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a b s t r a c t 

Plant availability and operating uncertainties are critical considerations for the design and operation of 

chemical processes as they directly impact service level and economic performance. This paper pro- 

poses a two-stage stochastic programming GDP (Generalized Disjunctive Programming) model with re- 

liability constraints to deal with both the exogenous and endogenous uncertainties in process synthesis, 

where the reliability model is incorporated into the flowsheet superstructure optimization. The proposed 

stochastic programming model anticipates the market uncertainties through scenarios for selecting the 

optimal flowsheet topology, equipment sizes and operating conditions, while considering the impact of 

selecting parallel units for improving plant availability. An improved logic-based outer approximation al- 

gorithm is applied to solve the resulting hybrid GDP model, which effectively avoids numerical difficulties 

with zero flows and provides high quality design solutions. The applicability of the proposed modeling 

framework and the efficiency of solution strategy are illustrated with two well-known conceptual de- 

sign case studies: methanol synthesis process and toluene hydrodealkylation process. The model, which 

integrates reliability (endogenous uncertainty) and exogenous uncertainty, shows the best economic per- 

formance with the increasing operational flexibility and plant availability. 

© 2021 Elsevier Ltd. All rights reserved. 
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Integrating stochastic programming and reliability in the optimal 
synthesis of chemical processes
. Introduction 

Process synthesis is the assembly and interconnection of units 

nto a process network, involving different physical and chemi- 

al phenomena to transform raw material and energy inputs into 

esired products with the goal of optimizing a given objective 

unction ( Chen and Grossmann, 2017 ). The superstructure-based 

rocess synthesis includes discrete variables to determine the 

owsheet topology and continuous variables to determine system 

tates. Mixed-Integer Nonlinear Programming (MINLP) and Gen- 

ralized Disjunctive Programming (GDP) are two powerful mod- 

ling tools to translate the superstructure into a mathematical 

odel that captures the logical structure of a design problem 

 Mencarelli et al., 2020 ). Both of them are well-suited to describe 

he problems, which involves selection among discrete process 

lternatives with nonlinear process phenomena ( Grossmann and 

respalacios, 2013 ). However, the GDP formulation offers two ma- 

or advantages over the traditional MINLP modeling approach in 
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rocess synthesis problems. First, it is an intuitive modeling frame- 

ork to explicitly express the logical-OR (disjunctive) relationship 

etween different process alternatives, while capturing the connec- 

ion between these logical clauses and the algebraic relations that 

escribe each alternative ( Chen and Grossmann, 2019 ). Therefore, 

t has a more systematic structure to formulate the grouping of 

elated constraints in disjunctions ( Raman and Grossmann, 1991 ). 

econd, GDP modeling preserves logical structure for tailored logic- 

ased decomposition algorithms, such as logic-based outer ap- 

roximation (LOA) and logic-based branch and bound algorithm 

LBB), which can effectively avoid zero-flow numerical difficulties 

resent in MINLP formulations and provide high quality design 

olutions ( Lee and Grossmann, 2003 ; Ruiz and Grossmann, 2017 ; 

ürkay and Grossmann, 1996 ). With GDP, decomposition can be 

pplied directly on the logical layer. These advanced solution al- 

orithms are particularly advantageous for process synthesis prob- 

ems, due to their ability to solve nonlinear subproblems in re- 

uced space, avoid zero-flow singularities through inactive pro- 

ess units, thereby improving convergence speed and robustness. 

he extension of LOA for rigorous global optimization is also avail- 

ble in Pyomo.GDP via the GDPopt solver ( Bergamini et al., 2005; 

hen et al., 2021a; Trespalacios and Grossmann, 2016; Chen et al., 

021b ) . 

https://doi.org/10.1016/j.compchemeng.2021.107616
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2021.107616&domain=pdf
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Nomenclature 

Indices 

i Stage 

r Parallel unit 

s Scenario 

Sets 

I Set of processing stages (e.g. absorption) 

I iden Set of stages with identical parallel units 

I non Set of stages with non-identical parallel units 

I R̄ Set of stages without reliability consideration 

I D Set of stages in the disjunctions 

S Set of scenarios in the stochastic programming 

Variables 

Y i Boolean variables which determine the selection 

among the process alternatives 

z i,r Binary variables that indicate whether to choose 

parallel unit r in stage i 

d i Continuous variables related to the equipment sizes 

(which indicate the design capacity of parallel units 

in stage i ) 

x s Operational variables in scenario s (e.g. flowrates, 

temperatures and pressures) 

c i Total cost for stage i 

A i Availability of stage i 

A sys Availability of the whole system 

Parameters 

n i Number of potential parallel units in stage i 

p i Availability of single unit in stage i with identical 

parallel units 

˜ p i,r Availability of single unit r in stage i with non- 

identical parallel units 

c fix 
i 

Fixed cost for single unit in stage i with identical 

parallel units 

c var 
i 

Variable cost for single unit in stage i with identical 

parallel units 

c 
repa 
i 

Repair cost for single unit in stage i with identical 

parallel units 

˜ c fix 
i,r 

Fixed cost for single unit r in stage i with non- 

identical parallel units 

˜ c var 
i,r 

Variable cost for single unit r in stage i with non- 

identical parallel units 

˜ c 
repa 
i,r 

Repair cost for single unit r in stage i with non- 

identical parallel units 

w s Probability of occurrence of each scenario s in the 

stochastic programming 
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Synthesis of process flowsheets are subjected to various uncer- 

ainties, which directly impact its service level and economic per- 

ormance. There are two kinds of uncertainties in process synthe- 

is: exogenous, where the uncertain parameter values are revealed 

ndependently of optimization decisions, and endogenous, where 

he parameter realizations are influenced by the decisions taken 

 Apap and Grossmann, 2017 ). Exogenous uncertainties correspond 

ypically to market uncertainties, such as product demands, prod- 

ct prices and utility prices. For endogenous uncertainties, deci- 

ions can influence the parameter realizations by causing alteration 

f the probability distribution for uncertain parameters (Type-1 en- 

ogenous uncertainties), or affecting the time at which we observe 

hese realizations (Type-2 endogenous uncertainties) ( Goel and 

rossmann, 2006 ; Pulsipher and Zavala, 2020 ; Tarhan et al., 2009 ; 
2 
hao and You, 2019 ). Fig. 1 illustrates different types of uncertain- 

ies existing in process synthesis. 

An example of endogenous uncertainty is reliability, which is 

efined as the probability that a system remains functional under 

omponent failures ( Garcia-Herreros et al., 2014 ). The selection of 

edundant equipment, maintenance policy and storage sizing af- 

ect the plant availability by altering the probability distributions 

 Terrazas-Moreno et al., 2010 ; Ye et al., 2018 , 2019 ). Reliability-

ased design optimization (RBDO) arose at the early stages for 

apturing the endogenous uncertainties from equipment failures, 

etermining the topology and parameters of a system. Kuo and 

an (2007) provided a broad overview of research on reliability 

ptimization problems and solution methodologies, addressing the 

mportance of discrete decisions regarding parallel redundancies 

n RBDO. Aguilar et al. (2008) optimized the design and opera- 

ion of flexible utility plants with reliability and availability con- 

iderations. Ye et al. (2018) proposed a rigorous non-convex MINLP 

odel for selecting the redundant units in serial systems to op- 

imize the availability and cost. Terrazas-Moreno et al. (2010) for- 

ulated a mixed-integer linear programming (MILP) model in the 

esign of an integrated site subject to random failures. Design de- 

isions which affect the availability involve increases in process ca- 

acity, introduction of parallel units, and addition of intermediate 

torage. 

In most of the previous work, exogenous uncertainty and en- 

ogenous uncertainty (reliability) have been studied separately. 

traub and Grossmann (1990) were the first contributors to pro- 

ide a framework for integrating flexibility (exogenous uncertain- 

ies) and reliability (endogenous uncertainties) in a uniform frame- 

ork. However, their work only considered a quantitative mea- 

ure - the expected stochastic flexibility E( SF ) that relies on dis- 

rete uncertain states to evaluate the proposed design alternatives. 

homaidis and Pistikopoulos (1994) also integrated flexibility and 

eliability in process design, but they did not consider the selec- 

ion of standby units to improve the system availability. Therefore, 

here is a need to account for both types of uncertainties in pro- 

ess synthesis together so as to determine the feasible operation 

f the flowsheet to be synthesized, as well as its plant availabil- 

ty. In this way, the optimal design that considers the market un- 

ertainties and inherent failures of equipment has the potential of 

mproving the economic performance, operational flexibility and 

vailability of process flowsheets to be synthesized. 

The major goal of this paper is to propose a novel model- 

ng framework that integrates both exogenous uncertainty through 

tochastic programming, and endogenous uncertainty through 

BDO, for the synthesis of process flowsheets, where the reliabil- 

ty model is incorporated into the superstructure optimization. An 

mproved Logic-based Outer Approximation (LOA) algorithm is ap- 

lied to the resulting hybrid Generalized Disjunctive Programming 

GDP) model with nested disjunctions, obtaining high-quality de- 

ign solutions by avoiding zero-flow singularities. 

The reminder of this article is organized as follows. The prob- 

em statement is given in Section 2 . We then present the general 

odel formulation in Section 3 , followed by the solution strategy 

mployed to tackle the resulting hybrid GDP problem in Section 4 . 

n Section 5 , two conceptual design cases - methanol synthe- 

is process and toluene hydrodealkylation process, are studied to 

emonstrate the advantages of the proposed modeling framework 

nd the efficiency of the solution algorithm. Finally, concluding re- 

arks and future directions are given in Section 6 . 

. Problem statement 

The general process synthesis problem that we address in this 

aper can be stated as follows (See Fig. 2 for an illustrative ex- 

mple). It is desired to transform raw material and energy inputs 
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Fig. 1. Classification of different types of uncertainties in process synthesis. 

Fig. 2. Illustrative example for process synthesis with both exogenous and endogenous uncertainties taken into consideration. 
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nto desired outputs through a process network involving differ- 

nt physical, chemical and biological phenomena. Given is a super- 

tructure of all potential process alternatives, and given is a pre- 

pecified set of potential parallel units for critical processing stages 

o increase the system availability. There are two types of uncer- 

ainties, which affect the service level and economic performance 

f the chemical process. For exogenous uncertainties, we are given 

 set of scenarios for uncertain demands of finished products, and 

ncertain prices for utility, raw material and product predicted 

rom the changing market conditions. Each of the exogenous un- 

ertainties is described with a discrete probability distribution cap- 

ured from the historical data. For endogenous uncertainties, since 

ritical units in the process network are subject to random fail- 

res, back-up or parallel units are given with fixed probabilities of 

eing available. The failure rates of back-up units are assumed to 

e mutually independent. The goal is to maximize the total annu- 

lized profit of the process network by determining the optimal 

owsheet structure, equipment sizes, installation of parallel units 

nd operating conditions. 

. General model formulation 

The general formulation for the two-stage stochastic program- 

ing GDP model with reliability constraints is given in Problem 

P1). The reliability-based design optimization (RBDO) model is in- 

orporated into the two-stage stochastic programming to deal with 

oth the exogenous uncertainties and endogenous uncertainties in 
3 
rocess synthesis. The GDP model involves Boolean variables to 

elect the optimal flowsheet topology, binary variables to decide 

hich potential parallel units to install, and continuous variables to 

etermine the optimal equipment sizes and operating conditions. 

ur goal is to determine both design- and operational-level deci- 

ions in order to maximize the total annualized profit of the sys- 

em with both the exogenous uncertainties and plant availability 

aken into consideration. 

In the proposed model (P1) below, two-stage stochastic pro- 

ramming is used to account for the exogenous uncertainties. The 

rst-stage (design) decisions are made “here-and-now” before real- 

zation of any uncertainty, and the second-stage (operational) de- 

isions are made in a “wait-and-see” manner after all the uncer- 

ainties are revealed and can be adjusted to the different scenarios 

s a recourse. In the process synthesis model (P1), the first-stage 

ariables consist of three types of design variables, the Boolean 

ariables Y i that determine the selection among the different pro- 

ess alternatives, the binary variables z i,r to represent whether to 

hoose the redundant unit r for the certain processing stage i and 

he continuous variables d i related to the equipment sizes, such 

s reactor volume, number of trays in the column, surface area 

n the membrane separator and design capacity of heat exchanger 

r compressor. The second-stage decisions are related to the op- 

rational variables, such as flowrates, temperatures, and pressures. 

hey are denoted by x s , which are associated with each scenario s . 

he proposed stochastic programming model anticipates the mar- 

et uncertainties through scenarios and gives multi-scenario oper- 



Y. Chen, Y. Ye, Z. Yuan et al. Computers and Chemical Engineering 157 (2021) 107616 

a

Y

s

g

[

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y

�

A

d

x

t

t

s

(

g

g

i

t

p

t

(

(

t

a

n

c

u

m

s

c

c

c

f

a

t

t

m

b

i

a

e

u

t

t

a

a

i

m

fi

c

a

u

b

s

p

a

F

s

e

t

s

s

∑

C

w

h

z

C

i

n

a

u

f

F

a

U  

1

p

t

a

h

d

A

w

A

H

t

b

tion strategy to increase the operational flexibility. 

min 
 i , d i , z i,r , x s 

TAC = 

∑ 

i 

c i + A sys 
∑ 

s 

w s f ( x s ) (P1) 

.t. 

 ( x s ) ≤ 0 , ∀ s ∈ S 

 

Y i 
h i ( d i , x s ) ≤ 0 

c i = c fix 
i 

+ c var 
i 

× d i + c repa 
i 

] 

∨ 

[ 

Y i 
B i x s = 0 

c i = 0 

] 

, ∀ s ∈ S, i ∈ I R 

 

 

 

 

 

 

 

 

 

 

 

 

Y i 
h i ( d i , x s ) ≤ 0 

n i ∑ 

r=1 

z i,r ≥ 1 

z i,r+1 ≤ z i,r r = 1 , . . . , n i − 1 

c i = 

(
c fix 
i 

+ c var 
i 

× d i + c repa 
i 

) n i ∑ 

r=1 

z i,r 

A i = p i 
n i ∑ 

r=1 

z i,r ( 1 − p i ) 
r−1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

∨ 

⎡ 

⎢ ⎣ 

¬ Y i 
B i x s = 0 

c i = 0 

A i = 1 

⎤ 

⎥ ⎦ , ∀ s ∈ S, i ∈ I iden 

 

 

 

 

 

 

 

 

 

 

 

 

Y i 
h i ( d i , x s ) ≤ 0 

n i ∑ 

r=1 

z i,r ≥ 1 

z i,r+1 ≤ z i,r r = 1 , . . . , n i − 1 

c i = 

n i ∑ 

r=1 

z i,r 
(
˜ c fix 
i,r 

+ ̃  c var 
i,r 

× d i + ̃  c repa 
i,r 

)
A i = 1 −

n i ∏ 

r=1 

( 1 − ˜ p i,r z i,r ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

∨ 

⎡ 

⎢ ⎣ 

¬ Y i 
B i x s = 0 

c i = 0 

A i = 1 

⎤ 

⎥ ⎦ , ∀ s ∈ S, i ∈ I non 

 i = True , ∀ i / ∈ I D 

( Y ) = True 

 sys = 

∏ 

i ∈ I iden ∪ I non 
A i 

 ∈ R m , c ≥ 0 , Y ∈ { True , False } l , z ∈ { 0 , 1 } t 

 s ∈ R n , ∀ s ∈ S 

Generalized Disjunctive Programming (GDP) in (P1) is applied 

o explicitly express the logic encapsulated in the superstruc- 

ure. GDP model involves algebraic constraints, conditional con- 

traints encapsulated within disjunctions, and logical propositions 

 Grossmann and Trespalacios, 2013 ). Here, the global constraints 

( x s ) ≤ 0 describe variable relationships that must be satisfied re- 

ardless of discrete selections of the process alternatives. These 

nclude the linking constraints that equate stream flow proper- 

ies between different process sections. Then the disjunctions I are 

osed in terms of existence or absence of units in the superstruc- 

ure. Stage-1 variables Y i = True denotes the existence of a unit 

processing stage), and Y i = F alse represents its absence. If a unit 

processing stage) exists, the constraints h i ( d i , x s ) ≤ 0 enforce for 

he stage-1 design variable d i the relevant mass and energy bal- 

nces, thermodynamics, kinetics, or other physical/chemical phe- 

omena taking place within the unit for each scenario s . The 

onstraints c i = c fix 
i 

+ c var 
i 

× d i + c 
repa 
i 

calculate the total cost of the 

nit, including the fixed cost, the variable cost related to the equip- 

ent size and the repair cost. Otherwise, constraints B i x s = 0 de- 

cribe port variable relationships when the unit is absent, and the 

apital cost of the non-existing unit is also set to 0. 

The reliability-based design optimization (RBDO) model is in- 

orporated into the GDP model to deal with the endogenous un- 

ertainty – system availability. In principle one unit is sufficient 
4 
or the system. However, that would often translate to low avail- 

bility. Since some critical units in the process network are subject 

o random failures, parallel backup units are considered to improve 

he system availability. The availability evaluation model and opti- 

ization method are used to decide whether it is necessary to add 

ack-up units and how many back-up units should be installed, 

n order to achieve the optimal trade-off between the capital cost 

nd system availability. To integrate availability evaluations, each 

quipment in the flowsheet is considered as a stage, and parallel 

nits are assigned to the certain stages i. The binary variables z i,r , 

hat determine the selection of the potential parallel units, affect 

he availability of each stage by changing the corresponding prob- 

bility distribution. Each single unit is given a fixed failure rate, 

nd Simple Bayes Rules are used to predict the system availabil- 

ty since the fixed failure rates of back-up units are assumed to be 

utually independent. 

All the processing stages in the process network can be classi- 

ed into three groups: the processing stages that do not need to 

onsider the reliability ( i ∈ I R̄ ) because of their high capital costs 

nd low failure rates, the stages with identical potential standby 

nits ( i ∈ I iden ) , and the stages with non-identical potential stand- 

ys ( i ∈ I non ) to improve the availability. If the processing stage i is 

elected, besides the mass and energy balances, physical/chemical 

henomena description constraints and cost calculations, the avail- 

bility evaluation model should also be added in the disjunction. 

or different types of processing stages, we will have the corre- 

ponding mixed-integer nonlinear constraints for reliability consid- 

ration. 

For the stages with identical potential parallel units ( i ∈ I iden ) , 

he parallel units have the same capacity, availability, and corre- 

ponding costs. 

Constraint (1) requires that for each stage i at least one unit r

hould be installed. 

n i 
 

r=1 

z i,r ≥ 1 , ∀ i ∈ I (1) 

onstraint (2) is a symmetry breaking constraint for stage i ∈ I iden , 

hich requires that a unit can only be selected if the one with 

igher priority is selected. 

 i,r+1 ≤ z i,r , ∀ i ∈ I iden , r = 1 , . . . , n i − 1 (2) 

onstraint (3) calculates the availability of a certain stage i with 

dentical parallel units. The availability of a stage depends on the 

umber of installed parallel units and their corresponding avail- 

bilities. Given the fact that the back-up units for one stage are 

sually no more than a few, all possible cases can be enumerated 

or each stage to evaluate the availability. Consider the diagram in 

ig. 3 b) as an example, where all the units are identical. There are 

 few possible cases that the stage is functioning: Unit 1 is active; 

nit 2 is active while unit 1 has failed; Unit 3 is active while unit

 and 2 have failed. It is obvious that whether a case happens de- 

ends only on the existence of the unit that is active in it, and 

he probability for a possible case to take place depends on the 

vailabilities of that particular unit and all the potential units with 

igher priorities. Thus, we have the following linear constraints to 

escribe the availability of a stage with 3 identical parallel units: 

 1 = p 1 z 1 , 1 + (1 − p 1 ) p 1 z 1 , 2 + (1 − p 1 ) 
2 p 1 z 1 , 3 

hich can be easily generalized to Constraint (3). 

 i = p i 

n i ∑ 

r=1 

z i,r ( 1 − p i ) 
r−1 

, ∀ i ∈ I iden (3) 

ere, p i denotes the availability of single unit in stage i with iden- 

ical parallel units. The availability of each stage ( A i ) is defined 

y the selection of potential back-up units, therefore, it can be 
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Fig. 3. Sample diagram for different kinds of processing stages in process network. 
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egarded as decision-dependent endogenous uncertainty. The to- 

al cost of each stage with identical parallel units is then given by 

onstraint (4), which is the summation of fixed cost, variable cost 

nd repair cost. It should be noted that, to deal with the bilinear 

erms arisen from d i × z i,r , we can use exact linearization. 

 i = 

(
c fix i + c var i × d i + c repa 

i 

) n i ∑ 

r=1 

z i,r , ∀ i ∈ I iden (4) 

or the stages with non-identical potential parallel units ( i ∈ I non ) , 

he non-identical parallel units have the same capacities, but are 

istinct in terms of availability and cost. 

The availability of a stage with non-identical parallel units 

 i ∈ I non ) is represented by subtracting the probabilities of all un- 

vailable cases, as shown in Constraint (5). ˜ p i,r denotes the avail- 

bility of single unit r in stage i with non-identical parallel units. 

he availability of each stage ( A i ) depends on the number of in- 

talled parallel units and their respective availabilities. 

 i = 1 −
n i ∏ 

r=1 

( 1 − ˜ p i,r z i,r ) , ∀ i ∈ I non (5) 

he total cost of each stage with non-identical parallel units is 

iven by Constraint (6). 

 i = 

n i ∑ 

r=1 

z i,r 
(
˜ c fix i,r + ˜ c var i,r × d i + ˜ c repa 

i,r 

)
, ∀ i ∈ I non (6) 

inally, the availability of the whole system ( A sys ) is calculated 

rom the product of the availability of each stage ( A i ), as shown 

n Constraint (7). 

 sys = 

∏ 

i ∈ I iden ∪ I non 
A i (7) 

f the processing stage is not selected in the superstructure, the 

vailability of the stage is set to 1, which will not affect the sys- 

em availability. Otherwise, the availability of the stage is calcu- 

ated from Simple Bayes Rules and contributes to the system avail- 

bility. In addition, Y i is set to be true when the processing unit is 

utside the disjunctions, which means the unit is sure to exist in 

he flowsheet without process alternatives. 

The objective function is to minimize the total annualized cost 

 TAC ) of the system, including the annualized capital expenditure 

n the first stage and the expected operating expenditure and rev- 

nue over all the scenarios in the second stage, by optimizing the 

owsheet topology, equipment sizes, installation of potential par- 

llel units and operating conditions in different scenarios. The ex- 
5 
ected revenue and operating cost are proportional to the avail- 

bility of the whole system. 

min 
 i , d i , z i,r , x s 

TAC = 

∑ 

i 

c i + A sys 
∑ 

s 

w s f ( x s ) (8) 

. Solution method 

When systematic superstructure-based synthesis approaches 

re applied to conceptual design, this generally translates to dif- 

cult mathematical programming problems with non-convex, non- 

inear variable relationships. One of the most challenging charac- 

eristics of flowsheet synthesis problems for modern optimization 

olvers arises from “zero flow” singularities, which occur when su- 

erstructure units are absent from the flowsheet. These singulari- 

ies can arise from multi-component material balances and phys- 

cal property calculations in disappearing units, degrading the ro- 

ustness of solution algorithms. When performance equations for 

hese disappearing nodes (or deactivated process units) include 

ome nonlinear functions like log (x ) , x 0 . 6 , or 1 
x , the convergence 

f nonlinear solvers may suffer as a flow variable x approaches 

ero. The absence of flow also creates a singularity that results 

n degeneracy in variables that become irrelevant, such as com- 

onent concentrations. Any value of the concentration is valid in 

he context of a solution due to the zero flow. However, these de- 

enerate variables may participate nonlinearly in expressions that 

ecome poorly conditioned for certain variable values. The “zero- 

ow” numerical difficulties always exist in the chemical flowsheet 

ynthesis problems, leading to a great barrier to most of the full- 

pace MINLP solution algorithms that cannot eliminate constraints 

f non-existing process units. 

The GDP formulation not only offers an intuitive way to express 

he logical-OR (disjunctive) relationships between different process 

lternatives, but also provides access to a variety of powerful logic- 

ased decomposition algorithms that allow the robust solution of 

onlinear subproblems in reduced space to avoid the zero-flow nu- 

erical difficulties. The core of the LOA algorithm lies in exploit- 

ng the logical structure of a GDP model to decompose its solution 

nto a sequence of master problems and subproblems for specific 

owsheets, based on the evaluation and optimization of the full 

onlinear descriptions for each logical realization. In the case of 

roblem (P1) the subproblems correspond to MINLP subproblems 

hat optimize the binary variables z i,r for determining the number 

f redundant units to optimize the availability. 

Note that by incorporating the reliability model into the flow- 

heet superstructure optimization, the binary variables z i,r are in- 

roduced to represent the selection of parallel units. Our model 
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Fig. 4. Improved logic-based outer approximation algorithm flow diagram for process synthesis considering reliability. 
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ecomes a hybrid GDP formulation with implicit “nested disjunc- 

ions”, which not only contains the Boolean variables to select the 

rocess alternatives, but also includes binary variables to select the 

edundant units for improving reliability. The improved LOA algo- 

ithm for the resulting hybrid GDP model is to handle only logi- 

al realizations (Boolean variables) in the master problem, and to 

olve an MINLP model as the reduced space subproblem. That is, 

n the master problem, we still solve the linear approximation to 

etermine a new candidate flowsheet topology (the existence of 

ertain processing stage), but the reduced space subproblem be- 

omes an MINLP subproblem rather than an NLP subproblem as 

n the original algorithm. The reduced space MINLP model cor- 

esponding to only the selected candidate flowsheet, will provide 

ptimal equipment sizes, operating conditions, selections of par- 

llel units and objective value. Moreover, when both endogenous 

nd exogenous uncertainties are considered for process synthesis, 

he reliability model and stochastic programming are combined, 

hich increases the difficulty of solving the problem. The deter- 

inistic equivalent form of the two-stage stochastic program is 

sed to solve the MINLP subproblems in the solution strategy. The 

mproved logic-based outer approximation algorithm flow diagram 

or process synthesis problems considering reliability is described 

s follows and is presented in Fig. 4 . 

The major steps of the improved LOA algorithm (Turkay and 

rossmann, 1986; Chen and Grossmann, 2019 ) to solve nonlinear 

DP model in (P1) are as follows (See Fig. 4 ): 

Step 1 : Solve a set of MINLP subproblems to optimize different 

owsheets and their parallel units in order to cover all the units in 

he superstructure to generate initial linearizations for the nonlin- 

ar functions in the GDP. 

Step 2 : Reformulate the linear GDP model into an MILP master 

roblem through Big-M (BM) or Hull Relaxation (HR). 

Step 3 : Solve the MILP master problem, which yields a lower 

ound on the overall (minimization) problem as well as a proposed 

hoice of the discrete variables (a candidate logical realization). 

Step 4 : Fix the Boolean variables in the disjunctions to the can- 

idate logical realization calculated from the MILP master problem 

o obtain a reduced space MINLP subproblem. 

Step 5 : Solve the MINLP subproblem, which yields an upper 

ound on the overall (minimization) problem as well as the num- 

er of redundant units and optimal continuous variable values of 

he corresponding flowsheet. The solution is then used to generate 

n outer approximation (OA) cut. 

Since the goal is to minimize the objective function, solutions 

btained from the MILP master problem provide a lower bound on 

he remaining feasible logical realizations at each iteration (as we 

uter approximate the feasible region). The best feasible solution 

o the reduced space MINLP subproblems yields an upper bound 

n the objective value. Termination of the algorithm takes place 

hen the lower bound at an iteration converges to or crosses over 

he upper bound, indicating that we cannot find a better solution 

rom the set of remaining unexplored logical realizations. An infea- 

ible master problem implies that no logical realizations remain to 

e explored, equivalent to a lower bound of positive infinity. Con- 

t

6 
ergence of LOA is checked between the master problem and re- 

uced space subproblem solutions. 

The advanced computational tool GDPopt ( Chen and Gross- 

ann, 2019 ), provides various implementations for solving GDP 

roblems, including the LOA algorithm. As an open-source plat- 

orm, it incorporates recent innovations in reformulation strategies 

nd logic-based solution algorithms, which can be used as a basis 

f solution platform for GDP models. 

. Application to process synthesis problems 

.1. Methanol synthesis 

.1.1. Case study definition 

The proposed modeling methodology and solution strategy have 

een applied in this section to a conceptual design problem - 

ethanol synthesis process. The methanol synthesis process was 

ormulated and solved as an MINLP model by Türkay and Gross- 

ann (1996) without reliability and exogenous uncertainty con- 

iderations. The detailed model equations for this problem can be 

ound in Chen and Grossmann (2019) . Based on the analysis of 

he flowsheet superstructure, the methanol synthesis model can be 

onverted to a hybrid GDP model with four explicit disjunctions 

o choose the process alternatives and several implicit “nested dis- 

unctions’’ to consider the potential parallel units. Our goal is to se- 

ect the optimal equipment configuration and operating conditions 

temperatures, pressures, flows, and compositions) to convert syn- 

as to methanol, with both market uncertainties and plant avail- 

bility taken into consideration. 

The four major structural choices in the methanol synthesis 

rocess include the discrete decisions between two candidate syn- 

as feeds with different purity and cost, single-stage or two-stage 

ompression for both the feed and recycle streams, as well as 

he choice between a higher-conversion, higher-cost reactor and a 

heaper alternative with lower conversion. In order to incorporate 

he availability evaluation into the flowsheet superstructure opti- 

ization, several potential parallel units are assigned to each crit- 

cal equipment, such as compressors, heat exchangers and valves. 

he superstructure of methanol synthesis problem with reliability 

onsideration is shown in Fig. 5 . The objective is to maximize the 

otal annualized profit for the methanol production, involving ex- 

ected revenue from the methanol sales, fuel credit for the purge 

tream, purchase costs from the syngas feed, utility costs for the 

eaters and coolers, electricity costs for the compressors, and an- 

ualized capital costs for equipment purchases. 

The synthesis of the methanol process can be formulated as 

 two-stage stochastic programming problem to account for the 

xogenous uncertainties ( Fig. 6 ). In the first stage the flowsheet 

opology and equipment configuration are selected, and in the sec- 

nd stage the process network operation is carried out accord- 

ng to the realization of uncertain parameters. In the two-stage 

tochastic programming, the first-stage decisions are design vari- 

bles, including the Boolean variables to determine the feed selec- 

ion, reactor selection, single-stage compression or two-stage com- 
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Fig. 5. Superstructure of methanol synthesis problem with reliability consideration. 
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ression selection, binary variables to choose the potential par- 

llel units and continuous variables to represent the design ca- 

acity of each unit, which are related to the capital expenditure; 

he second-stage decisions are the operational decisions, involving 

owrates, temperatures, pressures, and utility requirements, which 

ccount for the operating cost. The uncertain methanol product de- 

and and the fluctuating electricity prices are regarded as the ex- 

genous uncertainties. Each of them is modeled with 3 scenarios 

low, medium, high demand or price) with a given discrete prob- 

bility distribution, based on the historical data from the chang- 

ng markets. Therefore, the two-stage stochastic programming has 

 total of 9 scenarios. When considering reliability, some critical 

nits are given with fixed failure rates and parallel units are in- 

talled in these stages, the availability of the processing stage can 

e regarded as endogenous uncertainty. The failure of any one of 

hese processing stages can result in the failure of the entire sys- 

em, which will compromise its ability to meet customer demands 

nd has a direct influence on the profit. The availability evaluation 

odel is integrated within the flowsheet superstructure optimiza- 

ion to account for the endogenous uncertainty. 

.1.2. Results 

To illustrate the advantages of the proposed modeling method, 

e compare the solution results from three different models: the 

eterministic model with exogenous uncertainties evaluated at 

heir mean values, the stochastic programming model with 9 sce- 

arios to only account for exogenous uncertainties, and our pro- 

osed model (P1) which integrates reliability and uncertainty to 

andle both exogenous and endogenous uncertainties simultane- 

usly. Table 1 presents the comparison of model statistics and so- 

ution results for these three models. The first two models are 
7 
tandard GDP models with four disjunctions for structural choices. 

he last model is a hybrid GDP model (P1), which not only con- 

ains the Boolean variables to select the process alternatives, but 

lso introduces the binary variables to select the parallel units for 

ach critical stage. All of the three models are coded in Pyomo and 

olved with the LOA algorithm implemented in the GDPopt solver. 

ll computational experiments are carried out on a PC with an In- 

el Core i7–6700 CPU at 2.60 GHz and 8.0 GB RAM. As aforemen- 

ioned, the improved LOA algorithm( Chen et al., 2021a ) involves 

terative solution of the MILP master problem and the MINLP sub- 

roblem. In the first two standard GDP models, the MILP master 

roblems are solved with GUROBI and the NLP subproblems are 

olved with CONOPT 4. For the proposed hybrid GDP model (P1) 

o integrate reliability and uncertainty, DICOPT is used to solve the 

INLP subproblems due to the introduction of binary variables for 

eliability consideration. 

In order to compare and analyze these models more scientifi- 

ally, the value of stochastic solution (VSS) is calculated to evaluate 

he profit that can be expected from implementing the stochastic 

olution instead of simply using the deterministic solution. Here, 

he VSS and relative VSS are defined in Eq. (9) and Eq. (10) respec-

ively. 

SS = Profit sto − Profit det (9) 

SS = 

Profit sto − Profit det 

Profit det 
(10) 

here Profit sto is the total annualized profit calculated from the 

wo-stage stochastic programming with the consideration of ex- 

genous uncertainties. Profit det is obtained by solving the same 

tochastic problem with the first-stage variables fixed to the val- 

es at the optimal solution of the deterministic approach. That 
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Fig. 6. Two-stage representation of design- and operational-level decisions in the stochastic programming. 

Table 1 

Results for different models in methanol synthesis process. 

Model # of Cons # of Cont. Vars # of Bin. Vars # of 

Disjunctions 

Strategy and 

Solver 

Solution Time 

(s) 

System 

Availability 

Objective Profit 

(k$/yr) 

Deterministic 474 307 0 4 LOA 35.2 0.9318 2009.16 

Model MILP-GUROBI 

NLP-CONOPT 4 

Stochastic 3986 2491 0 4 LOA 322.8 0.9318 2156.04 

Programming MILP-GUROBI 

NLP-CONOPT 4 

Integrate 

Reliability and 

Uncertainty 

4306 2537 50 4 LOA 446.1 0.9646 2174.96 

MILP-GUROBI 

MINLP-DICOPT 

VSS (k$/yr) 146.88 VSS (%) 7.31% 

VSS + VRS (k$/yr) 165.80 VSS + VRS (%) 8.25% 

m

t

i

v

m

r

i

t

t

a

i

t  

r

V

V

V

m

c

s

t

eans the flowsheet structure and equipment configuration ob- 

ained from the deterministic model is also evaluated in the chang- 

ng exogenous environment. VSS represents the annualized added 

alue gained from the stochastic solution compared to the deter- 

inistic solution. Similar to the VSS, we also define the value of 

eliable solution (VRS) to assess the real benefits from implement- 

ng the reliability-based design optimization model and indicate 

he significance of accounting for endogenous uncertainty. That is, 

he optimal solution of the deterministic model should be evalu- 

ted with units given fixed inherent failure rates, but without the 

nstallation of parallel units to improve their availabilities. Here, 

he VRS and relative VRS are defined in Eq. (9) and Eq. (10) with
s

8 
eference to the VSS and relative VSS. 

RS = Profit reli − Profit det (11) 

RS = 

Profit reli − Profit det 

Profit det 
(12) 

RS expresses the extra profit that can be expected from imple- 

enting the reliability-based design optimization model which in- 

orporates into the superstructure optimization compared with the 

olution from deterministic model without reliability considera- 

ion. 

Comparing the results between the deterministic model and 

tochastic programming model, it can be seen that the stochas- 



Y. Chen, Y. Ye, Z. Yuan et al. Computers and Chemical Engineering 157 (2021) 107616 

Fig. 7. Comparison of the total annualized profit for three different optimization models in terms of VSS and VRS (Methanol synthesis process). 

Fig. 8. Optimal design of methanol synthesis process from the deterministic model. 
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ic programming model to consider exogenous uncertainties shows 

etter economic performance, with an increase of 7.31% in the 

otal annualized profit. Significant VSS can be observed between 

he deterministic and stochastic solutions and the annualized ad- 

itional profit of $146,880 can be achieved when implementing 

he stochastic optimization. It is because the stochastic program- 

ing model allows the first stage decision to be made considering 

he realization of different demand and price scenarios and effi- 

iently improve the operational flexibility. The multi-scenario op- 

ration strategy can respond to the changing markets and greatly 

educe the expected operating expenditure. 

Moreover, as reported in Table 1 , the model that integrates 

eliability and uncertainty yields the best economic performance 

ompared to the cases when either reliability is not considered, 

r when exogenous uncertainties are evaluated with mean val- 

es. The system availability is increased from 0.9381 to 0.9646 by 

dding parallel units, while the total annualized profit is increased 
9 
y 8.25% with improved operational flexibility and reliability com- 

ared to the deterministic model. 

Comparison of the total annualized profit for the three different 

ptimization models in terms of VSS and VRS is given in Fig. 7 .

he orange portion represents the VSS, which means the extra 

rofit that can be gained from implementing stochastic program- 

ing to consider exogenous uncertainties. The gray portion in the 

ar chart indicates the VRS, which means the extra benefit ob- 

ained from reliability-based design optimization model to account 

or endogenous uncertainties. The summation of the VSS and VRS 

eans the annualized extra profit of $165,800 is expected to be 

chieved when considering both exogenous and endogenous un- 

ertainties in the methanol process synthesis problem. 

The optimal designs obtained from these three models are pre- 

ented in Fig. 8, 9 and 10 . The design capacity in these figures

epresents the largest power of each compressor and the largest 

eat duty of each heat exchanger. 
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Fig. 9. Optimal design of methanol synthesis process from the stochastic programming model only to consider exogenous uncertainties. 

Fig. 10. Optimal design of methanol synthesis process from the integrating reliability and uncertainty model (P1). 
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It is interesting to note that the deterministic model and 

tochastic programming model have selected the same flowsheet 

tructure, but differ in the design capacity of each unit. The dif- 

erences in the design capacity make the stochastic model have 

 higher degree of operational flexibility, which can promptly re- 

pond to different utility price and demand scenarios and reduce 

he operating cost. When considering reliability, the valve and the 

ingle-stage compressor in the recycle stream both have back- 

p equipment in order to maximize the total annualized profit 

hrough the optimal trade-off between the capital cost and sys- 

em availability. Although the model that integrates reliability (en- 

s

10 
ogenous uncertainty) and exogenous uncertainty has the highest 

nvestment cost, with improved operational flexibility and system 

vailability, its operating cost has been greatly reduced, thereby 

ielding the highest total annualized profit. 

.2. Hydrodealkylation of totuene (HDA) 

.2.1. Case study definition 

In this section, another conceptual design case study is pre- 

ented to show the benefit from incorporating both exogenous un- 

ertainties and endogenous uncertainties into the flowsheet super- 

tructure optimization. The large-scale process synthesis problem 
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Fig. 11. Superstructure of HDA process. 
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⎢⎢⎣

[

[

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f hydrodealkylation of toluene (HDA) process to produce ben- 

ene was formulated as an MINLP model by Kocis and Gross- 

ann (1989) without reliability and exogenous uncertainty consid- 

rations. The superstructure of this problem is shown in Fig. 11 . 

he objective is to maximize the total annualized profit by op- 

imizing the flowsheet structure and operating conditions. The 

ain reaction taken place in the HDA process is Tolu ene + 

 2 → Benz ene + CH 4 , with an undesired reversible side reaction 

 Benzene � diphenyl + H 2 . The HDA process involves four major 

perations: inlet purify and mixing section, reaction system, vapor 

ecovery system (hydrogen recycle system) and liquid separation 

ystem. 

To apply our proposed modeling approach, first of all, we need 

o convert the MINLP model into the GDP formulation. It should 

e noted that, between each multiple choice stream splitter and 

ts corresponding multiple stream mixer, there will be the disjunc- 

ion to represent the selection among different process alterna- 

ives. There are six multiple choice stream splitters in the super- 

tructure, thus it has six structural choices, as shown in Fig. 11 , 

hich is also described in the GDP formulation (P2) with six ex- 

licit disjunctions. 

 

 

 

 

 

 

Y membrane 

use membrane 1 
use compressor 1 

T out 
inlet 

= T in 
membrane 

P out 
inlet 

= P in 
membrane 

F bypass = 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

∨ 

⎡ 

⎢ ⎣ 

¬ Y membrane 

T out 
inlet 

= T in 
bypass 

P out 
inlet 

= P in 
bypass 

F membrane = 0 

⎤ 

⎥ ⎦ (P2.1) 

 

 

 

 

Y adiabatic 

use adiabatic reactor 

T out 
furnace 

= T in 
adiabatic 

P out 
furnace 

= P in 
adiabatic 

F isothermal = 0 

⎤ 

⎥ ⎥ ⎦ 

∨ 

⎡ 

⎢ ⎢ ⎣ 

Y isothermal 

use isothermal reactor 

T out 
furnace 

= T in 
isothermal 

P out 
furnace 

= P in 
isothermal 

F adiabatic = 0 

⎤ 

⎥ ⎥ ⎦ 

(P2.2) 
11 
Y methane purge 

F methane membrane = 0 

]
∨ 

⎡ 

⎢ ⎣ 

¬ Y methane purge 

use membrane 2 
use compressor 4 
F methane purge = 0 

⎤ 

⎥ ⎦ (P2.3) 

 

Y recycle 

use compressor 2 
F absorber = 0 

] 

∨ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

¬ Y recycle 

use heater 4 
use v alv e 6 
use absorber 

use compressor 3 
use pump 2 

use multi splitter 4 
F recycle = 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(P2.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y stabilizing column 

use heater 1 
use stabilizing column 
use multi splitter 3 
use valve 5 

T out 
stabilizing column 

= T in 
benzene column 

P out 
stabilizing column 

= P in 
benzene column 

T out 
valve 5 

= T in 
absorber 

P out 
valve 5 

= P in 
absorber 

F flash 2 = 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

∨ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

¬ Y stabil izing col umn 

use heater 2 
use valve 1 
use cooler 2 
use flash 2 
use valve 4 

T out 
flash 2 

= T in 
benzene column 

P out 
flash 2 

= P in 
benzene column 

T out 
valve 4 

= T in 
absorber 

P out 
valve 4 

= P in 
absorber 

F stabilizing column = 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(P2.5) 
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Fig. 12. Comparison of the total annualized profit for three different optimization models in terms of VSS and VRS (HDA process). 

Fig. 13. Optimal design of HDA process from the deterministic model. 
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Y toluene column 

use toluene column 

T out 
benzene column 

= T in 
toluene column 

P out 
benzene column 

= P in 
toluene column 

F toluene flash = 0 

⎤ 

⎥ ⎥ ⎦ 

∨ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

Y toluene flash 

use heater 3 
use v alv e 2 
use f lash 3 

T out 
benzene column 

= T in 
heater 3 

P out 
benzene column 

= P in 
heater 3 

F toluene column = 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(P2.6) 
12 
To apply the availability evaluation, several candidate paral- 

el units are assigned to each critical equipment with reliability 

onsideration, such as compressors, heat exchangers, pumps and 

alves. The equivalent reliability superstructure has 19 potential 

tages, with each of them having 3 potential parallel units given 

xed failure rates. Exogenous uncertainties are also considered in 

he model, the fluctuating electricity prices and uncertain ben- 

ene demands are modeled with 3 scenarios (low, medium, high 

rice or demand) respectively with certain discrete probability dis- 

ribution. The objective function is to maximize the total annual- 
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Fig. 14. Optimal design of HDA process from the stochastic programming model only to consider exogenous uncertainties. 

Table 2 

Results for different models in the HDA process. 

Model # of Cons # of Cont. Vars # of Bin. Vars 

# of 

Disjunctions 

Strategy and 

Solver 

Solution Time 

(s) 

System 

Availability 

Objective Profit 

(k$/yr) 

Deterministic 

Model 

728 709 0 6 LOA 180.76 0.8253 4975.27 

MILP-GUROBI 

NLP-CONOPT 4 

Stochastic 

Programming 

2194 2110 0 6 LOA 385.52 0.8253 5194.52 

MILP-GUROBI 

NLP-CONOPT 4 

Integrate 

Reliability and 

Uncertainty 

2296 2252 57 6 LOA 465.34 0.9993 5782.56 

MILP-GUROBI 

MINLP-DICOPT 

VSS (k$/yr) 219.25 VSS (%) 4.41% 

VSS + VRS 

(k$/yr) 

807.29 VSS + VRS (%) 16.2% 
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zed profit, which is given as the difference between annualized 

evenue and annualized cost. Revenue involves the expected sales 

f benzene (main product), diphenyl (by-product) and fuel values 

rom purge streams. Costs include the expected raw material costs, 

tility costs (electricity, steam, cooling water) and the investment 

osts for equipment and its parallel units. In the two-stage stochas- 

ic programming, the first-stages contains the selection of different 

rocess alternatives, the design capacity for each unit and the in- 

tallation of parallel units. The second-stage variables are opera- 

ional variables, which can be adjusted to different scenarios. 

.2.2. Results 

Table 2 and Fig. 12 show the comparison of model statistics and 

olution results for the three models: 1) the deterministic model 
13 
ith exogenous uncertainties evaluated at their mean values, 2) 

he stochastic programming model with 9 scenarios to account for 

xogenous uncertainties, and 3) the proposed model (P1) which in- 

egrates reliability and exogenous uncertainties. The improved LOA 

lgorithm is applied to solve these three models, where GUROBI 

s used to solve the MILP master problems, CONOPT 4 is used to 

olve the NLP subproblems and DICOPT is used to solve the MINLP 

ubproblems when considering reliability. The VSS and VRS are cal- 

ulated to evaluate the extra profit that can be expected from im- 

lementing the stochastic programming or reliability-based design 

ptimization model instead of simply using the deterministic solu- 

ion. 

It can be observed that model (P1) in 3) which integrates relia- 

ility and exogenous uncertainties yields the highest total annual- 



Y. Chen, Y. Ye, Z. Yuan et al. Computers and Chemical Engineering 157 (2021) 107616 

Fig. 15. Optimal design of HDA process from the integrating reliability and uncertainty model (P1). 
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zed profit, with an increase of 11.79% compared to the stochastic 

odel without reliability consideration in terms of VRS, and an in- 

rease of 16.2% compared to the case with deterministic solutions 

n terms of VSS and VRS. It is interesting to note that, although 

odel 3) has the highest investment cost, due to its improved 

perational flexibility and reliability, the operating cost has been 

reatly reduced, thereby obtaining the highest economic profit. 

When considering reliability, the system availability increases 

rom 0.8253 to a significantly high value 0.9993 by adding parallel 

ack-up units. The endogenous uncertainty plays an important part 

n the profit, because a penalty cost is imposed for not meeting the 

roduct demand due to the system failure. 

Figs. 13-15 present the optimal designs of the corresponding 

rocess flowsheets obtained from these three models. 

. Conclusions 

In this paper we have addressed the optimal synthesis of pro- 

ess flowsheets that leads to flexible and reliable systems capable 

f meeting product demand and process energy requirements un- 

er various uncertainties (e.g. varying prices, demands, or equip- 

ent failures). More specifically, in this paper, we have proposed a 

wo-stage stochastic programming GDP model with reliability con- 

traints to deal with both the exogenous and endogenous uncer- 

ainties in process synthesis, where the reliability model is incor- 

orated into the flowsheet superstructure optimization. We tackle 

he exogenous uncertainties through the two-stage stochastic pro- 

ramming, and account for the endogenous uncertainties by the 

eliability-based design optimization model, to select the optimal 

owsheet topology, equipment sizes and operating conditions, as 
14 
ell as the installation of parallel redundant units in process syn- 

hesis. An improved LOA algorithm was developed to solve the hy- 

rid GDP model with implicit nested disjunctions, obtaining op- 

imal solutions by avoiding zero-flow numerical difficulties. The 

uantification of the value of stochastic solution (VSS) and the 

alue of reliable solution (VRS) were used as the key measures 

or assessing the real benefits of the stochastic programming and 

eliability-based design optimization compared with the determin- 

stic model. Simultaneous optimization of reliability (endogenous 

ncertainty) and exogenous uncertainty in process design pro- 

ides potential improvement for operational flexibility and eco- 

omic performance as shown in both the methanol synthesis and 

ydrodealkylation of toluene case studies. 

The case studies reported in this work only have a limited 

umber of scenarios to account for the exogenous uncertainties. 

n general, stochastic programming models may give rise to large- 

cale scenario trees. In such a case solving the deterministic equiv- 

lent form of the two-stage stochastic program directly can be 

rohibitive because the computational time can grow exponen- 

ially with the number of scenarios. Moreover, chemical engineer- 

ng applications often involve significant nonlinearities, such as the 

ass balance equations for the splitters and mixers in a flow- 

heet, the MESH equations in distillation column design and the 

rrhenius equations in reactor modeling. Therefore, solving large- 

cale stochastic programming process synthesis problems requires 

ffective decom position algorithms to reduce the computational 

ffort (e.g. see recent review by Li and Grossmann, 2021 ). Gen- 

ralized Benders decomposition (GBD) combined with logic-based 

uter approximation algorithm could be an interesting approach to 

xplore in the future. 
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