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a b s t r a c t 

Various strategies can be applied to improve reliability at certain costs, including equipment redundancy, 

product storage, and maintenance, which gives rise to the problem of optimally allocating the reliability 

improvement costs among the strategies and balancing them against the potential loss due to unavail- 

abilities. Motivated by the reliability concerns of air separation units, we use Markov Decision Process to 

model the stochastic dynamic decision making process of condition-based maintenance assuming bathtub 

shaped failure rate curves of single units, which is then embedded into a non-convex MINLP (DMP) that 

considers the trade-off among all the decisions. An initial attempt to directly solve the MINLP (DMP) for 

a mid-sized problem with several global solvers reveals severe computational difficulties. In response, we 

propose a custom two-phase algorithm that greatly reduces the required computation effort. The algo- 

rithm also shows consistent performance over randomly generated problems around the original example 

of 4 processing stages and problems of larger sizes. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Process reliability is important to chemical plants, as it directly

mpacts the availability of the end product, and thus the profitabil-

ty. In particular, what motivated this work is the reliability of air

eparation units that supply gas products to designated customers

hrough pipelines, which is at an even higher stake since the inter-

uption of the pipeline supply will also result in production inter-

uption at the customer site. 

If we focus on the system design and the reliability of the pro-

ess itself, there is a clear trade-off between higher expected avail-

bility of the process and higher capital investment for backup

nits. A few works have looked into this point. Thomaidis and Pis-

ikopoulos (1994, 1995) incorporate the reliability index of each

nit as part of process design optimization considering flexi-

ility and reliability. Aguilar et al. (2008) address reliability in

tility plant design and operation by considering a few pre-

pecified redundancy selection alternatives and failure scenarios.

e et al. (2018) propose a general mixed-integer programming

ramework for the optimal selection of redundant units. 
� This paper is dedicated to Prof. Sebastian Engell for his outstanding contribu- 

ions and leadership in the area of Process Systems Engineering. 
∗ corresponding author. 

E-mail address: grossmann@cmu.edu (I.E. Grossmann). 

t  

i  

p  

o  

c

ttps://doi.org/10.1016/j.compchemeng.2020.107052 

098-1354/© 2020 Elsevier Ltd. All rights reserved. 
Another strategy to improve product availability for air sepa-

ation units is to provide buffer storage of the liquified products,

hich can be evaporated to sustain the pipeline supply when the

ir separation units fails. This strategy also incurs costs of building

he tanks and maintaining the stock, which increases with the size

f the storage tanks ( Terrazas-Moreno et al., 2010 ). Our previous

ork ( Ye et al., 2020 ) has looked into the exact modeling of the

tochastic process of liquid storage consumption. 

Quantifying and optimizing the maintenance effort s after

he commissioning of a plant is a well recognized topic in

ndustry ( Van Rijn, 1987 ) as well as in academia. Tan and

ramer (1997) present a general framework for preventive

aintenance optimization utilizing Monte Carlo Simulation and

enetic algorithms overcoming certain drawbacks of analyt-

cs based methods and Markov based methods. With re-

ards to timing and resource allocation of maintenance tasks,

istikopoulos et al. (2001) optimize maintenance alongside with

ormal production tasks. Cheung et al. (2004) address a short-term

cheduling problem of plant shutdown, overhaul, inspection and

tartup actions within one plant. Amaran et al. (2016) focus on op-

imizing the maintenance turnaround planning of integrated chem-

cal sites for minimum cost accounting for workload and man-

ower uncertainties. Achkar et al. (2019) optimize the scheduling

f general maintenance tasks on oil and gas wells and surface fa-
ilities. 

https://doi.org/10.1016/j.compchemeng.2020.107052
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.107052&domain=pdf
mailto:grossmann@cmu.edu
https://doi.org/10.1016/j.compchemeng.2020.107052
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Nomenclature 

Indexes 

k Processing stage 

h unit selection of single stage 

p product 

n storage size option 

s, s ′ state 

a action 

Sets 

K processing stages 

H k unit selections of stage k 

P product kinds, i.e. oxygen, nitrogen, etc. 

N p storage size options for product p 

S k,h possible states of stage k with unit selection h 

A ( s ) possible actions of state s 

Parameters 

C U 
k,h 

the investment cost of unit selection h at 

stage k 

C T p,n the investment cost of tank size n for product 

p 

P k,h ( s, a, s 
′ ) the probability of transitioning from state s 

to state s ′ if take action a in stage k with unit 

selection h 

R idv 
k,h 

(s, a, s ′ ) the instant operational cost of transitioning 

from state s to state s ′ if take action a in 
stage k with unit selection h 

R 
idv _ pen 
k,h 

(s, a, s ′ ) the instant penalty incurred cost of transi- 

tioning from state s to state s ′ if take action 
a in stage k with unit selection h 

(R pen 
k,h 

(s, a, s ′ )) L the lower bound of R 
pen 

k,h 
(s, a, s ′ ) 

t res 
k,h 

(s, a ) the expected residence time of state s if take 

action a in stage k with unit selection h 

Variables 

z k,h binary variable that indicates the selection of 

design h at stage k 

x p,n binary variable that indicates the selection of 

storage size n for product p 

y p,n,k,h binary variable that indicates the selection of 

storage size n for product p and design h at 

stage k at the same time 

w k, h ( s, a ) binary variable that indicates the selection of 

action a at state s of stage k with unit selec- 

tion h 

v k, h ( s ) the value of state s of stage k with unit selec- 

tion h 

π k,h ( s ) the stationary probability of state s of stage k 

with unit selection h 

π sub 
k,h 

(s, a ) the disaggregated stationary probability of 

state s of stage k with unit selection h when 

choosing action a 

R k,h ( s, a, s 
′ ) the instant cost of transitioning from state s 

to state s ′ if take action a in stage k with unit 

selection h 

R 
pen 

k,h 
(s, a, s ′ ) the instant penalty incurred cost of transition- 

ing from state s to state s ′ if take action a 
in stage k with unit selection h that is dis- 

counted by t _ ratio A 
k 
based on R 

idv _ pen 
k,h 

(s, a, s ′ ) 
R _ y 

pen 

k,h 
(s, a, s ′ ) the aggregated variable of y p,n,k,h R 

pen 

k,h 
(s, a, s ′ ) 

t _ ratio A 
k 

the portion of time state k being available 
However, there have only been limited number of works re-

orted on the simultaneous optimization of design and main-

enance schedule ( Vassiliadis and Pistikopoulos, 2001; Nápoles-

ivera et al., 2013; Liang and Chang, 2008; Godoy et al., 2015;

ibisono et al., 2014 ), especially ones that model the stochastic

rocess of failure and maintenance in detail ( Redutskiy, 2017 ). An-

ther example of the latter is our previous work ( Ye et al., 2019 ),

here the process is modeled with a Markov Chain, where the

ailure rates are considered constant for the entire horizon, and

re subject to the inspection frequency decision. It was shown in

he paper that incorporating maintenance decisions into the eco-

omic trade-off can have major impact on the overall cost. As

n improvement, in this work, we incorporate the more realistic

ssumption that the failure rates of single units vary with time,

nd model the condition-based maintenance decisions as the ac-

ion policy of Markov Decision Process, which largely refers to

mari et al. (2006) , while the latter work only focuses on one unit

nd has no design component. 

Markov Decision Process is a one-step look-ahead framework

or dynamic decision making under uncertainty that was first

roposed by Bellman (1957) . It has since received wide inter-

st and has had broad applications ( White, 1993 ), such as in-

entory management ( Ahiska et al., 2013; Yin et al., 2002 ), plan-

ing and scheduling ( Shin et al., 2017 ), investment ( Bäuerle and

ieder, 2011 ), and maintenance ( Byon and Ding, 2010; Chen and

rivedi, 2005 ), as well as the recently rising reinforcement learn-

ng area ( Powell, 2004 ), where MDP is used as the basic frame-

ork for describing the behavior of various systems including hu-

an beings. The optimality condition of a Markov Decision Pro-

ess is given by the Bellman equation. Basic ways of finding the

olution that satisfy the Bellman equation include linear program-

ing, policy iteration and value iteration. In this work, we em-

loy a slightly modified version of the linear programming formu-

ation, which is mixed-integer and has a more specific objective

unction to suit our need of simultaneous design and operations

ptimization. 

In Section 2 , we describe the problem scope including the de-

isions to make and their correspondence to the modeling compo-

ents. Section 3 presents the mathematical model, where we start

y introducing the basics of Markov Decision Process in Section 3.1 .

hen, in Section 3.2 , we propose the MINLP model as described

n the last paragraph. In order to keep the model tractable, each

rocessing stage is modeled as an MDP (Markov Decision Process),

nd the stage interdependency is captured via functional relation-

hips of the MDP parameters. In Section 3.3 , we describe the inter-

ction between the MDPs of all the processing stages and its im-

act on the entire system. In Section 4.1 , we propose to exactly lin-

arize the bilinear terms in the model. Furthermore, in Section 4.2 ,

e show a reformulation of the objective function that helps to

ighten the objective bounds. 

In Section 5 , we present an example with 4 processing stages to

iscuss how to determine the basic parameters of the MDPs based

n the reliability and price specifications of individual units, and

how that directly solving the original MINLP model faces consid-

rable computational difficulties. It motivates us in Section 6 to

ropose an algorithm with two phases: Enumeration and Bound-

ng, and Rewards Iteration. The objective reformulation proposed

n Section 4.2 also helps with the proof of a proposition that sup-

orts the validity of the algorithm. Finally in Section 7 , we show

hat the proposed algorithm is efficient on the example introduced

n Section 5 as well as on 20 problems randomly generated around

t. The performance of the algorithm on larger problems is slightly

ess stable as reflected by solving another group of 20 randomly

enerated problems with 6 processing stages. 
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Fig. 1. Air separation process. 

Fig. 2. Conceptual modeling structure. 
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. Problem statement 

The decisions to make include the selection of redundant units

nd sizes of storage tanks, as well as basic maintenance policies for

 chemical process. As our motivating example, the general flow-

heet of an air separation unit is shown in Fig. 1 , where the failure

f one stage results in the failure of the entire process. Following

ommon practice of the air separation industry ( Linde, plc, 2020;

hart, 2020 ), the sizes of the storage tanks will be selected from

 few discrete standard options. If more redundant units are se-

ected for critical processing stages, such as compressors, the plant

ill be less likely to fail. Also, as discussed in the introduction, the

iquid oxygen and liquid nitrogen can be evaporated to sustain the

ipeline supply when the air separation units fails, and the larger

he storage tanks are, the longer are the downtime periods that

an be covered. Furthermore, in the operation phase, placing more

ffort s into maintenance can increase the process reliability. Each

ipeline interruption will incur a fixed amount of penalty, which is

o be balanced against the costs of the above strategies to increase

vailability. To address this problem, we propose a mixed-integer

rogramming model based on a Markov Decision Process frame-

ork. Fig. 2 shows the conceptual modeling structure. Assuming

hat for a process, the base flowsheet is given, the exact design and

aintenance policy decisions are described in Sections 2.1 and 2.2 ,

espectively. 
.1. Design decisions 

There are two major design decisions: 

• The number and selection of redundant units of different prices

and reliability specifications for each processing stage. The bi-

nary variable z k,h = 1 indicates that in processing stage k (e.g.

compressor stage), design h (e.g. compressor 1 and compressor

3 each of 100% capacity) is selected. 
• The sizes of end product storage tanks. Binary variable x p,n =

1 means that for product p (e.g. Nitrogen), tank size n (e.g.

10 0,0 0 0 gallon) is selected. 

.2. Maintenance policy decisions 

The bathtub curve shown in Fig. 3 (a) is widely accepted on how

he failure rate of a unit varies with time ( Henley and Kumamoto,

981; Barlow and Proschan, 1975 , etc.). We propose to capture the

athtub-like deterioration/failure process of the equipment and the

ondition-based maintenance with a discrete-time Markov Deci-

ion Process. As shown in Fig. 3 (b), the bathtub curve is discretized

nto three ”working states” of the unit: 1. Infant, 2. Stable, and 3.

orn-out. When a unit is not working, there are three other pos-

ible states: 4. Stand-by, 5. Stopped, and 6. Failed. At each state,

here is a finite number of possible actions: Inspect- T ins m 
(which
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Fig. 3. The bathtub curve. 

Fig. 4. State space and action space of single units maintenance policy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Numbers of possible states in systems of different sizes. 

SMALL MEDIUM LARGE 

Number of stages 2 3 4 

Number of potential units per stage 2 3 4 

Number of possible states 425 430,000 3,576,336,546 
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a  
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i  

A  

S  

a

means to carry out inspection after T ins m 
days. m ∈ M is the index

set of possible inspection intervals), Stop, Maintain, or Repair. One

and only one action is to be assigned to each state, which is the

main decision to make in terms of the maintenance policy. Fig. 4

shows the state space and action space of a processing stage with

only one unit. When in the Infant state, no action will be taken ex-

cept for waiting for the unit to either fail or proceed to the Stable

state (blue arcs). When in the Stable state and the Worn-out state,

the unit can be stopped (green arcs), which leads to state Stopped

with probability 1. From the Stable state, the action can also be

Inspect- T ins m 
, m ∈ M (blue arcs), in which case, the next state will

be revealed at the next inspection, and the probability of going to

each of the next possible states depends on the inspection interval

T ins m 
. When in the Stopped state or the Failed state, the only appli-

cable actions are to maintain (the yellow arc) or to repair (the red

arc), respectively, which leads back to the Stable state if the unit

is needed instantly, or to the Stand-by state if other units in the

stage is working properly. With one unit, the Stand-by state will

always be skipped. When there are multiple units, actions at the

Stand-by state are by no choice and denoted as None, and it will

lead back to the Infant state with probability 1. That is because the

only transition out of a Stand-by state is to the Infant state, and

is always accompanied by the stopping or failing of other units,

which are already accounted for. The Stand-by state being followed

by the Infant state accounts for the higher likelihood of failure of

the units after a period of idling. 

3. Mathematical model 

As mentioned above, we propose to model the process with

MDP (Markov Decision Process), as preparation for which the state

space representation is formulated as in the example shown in

Fig. 4 . Arguably, the exact modeling of the system with multiple

processing stages would require construction of the entire state

space and state-action pairs, which can become intractable as the
umber of stages and potential redundant units increase, as shown

n Table 1 . Therefore, we take a simplified approach to model each

rocessing stage as an MDP (Markov Decision Process), and cap-

ure the stage interdependency via functional relationships of the

DP parameters. In Section 3.1 , we introduce the basic princi-

les of MDP, especially the optimal condition and how to com-

ute the stationary distribution of the reduced Markov Chain given

he optimal actions, which constitute the theoretical foundation of

his paper and the mathematical prgramming model afterwards.

n Section 3.2 , we derive the optimization formulation of the MDP

f each stage. In Section 3.3 , the interaction between the MDP

f each processing stage is modeled. Then in Section 4 , we pro-

ose to improve the model formulation by linearizing the bilinear

erms into two constraints, and reformulating the objective func-

ion into an expression with tighter lower bounds for relaxations

hat arise when dropping the discrete requirements. However, we

ill show later that directly solving the original MINLP model still

aces considerable computational difficulties, which motivates us to

ropose a customized two-phase algorithm. The objective reformu-

ation proposed in Section 4 also helps with the proofs of the sup-

orting propositions of the algorithm. 

.1. Markov decision process and the optimality condition 

A Markov Chain describes the stochastic transitioning behavior

f a system among a finite set of states. On top of that, a Markov

ecision Process allows the decision maker to choose an action

t each state to control the system transitioning behavior. At the

ame time, an instant reward R (could be positive or negative) is

ssociated with certain action at certain state and the next state.

or example, in Fig. 5 , compared to the Markov Chain on the left,

n the Markov Decision Process shown on the right, actions A 1 or

 2 could result in different transition probabilities P between state

1 and S2, and the rewards R depend on current state, the action,

nd the next state. 
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Fig. 5. Markov Chain (left) vs. Markov Decision Process (right). 

Fig. 6. Reduced transition diagram. 
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A policy δ of a Markov Decision Process is a projection from its

tate space S to the action space A . 

: S → A 

or the example in Fig. 5 , a possible policy is δ(S1) = A 1 , δ(S2) =
 2 , in which case the transition diagram becomes as shown in

ig. 6 , which reduces back to a Markov Chain. 

Under a certain policy δ, a value function is defined for each
tate s as in Eq. (1) . The first term is the reward associated with s

nd its designated action according to δ. The second term is the

eighted sum of the value function of the next possible states

 
′ ∈ S discounted by a future factor γ . In this paper, we assign
 10% discount factor for γ . 

 s (δ) = 

∑ 

s ′ ∈ S 
P (s, δ(s ) , s ′ ) · (R (s, δ(s ) , s ′ ) + γ ·V s ′ (δ)) , s ∈ S (1)

ith the reward function R , the transition matrix P and the dis-

ount factor γ given, the optimal policy for maximum overall value

 
∗
s is defined as in Eq. (2) , where a ∈ A s is the set of possible ac-

ions for state s . 

 
∗
s = max 

a ∈ A s 

∑ 

s ′ ∈ S 
P (s, a, s ′ ) · (R (s, a, s ′ ) + γ ·V ∗s ′ ) , s ∈ S (2)

n our case, the instant rewards R ( s, a, s ′ ) are the negative of the
osts. Therefore, we let U s = −V s and flip the sign of the conven-

ional expression. We then remove the negative sign before R ( s, a,

 
′ ), and let R ( s, a, s ′ ) be the instant costs of going from state s to

tate s ′ by action a . We still denote it as instant rewards to dis-

inguish it from the breakdown cost parameters. With that, (3) is

quivalent to (2) . 

 
∗
s = min 

a ∈ A s 

∑ 

s ′ ∈ S 
P (s, a, s ′ ) · (R (s, a, s ′ ) + γ ·U 

∗
s ′ ) , s ∈ S (3)

he equivalent linear programming model is shown in

4) ( d’Epenoux, 1963; Puterman, 2014 ), where c s are arbitrary

ositive weights. With given P ( s, a, s ′ ) and R ( s, a, s ′ ), problem
4) solves for the optimal value of each state and the correspond-

ng policy. Notice that if the optimal policy selects action a for

tate s , then the optimal dual variable of constraint ( s, a ) is greater

han 0; otherwise it equals 0. 

ax 
∑ 

s ∈ S c s U s 

.t. U s ≤
∑ 

s ′ ∈ S P (s, a, s 
′ ) · (R (s, a, s ′ ) + γ ·U s ′ ) , s ∈ S, a ∈ A s 

(4) 

s mentioned above, the weights in the objective function, c s , do

ot affect the solution of the optimal actions in the above LP

odel. But in order for the objective function to reflect the op-

rational cost, the weights are set equal to the stationary probabil-

ty distribution π ∗
s of the reduced Markov Chain under the optimal

olicy. π ∗
s satisfies the following constraints. 
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π  
∑ 

s ∈ S 
π ∗

s = 1 (5)

∑ 

s ∈ S 
π ∗

s P (s, a 
∗(s ) , s ′ ) = π ∗

s , ∀ s ′ ∈ S (6)

Below we show how to enforce the LP formulation minimizing op-

erational cost (4) , as well as the constraints (5) and (6) in the over-

all optimization model. 

3.2. Mixed integer programming formulation based on the MDP 

optimal condition of each stage 

As indicated in the problem statement, we index the process-

ing stages by k , the potential designs of individual stages by h , the

products by p , and the storage tank sizes by n . The binary variable

z k,h indicates the selection of design h of stage k , while the binary

variable x p,n indicates the selection of tank size n for product p .

These binary variables satisfy Eqs. (7) and (8) . ∑ 

h ∈ H k 
z k,h = 1 , ∀ k ∈ K (7)

∑ 

n ∈ N p 
x p,n = 1 . ∀ p ∈ P (8)

Based on the above, we define the binary variable y p,n,k,h that indi-

cates the overall design decision, which satisfy the logical relation-

ship (9) , where the logical clauses are true when design h of stage

k and size n of product p are selected simultaneously. 

 p,n,k,h ⇐⇒ Z k,h ∧ X p,n , ∀ p ∈ P, n ∈ N p , k ∈ K, h ∈ H k (9)

Another way of expressing the above logical relationship is

(10) and (11) , which can be directly translated into the algebraic

constraints (12) and (13) that are tighter than those translated

from (9) (see Castro et al., 2008 for proof). ∨ 

n ∈ N p 
Y p,n,k,h ⇐⇒ Z k,h , ∀ k ∈ K, h ∈ H k , p ∈ P (10)

∨ 

h ∈ H k 
Y p,n,k,h ⇐⇒ X p,n , ∀ p ∈ P, n ∈ N p , k ∈ K (11)

∑ 

n ∈ N p 
y p,n,k,h = z k,h , ∀ k ∈ K, h ∈ H k , p ∈ P (12)

∑ 

h ∈ H k 
y p,n,k,h = x p,n , ∀ p ∈ P, n ∈ N p , k ∈ K (13)

The state space of design h in stage k is denoted as S k,h . Similarly,

the transition probability matrix is P k,h ( s, a, s 
′ ), s, s ′ ∈ S k,h , a ∈ A ( s ),

and the reward matrix is R p,n,k,h ( s, a, s 
′ ), s, s ′ ∈ S k,h , a ∈ A ( s ).

The constraint stated in the general formulation (4) is adapted

into constraint (14) that involves the design decision y p,n,k,h . If∑ 

p∈ P,n ∈ N p y p,n,k,h = 0 , it means that design h in stage k is not se-

lected, and then the first term on the right-hand-side of (4) is zero,

making v k,h (s ) = 0 , s ∈ S k,h a feasible solution. Considering that in

the objective function below, v k, h ( s ) are being minimized with

non-negative weights, v k,h (s ) = 0 , s ∈ S k,h is part of the optimal so-

lution. 

v k,h (s ) ≤
∑ 

s ′ ∈ S k,h 

(P k,h (s, a, s 
′ ) ·

∑ 

p∈ P,n ∈ N p 
y p,n,k,h R p,n,k,h (s, a, s 

′ ) ) 

+ γ
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ ) · v k,h (s 

′ ) , ∀ k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s ) 

(14

The objective function is shown in (15) , which minimizes the cap-

ital cost of the selected processing units ( C U 
k,h 

) and storage tanks
 C T p,n ), plus the weighted state values of the MDPs ( π k, h · v k, h ),

hich takes into consideration both the operational costs and the

eliability values. 

in 
∑ 

p∈ P,n ∈ N p 
x p,n C 

T 
p,n + 

∑ 

k ∈ K,h ∈ H k 
z k,h C 

U 
k,h + 

∑ 

k ∈ K,h ∈ H k 

∑ 

s ∈ S k,h 

πk,h (s ) v k,h (s ) 

(15)

otice that in the original LP form shown in (4) , the weighted

um of the value functions ( v k, h ( s ) in the model) are maximized

n the objective function, which enforces the equality at the ac-

ion that yields the minimum value. However, as shown in (15) ,

he weighted sum of the value functions have to be minimized

ogether with the investment costs. Therefore, we need another

et of constraints to make sure that v k, h ( s ) does not become un-

ounded. In disjuction (16) , Boolean variable W k,h ( s, a ) is true if

ction a is the optimal action for state s , in which case it enforces

hat v k, h ( s ) be greater than or equal to the right hand side. ⎡ 

⎣ 

W k,h (s, a ) 
v k,h (s ) ≥

∑ 

s ′ ∈ S k,h 
(P k,h (s, a, s 

′ ) · ∑ 

p∈ P,n ∈ N p y p,n,k,h R p,n,k,h (s, a, s 
′ ) ) 

+ γ
∑ 

s ′ ∈ S k,h 
P k,h (s, a, s 

′ ) · v k,h (s 
′ ) 

⎤ 

⎦ 

∨ 

[
¬ W k,h (s, a ) 

]
(16)

t can be translated via Big-M reformulation into the algebraic con-

traint (17) . 

M(1 − w k,h (s, a )) + v k,h (s ) 

≥
∑ 

s ′ ∈ S k,h 

(P k,h (s, a, s 
′ ) ·

∑ 

p∈ P,n ∈ N p 
y p,n,k,h R p,n,k,h (s, a, s 

′ ) ) 

+ γ
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ ) · v k,h (s 

′ ) , ∀ k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s ) 

(17)

ogic condition (18) requires that if design h is not selected, mean-

ng z k,h = 0 , then any action for that design is not valid. Constraint

19) is the corresponding algebraic equation of (18) . ∨ 

 ∈ A s 
W k,h (s, a ) ⇐⇒ Z k,h , ∀ k ∈ K, h ∈ H k , s ∈ S k,h (18)

∑ 

 ∈ A s 
w k,h (s, a ) = z k,h , ∀ k ∈ K, h ∈ H k , s ∈ S k,h (19)

k,h ( s ) is the stationary probability of state s in the state space of

he MDP of design h in stage k , which satisfies (20) , where a ∗( s ) is
he optimal action at state s . 

∑ 

 ∈ S k,h 

πk,h (s ) P k,h (s, a 
∗(s ) , s ′ ) = πk,h (s 

′ ) , ∀ k ∈ K, h ∈ H k , s 
′ ∈ S k,h 

(20)

o represent (20) by algebraic inequalities, we define π sub 
k,h 

(s, a ) as

he disaggregated variables of π k,h ( s ) with regard to action a as

hown in (21) , whose valued are related to the Boolean variables

 k,h ( s, a ) as shown in (22) , which translates into algebraic con-

traint (23) . ∑ 

 ∈ A s 
π sub 

k,h (s, a ) = πk,h (s ) , ∀ k ∈ K, h ∈ H k (21)

W k,h (s, a ) 

π sub 
k,h 

(s, a ) ≤ 1 

][
¬ W k,h (s, a ) 

π sub 
k,h 

(s, a ) = 0 

]
(22)

sub 
k,h (s, a ) ≤ w k,h (s, a ) , ∀ k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A s (23)
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iven the relationship shown in (23), (21) can be substituted into

20) , which yields (24) . ∑ 

 ∈ S k,h 

∑ 

a ∈ A s 
π sub 

k,h (s, a ) P k,h (s, a, s 
′ ) = πk,h (s 

′ ) , ∀ k ∈ K, h ∈ H k , s 
′ ∈ S k,h

(24) 

urthermore, as shown in (22) , we require that π k,h ( s ) are 0 if de-

ign h is not selected for stage k , and that π k,h ( s ) sum up to 1 if

therwise. The condition can be expressed with the algebraic con-

traint shown in (23) 

Z k,h ∑ 

s ∈ S k,h 
πk,h (s ) = 1 

]
∨ 

[
¬ Z k,h ∑ 

s ∈ S k,h 
πk,h (s ) = 0 

]
(25) 

∑ 

 ∈ S k,h 

πk,h (s ) = z k,h , ∀ k ∈ K, h ∈ H k (26)

.3. Stage interdependency 

As mentioned in Section 2 , the processing stages impact each

ther’s performance. Especially, a stage k can only transition into

he next state when the other stages are not in the Failed state.

herefore, as shown in Eq. (27) , the reward of transitioning from

tate s into another state s ′ , R p,n,k,h ( s, a, s ′ ), is to be corrected
ith the portion of time the other states being available, based on

he reward parameter when the stage k stands alone, R idv 
k,h 

(s, a, s ′ )
nd R 

idv _ pen 
p,n,k,h 

(s, a, s ′ ) . Notice here R idv 
k,h 

(s, a, s ′ ) has to be evenly dis-
ributed to each product. 

 p,n,k,h (s, a, s 
′ ) = R idv 

k,h (s, a, s 
′ ) · 1 

| P | + R idv _ pen 
p,n,k,h 

(s, a, s ′ ) ·
∏ 

l ∈ K,l 
 = k 
t _ ratio A l , 

∀ p ∈ P, n ∈ N p , k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s ) , s ′ ∈ S k,h (27)

here t _ ratio A 
k 

equals to the weighted probability of available

tates divided by the probability weighted time length of all states

f stage k , as shown in (28) , where t res is the expected residence

ime in state s if taking action a . 

 _ rat io A k = 

∑ 

h ∈ H k 
∑ 

s ∈ S k,h ,s / ∈ S f 
k,h 

,a ∈ A s π
sub 
k,h 

(s, a ) t res 
k,h 

(s, a ) ∑ 

h ∈ H k 
∑ 

s ∈ S k,h ,a ∈ A s π
sub 
k,h 

(s, a ) t res 
k,h 

(s, a ) 
, k ∈ K (28)

ith that, the basic non-convex MINLP model minimizes the to-

al cost (15) subject to constraints (7), (8), (12) –(14), (17), (19) ,

nd (21) –(28) , where (14) and (17) involve bilinear terms of binary

ariables y p,n,k,h and continuous variables R 
pen 

p,n,k,h 
, (27) involves

ulti-linear terms of continuous variables t _ ratio A 
k 
, and (28) is a

inear-fractional constraint. 

. Reformulations 

As will be shown in this section, the model can be improved

hrough several reformulation steps. In Section 4.1 , we perform

n exact linearization of the bilinear terms in the model, and in

ection 4.2 , we propose to reformulate the objective function tak-

ng advantage of the functional relationships specified by the con-

traints. 

.1. Standard linearization of the bilinear constraints 

We use Glover’s linearization scheme ( Glover, 1975 ), a special

ase of the McCormick Envelopes ( McCormick, 1976 ), to linearize

qs. (14) and (17) , which also involve the reformulation of Eq. (27) .

e first introduce a new variable R 
pen 

p,n,k,h 
(s, a, s ′ ) and rewrite the

hree constraints mentioned above as follows in (29) –(31) where

ariable R p,n,k,h ( s, a, s 
′ ) is eliminated. 
 k,h (s ) ≤
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ ) · (z k,h R 

idv 
k,h (s, a, s 

′ ) + 

∑ 

p∈ P 

∑ 

n ∈ N p 
y p,n,k,h R 

pen 

p,n,k,h 
(s, a, s ′ )) 

+ γ
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ ) · v k,h (s 

′ ) , ∀ k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s ) (29)

(1 − w k,h (s, a )) + v k,h (s ) 

≥
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ ) · (z k,h R 

idv 
k,h (s, a, s 

′ ) + 

∑ 

p∈ P 

∑ 

n ∈ N p 
y p,n,k,h R 

pen 

p,n,k,h 
(s, a, s ′ )) 

+ γ
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ ) · v k,h (s 

′ ) , ∀ k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s ) 

(30) 

 

pen 

p,n,k,h 
(s, a, s ′ ) = R idv _ pen 

p,n,k,h 
(s, a, s ′ ) ·

∏ 

l ∈ K,l 
 = k 
t _ ratio A l , 

∀ p ∈ P, n ∈ N p , k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s ) , s ′ ∈ S k,h (31)

e then replace the bilinear term y p,n,k,h R 
pen 

p,n,k,h 
(s, a, s ′ ) with the

ew variable R _ y 
pen 

p,n,k,h 
(s, a, s ′ ) as shown in (32) and (33) , and use

qs. (34) –(37) to require that they be equal to each other. 

 k,h (s ) ≤
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ ) · (z k,h R 

idv 
k,h (s, a, s 

′ ) + 

∑ 

p∈ P 

∑ 

n ∈ N p 
R _ y pen 

p,n,k,h 
(s, a, s ′ )) 

+ γ
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ ) · v k,h (s 

′ ) , ∀ k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s )
(32)

(1 − w k,h (s, a )) + v k,h (s ) ≥
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ ) 

· (z k,h R 
idv 
k,h (s, a, s 

′ ) + 

∑ 

p∈ P 

∑ 

n ∈ N p 
R _ y pen 

p,n,k,h 
(s, a, s ′ )) 

+ γ
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ ) · v k,h (s 

′ ) , ∀ k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s ) 

(33)

 _ y pen 
p,n,k,h 

(s, a, s ′ ) ≤ y p,n,k,h R 
idv _ pen 
p,n,k,h 

(s, a, s ′ ) , 

∀ p ∈ P, n ∈ N p , k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s ) , s ′ ∈ S k,h (34) 

 _ y pen 
p,n,k,h 

(s, a, s ′ ) ≤ R pen 
p,n,k,h 

(s, a, s ′ ) + (y p,n,k,h − 1)(R pen 
p,n,k,h 

(s, a, s ′ )) L , 

∀ p ∈ P, n ∈ N p , k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s ) , s ′ ∈ S k,h (35)

 _ y pen 
p,n,k,h 

(s, a, s ′ ) ≥ y p,n,k,h (R 
pen 

p,n,k,h 
(s, a, s ′ )) L , 

∀ p ∈ P, n ∈ N p , k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s ) , s ′ ∈ S k,h (36) 

 _ y pen 
p,n,k,h 

(s, a, s ′ ) ≥ R pen 
p,n,k,h 

(s, a, s ′ ) + (y p,n,k,h − 1) R idv _ pen 
p,n,k,h 

(s, a, s ′ ) , 

∀ p ∈ P, n ∈ N p , k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s ) , s ′ ∈ S k,h (37)

he element-wise lower bounds of R 
pen 

p,n,k,h 
(s, a, s ′ ) ,

(R pen 
p,n,k,h 

(s, a, s ′ )) L , are found by first solving for the lowest possible

ortion of available time (t _ ratio A 
k 
) L of each stage k as shown in

roblem (38) , and apply (31) as shown in (39) . Notice that all the

onstraints of problem (38) are linear, and the objective function

s linear fractional, which is nonlinear but pseudo-convex and

seudo-concave ( Avriel, 2003 ). Pseudo-convex function has the

roperty of a convex function with respect to finding its local

inima. Therefore, when we relax the integrality requirement in

roblem (38) , it becomes a convex NLP. 

(t _ ratio A k ) 
L = min 

∑ 

h ∈ H k 
∑ 

s ∈ S k,h ,s / ∈ S f 
k,h 

,a ∈ A s π
sub 
k,h 

(s, a ) t res 
k,h 

(s, a ) ∑ 

h ∈ H k 
∑ 

s ∈ S k,h ,a ∈ A s π
sub 
k,h 

(s, a ) t res 
k,h 

(s, a ) 
(38) 

.t. 
∑ 

h ∈ H k 
z k,h = 1 
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Table 2 

Profitability parameters. 

c fail p (k$ per outage) δp (k gallon per day) 

LO2 2400 48 

LN2 2000 60 

Table 3 

Tank sizes and costs. 

Tank sizes (days) 2 8 14 20 30 

Normalized cost of LO2 tank 1 4.3 7.8 11.3 17.3 

Normalized cost of LN2 tank 1 4.3 7.8 11.3 17.3 

t  

t  

l

5

 

a  

p  

a  

r  
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d

 

s  

s  

M  

t  

w

P  

P  
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P  
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d  

F  

W  

f  

n  

i  

t  

o

P  

P  

P  

 

P  

P  
∑ 

a ∈ A s 
w k,h (s, a ) = z k,h , ∀ h ∈ H k , s ∈ S k,h 

∑ 

s ∈ S k,h 

πk,h (s ) = z k,h , ∀ h ∈ H k 

∑ 

a ∈ A s 
π sub 

k,h (s, a ) = πk,h (s ) , ∀ h ∈ H k 

π sub 
k,h (s, a ) ≤ w k,h (s, a ) , ∀ h ∈ H k , s ∈ S k,h , a ∈ A s ∑ 

s ∈ S k,h 

∑ 

a ∈ A s 
π sub 

k,h (s, a ) P k,h (s, a, s 
′ ) = πk,h (s 

′ ) , ∀ h ∈ H k , s 
′ ∈ S k,h 

(R pen 
p,n,k,h 

(s, a, s ′ )) L = R idv _ pen 
p,n,k,h 

(s, a, s ′ ) ·
∏ 

l ∈ K,l 
 = k 
((t _ ratio A k ) 

L , 

∀ p ∈ P, n ∈ N p , k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s ) , s ′ ∈ S k,h (39)

4.2. Reformulation of the objective function 

In this section we show a valid reformulation of the objec-

tive function (15) that potentially provides tighter lower bounds,

that is derived based on the MDP optimal conditions implied by

the constraints. Thus, the MINLP (referred to as (DMP)) consists

of the objective function (40) that represents net present value of

the system and constraints (7), (8), (12), (13), (19), (21) –(23), (28) ,

and (31) –(37) , with linear fractional functions in (28) , multi-linear

terms in (31) and bilinear terms in (40) , all of which cannot be

exactly linearized. 

min 
x,y,z,w,π,π sub ,π a , v ,R pen 

∑ 

p∈ P,n ∈ N p x p,n C 
T 
p,n + 

∑ 

k ∈ K,h ∈ H k z k,h C 
U 
k,h 

+ 
1 

1 −λ

∑ 

k ∈ K,h ∈ H k 
∑ 

s ∈ S k,h ,a ∈ A s π
sub 
k,h ( s, a ) 

·∑ 

s ′ ∈ S k,h 
P k,h 

(
s, a, s ′ 

)(
R idv 
k,h 

(
s, a, s ′ 

)
+ 

∑ 

p∈ P 
∑ 

n ∈ N p R _ y 
pen 

p,n,k,h 

(
s, a, s ′ 

))(40
In Appendix A , we prove in Proposition 1 that the new objective

function in (40) has equal value as the previous one in (15) when

all the constraints are satisfied. The new objective function in

(40) has two important properties. First, comparing to the origi-

nal objective function in (15) which also contains the sum of bilin-

ear terms, the new objective function breaks down to more terms,

which gives rise to potentially stronger lower bounds when being

directly relaxed (dropping the discrete requirement). Also, one part

of the bilinear terms in the new objective function is the com-

plicating variable R _ y 
pen 

p,n,k,h 
that reflects the stage interactions, so

when the complicating variable is fixed, the objective function be-

comes linear. 

5. Illustrative example 

The motivating example of air separation unit has a few crit-

ical processing stages, such as main air compressor, pre-purifier,

booster air compressor, and the LO2 pump. In this example, three

redundancies are considered for each processing stages, and the

pre-purifier stage has to have at least 2 units to function. The su-

perstructure is shown in Fig. 7 . There are two products, O2 and N2.

The reliability data being used are modified based on actual data.

Stable failure rates range from 0.0 0 01 to 0.001 times per day. The

Stable phase lasts for 3 years. Repair times are 24 h. Capital cost

of each unit range from $30k to $150k. Maintenance times are 6 h.

Repair costs range from $4k to $20k per time. Maintenance costs

range from $2k to $10k per time. 

Table 2 shows the penalty rates and pipeline flow rates used in

the model. Table 3 shows the standard tank size options in terms

of number of days of demand it can cover, and the correspond-

ing costs normalized based on the costs of the smallest tanks. In

Section 5.1 , we will show how the equipment and contract specifi-

cations shown above are transformed into the parameters used in
he MINLP described in Sections 3 and 4 . In Section 5.2 , we show

he preliminary computational results for directly solving the prob-

em. 

.1. Transforming the specifications into the MDP parameters 

The transition probability matrix P k,h ( s, a, s 
′ ), s, s ′ ∈ S k,h , a ∈ A ( s )

nd the reward matrix R k,h ( s, a, s 
′ ), s, s ′ ∈ S k,h , a ∈ A ( s ) are the key

arameters in the MDPs. In general, we extract the transition prob-

bilities from the Weibull distributions of individual units, and the

eward parameters from the operational costs and the unavailabil-

ty losses. Below we show an example of how to obtain the MDP

arameters for a single unit in a single stage, where the stage in-

ex k and design index h are dropped. 

As stated in Section 2.2 , we discretize the bathtub curve into 3

tates, Infant, Stable, and Worn-out ( Fig. 3 (b)). For any unit in any

tage, Stop action leads to Stopped state with probability 1. Also,

aintain action is the only option in Stopped state, and Repair ac-

ion is the only option in Failed state, which leads to Infant state

ith probability 1. 

 ( Stable , Stop , Stopped ) = 1 (41)

 ( Worn-out , Stop , Stopped ) = 1 (42)

 ( Stoppe d , Maintain , Stable ) = 1 (43)

 ( Faile d , Repair , Stable ) = 1 (44)

or the working states on the bathtub curve, we assume Weibull

istributions whose cumulative distributive function is denoted by

 (x ;λ, β) = 1 − e −(λx ) β . For Infant state, the shape factor is β1 . For

orn-out state, the shape factor is β3 . For Stable state, the shape

actor is β2 = 1 , where the Weibull distribution reduces to expo-

ential distribution. { T ins m 
, m ∈ M} is the set of possible inspection

ntervals, where m is the index for inspection intervals. T stable is

he length of stable period of the subject unit. T infant is the length

f infant period. T worn is the length of worn-out period. 

 ( Infant , None , Failed ) = F (T in fant ;λ, β1 ) (45)

 ( Infant , None , Stable ) = 1 − F (T in fant ;λ, β1 ) (46)

 ( Stable , Inspect- T ins m 
, Stable ) = e −λ·T ins m ·

(
1 − T ins m 

T stable 

)
, ∀ m ∈ M

(47)

 ( Stable , Inspect- T ins m 
, Worn-out ) = e −λ·T ins m · T ins m 

T stable 
, ∀ m ∈ M (48)

 ( Stable , Inspect- T ins m 
, Failed ) = 1 − e −λ·T ins m , ∀ m ∈ M (49)
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Fig. 7. Superstructure of the ASU example 
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 ( Worn-out , None , Failed ) = F (T in fant + T stable + T worn ;λ, β3 ) 

(50) 

 ( Worn-out , None , Worn-out ) 

= 1 − F (T in fant + T stable + T worn ;λ, β3 ) (51) 

he expected residence time in state s when taking action a is de-

oted as t res ( s, a ). For example, for Stable state, the next point of

bservation is either the next inspection depending on the choice

f inspection interval, or the failure before the inspection. There-

ore, as shown in (52) , the expected residence time in a Stable

tate is the first moment of the exponential lifetime distribution

ithin the inspection interval T ins m 
, plus T ins m 

multiplied with the

umulative probability of not failing within T ins m 
. 

 
res ( Stable , Inspect- T ins m 

) 

= 

∫ T ins m 

0 

t · λe −λt dt + e −λT ins m · T ins m 
= 

1 

λ
(1 − e −λT ins m ) (52) 

imilarly, for Infant and Worn-out states, the expected residence

imes are calculated as shown in (53) and (54) based on the

eibull lifetime distributions. γ (s, x ) = 

∫ x 
0 t 

s −1 e −t dt is the incom-

lete gamma function. 

 
res ( Infant , None ) 

= 

∫ T in fant 
0 

t · β1 λ
β1 t β1 −1 e −(λt) β1 dt + e −(λT in fant ) β1 · T in fant 

= 

1 

λ
· γ ( 

1 

β1 

+ 1 , (λT in fant ) β1 ) + e −(λT in fant ) β1 · T in fant (53) 

 
res ( Worn-out , None ) 

= 

∫ T infa nt + T stab le + T worn 

T infa nt + T stab le 
t · β3 λ

β3 t β3 −1 e −( λt ) 
β3 
dt 

+ e −( λ( T infa nt + T stab le + T worn ) ) 
β3 · T worn (54) 

= 

1 

λ
· [ γ

(
1 

β3 

+ 1 , 
(
λ
(
T infa nt + T stab le + T worn 

))β3 

)
−γ

(
1 

β3 

+ 1 , 
(
λ
(
T infa nt + T stab le 

))β3 

)] 
+ e −( λ( T infa nt + T stab le + T worn ) ) 

β3 · T worn 

(55) 

he basic instant reward of transitioning from state s to state s ′ by
aking action a is denoted as R idv ( s, a, s ′ ), which is the correspond-

ng operational cost of taking Inspection, Maintenance or Repair

ctions. 
 
idv (s, Inspect- T ins m 

, s ′ ) = c ins , ∀ s ′ / ∈ S f , m ∈ M (56)

 
idv (s, Maintain , s ′ ) = c main , ∀ s ′ / ∈ S f (57)

 
idv (s, Repair , s ′ ) = c repair , ∀ s ′ / ∈ S f (58)

he penalty instant reward is 0 if s ′ is not a failure state. 

 

idv _ pen 
p,n (s, a, s ′ ) = 0 , ∀ p ∈ P, n ∈ N p , s 

′ / ∈ S f (59)

f the destination state is Failed or Stopped, then the penalty

nstant reward is the outage penalty associated with the re-

air/maintenance rate of the failure scenario, μr ( s )/ μm ( s ), the stor-

ge size of each product V p,n , and the consumption rate of each

roduct δp , as shown in Eqs. (60) and (61) . 

 

idv _ pen 
p,n (s, a, s ′ ) = c fail p · e −

V p,n 

δp μr (s ′ ) , ∀ p ∈ P, n ∈ N p , s 
′ ∈ S f (60)

 

idv _ pen 
p,n (s, Stop , s ′ ) = c fail p · e −

V p,n 

δp μm (s ′ ) , ∀ p ∈ P, n ∈ N p , s 
′ ∈ S f (61)

.2. Preliminary computational results 

The MINLP model (DMP) for the system in Fig. 7 has 39,555

quations and 47,559 variables with 1762 binary variables. A first

ttempt is made to solve the MINLP model (DMP) with the objec-

ive function (40) and constraints (7), (8), (12), (13), (19), (21) –(23) ,

nd (31) –(37) using the global solver SCIP 6.0 on GAMS 26.1.0 (In-

el® Xeon® CPU X5650 @ 2.67 GHz). It only reached a solution

ith a gap of 21.08% after 10 0,0 0 0 CPUs (27.8 Hr), which is bet-

er than the performance of the global solvers BARON 17.4.1 and

ntigone 1.1. 

In order to overcome the computational difficulty, we propose

elow an algorithm that takes advantage of the problem structure.

. A two-phase algorithm 

Considering that the decision regarding storage tank sizes has

 rather small search space and an impact on the entire system,

.e., the storage tanks are ”shared” by the processing stages, we

ropose an algorithm with two major execution phases. The first

hase is called Enumeration and Bounding, where we exhaustively

creen all the possible tank size decision nodes by solving two

ILPs (denoted as (DMP-relax) and (DMP-diseng)) at each node

or the respective objective function bounds, and prune all the

odes with lower bounds greater than the upper bound of any

ther node. The second phase is called Rewards Iteration, which is
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Fig. 8. Algorithm overview. 
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carried out for each of the remaining nodes: A sequence of MILPs

(DMP-diseng) with iterative reward parameters are solved until the

decisions converge. Fig. 8 provides a more detailed description of

the algorithm. 

In Section 6.1 , we introduce the bounding problems and prove

that the bounds are valid. In Section 6.2 , we explain the iterative

procedure for solving each node. 

6.1. Enumeration and bounding 

In this section, we show that valid upper and lower bounds of

the objective function with certain storage tank sizes can be ob-

tained by solving two MILP models where R pen is fixed to its upper

and lower bounds, respectively, and we describe how to determine

these variable bounds. 

First, let us represent the MINLP (DMP) with the compact form

(62) . For simplicity, we let ξ stand for the binary and contin-

uous variables other than storage tank selection variables x and

the penalty reward R pen subject to the multilinear constraint (31) .

Therefore, ξ = (y, z, w, π, π sub , t _ ratio A , v ) , and we let ( x ∗, ( R pen ) ∗,
ξ ∗) be the true optimizer of the problem. 

min 
x ∈ X, 0 �R pen , �R idv _ pen ξ∈ �

{ f (x, R pen , ξ ) | g(x, R pen , ξ ) ≤ 0 } (62)

For certain node of storage tank size ˆ x , we let the ( ̂  R pen , ˆ ξ ) be the

minimizer of the constrained problem as shown in (63) 

( ̂  R pen , ˆ ξ ) = arg min 
0 �R pen �R idv _ pen ,ξ∈ �

{ f ( ̂  x , R pen , ξ ) | g( ̂  x , R pen , ξ ) ≤ 0 } 
(63)

At each node of certain storage tank size ˆ x , if we go further by

removing the multilinear constraint (31) that engage R pen of each

stage with the stationary probability distribution of other stages,

and fixing R pen to certain valid values ˜ R pen , the MINLP model
DMP) will reduce to an MILP, which we call (DMP-diseng). The

ompact form of (DMP-diseng) is written in (64) . 

in 
ξ∈ �

{ c( ̂  x , ˜ R pen ) · ξ | A diseng · ξ ≤ b diseng ( ̂  x , ˜ R pen ) } (64)

y definition, we have (65) and (66) . 

f (x ∗, (R pen ) ∗, ξ ∗) = min 
ξ∈ �

{ c(x ∗, (R pen ) ∗) · ξ | A diseng · ξ
≤ b diseng (x ∗, (R pen ) ∗) } (65)

f ( ̂  x , ˆ R pen , ˆ ξ ) = min 
ξ∈ �

{ c( ̂  x , ˆ R pen ) · ξ | A diseng · ξ ≤ b diseng ( ̂  x , ˆ R pen ) } 
(66)

ased on the MILP model (DMP-diseng), a small relaxation can

e derived to form another MILP model (DMP-relax). If we have

he element-wise lower and upper bounds of R pen : ( R pen ) U and

 R pen ) L , the lower bound and upper bound of the objective function

f ( ̂  x , ˆ R pen , ˆ ξ ) at each node of storage tank size ˆ x can be obtained by

olving (DMP-relax) and (DMP-diseng) as shown in (67) and (68) .

t is to be noticed that in (DMP-diseng) (68) , the ˜ R pen in the ob-

ective function and the constraints are fixed to different values.

n Appendix B , we will show the exact forms of (DMP-diseng) and

DMP-relax), and prove that inequalities (67) and (68) hold with

espect to the problem nature. 

in 
ξ∈ �

{ c( ̂  x , (R pen ) L ) · ξ | A relax · ξ ≤ b relax ( ̂  x , (R pen ) L ) } ≤ f ( ̂  x , ˆ R pen , ˆ ξ ) 

(67)

in 
ξ∈ �

{ c( ̂  x , (R pen ) U ) · ξ | A diseng · ξ ≤ b diseng ( ̂  x , (R pen ) L ) } ≥ f ( ̂  x , ˆ R pen , ˆ ξ ) 

(68)
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Fig. 9. Iteration path illustration. 
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he element-wise upper bounds of R pen : ( R pen ) U , are set as

he original penalty parameters R idv _ pen . The element-wise lower

ounds of R pen : ( R pen ) L , are set as (R pen 
p,n,k,h 

(s, a, s ′ )) L which are first

erived in Section 4.1 . 

The algorithm of the Enumeration and Bounding phase is de-

cribed in Algorithm 1 . 

Algorithm 1: 

for i ≤ ∏ 

p∈ P N p do 
Solve the lower bounding MILP (MDP-relax) at node i 

where x = ˆ x i 
LB i = min 

ξ∈ �
{ c( ̂  x i , (R pen ) L ) · ξ | A relax · ξ ≤ b relax ( ̂  x i , (R 

pen ) L ) } 
if ∃ j ≤ i s. t. UB j ≤ LB i then 

Prune node i 

else 
Solve the upper bounding MILP (MDP-diseng) at node i 

where x = ˆ x i 
UB i = min 

ξ∈ �
{ c( ̂  x i , (R pen ) U ) · ξ | A diseng · ξ ≤

b diseng ( ̂  x i , (R 
pen ) L ) } 

if ∃ j ≤ i s. t. UB i ≤ LB j then 

Prune node j 

end 

end 

.2. Rewards iteration 

For each node with certain storage tank size selection ˆ x that

as not pruned in the bounding step, a rewards iteration algorithm

hat guarantees convergence is performed. We first illustrate the

lgorithm on a case with two stages ( k = 1 , 2 ) as shown in Fig. 9 (a)

nd (b). 

Each dot in Fig. 9 (a) stands for a pair of availability values

(t _ rat io A 
1 
, t _ rat io A 

2 
) that is the result of a distinct combination of re-

undancy selection and maintenance policy ( z 1 , z 2 , w 1 , w 2 ) of the

wo stages. The number of these combinations is geometric with

egard to the number of processing stages and design alternatives,

ut is finite. 

Starting from an initial point (t _ rat io A 
1 
, t _ rat io A 

2 
) (0) , we first sub-

titute it into (31) and calculate (R pen 
1 

, R 
pen 
2 

) (0) , then solve the MILP

DMP-diseng) defined in (64) with ˜ R pen fixed to (R pen 
1 

, R 
pen 
2 

) (0) to
btain the optimal design and maintenance policy in this case, ( z 1 ,

 2 , w 1 , w 2 ) 
(1) , which corresponds to a next blue point that the ar-

ow leads to as shown in Fig. 9 (a). The exact form of the MILP

DMP-diseng) is shown in Appendix B . As the iterations of the al-

orithm proceed, it is possible to get trapped into loops, which

s also shown in Fig. 9 (a). In that case the optimization step will

e repeated at the point before the loop with the solutions corre-

ponds to points in the loop excluded by integer cuts. As shown

n Fig. 9 (b), the algorithm stops when it converges to a stationary

oint (t _ rat io A 
1 
, t _ rat io A 

2 
) , where the optimization step leads back

o itself. It is worth mentioning that the loop points are to be

xcluded from the feasible region of the MILP (DMP-diseng) only

nce when re-optimizing at the previous point to explore a differ-

nt path, but not for future iterations, as the stationary property

f a point is only proven when the optimization step leads back to

tself among all the points without exception. 

The algorithm is guaranteed to converge, because as discussed

bove, the number of the dots is finite, and the global optimum,

hich is a stationary point, is among them. As there can be several

tationary points, the algorithm does not guarantee global optimal-

ty. However, as shown in Section 6.1 , the lower bounds obtained

n phase 1 of the algorithm are rigorous. We will also show later

hat for the examples we consider, the algorithm converges quickly

o optimal or near optimal solutions. Algorithm 2 gives a detailed

escription of the algorithm. The convergence criterion depends on

 , the binary action selection variables, instead of R pen , because

he same action selection will lead to the exact same probability

istribution π and R pen , and w as binary variables suffer less from

omputing precision issues. 

The Rewards Iteration of the candidate nodes should be car-

ied out in parallel, as the stationary point of a node is a valid

pper bound for the node. Therefore, when a stationary point is

ound, any other node whose lower bound is greater that the ob-

ective value of this point should stop Rewards Iteration and be

runed. 

. Additional examples 

.1. Illustrative example revisited 

In this section, we solve the example problem shown in

ection 5 again with the proposed algorithm to minimize the total

ost in (40) . The MILPs are solved with CPLEX 12.8.1.1 in Pyomo
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Fig. 10. Optimal design of the ASU example. 

Algorithm 2: Reward parameters iteration. 

Initialize: i := 1 , (R pen ) (0) := (R pen ) L 

ξ (1) := arg min 
ξ∈ �

{ c( ̂  x , (R pen ) (0) ) · ξ | Aξ ≤ b( ̂  x , (R pen ) (0) ) } 
(R pen ) (1) := R idv _ pen · ∏ 

l ∈ K,l 
 = k ( t _ ratio A k ) 
(1) 

while w 
(i ) 
 = w 

(i −1) do 

if ∃ j ≤ i − 1 s. t. w 
( j) = w 

(i ) then 

ξ (i ) := arg min 
ξ∈ �

{ c( ̂  x , (R pen ) ( j−1) ) · ξ | Aξ ≤
b( ̂  x , (R pen ) ( j−1) ) , ξ 
 = ξ (n ) , j ≤ n ≤ i } 
(R pen ) (i ) := R idv _ pen · ∏ 

l ∈ K,l 
 = k ( t _ ratio A k ) 
(i ) 

else 

ξ (i +1) := arg min 
ξ∈ �

{ c( ̂  x , (R pen ) (i ) ) · ξ | Aξ ≤
b( ̂  x , (R pen ) (i ) ) } 
(R pen ) (i +1) := R idv _ pen · ∏ 

l ∈ K,l 
 = k ( t _ ratio A k ) 
(i +1) 

i := i + 1 
end 

end 
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5.6.9, and the algorithm is implemented with Python 3.6 on In-

tel(R) Core(TM) i5 @ 1.60 GHz. Table 4 shows the results of the

Enumeration and Bounding phase, where the storage size selection

nodes are examined by rows left to right and top to bottom. 412.58

CPU seconds are spent in this phase. The nodes that are only show-

ing LBs are pruned because their respective LBs are greater than

the UB(s) of at least one node examined before them. The nodes

where both LBs and UBs are calculated are pruned by the node(s)

examined after them. For example, the node with 2 days of LO2

and 2 days of LN2 is pruned after the node with 8 days of LO2

and 2 days of LN2 is examined, which is later also pruned by the

node with 8 days of LO2 and 8 days of LN2. It is guaranteed that

the global optimal solution of the problem lies in the only high-

lighted node. 

The Rewards Iteration phase at the node with 8 days of LO2

and 8 days of LN2 finds the stationary point after 1 iteration (28.44

CPUs), the objective value of which is 896.89. 
Table 4 

The results of bounds computation. 

2 days of LN2 8 days of LN2 

LB UB LB UB 

2 days of LO2 959.45 962 .23 977.78 

8 days of LO2 958.66 961.02 896.20 896.90 

14 days of LO2 1030.75 968.27 

20 days of LO2 1123.26 1060.76 

30 days of LO2 1287.11 1224.62 
To validate the results of the Rewards Iteration, the MINLP

DMP) restricted to the two nodes are also solved with the global

olver BARON 17.4.1 on GAMS 24.8.5 platform to the global opti-

um of 896.21. It is confirmed that the decision variable values

f the stationary solutions are the same as the ones obtained by

ARON. The small difference in the objective values are likely due

o computing precision issues. Therefore, it is guaranteed that the

olution at the node with 8 days of LO2 and 8 days of LN2 is the

lobal optimal solution. 

Fig. 10 shows the optimal design, which selects the 2 cheapest

nits for the first three stages, and the cheapest one unit for LOP.

he total capital cost is $766k, and the expected operational cost is

130.89k by the Rewards Iteration, and $130.21k by directly solving

he node with BARON. 

Table 5 shows the maintenance policy for the booster air com-

ressor (BAC) as an example, which is the same as that of the

ain air compressor (MAC). The table has four main columns. In

he first column are the states with no unit being maintained

r repaired. In the second and the third columns are the states

ith one unit being maintained or repaired. In the last column

re the states where no unit is available. With the other redun-

ancy on standby, the best action for the Stable state is to be

nspected once a year. With the other unit Failed or Stopped,

he best action for the Stable state is to be inspected every half

onth. 

.2. Demonstration of the algorithm’s efficiency 

In order to test the efficiency of the algorithm, we randomly

enerate 20 problems around the example shown above. In par-

icular, the reliability parameters and randomly perturbed within

he range of ± 10%. Another group of 20 problems of 6 stages are

andomly generated in the similar fashion and solved. The two ad-

itional stages are generated with data of similar orders of magni-

udes. The computational statistics are shown in Fig. 11 (a) and (b).

t can be seen that the bounding step can prune most of the nodes

or the problems of 4 stages ( Fig. 11 (a)), and the rewards iterations

end to converge fast at the remaining nodes. However, for the 6

tage problems ( Fig. 11 (b)), generally more than half of the nodes
14 days of LN2 20 days of LN2 30 days of LN2 

LB UB LB UB LB UB 

1045.93 1130.72 1279.27 

963.61 1048.37 1196.91 

1035.17 1119.90 1268.45 

1127.65 1174.10 1303.80 

1289.57 1313.49 1433.93 



Y. Ye, I.E. Grossmann and J.M. Pinto et al. / Computers and Chemical Engineering 142 (2020) 107052 13 

Table 5 

Optimal action for the two units in the BAC stage. 

State Action State Action State Action State Action 

unit 2 Infant None Stable Inspect-14 Stopped Maintain Failed Repair 

unit 3 Standby None Failed Repair Stable Inspect-14 Failed Repair 

unit 2 Stable Inspect-365 Infant None Failed Repair Failed Repair 

unit 3 Standby None Stopped Maintain Infant None Stopped Maintain 

unit 2 Worn-out Stop Infant None Worn-out None Stopped Maintain 

unit 3 Standby None Failed Repair Stopped Maintain Failed Repair 

unit 2 Standby None Worn-out None Failed Repair 

unit 3 Stable Inspect-365 Failed Repair Worn-out None 

unit 2 Standby None Stopped Maintain Stopped Maintain 

unit 3 Infant None Infant None Worn-out None 

unit 2 Standby None Failed Repair Stable Inspect-14 

unit 3 Worn-out Stop Stable Inspect-14 Stopped Maintain 

Fig. 11. Computational results of randomly generated cases of two different sizes. 
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ave to go through the Reward Iteration phase, and the CPU times

end to fluctuate more. 

. Conclusion 

This paper considers redundancy selection, storage tank size se-

ection as well as basic maintenance policies for a chemical process

t the conceptual design phase. Markov Decision Process is used as

he fundamental framework to model the stochastic dynamic deci-

ion making process of condition-based maintenance. We embed

he optimal condition of Markov Decision Processes and the sta-

ionary probability distribution conditions of the reduced Markov

hain into an MINLP (DMP) that considers the economic trade-off

mong all major decisions. In order to make the model more solv-

ble, we propose a standard linearization for the bilinear terms of

inary variables and continuous variables, and a reformulation of

he objective function that potentially provides a stronger relax-

tion of the objective. 

An example based on the reliable design of an air separation

nit is used to demonstrate how to extract the model parameters

rom the raw data. We attempted to solve the MINLP (DMP) di-

ectly with several global solvers and found that they would not

e solved in reasonable amount of time. Therefore, we propose an

lgorithm that consists of two phases, Enumeration and Bounding,

nd Rewards Iteration. The validity of the bounding is based on the

eformulation of the MDP objective function introduced earlier in

he paper. Resolving the example shows that the two-phase algo-

ithm greatly reduces the required computational effort. The algo-

k

ithm also has consistent performance over 20 randomly generated

roblems around the original example of 4 processing stages. An-

ther group of 20 random problems of 6 processing stages are also

olved and show good computational results. 
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ppendix A. Objective function reformulation 

roposition 1. The following equation holds ∑ 

 ∈ K,h ∈ H k 

∑ 

s ∈ S k,h 

πk,h ( s ) v k,h ( s ) 

https://doi.org/10.13039/100000001
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= 

1 

1 − γ
·

∑ 

k ∈ K,h ∈ H k 

∑ 

s ∈ S k,h ,a ∈ A s 
π sub 

k,h ( s, a ) 

·
∑ 

s ′ ∈ S k,h 

P k,h 

(
s, a, s ′ 

)( 

R idv k,h 

(
s, a, s ′ 

)
+ 

∑ 

p∈ P 

∑ 

n ∈ N p 
R _ y pen 

p,n,k,h 

(
s, a, s ′ 

)) 

(A.1)

when constraints (12) , (13) , (19) , (21) –(23) , and (31) –(37) are satis-

fied. 

Proof. First we focus on the optimal condition of a certain Markov

Decision Process based on the notation of Section 3.1 , where U 
∗
s is

the optimal value of state s , and a ∗( s ) is the optimal action of state

s .: 

 
∗
s = 

∑ 

s ′ ∈ S 
P (s, a ∗(s ) , s ′ ) · (R (s, a ∗(s ) , s ′ ) + γ ·U 

∗
s ′ ) , s ∈ S (A.2)

Eq. (A.2) has the matrix form shown in (A.3) , where P ∗(s, s ′ ) =
P (s, a ∗(s ) , s ′ ) , and similarly for R 

∗( s, s ′ ). 
(1 − γ ) U 

∗ = γ (P 
∗ − I ) U 

∗ + diag(P 
∗(R 

∗) T ) (A.3)

Next we rewrite Eq. (20) in the matrix form (A.4) , which specifies

the conditions that the stationary distribution π has to satisfy. 

π T (P 
∗ − I ) = 0 (A.4)

By left multiplying (A.3) with πT and substituting (A.4) into it, we

obtain (A.5) 

π T U 
∗ = 

1 

1 − γ
π T diag(P 

∗(R 
∗) T ) (A.5)

Eq. (A.1) trivially holds for the stage designs that are not selected,

where both sides of the equation are equal to 0. For the designs

h that are selected for the respective stage k , when constraints

(12), (13), (19), (21) –(23) , and (27) –(37) are satisfied, (A.3) and

(A.4) hold. Therefore, Eq. (A.5) holds, where the right-hand side

with the subscripts h, k has the expression shown in (A.6) , where

n ∗( p ) are the indices of the selected storage sizes of product p . 

1 

1 − γ

∑ 

k ∈ K,h ∈ H k 

∑ 

s ∈ S k,h 

πk,h (s ) 
∑ 

s ′ ∈ S k,h 

P k,h (s, a 
∗(s ) , s ′ ) 

×
∑ 

p∈ P 
R p,n ∗(p) ,k,h (s, a 

∗(s ) , s ′ ) (A.6)

Since Eqs. (21) and (23) require that π sub 
k,h 

(s, a ∗(s )) = πk,h (s ) , and

that π sub 
k,h 

(s, a ) = 0 if a 
 = a ∗( s ). (A .6) is equal to (A .7) when (21) and

(23) hold. 

1 

1 − γ

∑ 

k ∈ K,h ∈ H k 

∑ 

s ∈ S k,h ,a ∈ A s 
π sub 

k,h (s, a ) 
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ ) 

×
∑ 

p∈ P 
R p,n ∗(p) ,k,h (s, a, s 

′ ) (A.7)

As defined in Section 4.1 , R _ y 
pen 

p,n,k,h 
(s, a, s ′ ) is zero for non-selected

storage sizes. Therefore, (A .7) can be further written as (A .8) ,

which is the right hand side of (A.1) . 

1 

1 − γ

∑ 

k ∈ K,h ∈ H k 

∑ 

s ∈ S k,h ,a ∈ A s 
π sub 

k,h (s, a ) 
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ )(R idv 

k,h (s, a, s 
′ ) 

+ 

∑ 

p∈ P 

∑ 

n ∈ N p 
R _ y pen 

p,n,k,h 
(s, a, s ′ ) ) (A.8)

Thus, the proposition is proved. �

Appendix B. Objective bounding regarding key parameters 

As shown in Section 6 , the lower and upper bounds of the op-

timum of the MINLP (MDP) at each node of storage tank selection

ˆ x , f ( ̂  x , ˆ R pen , ˆ ξ ) , are obtained by solving two MILPs: 
Lower bounding MILP (DMP-relax): 

in 
ξ∈ �

{ c( ̂  x , (R pen ) L ) · ξ | A relax · ξ ≤ b relax ( ̂  x , (R pen ) L ) } (B.1)

pper bounding MILP (DMP-diseng): 

in 
ξ∈ �

{ c( ̂  x , (R pen ) U ) · ξ | A diseng · ξ ≤ b diseng ( ̂  x , (R pen ) L ) } (B.2)

n the following, we will display their exact formulation, where
˜  pen can be replaced with ( R pen ) L or ( R pen ) U depending on the

eeds, and prove in Proposition 2 and 3 that the MILPs provide

alid bounds. (B.3) shows the exact form of c( ̂  x , ˜ R pen ) · ξ . 

( ̂  x , ˜ R pen ) · ξ = 

∑ 

k ∈ K,h ∈ H k 
z k,h C 

U 
k,h 

+ 

1 

1 − γ

∑ 

k ∈ K,h ∈ H k 

∑ 

s ∈ S k,h ,a ∈ A s 
π sub 

k,h (s, a ) 

×
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ )(R idv 

k,h (s, a, s 
′ ) + 

∑ 

p∈ P 

∑ 

n ∈ N p 
ˆ x p,n · ˜ R pen p,n,k,h 

(s, a, s ′ ) ) 

(B.3

 
relax · ξ ≤ b( ̂  x , ˜ R pen ) consists of (7), (21) –(23), (B.5) and (B.6) .

 
diseng · ξ ≤ b( ̂  x , ˜ R pen ) consists of (7), (21) –(23), (B.4) and (B.6) . 

 k,h (s ) ≤
∑ 

s ′ ∈ S k,h 

(P k,h (s, a, s 
′ ) 

· (R idv 
k,h (s, a, s 

′ ) + 

∑ 

p∈ P 

∑ 

n ∈ N p 
z k,h ̂  x p,n ̃  R pen 

p,n,k,h 
(s, a, s ′ )) ) 

+ γ
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ ) · v k,h (s 

′ ) , ∀ k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s ) 

(B.4)

(w k,h (s, a ) − 1) + v k,h (s ) ≤
∑ 

s ′ ∈ S k,h 

(P k,h (s, a, s 
′ ) 

· (R idv 
k,h (s, a, s 

′ ) + 

∑ 

p∈ P 

∑ 

n ∈ N p 
z k,h ̂  x p,n ̃  R pen 

p,n,k,h 
(s, a, s ′ )) ) 

+ γ
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ ) · v k,h (s 

′ ) , ∀ k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s ) 

(B.5)

(1 − w k,h (s, a )) + v k,h (s ) ≥
∑ 

s ′ ∈ S k,h 

(P k,h (s, a, s 
′ ) 

· (R idv 
k,h (s, a, s 

′ ) + 

∑ 

p∈ P 

∑ 

n ∈ N p 
z k,h ̂  x p,n ̃  R pen 

p,n,k,h 
(s, a, s ′ )) ) 

+ γ
∑ 

s ′ ∈ S k,h 

P k,h (s, a, s 
′ ) · v k,h (s 

′ ) , ∀ k ∈ K, h ∈ H k , s ∈ S k,h , a ∈ A (s ) 

(B.6)

roposition 2. If (R pen ) L � ˆ R pen , then (B.1) is a valid lower bound of

f ( ̂  x , ˆ R pen , ˆ ξ ) . 

roof. As shown in Section 6 , assuming that ˆ R pen is known, the

esult of (B.7) is f ( ̂  x , ˆ R pen , ˆ ξ ) . 

in 
ξ∈ �

{ c( ̂  x , ˆ R pen ) · ξ | A diseng · ξ ≤ b diseng ( ̂  x , ˆ R pen ) } . (B.7)

s a constraint in (B.1), (B.5) relaxes the requirement that the state

alue should be less than or equal to the right-hand-side corre-

ponding to every possible action, and only requires that it be no

reater than the selected action. That makes all the possible action

ecisions (possible solution of variable w ) feasible to (B.1) , which

utomatically includes the action decision ˆ w corresponding to the

ptimal solution of (B.7) , ˆ ξ . 
Arguably, substituting ˆ w into (B.1) will lead to different state

alues than ˆ v , but ˆ π sub will stay the same, as certain action deci-

ion ˆ w leads to unique reduced Markov Processes for each stage,

nd unique stationary probability distributions ˆ π and ˆ π sub . Since
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nly ˆ π sub goes into the objective function, we can still insert ˆ π sub 

s part of ˆ ξ into the objective function of (B.1) as a feasible solu-

ion, which by the definition of optimality is no less than the opti-

um of (B.1) , and let (B.8) hold with a little abuse of the notation.

( ̂  x , (R pen ) L ) · ˆ ξ ≥ min 
ξ∈ �

{ c( ̂  x , (R pen ) L ) · ξ | A relax · ξ ≤ b relax ( ̂  x , (R pen ) L ) } 
(B.8) 

n the other hand, since (R pen ) L � ˆ R pen , (B.9) holds given the exact

ormulation of the objective function shown in (B.3) . 

( ̂  x , (R pen ) L ) · ˆ ξ ≤ c( ̂  x , ˆ R pen ) · ˆ ξ ≡ f ( ̂  x , ˆ R pen , ˆ ξ ) (B.9)

herefore, we have (B.10) and the proposition is proved. 

f ( ̂  x , ˆ R pen , ˆ ξ ) ≥ min 
ξ∈ �

{ c( ̂  x , (R pen ) L ) · ξ | A relax · ξ ≤ b relax ( ̂  x , (R pen ) L ) } 
(B.10) 

�

roposition 3. If (R pen ) L � ˆ R pen � (R pen ) U , then (B.2) is a valid up-

er bound of f ( ̂  x , ˆ R pen , ˆ ξ ) . 

roof. As shown in Section 6 , assuming that ˆ R pen is known, the

esult of (B.7) is f ( ̂  x , ˆ R pen , ˆ ξ ) . Also, we denote ξ L as the optimal

olution of (B.2) . 

Constraints (B.4) and (B.6) are the only constraints in (B.2) that

ontains R pen . Since (R pen ) L � ˆ R pen , ξ L which satisfies (B.4) in

 
diseng · ξ ≤ b diseng ( ̂  x , (R pen ) L ) also satisfies (B.4) in A diseng · ξ ≤
 
diseng ( ̂  x , ˆ R pen ) . As for (B.6) , since exactly one action is selected for

ach state, v is always the unique solution of a square linear sys-

em and self-bounded by the parameters. Therefore, the big M can

e made large enough such that (B.6) is always satisfied. 

Therefore, ξ L is a feasible solution of (B.7) , and gives an objec-

ive value no less than the optimum as shown in (B.11) 

( ̂  x , ˆ R pen ) · ξ L ≥ c( ̂  x , ˆ R pen ) · ˆ ξ ≡ f ( ̂  x , ˆ R pen , ˆ ξ ) (B.11)

n the other hand, since ˆ R pen � (R pen ) U , (B.12) holds given the ex-

ct formulation of the objective function shown in (B.3) . 

( ̂  x , ˆ R pen ) · ξ L ≤ c( ̂  x , (R pen ) U ) 

· ξ L ≡ min 
ξ∈ �

{ c( ̂  x , (R pen ) U ) · ξ | A diseng · ξ ≤ b diseng ( ̂  x , (R pen ) L ) } 
(B.12) 

herefore, we have (B.13) and the proposition is proved. 

f ( ̂  x , ˆ R pen , ˆ ξ ) ≤ min 
ξ∈ �

{ c( ̂  x , (R pen ) U ) · ξ | A diseng · ξ ≤ b diseng ( ̂  x , (R pen ) L ) } 
(B.13) 

�

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.compchemeng.2020.

07052 . 
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