imperfect’ creep-deformed
structure falls to the value of the applied load. Conversely, the imperfection size associated with a
given applied load should correspond to the critical deformation at which creep buckling occurs.
It is important to note that this was buried but implied in the approach of §4; the two arguments
are complementary.
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To make this analogy quantitative, we turn to the recent literature on geometric imperfections
in elastic spherical shells. The true defects in our shells are characterized by a local reduction in
thickness as in [15] (see appendix C). The pole deflection generated during creep, however, is
qualitatively more similar to a dimple-like imperfection where the thickness does not change, but
the curvature of the shell midline does. Because the midline curvature of our shells is unaffected
by the thickness reduction except at the discontinuity at either edge of the defect profile, we
consider our shells initially ‘perfect’ in the dimple sense. For the present analysis, we rely on the
findings of Lee et al. [1], which are in agreement with [8,13,14].

The key finding of their work, for our purposes, is that the knockdown factor for a given shell
kd = Pec/Pc is a function of δ̄ = δ/h which initially decreases for increasing δ̄, then reaches a plateau.
The authors present an empirically determined function describing the lower bounding envelope
over the range of λ they study, which takes the form kd = a + b/(c + δ̄). We find that this functional
form describes their individual curves sufficiently well.

Primarily because λ for our thick shells is below the range studied in [1], we cannot directly
extract the results relevant to our work. Instead, we expect that these general trends will hold.
We assume that we can simply replace the imperfection depth δ with the pole deflection w.
Because we only consider the additional knockdown due to creep deformation, and not that
due to the initial defect, we take the reference pressure as the experimental critical pressure Pec
that corresponds to the initially imperfect shell. Then we define a general viscoelastic knockdown
function

kvd(w) = P̄c(w̄) = a + b
c + w̄

(5.1)

where w̄=w/h, and a, b and c are yet unknown.
Since w increases according to the creep strain rate, an alternative form of equation (5.1)

specifies the time dependence. Approximating the magnitude of the circumferential strain to
first order as ε ≈w/R, we can say w̄≈ ηε(t). From equation (2.2), this means w̄≈ ησ J(t), which is
approximately ησ/E(t) since the creep compliance function J(t) and the inverse of the relaxation
modulus 1/E(t) are nearly indistinguishable for our material.2 At early times, the shell behaves
elastically, so we assume Hooke’s Law applies, i.e. σ ≈E0ε(tt) at a transition time tt between the
elastic and creep stages of deformation. Furthermore, we assume ε(tt) ≈ εec , where εec ≈we

c/R is
the critical strain corresponding to P̄= 1, when the shell buckles immediately following elastic
deformation. Then by equation (2.1), the normalized pole deflection increases with time following
the relation

w̄(t) ≈ E0 w̄e
c

E∞ + E1 e−t/τσ
. (5.2)

Note that due to our simplified representations of stresses and strains in equation (5.2), all
relations that follow are approximations, despite that we present them as equalities for simplicity.
Substituting equation (5.2) in equation (5.1) gives a time-dependent version of the generalized
viscoelastic knockdown function:

kvd(t) = P̄c(t) = a + b

c + E0 w̄e
c

E∞+E1 e−t/τσ

. (5.3)

It remains to determine the three unknown quantities, which should explain how sensitive the
critical pressure is to deformation (equation (5.1)) and how quickly the critical pressure decreases
(equation (5.3)) for each shell. To do so, we constrain the functions, enforcing what we know about
the limiting behaviour. The critical deflection required for buckling at the elastic limit where P̄= 1
is an experimentally determined value, we

c, which differs for each shell based on geometry. Since

2We performed stress-relaxation tests and thus obtained the relaxation modulus, E(t). However, if one were to instead obtain
the creep compliance function J(t) in experiments, the approximation J(t) ≈ 1/E(t) could be skipped, and J(t) could be used
directly.
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for buckling to occur, Pc(w) =P, from equation (5.1) this condition is stated as

1 = a + b
c + w̄e

c
. (5.4)

We also know from equation (4.1) that buckling will not occur below kd = P̄v
c = Ē. Taking the

limit of the right-hand side of equation (5.3) as t approaches infinity gives a second constraint:

Ē= a + b

c + w̄e
c

Ē

. (5.5)

Solving equations (5.4) and (5.5) simultaneously gives

b= (a − 1)(a − Ē)w̄e
c

Ē
(5.6)

and

c= −aw̄e
c

Ē
, (5.7)

which we insert into equation (5.1) to arrive at

P̄c(w) = a + (1 − a)(Ē − a)w̄e
c

Ēw̄ − aw̄e
c

, (5.8)

which describes the critical pressure for a given degree of pole deflection. If w̄ is large enough that
P̄c is lowered to the imposed dimensionless pressure P̄, in theory buckling will occur.

Similarly, inserting the expressions for b and c in equation (5.3) gives

P̄c(t) = a + (a − 1)(a − Ē)
(

E0Ē

E∞ + E1 e− t
τσ

− a
)−1

, (5.9)

which specifies the time-dependence, according to the SLS model, of the knockdown to the critical
pressure that occurs as the pole deflection progresses. Again, if t is such that P̄c = P̄, we expect
collapse to occur.

Note that from equation (5.9), it is clear that any explicit dependence on geometry is contained
in a. When a is left as a fitting parameter for the curves defined by equation (5.11) (figure 6a),
we find that it is a decreasing function of the geometric defect parameter λ, which is in general
agreement3 with [1]. In particular, we determine a≈ 1.08 − 0.44λ (figure 4b) for our shells. We
refer to this linear function henceforth as f (λ), and substitute it accordingly for a to emphasize the
deduced connection between our fitting parameter and the defect geometry.

The deflection (equation (5.8)) and time (equation (5.9)) forms of the viscoelastic knockdown
relations lead to expectations for how the critical displacement and critical time should depend
on the material properties, geometry and the imposed pressure. We assess both in the following
subsections.

(a) Critical deflection
Evaluating equation (5.8) at P= Pc(w̄c), replacing a with f (λ), and solving for w̄c/w̄e

c gives the
following expression for the dimensionless critical deflection:

wc

we
c

= f (λ)(1 + Ē − P̄) − Ē

Ē(f (λ) − P̄)
, (5.10)

which is valid when creep occurs (P̄v
c = Ē< P̄< 1, where the first equality refers to equation (4.1))

and tells us the pole deflection we should expect at (or, that is required for) buckling.
Equation (5.10) is plotted against our data in figure 5, showing good agreement until P̄≈ P̄v

c . Near
this asymptote, marked by the loosely dotted line, the critical deflection observed in experiments
exceeds the predicted value. We discuss this deviation further in §5b.

3We fit a function of the form kd = a + b/(c + δ̄) to the numerical data over λ ∈ [1, 5] in fig. 6b of [1], and found a≈ 0.5 − 0.14λ.
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Figure 5. The critical pole deflection wc depends on P, the material properties, and the geometry through a= f (λ) and Pec :
when creep occurs (delayed buckling, yellow region, immediately to the right of the dotted line at 1 on the horizontal axis which
marks P̄ = 1), the shell must deform more than we

c = wc(Pec ) to ‘knock down’ the critical pressure until it coincides with the
imposed pressure P, and stability is lost. This is represented by the diagonal line (equation (5.10)), which matches our data well
until the lower pressure limit for buckling is approached. This asymptote is marked by the loosely dotted line with abscissa
1/Ē, which corresponds to P̄ = Ē = Pvc /P

e
c (equation (4.1)). Open symbols in the red, rightmost (stable) region represent the

maximum (equilibrium) w/we
c for experiments that did not buckle. As expected, these points fall below the theoretical line,

which projects the deflection necessary for buckling. Our model does not extend to the immediate buckling regime (green,
leftmost region). Error bars are approximately 1 s.d. (Online version in colour.)

The results in figure 5 are consistent with the trend observed in the creep buckling literature,
where it is suggested that a shell undergoing creep prior to buckling sustains more deformation
before collapse than its counterpart that buckles elastically. The explanation is that as the imposed
pressure decreases, more deformation is required to sufficiently ‘knock down’ the critical pressure
for buckling to occur.

Creep does not occur before buckling when P̄≥ 1 (the green, leftmost region in figure 5),
where the shell behaves elastically. In this region, where equation (5.10) does not apply, we do
not observe a clear trend in the critical deflection. Furthermore, for experimental points that
do not buckle, the deformation was insufficient to reduce the critical pressure to the value of
the relatively low applied load. Accordingly, the maximum pole deflection (open symbols in
figure 5) falls below theoretical curves when P̄< P̄v

c (red, rightmost region in figure 5). Taking
the limit as t approaches infinity in either equation (2.2) or equation (2.1) gives max (ε) = σ/E∞,
so max (w) ≈Rσ/E∞. Meanwhile, Hooke’s Law provides an estimate for the critical deflection
if P̄= 1 is imposed: we

c ≈Rσe/E0. Then in theory, if P̄< P̄v
c , max(w)/we

c ≈ σ/(Ēσe) ∼ P̄/Ē. We do
not attempt to verify this scaling with our sparse data in this region, besides noting that as P̄
approaches P̄v

c , we would expect max(w)/we
c to approach 1 (from below). Our data appear to

support this conjecture.

(b) Critical time
We have seen that the pole deflection is analogous to a dimple-like defect. Incorporating the
viscoelastic material model, in turn, tells us how the critical pressure is expected to decrease over
time. This offers a means to explain the critical buckling time, which increases monotonically
for decreasing pressure. To do so, we evaluate equation (5.9) at P̄= P̄c(tc) and solve for the
dimensionless critical time tc/τσ :

tc
τσ

= ln
(

(Ē − 1)(f (λ)(Ē − P̄ + 1) − Ē)
Ē(f (λ) − 1)(Ē − P̄)

)
. (5.11)
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Figure 6. As the dimensionless applied pressure increases from P̄vc = 0.91 to the elastic critical pressure P̄ = 1, the buckling
time decreases monotonically according to equation (5.11), which specifies how long it takes for the pole to deform enough
to decrease the critical pressure to the applied one. (a) Experimental data (markers) and colour-corresponding curves from
equation (5.11), which were fitted to obtain f (λ)= 0.62, 0.76, 0.81, 0.85 (plotted in figure 4b) for η = 4.5, 6.6, 12.0, 24.5,
respectively. The densely dotted vertical linemarks P̄ = 1. Near this limit, the inertial (elastic) timescale, indicated by horizontal
dashed lines, sets tc for each shell. The loosely dotted vertical line marks the asymptotic pressure set by Ē = 0.91= P̄vc
by equation (4.1). (b) Equation (5.11) collapses the same experimental data plotted in (a), and captures the critical time for
intermediate pressure values. When P̄ decreases to about 0.94, the theory underpredicts the critical time. Error bars correspond
to 1 s.d. in P̄. Horizontal dashed lines in (a,b) indicate the elastic snap-through time tintertial, which sets theminimum tc. (Online
version in colour.)

Equation (5.11) is plotted against our data in figure 6. Like for the critical deflection (figure 5),
the knockdown theory captures the critical time well in the intermediate range. At or above
the elastic limit P̄= 1, equation (5.11) predicts nonphysical critical times of tc ≤ 0. This is
because the SLS model assumes that both loading and initial elastic deformation happens
instantaneously, so creep begins at t= 0 s. Of course, in reality, elastic instability occurs on a
timescale associated with the elastic wavespeed. Accordingly, the inertial timescale t∗ begins to
dominate the viscoelastic one as P̄ approaches 1. Following e.g. [35,62,63], we expect that the
elastic timescale t∗ ∼ (2R)2/(ch), where c= √

E0/ρ = 23.37 m s−1 is the speed of sound within the
material and ρ = 1080 kg m−3 is the material density according to the manufacturer. For our shells
in order of increasing thickness, this gives t∗ ∼ {0.1027, 0.0493, 0.0264, 0.0173} s. We have indicated
the elastic snap-through time for an arch tinertial = 2

√
3t∗ [62], with horizontal dashed lines in

figure 6.
When the imposed pressure nears the lower limit P̄v

c , the asymptotic behaviour is captured
qualitatively (figure 6a). However, the theory underestimates the critical time in this region.
This divergence occurs around P̄≈ 0.94, which corresponds to when the predicted buckling time
surpasses τσ . Thus, deformation has slowed considerably prior to buckling for these experiments
and the inertia that was present at early times is no longer available. We have identified elastic
buckling in our experiments as when the deformation rate exceeds that at very early times (when
the shell also behaves elastically). However, it is possible that buckling initiated sooner in reality,
but that the shell needs further perturbation—that is, to deform more, which requires more time—
before we detect collapse. This is reminiscent of critical slowing down phenomena, wherein
dynamics slow considerably near instability [63,64]. Other possible explanations for the deviation
from our model are the simplified representations of stresses and strains, or the inability of the
SLS model to capture the material behaviour exactly. Nonetheless, we conclude that despite the
notable simplicity of our assumptions, the knockdown theory explains our observations quite
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well, and does so while emphasizing the close connections between elastic and viscoelastic shell
buckling.

6. Conclusion
In summary, we subjected thick, spherical, defect-seeded viscoelastic shells to step pressure
loading. We observed three regimes. When the pressure load was at or above the experimentally
determined elastic critical load, we observed predictible elastic behaviour, i.e. prompt buckling.
At intermediate loads—below the elastic critical pressure—the shell buckled, albeit after a time
delay during which deformation slowly progressed. At still-lower pressures, the shell deformed
but collapse never occurred. Our aim in this work was to rationalize our findings in a way that
maintains close ties to elastic shell buckling, and is readily useable for experiment or design
goals. To this end, we demonstrated that the load thresholds, critical deflection, and critical time
may all be captured by a framework that treats creep deformation like an evolving defect in an
elastic shell.

In particular, the ratio of the long-term modulus to the short-term (elastic) one is the same as
the ratio of the two critical pressures. This result derives from elastic shell theory, but practically,
the material properties alone can explain the two pressure thresholds. This finding was suggested
in various theoretical works on creep buckling [44–46] and is independent of geometry, and hence
is completely general.

We used this fact and existing work [1] on defects in spherical shells to discern an expression
for how deformation due to creep acts to ‘knock down’ the critical pressure. In this view, the
shell loses stability when creep deformation, which localizes at pole and amplifies the initial
imperfection, progresses enough to reduce the critical pressure to the value of the imposed one.
This allowed us to capture the dependence of the critical deflection on the imposed pressure
(normalized by the experimentally determined elastic critical pressure), the modulus ratio, and
the defect geometry (equation (5.10)). This offers an explanation rooted in elastic shell behaviour
for a decidedly viscoelastic phenomenon: in the delayed buckling regime, higher deflection is
required for instability as the pressure decreases.

Because deformation occurs on a timescale sufficiently well described by our chosen
viscoelastic material model (SLS), a time-dependent form of the viscoelastic knockdown function
immediately follows. From this, we devise an expression for how the pre-buckling delay time
depends on the same quantities: the modulus ratio, the dimensionless pressure and the defect
geometry (equation (5.11)). The buckling time increases monotonically but nonlinearly as the
pressure decreases, which is generally captured by our model. While the modulus ratio Ē was
fixed in our experiments, we expect that our model is valid for any material with relatively
low relaxation strength (i.e. the relaxation modulus and creep compliance functions do not
differ significantly). Furthermore, we note that the success of our model does not depend on
the approximation J−1(t) ≈E(t) that we have employed. Rather, if one were to obtain the creep
compliance function in experiments, using this directly in place of the relaxation modulus would
likely improve the accuracy of predictions.

While viscoelastic shells behave elastically during buckling, viscous effects re-enter in later
stages of post-buckling, as discussed in [65]. Unbuckling was studied in detail in [33], as the
non-reciprocal nature of the buckling–unbuckling cycle is the source of motility. We did not
examine unbuckling in the present work. However, we could reasonably expect that another
viscoelastic delay phenomenon, termed ‘pseudo-bistability’ [66] (first introduced in [67] as
‘temporary bistability’), could be seen in our shells.

Pseudo-bistability refers to the delayed ‘snap-back’ instability that occurs in the unloaded
state, following a loading–unloading sequence that induces both stress-relaxation and creep [64].
Early works modelled viscoelasticity via an evolving stiffness, achieving qualitative agreement
with experiments [66,67]. A recently proposed metric framework introduces viscoelasticity as
a temporally evolving (fictitious) reference length instead, and among its merits is the ability
to predict delayed snap-back instability [38,68]. Observing this instability in our setting would
require maintaining the pressure load for a sufficiently long time while the shell is fully buckled
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before unloading. As such, creep instability and pseudo-bistable snap-back can in theory be
induced in the same thick structure, with one or the other suppressed at will.

Our findings highlight the importance of the load rate, and the sensitivity of the shell to
pressure variations in the vicinity of the elastic critical load (when approached from below). These
are important considerations for structural designs using silicone rubber where either stability
or elastic behaviour is desired. For instance, knowledge of the critical load thresholds is clearly
important when designing an efficient spherical swimmer, or indeed any viscoelastic structure
that should undergo oscillatory instability. If the goal is fast motility, it would likely be desirable
to minimize the time delay before buckling by avoiding the delayed buckling (intermediate
pressure) regime altogether.

In other settings, viscoelastic behaviour can enhance the functionality of reversibly actuatable
structures. This has been demonstrated recently in designs that rely on pseudo-bistable snap-
back, e.g. 3D-printed viscoelastic metastructures whose time-dependent properties are tunable
based on temperature [69], with even more flexibility afforded by using multiple viscoelastic
materials [70]. Another study examines the interplay between viscous dissipation and geometric
hysteresis, as a function of the strain rate, for the design of optimal energy dissipating
metamaterials [71]. Introducing tunable delays via creep buckling has not yet been explored,
but the potential is vast: a switch or capsule could be loaded subcritically, so that the shell has
time to move to a desired location before buckling occurs. Over time as deformation reduces the
critical load and thus the energy barrier [72], a much smaller probing force or other perturbation
could trigger buckling. This could be useful for pneumatic gripping. A mechanical signal of fixed
input frequency (and varying amplitude) could produce a varied output frequency, which has
implications for mechanical computing. Because our analysis relies only on quantities that are
straightforward to determine in experiments, our findings are especially amenable to accessing
such tunability. As we have shown, these possibilities are achievable with the nearly elastic
materials that are already common and cherished in mechanics research.

In 1956, Gerard wrote about creep buckling that ‘there are almost more theories than reliable
test points which can be used to check the theories’ [53]. While a limited number of experimental
contributions have come about since, to our knowledge our experiments on full spheres are
novel to the existing creep buckling literature. Furthermore, we have demonstrated that some
concepts central to general creep buckling theories, which previously were mostly tested on
metallic, mono-resin materials, and reinforced concrete [49], are indeed applicable to soft, rubbery
materials. We expect that the concepts we have studied can be extended to other geometries, other
loading methods, and similar polymers.
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Appendix A. Standard linear solid parameters
To determine the material properties of Dragon Skin 30TM, we fabricated 7 dogbone specimens
(ASTM D412 Type C). The moulds, cut using an Epilog Helix laser machine, were designed to give
each sample a protruding defect—two thin horizontal lines 500 µm thick and separated by 500
µm—at the middle of the gauge section. These lines were tracked with a zoom lens attached to
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Figure 7. Averaged values for (a) the elastic and long-termmoduli of Dragon Skin 30TM and (b) the ratio of their mean values,
as determined from tensile stress-relaxation tests. The x-axes indicate the time elapsed since fabrication. The cure time is listed
by the manufacturer as 16 h post-fabrication. (c) Plot of the relaxation time from stress-relaxation tests. The dashed lines in
(b) and (c) show the averaged values used in our analysis, Ē = E∞/E0 = 0.91 and τσ = 0.78 s, which were determined
from the samples whose ages were relevant to our experiments (24–48 h cured at room temperature, and 0.4 h cured at
elevated temperature). (d) SLS relaxation modulus (E(t)) and inverse creep compliance (J−1(t)) functions constructed from our
averaged quantitites. Because thematerial is nearly elastic, E(t)≈ J−1(t)∀ t > 0. All error bars represent 1 s.d. (Online version
in colour.)

a Nikon D610, allowing for accurate strain measurements taken later in ImageJ. Samples were
then tested after 16, 18, 24, 44, 65 and 94 h at room temperature post-fabrication, as well as
1 h after 25 min of curing at an elevated temperature of 65°C. The manufacturer lists the cure
time as 16 h.

The long-term (equilibrium) modulus was determined from tensile stress-relaxation tests
using the tensile testing machine Instron 5943. Displacements, which resulted in strains ε0 ∈ [2%,
20%], were imposed at rates of 150–500 mm min−1, then maintained for 120 s while the force,
which decreases over a timescale t∼ τσ before plateauing, was measured. The plateau force was
used to calculate σ∞ where we took E∞ ≡ σ∞/ε0. The values for E∞ plotted in figure 7a are
calculated as the average of 12 total measurements from four tests at varied strain levels and
strain rates.

This relatively fast loading resulted in measurement uncertainty at early times, so we did not
fit a curve to the entire range of stress-relaxation data, nor did we extract the elastic modulus from
stress-relaxation tests. Instead, tensile tests on the same samples were conducted at rates of 10 and
20 mm min−1 up to εmax ∈ [8%, 26%]. This resulted in linear stress–strain curves, and the slopes
were used to calculate E0. Each data point in figure 7a represents the average of 6 measurements
from 2 tests for each sample.
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Between 16 and 24 h post-fabrication at room temperature (approx. 20°C), we observe an
increase in the long-term modulus from 0.20 ± 0.05 MPa to 0.55 ± 0.09 MPa. By 24 h, the long-term
modulus reaches a plateau. The elastic modulus follows a similar trend: the material stiffens
from E0 = 0.48 ± 0.06 MPa at 16 h post-fabrication to 0.60 ± 0.02 MPa at 24 h, by which time the
elastic modulus has plateaued. The plateau value we measure is in agreement with the 100%
modulus value listed by the manufacturer, Smooth-On, of 0.59 MPa. More or less the same
plateau values result from curing the sample in an oven at 65°C for 25 min (E∞ = 0.53 ± 0.08 MPa,
E0 = 0.58 ± 0.05 MPa).

The ratio Ē= E∞/E0 is central to our analysis, and is plotted in figure 7b. For the shell-buckling
experiments discussed in the body of this paper, the relevant times are 24 and 44 h, and the 25 min
oven-cured sample (see appendix B). Averaging these data gives the value we use throughout our
analysis (and the dashed line in figure 7b), Ē= 0.91. Instead including all of the samples whose
moduli appear to have saturated (i.e. all except the 16 and 18 h samples) does not change this
averaged value (it only slightly increases the standard deviation, to 0.3 MPa).

With the functional form of the relaxation modulus in mind, we identified the relaxation time
τσ as the time when the modulus has reduced to E∞ +E1 e−1. The averaged values are shown
in figure 7c. The overall average was τσ = 0.78 ± 0.49 s. This corresponds to a retardation time
τε ≈ 0.86 s [40]. The relatively large error range on the characteristic timescale results from initial
uncertainty in stress-relaxation curves.

In §§4 and 5, we blur the lines between the creep compliance and the relaxation modulus: while
the active process is creep, we use not the creep compliance, but the relaxation modulus—which
describes stress-relaxation—in our analysis. This is for two reasons. First, our primary aim is to
describe creep buckling in the language of elastic buckling—which refers to Young’s modulus E—
rather than to provide an exact description of creep in this material. Second, we found that stress-
relaxation (displacement-controlled) tests provided much more reliable data than creep (force-
controlled) tests using Instron 5943.

The relaxation modulus (equation (2.1) in the main text) is related by Laplace transform to the
creep compliance (equation (2.2)). Thus, the limiting values E0 = σ (t= 0)/ε and J0 = ε(t= 0)/σ ;
E∞ = σ (t= ∞)/ε and J∞ = ε(t= ∞)/σ are exact inverses.

The relaxation time τσ is less than the retardation time τε. The two are related through
the relaxation strength, defined as � =E1/E∞, according to τε = τσ (1 + �), and thus E(t) �=
J−1(t)∀t [40]. However, the difference between the two functions is very small, as shown in
figure 7d. Due to this negligible difference, we conclude that our approximation in §5 is also
reasonable.

Appendix B. Shell fabrication
The process for fabricating polymeric spherical shells, which was developed in [33] and is shown
in figure 8, is as follows. Custom aluminium moulds consist of female and male components
along with alignment sleeves. The female mould is a cylinder of equal radius and height (30 mm)
with a hemispherical cavity, which sets the outer radius of the shells to Ro = 25 mm. The male
component consists of a shouldered half-sphere whose size determines the inner shell radius,
Ri = {24, 23, 21.5, 20} mm. The shoulder (chamfered to 5°) is 10 mm tall, and its maximum diameter
matches that of the female mould as well as the inside of the guiding sleeve. The latter is a
40 mm tall cylindrical tube, internally chamfered up to a depth of 10 mm to accommodate the
male mould.

To control the location of the onset of buckling, shells are seeded with a circular imperfection.
This is achieved by affixing 1–4 layers of adhesive tape cut to Rδ ≈ 6 mm (resulting in imperfection
depth of δ ∈ {0.76, 0.81, 0.84, 0.40} mm, in order for the thinnest to thickest shell) to the centre of
one of the two female moulds used to make each shell.

To make shells, the polymer is prepared according to package instructions, degassed in a
vacuum, and poured into the female moulds. After degassing again, each polymer-filled cavity is
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(e) (f) (g) (h)

(b)(a) (c) (d)

Figure 8. Shell fabrication process. (a)Mixed and degassed DragonSkin 30 is poured into two hemispherical aluminium cavities
of Ro = 25 mm. Only one is shown in (a–h), and several layers of tape have been cut into a circle and adhered to the centre of
one of the hollow spheres. (b) After degassing again, the filled cavity is fitted with an alignment sleeve. (c) A half-sphere of
Ri < Ro is inserted. (d) After curing for 25 min in the oven, a spherical hemisphere has formed. (e) Heptane-diluted polymer
is deposited with a syringe to glue two cured hemispheres. (f,g) The edges of the two hemispheres are joined and aligned by
the alignment sleeve. (h) After curing at room temperature for at least 16 h, a sealed sphere is removed from themould. (Online
version in colour.)

fitted inside an alignment sleeve, and the male mould is inserted. The assembly is tightly clamped
between the two plates of a simple mechanical press and cured at 65°C for 25 min.

After curing, the alignment sleeve and the male component are removed, revealing two
hemispherical shells resting in the female moulds. To join the two halves, a glue is prepared.
The viscosity of the liquid polymer is reduced via dilution with heptane at a 2:1 ratio. This allows
for the application of a sufficiently thin layer of glue, deposited with a syringe around the equator
of each hemisphere. Again a sleeve is used to align the two halves, whose contact is ensured by
the mechanical press, and the shell is left to cure at room temperature for 16 h.

A drill press is used to create a 1 mm diameter hole, into which a small nozzle connected to a
tube allows for internal pressure control. Lastly, a suction cup (2–3 cm diameter) is glued to the
shell surface opposite the buckling spot with cyanoacrylate (Loctite). During experiments, the
shell is fixed in place via a screw attached to the back of the suction cup.

Appendix C. Knockdown of elastic critical pressure due to through-thickness
defects
Unsurprisingly, the classical prediction for the buckling pressure of a perfect elastic spherical
shell (equation (1.1)) does not capture the behaviour of our imperfect shells. Recently, predictions
for the knockdown factor as a function of the size of an axisymmetric imperfection have been
presented for dimple-like [1,14] and through-thickness [15] defects.

The reduced-thickness defects in our experiments (figure 1b) are like those in the work of Yan
et al. [15]. The authors present data from experiments and FEM simulations on the knockdown
factor for varied depth, angular width and transition width of the imperfection. We use these
data4 to calculate the ‘knocked-down’ theoretical elastic critical pressure for each of our shells.
This theoretical value is plotted against our experimental data in figure 9. We have taken Pec to be
the minimum pressure at which a plot of volumetric or pole deformation versus time shows no
slope change until buckling (the rate of deformation is much slower when creep occurs.)

4Knockdown values were extracted from fig. 11b of [15], and found to be kd ={0.2719 ± 0.007, 0.7423 ± 0.000, 0.8664 ± 0.008,
0.93 + 0.070} for η = {24.5, 12.0, 6.4, 4.5}, respectively.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 S

ep
te

m
be

r 2
02

1 



18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210253

..........................................................

kdPc (kPa)

P
e c (

kP
a)

0 10 20 30 40 50
0

10

20

30

40

50
h = 24.5
h = 12.0
h = 6.6
h = 4.5

Figure 9. Comparison of the theoretical elastic buckling pressure Pec for thin shells with through-thickness imperfections with
our experimental value. The experimental value is taken as theminimumpressure at which no slowdown of deformation occurs
before buckling. The theoretical value kd Pc is calculated using kd extracted from fig. 11b in [15], and Pc from equation (1.1). Error
bars correspond to approximately 1 s.d., and are smaller than the markers in most cases. (Online version in colour.)

Up to relatively thick shells, the theoretical knockdown predicts our experimentally measured
critical pressure relatively well (η = 24.5, 12.0, 6.6)—perhaps surprsingly so, given that the data
in [15] were collected in quasi-static experiments on shells of fixed η = 100. However, as η

decreases even further from the thin shell limit, the thick shell withstands higher pressures than
predicted. This inapplicability of thin shell knockdown theories is significant for the thickest
shell we tested (η = 4.5). For consistency, then, in all arguments throughout the main text we
rely on an experimentally determined value for the elastic buckling pressure. Thus, we take the
experimental value for Pec to be the minimum pressure difference where elastic buckling occurs.

Appendix D. Methods for dynamic pressure loading experiments
Before each experiment, a vacuum pump (Becker U 4.40) is used to reduce the pressure
inside a 50 l tank. A flexible tube (3 mm inner diameter, 12 cm length) connects the tank to
a differential pressure sensor (Freescale Semiconductor MPX5100DP, sensitivity 45 mV kPa−1).
Pressure readings were recorded using a microcontroller (Arduino UNO) every 0.02 s with a
resolution of 0.1 kPa.

As this pressure resolution is slightly coarse for the thinner shells, which buckle at pressures
of the order of 1 kPa, we account for rounding (and small pressure fluctuations) by reporting the
mean and standard deviation of the pressure values reported at intermediate5 times (after initial
elastic deformation and before buckling, should it occur). Via a T-junction, a second tube (6 cm
long) connects the tank to the inside of the shell, by way of an electrovalve (Matrix Pneumatics
Solenoid Valve, MX891.901C224). The response time of the valve is <1 ms. Based on a back-of-
the-envelope calculation of the amount of gas that needs to travel from the shell to the tank for
pressure equilibrium and the corresponding mass flow rate, we expect that the shell–vacuum
tank system equilibriates within approximately 4 ms for pressures imposed on the thickest shell
(where higher pressure gradients drive faster air flow), to about 40 ms for the thinnest.

Arduino IDE software enables synchronization of the sudden opening of the valve with the
digital recording of the pressure difference (at a rate of 500 Hz), as well as with the triggering of
the high-speed camera (Phantom Miro 310). Depending on the empirically determined delay time
before buckling, images were captured at a rate of 2000–9000 frames per second. Image processing
of TIFF stacks was completed using ImageJ and custom Python scripts.

5For shells subjected to large P which buckle elastically, we simply report the (non-fluctuating) imposed pressure, recorded
before the shell begins to deform, with a default maximum error of ±0.05 kPa.
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