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ABSTRACT

Plant availability and operating uncertainties are critical considerations for the design and operation of
chemical processes as they directly impact service level and economic performance. This paper pro-
poses a two-stage stochastic programming GDP (Generalized Disjunctive Programming) model with re-
liability constraints to deal with both the exogenous and endogenous uncertainties in process synthesis,
where the reliability model is incorporated into the flowsheet superstructure optimization. The proposed
stochastic programming model anticipates the market uncertainties through scenarios for selecting the
optimal flowsheet topology, equipment sizes and operating conditions, while considering the impact of
selecting parallel units for improving plant availability. An improved logic-based outer approximation al-
gorithm is applied to solve the resulting hybrid GDP model, which effectively avoids numerical difficulties
with zero flows and provides high quality design solutions. The applicability of the proposed modeling
framework and the efficiency of solution strategy are illustrated with two well-known conceptual de-
sign case studies: methanol synthesis process and toluene hydrodealkylation process. The model, which
integrates reliability (endogenous uncertainty) and exogenous uncertainty, shows the best economic per-
formance with the increasing operational flexibility and plant availability.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Process synthesis is the assembly and interconnection of units
into a process network, involving different physical and chemi-
cal phenomena to transform raw material and energy inputs into
desired products with the goal of optimizing a given objective
function (Chen and Grossmann, 2017). The superstructure-based
process synthesis includes discrete variables to determine the
flowsheet topology and continuous variables to determine system
states. Mixed-Integer Nonlinear Programming (MINLP) and Gen-
eralized Disjunctive Programming (GDP) are two powerful mod-
eling tools to translate the superstructure into a mathematical
model that captures the logical structure of a design problem
(Mencarelli et al., 2020). Both of them are well-suited to describe
the problems, which involves selection among discrete process
alternatives with nonlinear process phenomena (Grossmann and
Trespalacios, 2013). However, the GDP formulation offers two ma-
jor advantages over the traditional MINLP modeling approach in
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process synthesis problems. First, it is an intuitive modeling frame-
work to explicitly express the logical-OR (disjunctive) relationship
between different process alternatives, while capturing the connec-
tion between these logical clauses and the algebraic relations that
describe each alternative (Chen and Grossmann, 2019). Therefore,
it has a more systematic structure to formulate the grouping of
related constraints in disjunctions (Raman and Grossmann, 1991).
Second, GDP modeling preserves logical structure for tailored logic-
based decomposition algorithms, such as logic-based outer ap-
proximation (LOA) and logic-based branch and bound algorithm
(LBB), which can effectively avoid zero-flow numerical difficulties
present in MINLP formulations and provide high quality design
solutions (Lee and Grossmann, 2003; Ruiz and Grossmann, 2017;
Tiirkay and Grossmann, 1996). With GDP, decomposition can be
applied directly on the logical layer. These advanced solution al-
gorithms are particularly advantageous for process synthesis prob-
lems, due to their ability to solve nonlinear subproblems in re-
duced space, avoid zero-flow singularities through inactive pro-
cess units, thereby improving convergence speed and robustness.
The extension of LOA for rigorous global optimization is also avail-
able in Pyomo.GDP via the GDPopt solver (Bergamini et al., 2005;
Chen et al.,, 2021a; Trespalacios and Grossmann, 2016; Chen et al.,
2021b) .
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Nomenclature

Indices

i Stage

r Parallel unit

s Scenario

Sets

1 Set of processing stages (e.g. absorption)

Ligen Set of stages with identical parallel units

Inon Set of stages with non-identical parallel units

Iz Set of stages without reliability consideration

Ip Set of stages in the disjunctions

S Set of scenarios in the stochastic programming

Variables

Y; Boolean variables which determine the selection
among the process alternatives

Ziy Binary variables that indicate whether to choose
parallel unit r in stage i

d; Continuous variables related to the equipment sizes
(which indicate the design capacity of parallel units
in stage i)

Xs Operational variables in scenario s (e.g. flowrates,
temperatures and pressures)

Ci Total cost for stage i

A Availability of stage i

Asys Availability of the whole system

Parameters

n; Number of potential parallel units in stage i

Di Availability of single unit in stage i with identical
parallel units

Pir Availability of single unit r in stage i with non-
identical parallel units

clﬁx Fixed cost for single unit in stage i with identical
parallel units

a Variable cost for single unit in stage i with identical
parallel units

;P Repair cost for single unit in stage i with identical
parallel units

fix Fixed cost for single unit r in stage i with non-
identical parallel units

E;’f_l Variable cost for single unit r in stage i with non-
identical parallel units

";erpa Repair cost for single unit r in stage i with non-
identical parallel units

Wy Probability of occurrence of each scenario s in the
stochastic programming

Synthesis of process flowsheets are subjected to various uncer-
tainties, which directly impact its service level and economic per-
formance. There are two kinds of uncertainties in process synthe-
sis: exogenous, where the uncertain parameter values are revealed
independently of optimization decisions, and endogenous, where
the parameter realizations are influenced by the decisions taken
(Apap and Grossmann, 2017). Exogenous uncertainties correspond
typically to market uncertainties, such as product demands, prod-
uct prices and utility prices. For endogenous uncertainties, deci-
sions can influence the parameter realizations by causing alteration
of the probability distribution for uncertain parameters (Type-1 en-
dogenous uncertainties), or affecting the time at which we observe
these realizations (Type-2 endogenous uncertainties) (Goel and
Grossmann, 2006; Pulsipher and Zavala, 2020; Tarhan et al., 2009;
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Zhao and You, 2019). Fig. 1 illustrates different types of uncertain-
ties existing in process synthesis.

An example of endogenous uncertainty is reliability, which is
defined as the probability that a system remains functional under
component failures (Garcia-Herreros et al., 2014). The selection of
redundant equipment, maintenance policy and storage sizing af-
fect the plant availability by altering the probability distributions
(Terrazas-Moreno et al,, 2010; Ye et al., 2018, 2019). Reliability-
based design optimization (RBDO) arose at the early stages for
capturing the endogenous uncertainties from equipment failures,
determining the topology and parameters of a system. Kuo and
Wan (2007) provided a broad overview of research on reliability
optimization problems and solution methodologies, addressing the
importance of discrete decisions regarding parallel redundancies
in RBDO. Aguilar et al. (2008) optimized the design and opera-
tion of flexible utility plants with reliability and availability con-
siderations. Ye et al. (2018) proposed a rigorous non-convex MINLP
model for selecting the redundant units in serial systems to op-
timize the availability and cost. Terrazas-Moreno et al. (2010) for-
mulated a mixed-integer linear programming (MILP) model in the
design of an integrated site subject to random failures. Design de-
cisions which affect the availability involve increases in process ca-
pacity, introduction of parallel units, and addition of intermediate
storage.

In most of the previous work, exogenous uncertainty and en-
dogenous uncertainty (reliability) have been studied separately.
Straub and Grossmann (1990) were the first contributors to pro-
vide a framework for integrating flexibility (exogenous uncertain-
ties) and reliability (endogenous uncertainties) in a uniform frame-
work. However, their work only considered a quantitative mea-
sure - the expected stochastic flexibility E(SF) that relies on dis-
crete uncertain states to evaluate the proposed design alternatives.
Thomaidis and Pistikopoulos (1994) also integrated flexibility and
reliability in process design, but they did not consider the selec-
tion of standby units to improve the system availability. Therefore,
there is a need to account for both types of uncertainties in pro-
cess synthesis together so as to determine the feasible operation
of the flowsheet to be synthesized, as well as its plant availabil-
ity. In this way, the optimal design that considers the market un-
certainties and inherent failures of equipment has the potential of
improving the economic performance, operational flexibility and
availability of process flowsheets to be synthesized.

The major goal of this paper is to propose a novel model-
ing framework that integrates both exogenous uncertainty through
stochastic programming, and endogenous uncertainty through
RBDO, for the synthesis of process flowsheets, where the reliabil-
ity model is incorporated into the superstructure optimization. An
improved Logic-based Outer Approximation (LOA) algorithm is ap-
plied to the resulting hybrid Generalized Disjunctive Programming
(GDP) model with nested disjunctions, obtaining high-quality de-
sign solutions by avoiding zero-flow singularities.

The reminder of this article is organized as follows. The prob-
lem statement is given in Section 2. We then present the general
model formulation in Section 3, followed by the solution strategy
employed to tackle the resulting hybrid GDP problem in Section 4.
In Section 5, two conceptual design cases - methanol synthe-
sis process and toluene hydrodealkylation process, are studied to
demonstrate the advantages of the proposed modeling framework
and the efficiency of the solution algorithm. Finally, concluding re-
marks and future directions are given in Section 6.

2. Problem statement
The general process synthesis problem that we address in this

paper can be stated as follows (See Fig. 2 for an illustrative ex-
ample). It is desired to transform raw material and energy inputs
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Fig. 1. Classification of different types of uncertainties in process synthesis.
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Fig. 2. Illustrative example for process synthesis with both exogenous and endogenous uncertainties taken into consideration.

into desired outputs through a process network involving differ-
ent physical, chemical and biological phenomena. Given is a super-
structure of all potential process alternatives, and given is a pre-
specified set of potential parallel units for critical processing stages
to increase the system availability. There are two types of uncer-
tainties, which affect the service level and economic performance
of the chemical process. For exogenous uncertainties, we are given
a set of scenarios for uncertain demands of finished products, and
uncertain prices for utility, raw material and product predicted
from the changing market conditions. Each of the exogenous un-
certainties is described with a discrete probability distribution cap-
tured from the historical data. For endogenous uncertainties, since
critical units in the process network are subject to random fail-
ures, back-up or parallel units are given with fixed probabilities of
being available. The failure rates of back-up units are assumed to
be mutually independent. The goal is to maximize the total annu-
alized profit of the process network by determining the optimal
flowsheet structure, equipment sizes, installation of parallel units
and operating conditions.

3. General model formulation

The general formulation for the two-stage stochastic program-
ming GDP model with reliability constraints is given in Problem
(P1). The reliability-based design optimization (RBDO) model is in-
corporated into the two-stage stochastic programming to deal with
both the exogenous uncertainties and endogenous uncertainties in

process synthesis. The GDP model involves Boolean variables to
select the optimal flowsheet topology, binary variables to decide
which potential parallel units to install, and continuous variables to
determine the optimal equipment sizes and operating conditions.
Our goal is to determine both design- and operational-level deci-
sions in order to maximize the total annualized profit of the sys-
tem with both the exogenous uncertainties and plant availability
taken into consideration.

In the proposed model (P1) below, two-stage stochastic pro-
gramming is used to account for the exogenous uncertainties. The
first-stage (design) decisions are made “here-and-now” before real-
ization of any uncertainty, and the second-stage (operational) de-
cisions are made in a “wait-and-see” manner after all the uncer-
tainties are revealed and can be adjusted to the different scenarios
as a recourse. In the process synthesis model (P1), the first-stage
variables consist of three types of design variables, the Boolean
variables Y; that determine the selection among the different pro-
cess alternatives, the binary variables z;, to represent whether to
choose the redundant unit r for the certain processing stage i and
the continuous variables d; related to the equipment sizes, such
as reactor volume, number of trays in the column, surface area
in the membrane separator and design capacity of heat exchanger
or compressor. The second-stage decisions are related to the op-
erational variables, such as flowrates, temperatures, and pressures.
They are denoted by x5, which are associated with each scenario s.
The proposed stochastic programming model anticipates the mar-
ket uncertainties through scenarios and gives multi-scenario oper-
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ation strategy to increase the operational flexibility.

min TAC = Z Ci + Asys Zst(Xs) (P1)
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Generalized Disjunctive Programming (GDP) in (P1) is applied
to explicitly express the logic encapsulated in the superstruc-
ture. GDP model involves algebraic constraints, conditional con-
straints encapsulated within disjunctions, and logical propositions
(Grossmann and Trespalacios, 2013). Here, the global constraints
g(xs) < 0 describe variable relationships that must be satisfied re-
gardless of discrete selections of the process alternatives. These
include the linking constraints that equate stream flow proper-
ties between different process sections. Then the disjunctions I are
posed in terms of existence or absence of units in the superstruc-
ture. Stage-1 variables Y; = True denotes the existence of a unit
(processing stage), and Y; = False represents its absence. If a unit
(processing stage) exists, the constraints h;(d;, xs) < 0 enforce for
the stage-1 design variable d; the relevant mass and energy bal-
ances, thermodynamics, kinetics, or other physical/chemical phe-
nomena taking place within the unit for each scenario s. The
constraints ¢; = cfiX 4+ ¢ x d; + ¢;*P calculate the total cost of the
unit, including the fixed cost, the variable cost related to the equip-
ment size and the repair cost. Otherwise, constraints Bix; = 0 de-
scribe port variable relationships when the unit is absent, and the
capital cost of the non-existing unit is also set to 0.

The reliability-based design optimization (RBDO) model is in-
corporated into the GDP model to deal with the endogenous un-
certainty - system availability. In principle one unit is sufficient

Computers and Chemical Engineering 157 (2021) 107616

for the system. However, that would often translate to low avail-
ability. Since some critical units in the process network are subject
to random failures, parallel backup units are considered to improve
the system availability. The availability evaluation model and opti-
mization method are used to decide whether it is necessary to add
back-up units and how many back-up units should be installed,
in order to achieve the optimal trade-off between the capital cost
and system availability. To integrate availability evaluations, each
equipment in the flowsheet is considered as a stage, and parallel
units are assigned to the certain stages i. The binary variables z; ,,
that determine the selection of the potential parallel units, affect
the availability of each stage by changing the corresponding prob-
ability distribution. Each single unit is given a fixed failure rate,
and Simple Bayes Rules are used to predict the system availabil-
ity since the fixed failure rates of back-up units are assumed to be
mutually independent.

All the processing stages in the process network can be classi-
fied into three groups: the processing stages that do not need to
consider the reliability (i € I;) because of their high capital costs
and low failure rates, the stages with identical potential standby
units (i € ligen), and the stages with non-identical potential stand-
bys (i € Inon) to improve the availability. If the processing stage i is
selected, besides the mass and energy balances, physical/chemical
phenomena description constraints and cost calculations, the avail-
ability evaluation model should also be added in the disjunction.
For different types of processing stages, we will have the corre-
sponding mixed-integer nonlinear constraints for reliability consid-
eration.

For the stages with identical potential parallel units (i € figep),
the parallel units have the same capacity, availability, and corre-
sponding costs.

Constraint (1) requires that for each stage i at least one unit r
should be installed.

n;
> zip=1, Viel (1)
r=1

Constraint (2) is a symmetry breaking constraint for stage i € [gep,
which requires that a unit can only be selected if the one with
higher priority is selected.

Zir1 <Ziy, Vielgn, =1,...,m;—1 (2)

Constraint (3) calculates the availability of a certain stage i with
identical parallel units. The availability of a stage depends on the
number of installed parallel units and their corresponding avail-
abilities. Given the fact that the back-up units for one stage are
usually no more than a few, all possible cases can be enumerated
for each stage to evaluate the availability. Consider the diagram in
Fig. 3b) as an example, where all the units are identical. There are
a few possible cases that the stage is functioning: Unit 1 is active;
Unit 2 is active while unit 1 has failed; Unit 3 is active while unit
1 and 2 have failed. It is obvious that whether a case happens de-
pends only on the existence of the unit that is active in it, and
the probability for a possible case to take place depends on the
availabilities of that particular unit and all the potential units with
higher priorities. Thus, we have the following linear constraints to
describe the availability of a stage with 3 identical parallel units:

Ay =pizin + (1= ppiziz + (1= p1)?pizis

which can be easily generalized to Constraint (3).
n;

Ai=piy zi (1-p)™~",  Vielgen (3)
r=1

Here, p; denotes the availability of single unit in stage i with iden-

tical parallel units. The availability of each stage (A;) is defined
by the selection of potential back-up units, therefore, it can be
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Fig. 3. Sample diagram for different kinds of processing stages in process network.

regarded as decision-dependent endogenous uncertainty. The to-
tal cost of each stage with identical parallel units is then given by
Constraint (4), which is the summation of fixed cost, variable cost
and repair cost. It should be noted that, to deal with the bilinear
terms arisen from d; x z; ,, we can use exact linearization.

n;
6= (4" xdi+ ) zip, Vielien (4)

r=1

For the stages with non-identical potential parallel units (i € Inon),
the non-identical parallel units have the same capacities, but are
distinct in terms of availability and cost.

The availability of a stage with non-identical parallel units
(i € Inon) is represented by subtracting the probabilities of all un-
available cases, as shown in Constraint (5). p;, denotes the avail-
ability of single unit r in stage i with non-identical parallel units.
The availability of each stage (A;) depends on the number of in-
stalled parallel units and their respective availabilities.

n;
Ai=1- l_[ (1- ﬁi.rzi,r)’ Vi € Inon (5)

r=1

The total cost of each stage with non-identical parallel units is
given by Constraint (6).

n;
=z (6 4+ &3 x d + &%), Vi € lnon (6)
r=1

Finally, the availability of the whole system (Asys) is calculated
from the product of the availability of each stage (A;), as shown
in Constraint (7).

[T A (7)

i€lidenUlnon

Asys =

If the processing stage is not selected in the superstructure, the
availability of the stage is set to 1, which will not affect the sys-
tem availability. Otherwise, the availability of the stage is calcu-
lated from Simple Bayes Rules and contributes to the system avail-
ability. In addition, Y; is set to be true when the processing unit is
outside the disjunctions, which means the unit is sure to exist in
the flowsheet without process alternatives.

The objective function is to minimize the total annualized cost
(TAC) of the system, including the annualized capital expenditure
in the first stage and the expected operating expenditure and rev-
enue over all the scenarios in the second stage, by optimizing the
flowsheet topology, equipment sizes, installation of potential par-
allel units and operating conditions in different scenarios. The ex-

pected revenue and operating cost are proportional to the avail-
ability of the whole system.
min  TAC= )" ¢;+Asys y_ Wsf(Xs) (8)
i s

Y, dizirXs
4. Solution method

When systematic superstructure-based synthesis approaches
are applied to conceptual design, this generally translates to dif-
ficult mathematical programming problems with non-convex, non-
linear variable relationships. One of the most challenging charac-
teristics of flowsheet synthesis problems for modern optimization
solvers arises from “zero flow” singularities, which occur when su-
perstructure units are absent from the flowsheet. These singulari-
ties can arise from multi-component material balances and phys-
ical property calculations in disappearing units, degrading the ro-
bustness of solution algorithms. When performance equations for
these disappearing nodes (or deactivated process units) include
some nonlinear functions like log(x), x°6, or % the convergence
of nonlinear solvers may suffer as a flow variable x approaches
zero. The absence of flow also creates a singularity that results
in degeneracy in variables that become irrelevant, such as com-
ponent concentrations. Any value of the concentration is valid in
the context of a solution due to the zero flow. However, these de-
generate variables may participate nonlinearly in expressions that
become poorly conditioned for certain variable values. The “zero-
flow” numerical difficulties always exist in the chemical flowsheet
synthesis problems, leading to a great barrier to most of the full-
space MINLP solution algorithms that cannot eliminate constraints
of non-existing process units.

The GDP formulation not only offers an intuitive way to express
the logical-OR (disjunctive) relationships between different process
alternatives, but also provides access to a variety of powerful logic-
based decomposition algorithms that allow the robust solution of
nonlinear subproblems in reduced space to avoid the zero-flow nu-
merical difficulties. The core of the LOA algorithm lies in exploit-
ing the logical structure of a GDP model to decompose its solution
into a sequence of master problems and subproblems for specific
flowsheets, based on the evaluation and optimization of the full
nonlinear descriptions for each logical realization. In the case of
problem (P1) the subproblems correspond to MINLP subproblems
that optimize the binary variables z; . for determining the number
of redundant units to optimize the availability.

Note that by incorporating the reliability model into the flow-
sheet superstructure optimization, the binary variables z; . are in-
troduced to represent the selection of parallel units. Our model
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Fig. 4. Improved logic-based outer approximation algorithm flow diagram for process synthesis considering reliability.

becomes a hybrid GDP formulation with implicit “nested disjunc-
tions”, which not only contains the Boolean variables to select the
process alternatives, but also includes binary variables to select the
redundant units for improving reliability. The improved LOA algo-
rithm for the resulting hybrid GDP model is to handle only logi-
cal realizations (Boolean variables) in the master problem, and to
solve an MINLP model as the reduced space subproblem. That is,
in the master problem, we still solve the linear approximation to
determine a new candidate flowsheet topology (the existence of
certain processing stage), but the reduced space subproblem be-
comes an MINLP subproblem rather than an NLP subproblem as
in the original algorithm. The reduced space MINLP model cor-
responding to only the selected candidate flowsheet, will provide
optimal equipment sizes, operating conditions, selections of par-
allel units and objective value. Moreover, when both endogenous
and exogenous uncertainties are considered for process synthesis,
the reliability model and stochastic programming are combined,
which increases the difficulty of solving the problem. The deter-
ministic equivalent form of the two-stage stochastic program is
used to solve the MINLP subproblems in the solution strategy. The
improved logic-based outer approximation algorithm flow diagram
for process synthesis problems considering reliability is described
as follows and is presented in Fig. 4.

The major steps of the improved LOA algorithm (Turkay and
Grossmann, 1986; Chen and Grossmann, 2019) to solve nonlinear
GDP model in (P1) are as follows (See Fig. 4):

Step 1: Solve a set of MINLP subproblems to optimize different
flowsheets and their parallel units in order to cover all the units in
the superstructure to generate initial linearizations for the nonlin-
ear functions in the GDP.

Step 2: Reformulate the linear GDP model into an MILP master
problem through Big-M (BM) or Hull Relaxation (HR).

Step 3: Solve the MILP master problem, which yields a lower
bound on the overall (minimization) problem as well as a proposed
choice of the discrete variables (a candidate logical realization).

Step 4: Fix the Boolean variables in the disjunctions to the can-
didate logical realization calculated from the MILP master problem
to obtain a reduced space MINLP subproblem.

Step 5: Solve the MINLP subproblem, which yields an upper
bound on the overall (minimization) problem as well as the num-
ber of redundant units and optimal continuous variable values of
the corresponding flowsheet. The solution is then used to generate
an outer approximation (OA) cut.

Since the goal is to minimize the objective function, solutions
obtained from the MILP master problem provide a lower bound on
the remaining feasible logical realizations at each iteration (as we
outer approximate the feasible region). The best feasible solution
to the reduced space MINLP subproblems yields an upper bound
on the objective value. Termination of the algorithm takes place
when the lower bound at an iteration converges to or crosses over
the upper bound, indicating that we cannot find a better solution
from the set of remaining unexplored logical realizations. An infea-
sible master problem implies that no logical realizations remain to
be explored, equivalent to a lower bound of positive infinity. Con-

vergence of LOA is checked between the master problem and re-
duced space subproblem solutions.

The advanced computational tool GDPopt (Chen and Gross-
mann, 2019), provides various implementations for solving GDP
problems, including the LOA algorithm. As an open-source plat-
form, it incorporates recent innovations in reformulation strategies
and logic-based solution algorithms, which can be used as a basis
of solution platform for GDP models.

5. Application to process synthesis problems
5.1. Methanol synthesis

5.1.1. Case study definition

The proposed modeling methodology and solution strategy have
been applied in this section to a conceptual design problem -
methanol synthesis process. The methanol synthesis process was
formulated and solved as an MINLP model by Tiirkay and Gross-
mann (1996) without reliability and exogenous uncertainty con-
siderations. The detailed model equations for this problem can be
found in Chen and Grossmann (2019). Based on the analysis of
the flowsheet superstructure, the methanol synthesis model can be
converted to a hybrid GDP model with four explicit disjunctions
to choose the process alternatives and several implicit “nested dis-
junctions” to consider the potential parallel units. Our goal is to se-
lect the optimal equipment configuration and operating conditions
(temperatures, pressures, flows, and compositions) to convert syn-
gas to methanol, with both market uncertainties and plant avail-
ability taken into consideration.

The four major structural choices in the methanol synthesis
process include the discrete decisions between two candidate syn-
gas feeds with different purity and cost, single-stage or two-stage
compression for both the feed and recycle streams, as well as
the choice between a higher-conversion, higher-cost reactor and a
cheaper alternative with lower conversion. In order to incorporate
the availability evaluation into the flowsheet superstructure opti-
mization, several potential parallel units are assigned to each crit-
ical equipment, such as compressors, heat exchangers and valves.
The superstructure of methanol synthesis problem with reliability
consideration is shown in Fig. 5. The objective is to maximize the
total annualized profit for the methanol production, involving ex-
pected revenue from the methanol sales, fuel credit for the purge
stream, purchase costs from the syngas feed, utility costs for the
heaters and coolers, electricity costs for the compressors, and an-
nualized capital costs for equipment purchases.

The synthesis of the methanol process can be formulated as
a two-stage stochastic programming problem to account for the
exogenous uncertainties (Fig. 6). In the first stage the flowsheet
topology and equipment configuration are selected, and in the sec-
ond stage the process network operation is carried out accord-
ing to the realization of uncertain parameters. In the two-stage
stochastic programming, the first-stage decisions are design vari-
ables, including the Boolean variables to determine the feed selec-
tion, reactor selection, single-stage compression or two-stage com-
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Fig. 5. Superstructure of methanol synthesis problem with reliability consideration.

pression selection, binary variables to choose the potential par-
allel units and continuous variables to represent the design ca-
pacity of each unit, which are related to the capital expenditure;
the second-stage decisions are the operational decisions, involving
flowrates, temperatures, pressures, and utility requirements, which
account for the operating cost. The uncertain methanol product de-
mand and the fluctuating electricity prices are regarded as the ex-
ogenous uncertainties. Each of them is modeled with 3 scenarios
(low, medium, high demand or price) with a given discrete prob-
ability distribution, based on the historical data from the chang-
ing markets. Therefore, the two-stage stochastic programming has
a total of 9 scenarios. When considering reliability, some critical
units are given with fixed failure rates and parallel units are in-
stalled in these stages, the availability of the processing stage can
be regarded as endogenous uncertainty. The failure of any one of
these processing stages can result in the failure of the entire sys-
tem, which will compromise its ability to meet customer demands
and has a direct influence on the profit. The availability evaluation
model is integrated within the flowsheet superstructure optimiza-
tion to account for the endogenous uncertainty.

5.1.2. Results

To illustrate the advantages of the proposed modeling method,
we compare the solution results from three different models: the
deterministic model with exogenous uncertainties evaluated at
their mean values, the stochastic programming model with 9 sce-
narios to only account for exogenous uncertainties, and our pro-
posed model (P1) which integrates reliability and uncertainty to
handle both exogenous and endogenous uncertainties simultane-
ously. Table 1 presents the comparison of model statistics and so-
lution results for these three models. The first two models are

standard GDP models with four disjunctions for structural choices.
The last model is a hybrid GDP model (P1), which not only con-
tains the Boolean variables to select the process alternatives, but
also introduces the binary variables to select the parallel units for
each critical stage. All of the three models are coded in Pyomo and
solved with the LOA algorithm implemented in the GDPopt solver.
All computational experiments are carried out on a PC with an In-
tel Core i7-6700 CPU at 2.60 GHz and 8.0 GB RAM. As aforemen-
tioned, the improved LOA algorithm(Chen et al.,, 2021a) involves
iterative solution of the MILP master problem and the MINLP sub-
problem. In the first two standard GDP models, the MILP master
problems are solved with GUROBI and the NLP subproblems are
solved with CONOPT 4. For the proposed hybrid GDP model (P1)
to integrate reliability and uncertainty, DICOPT is used to solve the
MINLP subproblems due to the introduction of binary variables for
reliability consideration.

In order to compare and analyze these models more scientifi-
cally, the value of stochastic solution (VSS) is calculated to evaluate
the profit that can be expected from implementing the stochastic
solution instead of simply using the deterministic solution. Here,
the VSS and relative VSS are defined in Eq. (9) and Eq. (10) respec-
tively.

VSS = Profit* — Profitde 9)

Profits®® — Profitdet
Profitdet
where Profit®® is the total annualized profit calculated from the
two-stage stochastic programming with the consideration of ex-
ogenous uncertainties. Profitdet js obtained by solving the same

stochastic problem with the first-stage variables fixed to the val-
ues at the optimal solution of the deterministic approach. That

VSS = (10)
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Fig. 6. Two-stage representation of design- and operational-level decisions in the stochastic programming.

Table 1
Results for different models in methanol synthesis process.

Model # of Cons # of Cont. Vars  # of Bin. Vars # of Strategy and Solution Time System Objective Profit
Disjunctions Solver (s) Availability (k$/yr)
Deterministic 474 307 0 4 LOA 35.2 0.9318 2009.16
Model MILP-GUROBI
NLP-CONOPT 4
Stochastic 3986 2491 0 4 LOA 322.8 0.9318 2156.04
Programming MILP-GUROBI
NLP-CONOPT 4
Integrate 4306 2537 50 4 LOA 446.1 0.9646 2174.96
Reliability and MILP-GUROBI
Uncertainty MINLP-DICOPT
VSS (k$/yr) 146.88 VSS (%) 7.31%
VSS+VRS (k$/yr) 165.80 VSS + VRS (%) 8.25%
means the flowsheet structure and equipment configuration ob- reference to the VSS and relative VSS.
tained from the deterministic model is also evaluated in the chang- VRS = Profit™! _ Profitdet (11)

ing exogenous environment. VSS represents the annualized added
value gained from the stochastic solution compared to the deter-
ministic solution. Similar to the VSS, we also define the value of
reliable solution (VRS) to assess the real benefits from implement-
ing the reliability-based design optimization model and indicate
the significance of accounting for endogenous uncertainty. That is,
the optimal solution of the deterministic model should be evalu-
ated with units given fixed inherent failure rates, but without the
installation of parallel units to improve their availabilities. Here,
the VRS and relative VRS are defined in Eq. (9) and Eq. (10) with

Profitrell — Profitdet
Profitdet

VRS expresses the extra profit that can be expected from imple-
menting the reliability-based design optimization model which in-
corporates into the superstructure optimization compared with the
solution from deterministic model without reliability considera-
tion.

Comparing the results between the deterministic model and
stochastic programming model, it can be seen that the stochas-

VRS = (12)
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Fig. 8. Optimal design of methanol synthesis process from the deterministic model.

tic programming model to consider exogenous uncertainties shows
better economic performance, with an increase of 7.31% in the
total annualized profit. Significant VSS can be observed between
the deterministic and stochastic solutions and the annualized ad-
ditional profit of $146,880 can be achieved when implementing
the stochastic optimization. It is because the stochastic program-
ming model allows the first stage decision to be made considering
the realization of different demand and price scenarios and effi-
ciently improve the operational flexibility. The multi-scenario op-
eration strategy can respond to the changing markets and greatly
reduce the expected operating expenditure.

Moreover, as reported in Table 1, the model that integrates
reliability and uncertainty yields the best economic performance
compared to the cases when either reliability is not considered,
or when exogenous uncertainties are evaluated with mean val-
ues. The system availability is increased from 0.9381 to 0.9646 by
adding parallel units, while the total annualized profit is increased

by 8.25% with improved operational flexibility and reliability com-
pared to the deterministic model.

Comparison of the total annualized profit for the three different
optimization models in terms of VSS and VRS is given in Fig. 7.
The orange portion represents the VSS, which means the extra
profit that can be gained from implementing stochastic program-
ming to consider exogenous uncertainties. The gray portion in the
bar chart indicates the VRS, which means the extra benefit ob-
tained from reliability-based design optimization model to account
for endogenous uncertainties. The summation of the VSS and VRS
means the annualized extra profit of $165,800 is expected to be
achieved when considering both exogenous and endogenous un-
certainties in the methanol process synthesis problem.

The optimal designs obtained from these three models are pre-
sented in Fig. 8, 9 and 10 . The design capacity in these figures
represents the largest power of each compressor and the largest
heat duty of each heat exchanger.
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It is interesting to note that the deterministic model and
stochastic programming model have selected the same flowsheet
structure, but differ in the design capacity of each unit. The dif-
ferences in the design capacity make the stochastic model have
a higher degree of operational flexibility, which can promptly re-
spond to different utility price and demand scenarios and reduce
the operating cost. When considering reliability, the valve and the
single-stage compressor in the recycle stream both have back-
up equipment in order to maximize the total annualized profit
through the optimal trade-off between the capital cost and sys-
tem availability. Although the model that integrates reliability (en-

10

dogenous uncertainty) and exogenous uncertainty has the highest
investment cost, with improved operational flexibility and system
availability, its operating cost has been greatly reduced, thereby
yielding the highest total annualized profit.

5.2. Hydrodealkylation of totuene (HDA)

5.2.1. Case study definition

In this section, another conceptual design case study is pre-
sented to show the benefit from incorporating both exogenous un-
certainties and endogenous uncertainties into the flowsheet super-
structure optimization. The large-scale process synthesis problem
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of hydrodealkylation of toluene (HDA) process to produce ben-
zene was formulated as an MINLP model by Kocis and Gross-
mann (1989) without reliability and exogenous uncertainty consid- —ymethane purge
erations. The superstructure of this problem is shown in Fig. 11. ymethane purge use membrane 2 (P2.3)
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To apply the availability evaluation, several candidate paral-
lel units are assigned to each critical equipment with reliability

ytoluene flash consideration, such as compressors, heat exchangers, pumps and

use heater 3 valves. The equivalent reliability superstructure has 19 potential

use valve 2 stages, with each of them having 3 potential parallel units given

Jout use flash ?m fixed failure rates. Exogenous uncertainties are also considered in
benzene column — heater 3 the model, the fluctuating electricity prices and uncertain ben-
benzene column = Pheater 3 zene demands are modeled with 3 scenarios (low, medium, high
Feoene column =0 ] price or demand) respectively with certain discrete probability dis-

(P2.6) tribution. The objective function is to maximize the total annual-

12
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Table 2
Results for different models in the HDA process.

# of Strategy and Solution Time System Objective Profit

Model # of Cons # of Cont. Vars  # of Bin. Vars Disjunctions Solver (s) Availability (k$/yr)
Deterministic 728 709 0 6 LOA 180.76 0.8253 4975.27
Model

MILP-GUROBI

NLP-CONOPT 4
Stochastic 2194 2110 0 6 LOA 385.52 0.8253 5194.52
Programming

MILP-GUROBI

NLP-CONOPT 4
Integrate 2296 2252 57 6 LOA 465.34 0.9993 5782.56
Reliability and
Uncertainty

MILP-GUROBI

MINLP-DICOPT
VSS (k$/yr) 219.25 VSS (%) 4.41%
VSS+VRS 807.29 VSS + VRS (%) 16.2%
(k$/yr)

ized profit, which is given as the difference between annualized
revenue and annualized cost. Revenue involves the expected sales
of benzene (main product), diphenyl (by-product) and fuel values
from purge streams. Costs include the expected raw material costs,
utility costs (electricity, steam, cooling water) and the investment
costs for equipment and its parallel units. In the two-stage stochas-
tic programming, the first-stages contains the selection of different
process alternatives, the design capacity for each unit and the in-
stallation of parallel units. The second-stage variables are opera-
tional variables, which can be adjusted to different scenarios.

5.2.2. Results
Table 2 and Fig. 12 show the comparison of model statistics and
solution results for the three models: 1) the deterministic model
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with exogenous uncertainties evaluated at their mean values, 2)
the stochastic programming model with 9 scenarios to account for
exogenous uncertainties, and 3) the proposed model (P1) which in-
tegrates reliability and exogenous uncertainties. The improved LOA
algorithm is applied to solve these three models, where GUROBI
is used to solve the MILP master problems, CONOPT 4 is used to
solve the NLP subproblems and DICOPT is used to solve the MINLP
subproblems when considering reliability. The VSS and VRS are cal-
culated to evaluate the extra profit that can be expected from im-
plementing the stochastic programming or reliability-based design
optimization model instead of simply using the deterministic solu-
tion.

It can be observed that model (P1) in 3) which integrates relia-
bility and exogenous uncertainties yields the highest total annual-
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Fig. 15. Optimal design of HDA process from the integrating reliability and uncertainty model (P1).

ized profit, with an increase of 11.79% compared to the stochastic
model without reliability consideration in terms of VRS, and an in-
crease of 16.2% compared to the case with deterministic solutions
in terms of VSS and VRS. It is interesting to note that, although
model 3) has the highest investment cost, due to its improved
operational flexibility and reliability, the operating cost has been
greatly reduced, thereby obtaining the highest economic profit.

When considering reliability, the system availability increases
from 0.8253 to a significantly high value 0.9993 by adding parallel
back-up units. The endogenous uncertainty plays an important part
in the profit, because a penalty cost is imposed for not meeting the
product demand due to the system failure.

Figs. 13-15 present the optimal designs of the corresponding
process flowsheets obtained from these three models.

6. Conclusions

In this paper we have addressed the optimal synthesis of pro-
cess flowsheets that leads to flexible and reliable systems capable
of meeting product demand and process energy requirements un-
der various uncertainties (e.g. varying prices, demands, or equip-
ment failures). More specifically, in this paper, we have proposed a
two-stage stochastic programming GDP model with reliability con-
straints to deal with both the exogenous and endogenous uncer-
tainties in process synthesis, where the reliability model is incor-
porated into the flowsheet superstructure optimization. We tackle
the exogenous uncertainties through the two-stage stochastic pro-
gramming, and account for the endogenous uncertainties by the
reliability-based design optimization model, to select the optimal
flowsheet topology, equipment sizes and operating conditions, as
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well as the installation of parallel redundant units in process syn-
thesis. An improved LOA algorithm was developed to solve the hy-
brid GDP model with implicit nested disjunctions, obtaining op-
timal solutions by avoiding zero-flow numerical difficulties. The
quantification of the value of stochastic solution (VSS) and the
value of reliable solution (VRS) were used as the key measures
for assessing the real benefits of the stochastic programming and
reliability-based design optimization compared with the determin-
istic model. Simultaneous optimization of reliability (endogenous
uncertainty) and exogenous uncertainty in process design pro-
vides potential improvement for operational flexibility and eco-
nomic performance as shown in both the methanol synthesis and
hydrodealkylation of toluene case studies.

The case studies reported in this work only have a limited
number of scenarios to account for the exogenous uncertainties.
In general, stochastic programming models may give rise to large-
scale scenario trees. In such a case solving the deterministic equiv-
alent form of the two-stage stochastic program directly can be
prohibitive because the computational time can grow exponen-
tially with the number of scenarios. Moreover, chemical engineer-
ing applications often involve significant nonlinearities, such as the
mass balance equations for the splitters and mixers in a flow-
sheet, the MESH equations in distillation column design and the
Arrhenius equations in reactor modeling. Therefore, solving large-
scale stochastic programming process synthesis problems requires
effective decomposition algorithms to reduce the computational
effort (e.g. see recent review by Li and Grossmann, 2021). Gen-
eralized Benders decomposition (GBD) combined with logic-based
outer approximation algorithm could be an interesting approach to
explore in the future.
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