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1. Introduction

Process reliability is important to chemical plants, as it directly
impacts the availability of the end product, and thus the profitabil-
ity. In particular, what motivated this work is the reliability of air
separation units that supply gas products to designated customers
through pipelines, which is at an even higher stake since the inter-
ruption of the pipeline supply will also result in production inter-
ruption at the customer site.

If we focus on the system design and the reliability of the pro-
cess itself, there is a clear trade-off between higher expected avail-
ability of the process and higher capital investment for backup
units. A few works have looked into this point. Thomaidis and Pis-
tikopoulos (1994, 1995) incorporate the reliability index of each
unit as part of process design optimization considering flexi-
bility and reliability. Aguilar et al. (2008) address reliability in
utility plant design and operation by considering a few pre-
specified redundancy selection alternatives and failure scenarios.
Ye et al. (2018) propose a general mixed-integer programming
framework for the optimal selection of redundant units.
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Another strategy to improve product availability for air sepa-
ration units is to provide buffer storage of the liquified products,
which can be evaporated to sustain the pipeline supply when the
air separation units fails. This strategy also incurs costs of building
the tanks and maintaining the stock, which increases with the size
of the storage tanks (Terrazas-Moreno et al., 2010). Our previous
work (Ye et al., 2020) has looked into the exact modeling of the
stochastic process of liquid storage consumption.

Quantifying and optimizing the maintenance efforts after
the commissioning of a plant is a well recognized topic in
industry (Van Rijn, 1987) as well as in academia. Tan and
Kramer (1997) present a general framework for preventive
maintenance optimization utilizing Monte Carlo Simulation and
genetic algorithms overcoming certain drawbacks of analyt-
ics based methods and Markov based methods. With re-
gards to timing and resource allocation of maintenance tasks,
Pistikopoulos et al. (2001) optimize maintenance alongside with
normal production tasks. Cheung et al. (2004) address a short-term
scheduling problem of plant shutdown, overhaul, inspection and
startup actions within one plant. Amaran et al. (2016) focus on op-
timizing the maintenance turnaround planning of integrated chem-
ical sites for minimum cost accounting for workload and man-
power uncertainties. Achkar et al. (2019) optimize the scheduling
of general maintenance tasks on oil and gas wells and surface fa-
cilities.
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Nomenclature

Indexes

k Processing stage

h unit selection of single stage

p product

n storage size option

s, s state

a action

Sets

K processing stages

H; unit selections of stage k

P product kinds, i.e. oxygen, nitrogen, etc.

Np storage size options for product p

Skh possible states of stage k with unit selection h

A(s) possible actions of state s

Parameters

C,&’_h the investment cost of unit selection h at

' stage k

(i the investment cost of tank size n for product
p

Pin(s, a, ) the probability of transitioning from state s
to state s’ if take action a in stage k with unit
selection h

R}'f’,;(s, a,s’) the instant operational cost of transitioning
from state s to state s’ if take action a in

) stage k with unit selection h
Ri9-Pen (s q s') the instant penalty incurred cost of transi-

k.h

(RP"(s.a,5'))"

t,ief, (s,a)

Variables
Zi,h

Xpn

Yp.nkh

W, p(s, @)

Vi, 1(S)
T ih(S)

nlﬁ”hb (s, a)
Ryn(s a, ')

Rf:f’; (s,a,s")

pen

Ry G, a,s’)
t_ratiof

tioning from state s to state s’ if take action
a in stage k with unit selection h

the lower bound of Rﬁ_e; (s,a,s")

the expected residence time of state s if take

action a in stage k with unit selection h

binary variable that indicates the selection of
design h at stage k

binary variable that indicates the selection of
storage size n for product p

binary variable that indicates the selection of
storage size n for product p and design h at
stage k at the same time

binary variable that indicates the selection of
action a at state s of stage k with unit selec-
tion h

the value of state s of stage k with unit selec-
tion h

the stationary probability of state s of stage k
with unit selection h

the disaggregated stationary probability of
state s of stage k with unit selection h when
choosing action a

the instant cost of transitioning from state s
to state s’ if take action a in stage k with unit
selection h

the instant penalty incurred cost of transition-

ing from state s to state s’ if take action a
in stage k with unit selection h that is dis-

counted by t_ratio® based on R¥-P¢"(s a,s')
k k,h
the aggregated variable of y,, , x nRE;' (5, a, ")

the portion of time state k being available

However, there have only been limited number of works re-
ported on the simultaneous optimization of design and main-
tenance schedule (Vassiliadis and Pistikopoulos, 2001; Napoles-
Rivera et al.,, 2013; Liang and Chang, 2008; Godoy et al., 2015;
Wibisono et al., 2014), especially ones that model the stochastic
process of failure and maintenance in detail (Redutskiy, 2017). An-
other example of the latter is our previous work (Ye et al., 2019),
where the process is modeled with a Markov Chain, where the
failure rates are considered constant for the entire horizon, and
are subject to the inspection frequency decision. It was shown in
the paper that incorporating maintenance decisions into the eco-
nomic trade-off can have major impact on the overall cost. As
an improvement, in this work, we incorporate the more realistic
assumption that the failure rates of single units vary with time,
and model the condition-based maintenance decisions as the ac-
tion policy of Markov Decision Process, which largely refers to
Amari et al. (2006), while the latter work only focuses on one unit
and has no design component.

Markov Decision Process is a one-step look-ahead framework
for dynamic decision making under uncertainty that was first
proposed by Bellman (1957). It has since received wide inter-
est and has had broad applications (White, 1993), such as in-
ventory management (Ahiska et al., 2013; Yin et al., 2002), plan-
ning and scheduling (Shin et al., 2017), investment (Bduerle and
Rieder, 2011), and maintenance (Byon and Ding, 2010; Chen and
Trivedi, 2005), as well as the recently rising reinforcement learn-
ing area (Powell, 2004), where MDP is used as the basic frame-
work for describing the behavior of various systems including hu-
man beings. The optimality condition of a Markov Decision Pro-
cess is given by the Bellman equation. Basic ways of finding the
solution that satisfy the Bellman equation include linear program-
ming, policy iteration and value iteration. In this work, we em-
ploy a slightly modified version of the linear programming formu-
lation, which is mixed-integer and has a more specific objective
function to suit our need of simultaneous design and operations
optimization.

In Section 2, we describe the problem scope including the de-
cisions to make and their correspondence to the modeling compo-
nents. Section 3 presents the mathematical model, where we start
by introducing the basics of Markov Decision Process in Section 3.1.
Then, in Section 3.2, we propose the MINLP model as described
in the last paragraph. In order to keep the model tractable, each
processing stage is modeled as an MDP (Markov Decision Process),
and the stage interdependency is captured via functional relation-
ships of the MDP parameters. In Section 3.3, we describe the inter-
action between the MDPs of all the processing stages and its im-
pact on the entire system. In Section 4.1, we propose to exactly lin-
earize the bilinear terms in the model. Furthermore, in Section 4.2,
we show a reformulation of the objective function that helps to
tighten the objective bounds.

In Section 5, we present an example with 4 processing stages to
discuss how to determine the basic parameters of the MDPs based
on the reliability and price specifications of individual units, and
show that directly solving the original MINLP model faces consid-
erable computational difficulties. It motivates us in Section 6 to
propose an algorithm with two phases: Enumeration and Bound-
ing, and Rewards Iteration. The objective reformulation proposed
in Section 4.2 also helps with the proof of a proposition that sup-
ports the validity of the algorithm. Finally in Section 7, we show
that the proposed algorithm is efficient on the example introduced
in Section 5 as well as on 20 problems randomly generated around
it. The performance of the algorithm on larger problems is slightly
less stable as reflected by solving another group of 20 randomly
generated problems with 6 processing stages.
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Fig. 2. Conceptual modeling structure.

2. Problem statement

The decisions to make include the selection of redundant units
and sizes of storage tanks, as well as basic maintenance policies for
a chemical process. As our motivating example, the general flow-
sheet of an air separation unit is shown in Fig. 1, where the failure
of one stage results in the failure of the entire process. Following
common practice of the air separation industry (Linde, plc, 2020;
Chart, 2020), the sizes of the storage tanks will be selected from
a few discrete standard options. If more redundant units are se-
lected for critical processing stages, such as compressors, the plant
will be less likely to fail. Also, as discussed in the introduction, the
liquid oxygen and liquid nitrogen can be evaporated to sustain the
pipeline supply when the air separation units fails, and the larger
the storage tanks are, the longer are the downtime periods that
can be covered. Furthermore, in the operation phase, placing more
efforts into maintenance can increase the process reliability. Each
pipeline interruption will incur a fixed amount of penalty, which is
to be balanced against the costs of the above strategies to increase
availability. To address this problem, we propose a mixed-integer
programming model based on a Markov Decision Process frame-
work. Fig. 2 shows the conceptual modeling structure. Assuming
that for a process, the base flowsheet is given, the exact design and
maintenance policy decisions are described in Sections 2.1 and 2.2,
respectively.

2.1. Design decisions

There are two major design decisions:

e The number and selection of redundant units of different prices
and reliability specifications for each processing stage. The bi-
nary variable z, ;, =1 indicates that in processing stage k (e.g.
compressor stage), design h (e.g. compressor 1 and compressor
3 each of 100% capacity) is selected.

« The sizes of end product storage tanks. Binary variable x,, =
1 means that for product p (e.g. Nitrogen), tank size n (e.g.
100,000 gallon) is selected.

2.2. Maintenance policy decisions

The bathtub curve shown in Fig. 3(a) is widely accepted on how
the failure rate of a unit varies with time (Henley and Kumamoto,
1981; Barlow and Proschan, 1975, etc.). We propose to capture the
bathtub-like deterioration/failure process of the equipment and the
condition-based maintenance with a discrete-time Markov Deci-
sion Process. As shown in Fig. 3(b), the bathtub curve is discretized
into three "working states” of the unit: 1. Infant, 2. Stable, and 3.
Worn-out. When a unit is not working, there are three other pos-
sible states: 4. Stand-by, 5. Stopped, and 6. Failed. At each state,
there is a finite number of possible actions: Inspect-T" (which
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Fig. 3. The bathtub curve.

Fig. 4. State space and action space of single units maintenance policy.

Standby

means to carry out inspection after T days. m e M is the index
set of possible inspection intervals), Stop, Maintain, or Repair. One
and only one action is to be assigned to each state, which is the
main decision to make in terms of the maintenance policy. Fig. 4
shows the state space and action space of a processing stage with
only one unit. When in the Infant state, no action will be taken ex-
cept for waiting for the unit to either fail or proceed to the Stable
state (blue arcs). When in the Stable state and the Worn-out state,
the unit can be stopped (green arcs), which leads to state Stopped
with probability 1. From the Stable state, the action can also be
Inspect-Ti"™, m e M (blue arcs), in which case, the next state will
be revealed at the next inspection, and the probability of going to
each of the next possible states depends on the inspection interval
Tins, When in the Stopped state or the Failed state, the only appli-
cable actions are to maintain (the yellow arc) or to repair (the red
arc), respectively, which leads back to the Stable state if the unit
is needed instantly, or to the Stand-by state if other units in the
stage is working properly. With one unit, the Stand-by state will
always be skipped. When there are multiple units, actions at the
Stand-by state are by no choice and denoted as None, and it will
lead back to the Infant state with probability 1. That is because the
only transition out of a Stand-by state is to the Infant state, and
is always accompanied by the stopping or failing of other units,
which are already accounted for. The Stand-by state being followed
by the Infant state accounts for the higher likelihood of failure of
the units after a period of idling.

3. Mathematical model

As mentioned above, we propose to model the process with
MDP (Markov Decision Process), as preparation for which the state
space representation is formulated as in the example shown in
Fig. 4. Arguably, the exact modeling of the system with multiple
processing stages would require construction of the entire state
space and state-action pairs, which can become intractable as the

Table 1
Numbers of possible states in systems of different sizes.

SMALL MEDIUM LARGE
Number of stages 2 3 4
Number of potential units per stage 2 3 4
Number of possible states 425 430,000 3,576,336,546

number of stages and potential redundant units increase, as shown
in Table 1. Therefore, we take a simplified approach to model each
processing stage as an MDP (Markov Decision Process), and cap-
ture the stage interdependency via functional relationships of the
MDP parameters. In Section 3.1, we introduce the basic princi-
ples of MDP, especially the optimal condition and how to com-
pute the stationary distribution of the reduced Markov Chain given
the optimal actions, which constitute the theoretical foundation of
this paper and the mathematical prgramming model afterwards.
In Section 3.2, we derive the optimization formulation of the MDP
of each stage. In Section 3.3, the interaction between the MDP
of each processing stage is modeled. Then in Section 4, we pro-
pose to improve the model formulation by linearizing the bilinear
terms into two constraints, and reformulating the objective func-
tion into an expression with tighter lower bounds for relaxations
that arise when dropping the discrete requirements. However, we
will show later that directly solving the original MINLP model still
faces considerable computational difficulties, which motivates us to
propose a customized two-phase algorithm. The objective reformu-
lation proposed in Section 4 also helps with the proofs of the sup-
porting propositions of the algorithm.

3.1. Markov decision process and the optimality condition

A Markov Chain describes the stochastic transitioning behavior
of a system among a finite set of states. On top of that, a Markov
Decision Process allows the decision maker to choose an action
at each state to control the system transitioning behavior. At the
same time, an instant reward R (could be positive or negative) is
associated with certain action at certain state and the next state.
For example, in Fig. 5, compared to the Markov Chain on the left,
in the Markov Decision Process shown on the right, actions A1 or
A2 could result in different transition probabilities P between state
S1 and S2, and the rewards R depend on current state, the action,
and the next state.
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A policy § of a Markov Decision Process is a projection from its
state space S to the action space A.

§:S—A

For the example in Fig. 5, a possible policy is §(51) = A1,5(52) =
A2, in which case the transition diagram becomes as shown in
Fig. 6, which reduces back to a Markov Chain.

Under a certain policy §, a value function is defined for each
state s as in Eq. (1). The first term is the reward associated with s
and its designated action according to &. The second term is the
weighted sum of the value function of the next possible states
s’ € S discounted by a future factor y. In this paper, we assign

a 10% discount factor for y.

Vs(8) =) P(5,8(5),5) - (R(5,8(5),5) + ¥ -V (8)), seS (1)
s'eS

With the reward function R, the transition matrix P and the dis-

count factor y given, the optimal policy for maximum overall value

Vi is defined as in Eq. (2), where a € As is the set of possible ac-
tions for state s.

> P(s.a.s') - (R(s.a.s) +y - Vy).

s'eS

V' = max
aehsg

seS )

In our case, the instant rewards R(s, a, s’) are the negative of the
costs. Therefore, we let Us = —V; and flip the sign of the conven-
tional expression. We then remove the negative sign before R(s, q,
s’), and let R(s, a, ') be the instant costs of going from state s to
state s’ by action a. We still denote it as instant rewards to dis-
tinguish it from the breakdown cost parameters. With that, (3) is
equivalent to (2).

Y P(s.a.s')- (R(s,a,s") +y-U), seS 3)

s’eS

U = min

aehs
The equivalent linear programming model is shown in
(4) (d’Epenoux, 1963; Puterman, 2014), where c¢s are arbitrary
positive weights. With given P(s, a, s’) and R(s, a, s’), problem
(4) solves for the optimal value of each state and the correspond-
ing policy. Notice that if the optimal policy selects action a for
state s, then the optimal dual variable of constraint (s, a) is greater
than 0; otherwise it equals 0.

max Y . s CsUs

s.t. U <> osP(s,a,8) - (R(s,a,8)+y -Uy), seS aeA

(4)

As mentioned above, the weights in the objective function, c;, do
not affect the solution of the optimal actions in the above LP
model. But in order for the objective function to reflect the op-
erational cost, the weights are set equal to the stationary probabil-
ity distribution 7§ of the reduced Markov Chain under the optimal
policy. 7§ satisfies the following constraints.
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Yomr=1 (5)

seS

Y wiP(s.a*(s).s) =7y,

seS

Vs €S (6)

Below we show how to enforce the LP formulation minimizing op-
erational cost (4), as well as the constraints (5) and (6) in the over-
all optimization model.

3.2. Mixed integer programming formulation based on the MDP
optimal condition of each stage

As indicated in the problem statement, we index the process-
ing stages by k, the potential designs of individual stages by h, the
products by p, and the storage tank sizes by n. The binary variable
zy, indicates the selection of design h of stage k, while the binary
variable xp, indicates the selection of tank size n for product p.
These binary variables satisfy Eqs. (7) and (8).

Y zn=1. Vkek (7)
heH;
> Xpn=1. VpeP (8)
neNy

Based on the above, we define the binary variable y, ,; that indi-
cates the overall design decision, which satisfy the logical relation-
ship (9), where the logical clauses are true when design h of stage
k and size n of product p are selected simultaneously.

Ypnikn < ZknAXpn., YpePneNykek heH (9)

Another way of expressing the above logical relationship is
(10) and (11), which can be directly translated into the algebraic
constraints (12) and (13) that are tighter than those translated
from (9) (see Castro et al., 2008 for proof).

\/ Yonkn < Zen. VkeKheH.peP (10)
neNy
\/ Yonkn <= Xpn. VpePneNykek (11)
heH;
Z yp,n‘k,h =Zk.h» Yk € K, h € Hk, De P (12)
neN,
Z Ypnkh=Xpn. VpePneNykek (13)
heHy

The state space of design h in stage k is denoted as Sy j,. Similarly,
the transition probability matrix is Py(s, a, §'), s, s’ € Sgp, a € A(s),
and the reward matrix is Rpnn(s, @, '), s, s' € Sgp, a € A(s).
The constraint stated in the general formulation (4) is adapted
into constraint (14) that involves the design decision y,,ip. If
Y pePneN, Ypnkh = 0, it means that design h in stage k is not se-
lected, and then the first term on the right-hand-side of (4) is zero,
making v}, ,(s) =0,s € Sy, a feasible solution. Considering that in
the objective function below, vj j(s) are being minimized with
non-negative weights, vy ,(s) = 0,s € S is part of the optimal so-
lution.

Ukn() < D (Ben(s.a.5) - D YpnknRpnin(s. a.5)

S'€Skn peP.neN,

+¥ Y Rp(s.a.s) vp(s)). VkeK heHeseSe. aeAs)
S'€Skn

(14)

The objective function is shown in (15), which minimizes the cap-
ital cost of the selected processing units (C}{’ ,) and storage tanks

(Cg,n), plus the weighted state values of the MDPs (my j - Vi p),
which takes into consideration both the operational costs and the
reliability values.

min Y XpaChat+ Dzt Y Y Tn(S)Ven(s)

peP,neN, keK.heH, keK.heH, se€Sk.n
(15)

Notice that in the original LP form shown in (4), the weighted
sum of the value functions (vi y(s) in the model) are maximized
in the objective function, which enforces the equality at the ac-
tion that yields the minimum value. However, as shown in (15),
the weighted sum of the value functions have to be minimized
together with the investment costs. Therefore, we need another
set of constraints to make sure that v, ,(s) does not become un-
bounded. In disjuction (16), Boolean variable Wy (s, a) is true if
action a is the optimal action for state s, in which case it enforces
that vy ,(s) be greater than or equal to the right hand side.

Wi n(s. a)
Vin(8) = Yges,, (Pen(s. a. s z:pe["neN,J YpnkiRpnin(s, a,5))
+Y Yoes, Pen(s, 0,8 - v p(s')

v[ﬁWk_h(s, a)] (16)

It can be translated via Big-M reformulation into the algebraic con-
straint (17).

M@ —wy (s, @) + Vi ()
= Z (Pk,h (S, a, S/) . Z Yp.n.k,th.n,k,h (S: a, S/))

s'€Skn peP.neN,
+Y Y Pen(s.a.8) ven(s)). VkeK heHeseSgp aeA(s)
s'e€Skn

(17)

Logic condition (18) requires that if design h is not selected, mean-
ing z; , = 0, then any action for that design is not valid. Constraint
(19) is the corresponding algebraic equation of (18).

\/ Wk,h (S, a) — Zk,h’ Vk e K, he Hk, Se Sk‘h (18)
aehs
Z Wi h (S, a) = Z h» VkeK he Hy,s € Sk,h (]9)
aehs

7 n(s) is the stationary probability of state s in the state space of
the MDP of design h in stage k, which satisfies (20), where a*(s) is
the optimal action at state s.

> en(S)Pn(s.a*(s),s') = mep(s), VkeK heH,s €Sy

SESkh

(20)

To represent (20) by algebraic inequalities, we define n,ff‘,f’(s, a) as
the disaggregated variables of m,(s) with regard to action a as
shown in (21), whose valued are related to the Boolean variables
Wi n(s, a) as shown in (22), which translates into algebraic con-
straint (23).

Yo, a) = men(s), VkeK heH (21)
aehs
Wien (s, a) —Win(s, a) )
mb(s,a) < 1| mfb(s,a) =0
T[Iijllf(s» a) <wgp(s,a), VYkeK heHy,seS achs (23)
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Given the relationship shown in (23), (21) can be substituted into
(20), which yields (24).

3 A )Py (s a.8') = (s,

SESkp achs

Vk e K, he Hk’ s € Sk,h

(24)

Furthermore, as shown in (22), we require that 7 (s) are 0 if de-
sign h is not selected for stage k, and that 7 ,(s) sum up to 1 if
otherwise. The condition can be expressed with the algebraic con-
straint shown in (23)

Zie ~Zih
ZSESk,, Tk, h(s) =1 ZSESM ka,h(s) =0

Z T n(S) =2z, VYkeK heH

SESkh

(25)

(26)

3.3. Stage interdependency

As mentioned in Section 2, the processing stages impact each
other’s performance. Especially, a stage k can only transition into
the next state when the other stages are not in the Failed state.
Therefore, as shown in Eq. (27), the reward of transitioning from
state s into another state ', Ry,kn(s, @ '), is to be corrected
with the portion of time the other states being available, based on
the reward parameter when the stage k stands alone, R'd" (s,a,s")

and Rl;'; ,‘(’Eh" (s.a,s). Notice here Ri%(s a,s') has to be evenly dis-

tributed to each product.

1
. +dev pen(s, a, S,) .

/Y _ pidv /
Rp_n,k,h(& a,s ) = Rk.h(s’ as ) |p| p.nk,h

1_[ t_ratio?,
lek, Itk

VpePneNpkeKheH,seSyaecAls),s' eS, (27)

where t_ratio';: equals to the weighted probability of available
states divided by the probability weighted time length of all states
of stage k, as shown in (28), where ™ is the expected residence
time in state s if taking action a.

sub res
ZhEHk ZSGS,Q,,S%S{./I aeAs Teh (s, a)tk h (s.a)
Zher ZSESI(V;,,HEAS ”EL;,b (S a)tres (S a)

With that, the basic non-convex MINLP model minimizes the to-
tal cost (15) subject to constraints (7), (8), (12)-(14), (17), (19),
and (21)-(28), where (14) and (17) involve bilinear terms of binary
variables y, ., and continuous variables ankh’ (27) involves

multi-linear terms of continuous variables t_ratlo",;, and (28) is a
linear-fractional constraint.

t_ratio} = keK  (28)

4. Reformulations

As will be shown in this section, the model can be improved
through several reformulation steps. In Section 4.1, we perform
an exact linearization of the bilinear terms in the model, and in
Section 4.2, we propose to reformulate the objective function tak-
ing advantage of the functional relationships specified by the con-
straints.

4.1. Standard linearization of the bilinear constraints

We use Glover’s linearization scheme (Glover, 1975), a special
case of the McCormick Envelopes (McCormick, 1976), to linearize
Egs. (14) and (17), which also involve the reformulation of Eq. (27).
We first introduce a new variable Rpe” i n(5a.8) and rewrite the
three constraints mentioned above as follows in (29)-(31) where
variable Ry, x(s, a, §') is eliminated.

Vpp(s) < Z Py (s, a,s’)- (Zk,hR;'{d.z(s» as)+ Z Zyp,n.k nR enkh(s a,s"))

S'€Skn peP neN,
+Yy Z B n (s, a,s/)-vah(s’), VkeK,hEHk,SESk,h,GEA(S) (29)
S'€Sk

M1 —wyp(s, @) + Vg p(s)
> Y Pn(s.0,8) - @R (.05 + DD Ypnu Ry n (5. 0.5)

s'eSkn peP neN,
+¥ Y Pen(s.a.s) v (s'). VkeK heHs €S aeAs)

S'€Skn

(30)
id )
R en(s:a.s) =R (s, a.8") - [] t_ratiof,
leK,I#k
Vp ebne NP’ ke K, he Hkys € Sk,hr ae A(S), s'e Sk.h (31)

We then replace the bilinear term yp,n,k,hRﬁe;k.h(s, a,s’) with the
new variable Rjge:kh(s, a,s’) as shown in (32) and (33), and use
Eqgs. (34)-(37) to require that they be equal to each other.

Uen(s) < D Pen(s.a,8) - zenRih(s.a,8) + ) > R Y en(s.a.8)

s'e€Skn peP neN,

+y Y Pn(s.a,8) vep(s'). VkeK heHse Sy aeA(s)
s'eSkn (32)

M(1 = Wiy (s, @) + Vp(s) = D Pen(s,a,s)

s'e€Skn
(z, ,,R,(d‘,j(s a,s’) + Z Z R yge';zkh(sy a,5))
peP neN,
+¥ Y Pon(s.a.8) - vp(s). VkeK heHese Sy acAls)
S'€Skn
(33)
RYDn(5: 0.8 < YpuinRpy b (5. 0.8)),
VpePneNypkeKheH,seS aeA(s),s €S (34)
Rypen(s @ s) < RYT 4 (5.0.8) + Gpnien = DRET 4 (5.0
VpeP,neNpkeKheH,seSyacA(s),s €S, (35)
Ry h (5 0,5) = YpnknRYT (50,5,
VpePneNpkeK heH,seSuaecA(s),s €S (36)

id
R_ygi’:,k’h(s, a,s) > Rgi’f’k’h(s, a.s') + Wpnkh— l)R’p;j,ie:(s, a,s),
(37)

VpePneNpkeK heH,seSu,aeA(s),s €S

RPE”k K508,
(Rge:k 1 (s.a.5")E, are found by first solving for the lowest possible

portion of available time (t_ratio",;)L of each stage k as shown in
problem (38), and apply (31) as shown in (39). Notice that all the
constraints of problem (38) are linear, and the objective function
is linear fractional, which is nonlinear but pseudo-convex and
pseudo-concave (Avriel, 2003). Pseudo-convex function has the
property of a convex function with respect to finding its local
minima. Therefore, when we relax the integrality requirement in
problem (38), it becomes a convex NLP.

su res
2oheH, Loses,  se5, ach, Tk L(s. Q)5 (5. @)

heH, Zsesk_h.asAs 7TSUb (S a)tres (5 (1)

The element-wise lower bounds of

(t_ratio})" = min

st Yz =1

heH,
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> win(s.a) =z, YheHy.s €Sy

aeA;s

Z Tk n(S) =2zxp, VheHy

SeSkn

Y TR a) =men(s), VheH
aehs

M (s, a) < Wyp(s.a), VheHys €S aehs

Z Z n[f?l}?(s’ a)Pk,h (55 aa S/) = ﬂk.h(s/)’ Vh € H’ﬁ S/ € Skh

SeSkp achs

(Rpen

pokn (5680 = R;dv_pen (s.a.s) - [T ((cratiop),

.nk.h
leK,1#k

VpePneNpkeKheH,seSuaeAls),s €S (39)

4.2. Reformulation of the objective function

In this section we show a valid reformulation of the objec-
tive function (15) that potentially provides tighter lower bounds,
that is derived based on the MDP optimal conditions implied by
the constraints. Thus, the MINLP (referred to as (DMP)) consists
of the objective function (40) that represents net present value of
the system and constraints (7), (8), (12), (13), (19), (21)-(23), (28),
and (31)-(37), with linear fractional functions in (28), multi-linear
terms in (31) and bilinear terms in (40), all of which cannot be
exactly linearized.
x,y,z,w,n,rzl;lfg’],n”.v,RW" ZpeP,neNp vancg.n + Zkel(,her Z’thclij_h

+ﬁ ZkeK,her Zses'k.,,‘aeAs n—;u’f (Sv (1) (40)
: ZS’ESM Pk,h (S’ a, S/) (R;{d}; (5, a, S/) + ZpsP ZneNp R_y‘l’f:kh(s, a, S/))

In Appendix A, we prove in Proposition 1 that the new objective
function in (40) has equal value as the previous one in (15) when
all the constraints are satisfied. The new objective function in
(40) has two important properties. First, comparing to the origi-
nal objective function in (15) which also contains the sum of bilin-
ear terms, the new objective function breaks down to more terms,
which gives rise to potentially stronger lower bounds when being
directly relaxed (dropping the discrete requirement). Also, one part
of the bilinear terms in the new objective function is the com-
plicating variable R _yif":‘k‘h that reflects the stage interactions, so
when the complicating variable is fixed, the objective function be-
comes linear.

5. Illustrative example

The motivating example of air separation unit has a few crit-
ical processing stages, such as main air compressor, pre-purifier,
booster air compressor, and the LO2 pump. In this example, three
redundancies are considered for each processing stages, and the
pre-purifier stage has to have at least 2 units to function. The su-
perstructure is shown in Fig. 7. There are two products, 02 and N2.
The reliability data being used are modified based on actual data.
Stable failure rates range from 0.0001 to 0.001 times per day. The
Stable phase lasts for 3 years. Repair times are 24 h. Capital cost
of each unit range from $30k to $150k. Maintenance times are 6 h.
Repair costs range from $4k to $20k per time. Maintenance costs
range from $2k to $10k per time.

Table 2 shows the penalty rates and pipeline flow rates used in
the model. Table 3 shows the standard tank size options in terms
of number of days of demand it can cover, and the correspond-
ing costs normalized based on the costs of the smallest tanks. In
Section 5.1, we will show how the equipment and contract specifi-
cations shown above are transformed into the parameters used in

Table 2
Profitability parameters.

cl{“" (k$ per outage)

LO2 2400 48
LN2 2000 60

8p (k gallon per day)

Table 3
Tank sizes and costs.

Tank sizes (days) 2 8 14 20 30

Normalized cost of LO2 tank 1 43 7.8 113 17.3
Normalized cost of LN2 tank 1 4.3 7.8 11.3 17.3

the MINLP described in Sections 3 and 4. In Section 5.2, we show
the preliminary computational results for directly solving the prob-
lem.

5.1. Transforming the specifications into the MDP parameters

The transition probability matrix Py (s, a, s'), s, s’ € Sy, a € A(s)
and the reward matrix Ry (s, a, §'), s, s’ € Sip, a € A(s) are the key
parameters in the MDPs. In general, we extract the transition prob-
abilities from the Weibull distributions of individual units, and the
reward parameters from the operational costs and the unavailabil-
ity losses. Below we show an example of how to obtain the MDP
parameters for a single unit in a single stage, where the stage in-
dex k and design index h are dropped.

As stated in Section 2.2, we discretize the bathtub curve into 3
states, Infant, Stable, and Worn-out (Fig. 3(b)). For any unit in any
stage, Stop action leads to Stopped state with probability 1. Also,
Maintain action is the only option in Stopped state, and Repair ac-
tion is the only option in Failed state, which leads to Infant state
with probability 1.

P(Stable, Stop, Stopped) =1 (41)
P(Worn-out, Stop, Stopped) = 1 (42)
P(Stopped, Maintain, Stable) = 1 (43)
P(Failed, Repair, Stable) = 1 (44)

For the working states on the bathtub curve, we assume Weibull
distributions whose cumulative distributive function is denoted by
F(x;h, B) =1 — e’ For Infant state, the shape factor is B;. For
Worn-out state, the shape factor is 3. For Stable state, the shape
factor is B, = 1, where the Weibull distribution reduces to expo-
nential distribution. {T;™, m € M} is the set of possible inspection
intervals, where m is the index for inspection intervals. Tt@ble s
the length of stable period of the subject unit. T™ant is the length
of infant period. T"°™ is the length of worn-out period.

P(Infant, None, Failed) = F(T™"/®; )} 8;) (45)
P(Infant, None, Stable) = 1 — F(T™/®; 3 8;) (46)
ins —A-Tjins Tni1rls
P(Stable, Inspect-T*, Stable) = e™*'m . [ 1 — Ttable ) VYmeM
(47)
ins —A-Tins Tr;‘]ns
P(Stable, Inspect-Ti™, Worn-out) = e+ . Tsmble,Vm eM (48)
P(Stable, Inspect-T'™ Failed) = 1 — e ™" Vm e M (49)
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Main Air Pre-purifier Booster Air
Compressor (PPF) Compressor
(MAC) (BAC)
T A Lo
2 | 2| | 2 |
A 3 3!

Days of demand

Fig. 7. Superstructure of the ASU example

P(Worn-out, None, Failed) = F(Tin/ant 4 rstable | pworn. 3 ~ 3.
(50)

P(Worn-out, None, Worn-out)
-1- F(Tinfant + Tstable + Tworn; A, 53) (51)

The expected residence time in state s when taking action a is de-
noted as t"®(s, a). For example, for Stable state, the next point of
observation is either the next inspection depending on the choice
of inspection interval, or the failure before the inspection. There-
fore, as shown in (52), the expected residence time in a Stable
state is the first moment of the exponential lifetime distribution
within the inspection interval T, plus T;" multiplied with the
cumulative probability of not failing within T,

t"* (Stable, Inspect-T:r)
T e s 1
:fo t-Ae~Mdt + e " . Tins = X(l —e M) (52)

Similarly, for Infant and Worn-out states, the expected residence
times are calculated as shown in (53) and (54) based on the
Weibull lifetime distributions. y (s,x) = f§ ts~'e~tdt is the incom-
plete gamma function.

t"™ (Infant, None)
Tinfant

= / t- ﬂl)\‘ﬁ! I PR e + e~ TP pinfant
0
1 1 infant\ B, — (ATinfant)py infant
t" (Worn-out, None)
Tinfan[+Tstuble+Twom
= / t. BsaPsthi-Te- (0" gy
Tinfant+Tsmble
te (A (Tinfan:+Tsrable+Tworn))53 _pworn (54)

= % Sy <% +1, (}\(Tinfant + Tstable + Tworn))ﬁ3>
—y (/Si +1, ()\(Tinfant + Tsmble))ﬂ3>:| (55)
3

e (A (Tinfa11[+Tslable+Twom ) )»‘33 . pworn

The basic instant reward of transitioning from state s to state s’ by
taking action a is denoted as Ri(s, g, s’), which is the correspond-
ing operational cost of taking Inspection, Maintenance or Repair
actions.

Liquid Oxygen LO2 -
Pump 8
(LOP) 14
Fommm-- . 20
L 1 L 30
N 2 g
———— : 8
L 3 B 14
20
30
R (s, Inspect-T/™,s') = c™, Vs' ¢S/ meM (56)
R (s, Maintain, s') = ™", Vs’ ¢ Sf (57)
R (s, Repair, s') = cP9", Vs ¢ S/ (58)

The penalty instant reward is 0 if s is not a failure state.
RPN (s a,5') =0, VpePneNps ¢S (59)

If the destination state is Failed or Stopped, then the penalty
instant reward is the outage penalty associated with the re-
pair/maintenance rate of the failure scenario, u'(s)/u™(s), the stor-
age size of each product V};, and the consumption rate of each
product &, as shown in Eqs. (60) and (61).

. . _ _Vpn

R‘ﬁ’,’;"”’ (s,a,s') = cﬁ“” e w' . ¥YpePneNpys €S (60)
. . __VYpn

R‘Ij{%pe”(s, Stop, s') = cga” e W™ VYpePneNys eS (61)

5.2. Preliminary computational results

The MINLP model (DMP) for the system in Fig. 7 has 39,555
equations and 47,559 variables with 1762 binary variables. A first
attempt is made to solve the MINLP model (DMP) with the objec-
tive function (40) and constraints (7), (8), (12), (13), (19), (21)-(23),
and (31)-(37) using the global solver SCIP 6.0 on GAMS 26.1.0 (In-
tel® Xeon® CPU X5650 @ 2.67 GHz). It only reached a solution
with a gap of 21.08% after 100,000 CPUs (27.8 Hr), which is bet-
ter than the performance of the global solvers BARON 17.4.1 and
Antigone 1.1.

In order to overcome the computational difficulty, we propose
below an algorithm that takes advantage of the problem structure.

6. A two-phase algorithm

Considering that the decision regarding storage tank sizes has
a rather small search space and an impact on the entire system,
i.e., the storage tanks are "shared” by the processing stages, we
propose an algorithm with two major execution phases. The first
phase is called Enumeration and Bounding, where we exhaustively
screen all the possible tank size decision nodes by solving two
MILPs (denoted as (DMP-relax) and (DMP-diseng)) at each node
for the respective objective function bounds, and prune all the
nodes with lower bounds greater than the upper bound of any
other node. The second phase is called Rewards Iteration, which is
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1. Enumerate over all possible tank size selections (e.g. 8 days of LO2
and 14 days of LN2). Each is defined as a node.

2. Calculate the lower bounds and upper bounds of the objectives at
each node by solving two MILPs (DMP-relax) and (DMP-diseng).

3. As the calculation proceeds, prune nodes whose lower bounds are

Enumeration
and
Bounding
greater than the upper bound of any other node.
For each remaining node:
i=0
While (RP*")(® not, converged:
Rewards
iteration and obtain solution £,

3.i=1i+1
MILP solution

1. Solve the MILP (DMP-diseng) where RP" is fixed to (RPe™)()

2. Update (RPe™)(+1) hased on &)

The optimal solution of the node is the final iteration

The optimal solution obtained at each node that gives the lowest objec-

tive function value is the overall optimal solution.

Fig. 8. Algorithm overview.

carried out for each of the remaining nodes: A sequence of MILPs
(DMP-diseng) with iterative reward parameters are solved until the
decisions converge. Fig. 8 provides a more detailed description of
the algorithm.

In Section 6.1, we introduce the bounding problems and prove
that the bounds are valid. In Section 6.2, we explain the iterative
procedure for solving each node.

6.1. Enumeration and bounding

In this section, we show that valid upper and lower bounds of
the objective function with certain storage tank sizes can be ob-
tained by solving two MILP models where RP" is fixed to its upper
and lower bounds, respectively, and we describe how to determine
these variable bounds.

First, let us represent the MINLP (DMP) with the compact form
(62). For simplicity, we let & stand for the binary and contin-
uous variables other than storage tank selection variables x and
the penalty reward RP¢" subject to the multilinear constraint (31).
Therefore, £ = (y, z, w, 1w, wsUb ¢t _ratio?, v), and we let (x*, (RPe")*,
£*) be the true optimizer of the problem.

min

o AFORMTE) [ g(x RPN E) < 0) (62)
XeX,0<Rpen <Ridv_pengcg

For certain node of storage tank size %, we let the (RPe", é ) be the
minimizer of the constrained problem as shown in (63)

{f(x.RP". &) | g(%, RP". &) < 0}
(63)

At each node of certain storage tank size X, if we go further by
removing the multilinear constraint (31) that engage RP¢" of each
stage with the stationary probability distribution of other stages,
and fixing RP®" to certain valid values RPe", the MINLP model

(RPen £) = arg min

oﬁRpeanidV,pen,g:e =

(DMP) will reduce to an MILP, which we call (DMP-diseng). The
compact form of (DMP-diseng) is written in (64).

I?iD{C(??, R’pen) %— |Adiseng %— < bdiseng()'z’ R’pen)} (64)
By definition, we have (65) and (66).
fx*, (RPMY* £%) = lglizl{C(X*, (RPEMY*) . € |Adiseng £
(5=

< bsens (x*, (RPe")")) (65)

f(&, Rpen. é) = lgup{c(;?’ R‘pen) £ |Adiseng E < bdiseng()?’ ﬁpen)}
(S
(66)

Based on the MILP model (DMP-diseng), a small relaxation can
be derived to form another MILP model (DMP-relax). If we have
the element-wise lower and upper bounds of RPe": (RPe")U and
(RPen)L the lower bound and upper bound of the objective function
f(&, Rpen, .§ ) at each node of storage tank size X can be obtained by
solving (DMP-relax) and (DMP-diseng) as shown in (67) and (68).
It is to be noticed that in (DMP-diseng) (68), the RPe" in the ob-
jective function and the constraints are fixed to different values.
In Appendix B, we will show the exact forms of (DMP-diseng) and
(DMP-relax), and prove that inequalities (67) and (68) hold with
respect to the problem nature.

min{c(®, (Rpen)L) s |Arelax s < brelax()zv (Rpen)L)} < f& ﬁpen, é‘)
see (67)

min{c()?, (Rpen)U) E |Adiseng é < bdz’sen,g(x'~Y (Rpen)L)} > f()?, R‘pen’ é)
£EcE (68)
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t_ratiof

t_ratios

(a) Iteration path fallen into a loop

t_ratiof

bd *
. (t_ratiaf, t_ratiof ) N
.

t_ratios

(b) Iteration path converges to a station-

ary point

Fig. 9. Iteration path illustration.

The element-wise upper bounds of RPe": (RPem)U are set as
the original penalty parameters Ri4V-Pen. The element-wise lower
bounds of RPe": (RPEM)L, are set as (Rfr?,k,h (s, a,s"))L which are first
derived in Section 4.1.

The algorithm of the Enumeration and Bounding phase is de-
scribed in Algorithm 1.

Algorithm 1:
for i < [[,cpNp do
Solve the lower bounding MILP (MDP-relax) at node i
where x = &;
LB; = min{c(Ri, (RP™1) - § | A0 & < bl (8, (R")1)
en
if 3j <is. t. UB; < LB; then
| Prune node i

else
Solve the upper bounding MILP (MDP-diseng) at node i
where x = %;

UB; = min{c(R;, (RPeMY) - & | Adisens . £ <
bdiseng(i‘g?u(Rpen)L)}
if 3j <is. t. UB; < LB; then
| Prune node j
end
end

6.2. Rewards iteration

For each node with certain storage tank size selection X that
was not pruned in the bounding step, a rewards iteration algorithm
that guarantees convergence is performed. We first illustrate the
algorithm on a case with two stages (k = 1, 2) as shown in Fig. 9(a)
and (b).

Each dot in Fig. 9(a) stands for a pair of availability values
(t_ratio‘;‘, t_ratiog) that is the result of a distinct combination of re-
dundancy selection and maintenance policy (z;, z, wq, Wy) of the
two stages. The number of these combinations is geometric with
regard to the number of processing stages and design alternatives,
but is finite.

Starting from an initial point (t_ratiof, t_ratio})®, we first sub-
stitute it into (31) and calculate (RP*", RI*")(® then solve the MILP
(DMP-diseng) defined in (64) with RPe" fixed to (RF*", RE*")© to

obtain the optimal design and maintenance policy in this case, (z1,
Z5, Wy, wy)1), which corresponds to a next blue point that the ar-
row leads to as shown in Fig. 9(a). The exact form of the MILP
(DMP-diseng) is shown in Appendix B. As the iterations of the al-
gorithm proceed, it is possible to get trapped into loops, which
is also shown in Fig. 9(a). In that case the optimization step will
be repeated at the point before the loop with the solutions corre-
sponds to points in the loop excluded by integer cuts. As shown
in Fig. 9(b), the algorithm stops when it converges to a stationary
point (t_ratio"l*,t_ratio'g), where the optimization step leads back
to itself. It is worth mentioning that the loop points are to be
excluded from the feasible region of the MILP (DMP-diseng) only
once when re-optimizing at the previous point to explore a differ-
ent path, but not for future iterations, as the stationary property
of a point is only proven when the optimization step leads back to
itself among all the points without exception.

The algorithm is guaranteed to converge, because as discussed
above, the number of the dots is finite, and the global optimum,
which is a stationary point, is among them. As there can be several
stationary points, the algorithm does not guarantee global optimal-
ity. However, as shown in Section 6.1, the lower bounds obtained
in phase 1 of the algorithm are rigorous. We will also show later
that for the examples we consider, the algorithm converges quickly
to optimal or near optimal solutions. Algorithm 2 gives a detailed
description of the algorithm. The convergence criterion depends on
w, the binary action selection variables, instead of RP¢", because
the same action selection will lead to the exact same probability
distribution 7 and RP¢", and w as binary variables suffer less from
computing precision issues.

The Rewards Iteration of the candidate nodes should be car-
ried out in parallel, as the stationary point of a node is a valid
upper bound for the node. Therefore, when a stationary point is
found, any other node whose lower bound is greater that the ob-
jective value of this point should stop Rewards Iteration and be
pruned.

7. Additional examples
7.1. Hllustrative example revisited
In this section, we solve the example problem shown in

Section 5 again with the proposed algorithm to minimize the total
cost in (40). The MILPs are solved with CPLEX 12.8.1.1 in Pyomo
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Days of demand

Main Air Pre-purifier Booster Air Liquid Oxygen L02
Compressor (PPF) Compressor Pump
(MAC) (BAC) (LOP) -
LN2

Fig. 10. Optimal design of the ASU example.

Algorithm 2: Reward parameters iteration.

Initialize: i := 1, (RPe")(©) ;= (RPen)L
gD = arggnig {c® (RP)©@) . £ | AE < b(&. (RP)(©)}
e

(RPen)(1) ;— Ridv_pen . l—[leK#k (t_ratio"‘,;)“)

while w® = w1 do

ifdj<i—1s t wld) =wd then

gD = argmin {c(®, (RPem)U-1)) . & | AE <
eo

b(R, (RPM)U-D) & £ EM j<n <i}

(Rpen)(i) = Ridv_pen . Hlel(l;/:k (t,ratio’,z)(f)

else

g0+ 1= arglgliy {c@ (RPeM)D) . £ | AE <
e

b(x, (RPem) @)}

(Rpen)(i+1) = Ridv,pen . Hlel(,l;ék (t_ratio‘,‘})“*”
i=i+1

end

end

5.6.9, and the algorithm is implemented with Python 3.6 on In-
tel(R) Core(TM) i5 @ 1.60 GHz. Table 4 shows the results of the
Enumeration and Bounding phase, where the storage size selection
nodes are examined by rows left to right and top to bottom. 412.58
CPU seconds are spent in this phase. The nodes that are only show-
ing LBs are pruned because their respective LBs are greater than
the UB(s) of at least one node examined before them. The nodes
where both LBs and UBs are calculated are pruned by the node(s)
examined after them. For example, the node with 2 days of LO2
and 2 days of LN2 is pruned after the node with 8 days of LO2
and 2 days of LN2 is examined, which is later also pruned by the
node with 8 days of LO2 and 8 days of LN2. It is guaranteed that
the global optimal solution of the problem lies in the only high-
lighted node.

The Rewards Iteration phase at the node with 8 days of LO2
and 8 days of LN2 finds the stationary point after 1 iteration (28.44
CPUs), the objective value of which is 896.89.

Table 4
The results of bounds computation.

To validate the results of the Rewards Iteration, the MINLP
(DMP) restricted to the two nodes are also solved with the global
solver BARON 17.4.1 on GAMS 24.8.5 platform to the global opti-
mum of 896.21. It is confirmed that the decision variable values
of the stationary solutions are the same as the ones obtained by
BARON. The small difference in the objective values are likely due
to computing precision issues. Therefore, it is guaranteed that the
solution at the node with 8 days of LO2 and 8 days of LN2 is the
global optimal solution.

Fig. 10 shows the optimal design, which selects the 2 cheapest
units for the first three stages, and the cheapest one unit for LOP.
The total capital cost is $766k, and the expected operational cost is
$130.89k by the Rewards Iteration, and $130.21k by directly solving
the node with BARON.

Table 5 shows the maintenance policy for the booster air com-
pressor (BAC) as an example, which is the same as that of the
main air compressor (MAC). The table has four main columns. In
the first column are the states with no unit being maintained
or repaired. In the second and the third columns are the states
with one unit being maintained or repaired. In the last column
are the states where no unit is available. With the other redun-
dancy on standby, the best action for the Stable state is to be
inspected once a year. With the other unit Failed or Stopped,
the best action for the Stable state is to be inspected every half
month.

7.2. Demonstration of the algorithm’s efficiency

In order to test the efficiency of the algorithm, we randomly
generate 20 problems around the example shown above. In par-
ticular, the reliability parameters and randomly perturbed within
the range of 4 10%. Another group of 20 problems of 6 stages are
randomly generated in the similar fashion and solved. The two ad-
ditional stages are generated with data of similar orders of magni-
tudes. The computational statistics are shown in Fig. 11(a) and (b).
It can be seen that the bounding step can prune most of the nodes
for the problems of 4 stages (Fig. 11(a)), and the rewards iterations
tend to converge fast at the remaining nodes. However, for the 6
stage problems (Fig. 11(b)), generally more than half of the nodes

2 days of LN2

8 days of LN2

14 days of LN2

20 days of LN2

30 days of LN2

LB UB LB UB LB UB LB UB 1B UB
2 days of LO2 959.45 962.23  977.78 1045.93 1130.72 1279.27
8 days of LO2 958.66 961.02  896.20 896.90  963.61 1048.37 1196.91
14 days of LO2  1030.75 968.27 1035.17 1119.90 1268.45
20 days of LO2  1123.26 1060.76 1127.65 117410 1303.80
30 days of LO2 1287.11 1224.62 1289.57 1313.49 1433.93
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Table 5
Optimal action for the two units in the BAC stage.

State Action State Action State Action State Action
unit 2 Infant None Stable Inspect-14  Stopped Maintain Failed Repair
unit 3 Standby None Failed Repair Stable Inspect-14  Failed Repair
unit 2 Stable Inspect-365  Infant None Failed Repair Failed Repair
unit 3 Standby None Stopped Maintain Infant None Stopped  Maintain
unit 2 Worn-out  Stop Infant None Worn-out  None Stopped Maintain
unit 3 Standby None Failed Repair Stopped Maintain Failed Repair
unit 2 Standby None Worn-out  None Failed Repair
unit 3 Stable Inspect-365 Failed Repair Worn-out  None
unit 2 Standby None Stopped Maintain Stopped Maintain
unit 3 Infant None Infant None Worn-out  None
unit 2 Standby None Failed Repair Stable Inspect-14
unit 3 Worn-out  Stop Stable Inspect-14  Stopped Maintain

—#-6 stages —®—4 stages
—#-6 stages —®-4 stages
2000
4
1500
2
1000
2
':L' g ™
' 0 P

(a) Number of nodes to solve for each randomly

generated problem

(b) Total CPUs for each randomly generated

problem

Fig. 11. Computational results of randomly generated cases of two different sizes.

have to go through the Reward Iteration phase, and the CPU times
tend to fluctuate more.

8. Conclusion

This paper considers redundancy selection, storage tank size se-
lection as well as basic maintenance policies for a chemical process
at the conceptual design phase. Markov Decision Process is used as
the fundamental framework to model the stochastic dynamic deci-
sion making process of condition-based maintenance. We embed
the optimal condition of Markov Decision Processes and the sta-
tionary probability distribution conditions of the reduced Markov
Chain into an MINLP (DMP) that considers the economic trade-off
among all major decisions. In order to make the model more solv-
able, we propose a standard linearization for the bilinear terms of
binary variables and continuous variables, and a reformulation of
the objective function that potentially provides a stronger relax-
ation of the objective.

An example based on the reliable design of an air separation
unit is used to demonstrate how to extract the model parameters
from the raw data. We attempted to solve the MINLP (DMP) di-
rectly with several global solvers and found that they would not
be solved in reasonable amount of time. Therefore, we propose an
algorithm that consists of two phases, Enumeration and Bounding,
and Rewards Iteration. The validity of the bounding is based on the
reformulation of the MDP objective function introduced earlier in
the paper. Resolving the example shows that the two-phase algo-
rithm greatly reduces the required computational effort. The algo-

rithm also has consistent performance over 20 randomly generated
problems around the original example of 4 processing stages. An-
other group of 20 random problems of 6 processing stages are also
solved and show good computational results.
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Appendix A. Objective function reformulation

Proposition 1. The following equation holds

30 men($)Vin(s)

keK heHy S€Sk n
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1

1-y

Y ) mRee

keK.heH), s€Sy .aeAs

e (e DR EL6) ()
S'€Skn DpeP neNp

when constraints (12), (13), (19), (21)-(23), and (31)-(37) are satis-
fied.

Proof. First we focus on the optimal condition of a certain Markov
Decision Process based on the notation of Section 3.1, where U§ is

the optimal value of state s, and a*(s) is the optimal action of state
s..

Uy = ZP(S, a*(s),s') - (R(s,a*(s),s') +y -Up),

s'eS

seS (A.2)
Eq. (A.2) has the matrix form shown in (A.3), where P*(s,s’) =
P(s,a*(s),s’), and similarly for R*(s, s’).

(1-y)U* =y (P* — )U* + diag(P*(R*)") (A3)
Next we rewrite Eq. (20) in the matrix form (A.4), which specifies
the conditions that the stationary distribution & has to satisfy.

aT(P*—1)=0 (A4)

By left multiplying (A.3) with T and substituting (A.4) into it, we
obtain (A.5)

aTU* = Laniag(P* (RHT)

1-y

Eq. (A1) trivially holds for the stage designs that are not selected,
where both sides of the equation are equal to 0. For the designs
h that are selected for the respective stage k, when constraints
(12), (13), (19), (21)-(23), and (27)-(37) are satisfied, (A.3) and
(A.4) hold. Therefore, Eq. (A.5) holds, where the right-hand side
with the subscripts h, k has the expression shown in (A.6), where
n*(p) are the indices of the selected storage sizes of product p.

! DD () Y Pen(s.at(s).s')

1-—
Y keK.heH, seSk s’eSkn

x ZRp,anxk,h(S, a*(s),s’)
peP

(A5)

(A.6)

Since Eqgs. (21) and (23) require that n,ﬁ”,f’(s, a*(s)) = mp(s), and
that n;“,f’(s, a) =0 if a # a*(s). (A.6) is equal to (A.7) when (21) and
(23) hold.

1
=y 2 2 TnG0 ) RaG.as)

keK.heHy, seSy .aeAs s'eSkn
x Z Ry ne(p)ien (S, @ s') (A.7)
peP
As defined in Section 4.1, R_y**", (s, a,s’) is zero for non-selected

p.n.k.h
storage sizes. Therefore, (A.7) can be further written as (A.8),

which is the right hand side of (A.1).

1 .
Ty Yoo mG @) Y P(s,a )R (s a,5)

keK.heH,, seSy y.aeAs S'€Skn

+>. Ry iin(s.a.s9)

peP neN,

(A.8)

Thus, the proposition is proved. O
Appendix B. Objective bounding regarding key parameters
As shown in Section 6, the lower and upper bounds of the op-

timum of the MINLP (MDP) at each node of storage tank selection
X, f(R, RPen &), are obtained by solving two MILPs:

Lower bounding MILP (DMP-relax):
Igliél{C(i, (RPFPME) - £ | A1 £ < D™ (R, (R} (B.1)
Upper bounding MILP (DMP-diseng):
Igliél{C(ﬁ (RFPMY) - & | AT5en . £ < bT5ens (R, (RPM)1)) (B.2)

In the following, we will display their exact formulation, where
RPen can be replaced with (RPe")- or (RPe")U depending on the
needs, and prove in Proposition 2 and 3 that the MILPs provide
valid bounds. (B.3) shows the exact form of c(%, RPe") - £.

CR RPN -E= Y zC,
keK,heHy
1

tae Y ) MG

1-—
4 keK,heHy seSy .achAs

x Y Pen(s. @SR, a,8)+) Y Xpn - RYT 1 (5.0.5)

s'€Skn peP neN,

(B3)

Arelax £ < b(R, RPe") consists of (7), (21)-(23), (B.5) and (B.6).
Adiseng £ < p(% RPe") consists of (7), (21)-(23), (B.4) and (B.6).

Ven(s) < Y (Pen(s.a.s')

S'€Skn
R (s, a.8)+ YD ZenRpanRl  (5.0.5)
peP neN,
+y Y Pn(s.a.s') - vp(s). VkeK heHseS aeA(s)
s'€Skn
(B.4)
MWy (s, @) = 1) + Ve (s) < D (Pen(s,a,s')
s'eSkn
SR a. )+ D zenRpaRET (5.0.5))
peP neN,
+y Z kah(S, a, S,) . kah(s/), VkeK,heH,se Sk,h’ acA(s)
s'€Skn
(B.5)
M(l - Wk.h(sv a)) + vk,h (S) Ed Z (Pk,h(ss a, S/)
s'€Skn
R a8+ ZenRpaRlT (5.a.5)
peP neN,
+y Y Pn(s.a.8') - vp(s'), VkeK heHseS aeA(s)
s'eSkn
(B.6)

Proposition 2. If (RP*")L < RPen then (B.1) is a valid lower bound of

F(& Rven ),

Proof. As shown in Section 6, assuming that RPen is known, the
result of (B.7) is f(X, RPe", &).

Igli_l:l{C(??, Rpen) . %— | Adiseng %— < bdiseng()?’ R‘pen)}. (B.7)

As a constraint in (B.1), (B.5) relaxes the requirement that the state
value should be less than or equal to the right-hand-side corre-
sponding to every possible action, and only requires that it be no
greater than the selected action. That makes all the possible action
decisions (possible solution of variable w) feasible to (B.1), which
automatically includes the action decision W corresponding to the
optimal solution of (B.7), 5

Arguably, substituting w into (B.1) will lead to different state
values than ¥, but 754> will stay the same, as certain action deci-
sion W leads to unique reduced Markov Processes for each stage,
and unique stationary probability distributions # and 752, Since
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only 7540 goes into the objective function, we can still insert 7540
as part of § into the objective function of (B.1) as a feasible solu-
tion, which by the definition of optimality is no less than the opti-
mum of (B.1), and let (B.8) hold with a little abuse of the notation.

C()?, (Rpen)L) . g > min{c()?, (Rpen)L) %- |Arelax %- < brelaX()a (Rpen)L)}
s (B.8)

On the other hand, since (RPe")L < RPen (B.9) holds given the exact
formulation of the objective function shown in (B.3).

c(® (RPML) € < c(R,RPM) - £ = f(R R™", €)

Therefore, we have (B.10) and the proposition is proved.

(B.9)

£ B, €) = min{c(®, (RFM)E) - § | A7 & < briod (g, (RPen )
ses (B.10)
O

Proposition 3. If A(RP”‘)L < Rpen < (RPeM)U | then (B.2) is a valid up-
per bound of f(X, RPe" &).

Proof. As shown in Section 6, assuming that RPe" is known, the
result of (B.7) is f(&, ﬁven,g‘). Also, we denote &L as the optimal
solution of (B.2).

Constraints (B.4) and (B.6) are the only constraints in (B.2) that
contains RP". Since (RPe")L < Rpen gL which satisfies (B.4) in
Adiseng £ < pdiseng(g (RPen)Ly a]so satisfies (B.4) in Adiseng. g <
bdiseng (g RPen). As for (B.6), since exactly one action is selected for
each state, v is always the unique solution of a square linear sys-
tem and self-bounded by the parameters. Therefore, the big M can
be made large enough such that (B.6) is always satisfied.

Therefore, &L is a feasible solution of (B.7), and gives an objec-
tive value no less than the optimum as shown in (B.11)

c(®, RPemy . £L > (%, RPM) . € = f(R RV, €) (B.11)

On the other hand, since RPe" < (RPe")U (B.12) holds given the ex-
act formulation of the objective function shown in (B.3).

(R RPem) - £ < c(R, (RPM)Y)
. %-L = mig{C()?, (Rpen)U) A %- |Adiseng . S < bdiseng(i, (Rpen)L)}
fes (B.12)

Therefore, we have (B.13) and the proposition is proved.

F@ R E) < minfc(® (RFM)Y) - § | ABSTE & < b (g, (RPen))
fes (B13)

O
Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.compchemeng.2020.
107052.
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