Using Polygonal Data Clusters to Investigate LIME

!Jesse He, 2Subhasish Mazumdar
"The Ohio State University Columbus, Ohio, USA
’Department of Computer Science and Engineering
New Mexico Institute of Mining and Technology Socorro
New Mexico, USA

Abstract

While machine learning classifier models become more
widely adopted, opaque “black-box” models remain mostly
inscrutable for a variety of reasons. Since their applications
increasingly involve decisions impacting the lives of humans,
there is increasing demand that their predictions be
understandable to humans. Of particular interest in
eXplainable Al (XAl) is the interpretability of explanations, i.e.,
that a model’s prediction should be understandable in terms of
the input features. One pop-ular approach is LIME, which
offers a model-agnostic frameworkfor explaining any classifier.
However, questions remain about the limitations and
vulnerabilities of such post-hoc explainers. We have built a tool
for generating synthetic tabular data sets which enables us to
probe the explanation system opportunistically based on its
architecture. In this paper, we report on our success in
revealing a scenario where LIME’s explanation violates local
faithfulness.

1. Introduction

The increasing success of machine learning in analyzing data
and the rising potential for its applications in diverseareas
has made the necessity for understandable explanations of
machine learning predictions readily apparent. However, while
these models have displayed impressive classification
accuracy, the reasons for their predictions remain inscrutable in
many cases. As these models are increasingly being deployed
to inform decisions impacting the careers, lives, and freedom
of people, there is an urgent need for explanation frameworks.
Each of the models used need to be interpretable; their results
need to be explained in terms of their inputs. Researchers have
started to address this need [7, 9, 10] and offer explanation
frameworks, but this in turn raises concerns about the limi-
tations of such frameworks. Towards that end, we have built
and deployed a tool for generating synthetic tabular data sets.

Our insight is that a key tool in evaluating such explanations,
and in machine learning more generally, is the ability to
generate synthetic data sets that we can intuitively grasp and
that enables visualization. The family of classificationproblems
we have chosen contain n-dimensional data for which the
boundaries of identifying classes can be described
geometrically using polyhedrons, with an emphasis on the 2-
dimensional case. Below, we will use the term “polygonal
cluster” to refer to such a class of data points which is definable
with a polygonal boundary, and the term “polygonalclustering”
to refer to the task of classifying such data. Wewill also
allow éi ﬁlonal luster to hav % a certam fract1onof outliers

-202 and j-
which” Y0 s1de e po ygona Hd’ary This presents an

interesting class of classification problems that currently lacks
a robust synthetic data tool.

There are a number of efforts in the realm of explainable
Al, particularly regarding “opaque” or “black-box” models [2].
One popular approach is the use of Local Interpretable Model-
agnostic Explanation (LIME) [9], which attempts to identify
the contribution of individual features towards a classifier’s
prediction by observing the behavior of the classifier around
perturbations of the original data point. An intuitive illustration
from Ribeiro, Singh, and Guestrin [9] is given in Figure 1.

e

. n
®ope

—
—
-~ ___:b

Figure 1. I1lustration to build intuition for LIME
Ribeiro, Singh, and Guestrin [9]

The black-box model’s prediction for the red cross is based
ona complex decision boundary, illustrated by the blue/pink
background. LIME samples nearby instances, gets the model’s
predictions, and attempts to create an explanation that is locally
faithful.

LIME has seen adoption in image and text analysis, but
its application to tabular data has certain limitations. Different
methods of perturbing or identifying a local neighborhood for
a data point can create different explanations for the same
classifier on the same dataset [3]. Because of the prevalence
of tabular data in machine learning applications, it is important
to investigate LIME’s ability to explain tabular classification
models.

We are interested in data which can be described with a
polygonal model, which attempts to create a suitable polygon
to represent the shape of a data cluster, often employed with
spatial data [1]. Of particular interest are clusters bound by
polygons which are non-convex, since convex hulls can create
large empty areas that do not tightly fit the structure of a cluster.
Although sample datasets exist that can be used for such
prob ems, there is no_robust way to randomly genera7te and

cuslfglrﬁpz%dl%)é’vslzn(f RRnigs pglygonal clusters.

10

a5

0.0

05 10

Figure 2. Three uniform balanced polygonal clusters.

overlap = 0.76

overlap = 0.0 overlap = 0.346
20 1
15 4
10 - ‘J P
o5 = N
\
_1 D 4

|
LS]
|
—
(=]
=
L¥]
|
N
|
b

Figure 3. Dataset from Figure 2 with clusters shifted to create different overlaps. From left to right: dataset with no overlap, original dataset, dataset with

high overlap.

In this paper, we describe a software tool which uses a simple
but effective method of generating such classification
problems, and we demonstrate its utility in investigating the
behavior of LIME on a black box classifier by producing
examples where LIME’s explanations fail to be locally faithful
to the classifier’s behavior.

In the next section of this paper, we review related work.
Next, we outline our scheme for synthetic data generation. In
the following section, we show how a problematic behavior
of LIME is revealed by our approach. Finally, we offer
concluding remarks.

2. Related Work

Given any classifier and a set of inputs along with their
classifications, LIME [9] takes a sample and creates a lin-
ear approximation of the classifier’s decision boundary in its
neighborhood by repeatedly perturbing the sample and
checking the classifier’s decision on the perturbed input. Such
perturbation-based methods are popular for post-hoc expla-
nation [2], which provides data scientists with insight, and
consequently, a powerful tool that enables comparison among

Copyright © IICE-2021 and i-Society 2021

machine learning models. Accuracy notwithstanding, a model
that relies on features that are relevant to humans is viewed as
trustworthy, while one that relies on accidentally correlated
features is considered dangerous, even when both display
statistically equivalent accuracy. In addition, such post-hoc
explanations can potentially uncover bias that could be implicit
in classifiers. Lundberg and Lee’s SHAP [7], which stands
for SHapley Additive ExPlanations, computes an importance
metric for each feature for a given prediction. Their technique
is to consider all relevant subsets of features that contain a given
feature to assess its contribution.

However, Slack et al. [11] demonstrated that such explainers
can themselves be fooled. They demonstrated a scenario in
which an adversarial entity could demonstrate an explanation
of their choosing, for example, an explanation that lets a biased
classifier go undetected. With their scaffolding technique, they
could scaffold a biased classifier such that the latter would
continue to churn out biased classifications without such bias
being detected in the post-hoc explanations. In addition, they
were able to show that both LIME and SHAP were vulnerable
to their scheme.

Published by Infonomics Society 128

10 1

0.8 1

0.6 1

04 1

0.2 4

0.0 1

10

o8

o0&

04

02

0.0
0.0 0.2 0.4 0.6 08 10

Figure 4. A classification problem featuring a “V”-like polygon with sample points Q1 = (0.5, 0.5), Q2 = (.43, .62), Q3 = (.59, .81) (left), the classifier’s

decision function (right).

Inside

Outside

Prediction probabilities Feature Value
_ 0.50 < x <=0.75
Inside 007 X 0.50
ousc s o=
Prediction probabilities Inside Outside Feature Value
0.26 <x<=0.50
Inside 0_031 x 043
- 0.50 <y <=0.76
outside [N d.57 ik y 062
Prediction probabilities Inside Outside Feature Value
0.50 <x<=0.75
Inside 0.061 x 059
: v > 0.76
ousice. [0 55 T

Figure 5. LIME’s explanations at Qi, Q2, and Qs.

Other synthetic data generation software includes the
datasets module of the scikit-learn Python library [8], which
provides a number of methods to generate synthetic machine
learning problems. The use of polygonal models for data
mining is investigated by [1], demonstrating the utility of a
synthetic data generation tool which can create tabular data sets
for which polygonal models are well-suited.

3. Generating Clusters with Polygonal
Boundaries

We can specify an n-gon p as an ordered list p = (v1,
v2,...,Uy) of its vertices, which we generate using a star-like
approach: given a specified or randomly generated “cen- ter”
we draw a radius r uniformly at random from some range [I'm,
ru), where 0 <r,< ry, and an angle 0 uniformlyat random
from [0, 271), giving us the polar coordinates for each vertex. To
ensure that the polygon contains the central point about which
it is generated, we check that no consecutive

Copyright © IICE-2021 and i-Society 2021

angles 61, 62 have a difference of more than 7 radians counter-
clockwise. We then connect these vertices counter-clockwise to
produce the polygon. Once we have created a polygon p,we
use rejection sampling to generate points that lie inside p. Of
course, p need not be generated randomly by the above process;
the user may specify a polygon by enumerating its vertices.

Our software uses Matplotlib’s path library [6] to represent
polygonal paths and test if a polygon contains a given point.
This also allows for easy visualization in plots made using
Matplotlib and for integration with other Python libraries,
including efficient vectorized operations with NumPy [S]. An
example is shown in Figure 2.

A. Controlling Overlap

One additional task in generating new classification prob-
lems is to customize the difficulty of the problem. The primary
way we achieve this is by moving polygonal clusters closer or
farther away from each other, and in particular manipulating

Published by Infonomics Society 129

-15 -10 -05 00 05 10 15 20 25

Figure 6. A binary polygonal classification problem. A plot of the dataset and polygons (left) next to the classifier’s decision boundary (right) with marked

points Q1 = (=0.6, 0), Q2 = (-0.38, -0.9), and Qs = (-0.22, 0).

pl

Prediction probabilities

-0.70 =y <=0.10
pl 030
P2 S

Prediction probabilities

p1
P2

Prediction probabilities

-0.70 <y <=0.10

p1 —j
<x<=0.35

p2 foon

p< Feature Value
y 0.00
X -0.60

Feature Value
y -0.90
X -0.38

p< Feature Value
y 0.00
x| 022

Figure 7. LIME’s explanations for the classifier’s predictions at these points.

the overlap between clusters. Given a set X € R? of points
and regions P1, P2 bounded by polygons p1 and p2,
respectively, we define the overlap between these clusters by

XNnP NP
overlap(X, py, pa) = oL el
| X
For problems with more than two polygons, we extend this
definition by counting the number of points of X that lie in
the intersection of any two polygons:

v~ {h o o
|4 M (Urici<e (BN 55))|
5'¢l)

1>

overlap(X, p1,...,pk) =

Then shifting clusters gives us control over the overlap of a
classification problem, as seen in Figure 3. The method by
which we control the overlap is given in Appendix A. By
manipulating the overlap of our polygonal point sets, we can
effectively scale the difficulty of the classification problem:
When there is no overlap, a simple linear model may suffice

Copyright © IICE-2021 and i-Society 2021

to accurately classify new test points. Introducing overlap
between clusters can give us insight into how classifiers create
their decision boundaries in the presence of ambiguous data.

4. Explaining Classifier Behavior on
Polygonal Clusters

We first demonstrate the use of polygonal boundaries to
specify challenging classification problems by creating a poly-
gon p = ((.5,0), (7,), (:5,.2), (.3, 1), (.5, 0)) and training an
off-the-shelf multilayer perceptron (MLP) classifier to classify
points as inside or outside it. We then select predictions in
challenging areas and ask LIME to explain these predictions.

As we can see in Figure 4, the inner triangle which is in the
convex hull of p but not within its boundaries is challenging for
LIME to explain. Because LIME looks at individual features,
its attempted explanations for the specified points contradicts
the classifier’s prediction: the classifier correctly identifies that
each point lies outside p, but LIME’s explanations suggest that

Published by Infonomics Society 130

each point should be classified as inside the polygon based on
their x values, as seen in Figure 5.

To investigate the efficacy of LIME in evaluating tabular
data in 2 dimensions with the overlap we have defined, we
generate a binary classification problem with two polygonal
clusters pl and p2 whose overlap is between (.1 and 0.2, and
we train an MLP on a subset of the data. We then probe
the classifier’s prediction of a particular point using LIME and
compare it to the classifier’s actual decision function as shown
in Figure 6, with LIME’s explanations in Figure 7.

All three points were chosen to be difficult for the classifier.
Each lies within the boundaries of both pl and p2 but is very
close to the boundary of p2, and this difficulty is reflected when
examining the classifier’s decision function. LIME’s
explanations at Q1 and Q2 reflect the classifier’s uncertainty
at those points, but its behavior at Qs is unintuitive: the MLP
classifies Q3 in p2 with a probability of 0.73, but LIME’s
explanation for this prediction asserts that the x and y values
are both in ranges correlated with pl. This explanation
contradicts the actual prediction of the classifierat Qs,
violating LIME’s local faithfulness.

5. Conclusion and Future Work

The method of generating and manipulating polygonal tab-
ular data we have presented is effective at generating sim-
ple example datasets for clustering problems. The generated
datasets are easily visualized and can be customized to fit
different geometric and statistical structures. Using polygons to
specify the geometric structure allows for customization of
cluster shape, and using overlap allows for customization of the
difficulty of a generated classification problem.

In particular, our simple definition and manipulation of
over- lap for polygonal clustering problems allows us to
demonstratesurprising behavior with LIME. Although overlap
is currently only defined for polygonal clusters in two
dimensions, the def-inition generalizes easily to other polytopes
and a more refinedcomputational approach may allow us to
further investigate thebehavior of LIME.

Future work could continue to develop this method of gen-
erating and manipulating tabular data with more features and
adding more robust support for higher-dimensional polytopes.
In addition, these methods could be used to investigate the
behavior of other post-hoc black-box explainers like SHAP [2],
as well as other classification methods including polygonal
modelling [1] or dimensionality reduction.

Appendix A

Implementation and the Makeoverlap Algorithm

Algorithm 1 and Algorithm 2 contain the pseudocode for
our method of manipulating the overlap of a polygonal clus-
tering problem. Note that the current implementation supports
additional features not described here.

The data generation methods described in this paper and
code for this work can be found at github.com/he-jesse/
polydata. Interface design was based in part on the datasets

Copyright © IICE-2021 and i-Society 2021

Algorithm 1: MakeOverlap
Data: A point set X, a polygon set P, a function
f:X — P, arange (Om, om) of overlap values
Result: A point set X’ and polygon set P/ such that
Om < overlap < om

begin
X —«XP —Psy——1
sy — 1
S~ (Sm +5m)/2
while 0, >overlap(X?, P)) or overlap(X’, P)> om do
if overlap(X', P!) < om then
SM «— S
end
else if overlap(X', P!) > oy then
/* & is a small threshold */
if SMy _ Sm < € then
Sm — Sm+1
end
Sm=S
end
S (Sm+Sm)/2
for x ¢ X7 do
X — x+ s f(x).centroid())
end
for p ¢ P!/ do
p — p+s p.centroid()
end
end
return X', P’
end

Algorithm 2: overlap

Data: A point set X, a polygon set P
Result: The proportion c of overlap
begin
Y 0
for {p1, 2} € P@ do
for x ¢ X do
if p1.contains(x) and p2.contains(x) then
Y—Y U{x}
end
end
end

return |Y |/|X|
en

module of the sci-kit learn project [4] and the implementation
uses a number of well-known Python libraries [5, 6, 8].

Acknowledgment

This work is supported by the National Science Foundation
under grant number CNS-1757945 and was inspired by work

Published by Infonomics Society 131

Slack, D., Hilgard, S., Jia, E., Singh, S., and Lakkaraju, H.
(2020). Fooling LIME and SHAP: Adversarial attacks on
post hoc explanation methods. Proceedings of the AAAI/ACM
Conference on Al, Ethics, and Society, 180—186. https://doi.
6. References org/10.1145/3375627.3375830.

performed by the second author under Subcontract number (Hl
612048 from the Los Alamos National Laboratory.

[1] Akdag, F., Eick, C. F., and Chen, G. (2014). Creating polygon
models for spatial clusters. In T. Andreasen, H. Christiansen, J.-
C. Cubero, and Z. W. Ras’ (Eds.), Foundations of intelligent
systems (pp. 493—499). Springer International Publishing.

[2] Belle, V., and Papantonis, 1. (2021). Principles and practice of
explainable machine learning. Frontiers in Big Data, 4, 39.
https://doi.org/10.3389/fdata.2021.688969. (Access Date: 27July
2021).

[3] Biecek, P., and Burzykowski, T. (2021). Explanatory Model
Analysis. Chapman; Hall/CRC. https://pbiecek.github.io/ema/.
(Access Date: 27 July 2021).

[4] Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A.,
Grisel, O., Niculae, V., Prettenhofer, P., Gramfort, A.,Grobler,
J., Layton, R., VanderPlas, J., Joly, A., Holt, B.,and Varoquaux,
G. (2013). API design for machine learning software: Experiences
from the scikit-learn project. ECMLPKDD Workshop: Languages
for Data Mining and Machine Learning, 108—122.

[S] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R.,
Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S.,
Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.
H., Brett, M., Haldane, A., del R"10, J. F., Wiebe, M., Peterson, P.,
.Oliphant, T. E. (2020). Array programming with NumPy. Nature,
585(7825),357-362. DOI: 10.1038/s41586-020-2649-2.

[6] Hunter, J. D. (2007). Matplotlib: A 2d graphics environment.
Computing in Science and Engineering, 9(3), 90-95. DOI: 10.
1109/MCSE.2007.55.

[7] Lundberg, S., and Lee, S.-I. (2017). A unified approach to
interpreting model predictions. CoRR, abs/1705.07874.
http://arxiv.org/abs/1705.07874. (Access Date: 27 July 2021).

[8] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., and Duchesnay, E. (2011). Scikit- learn: Machine
learning in Python. Journal of Machine Learn-ing Research, 12,
2825-2830.

[9] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “Why Should
I Trust You?”: Explaining the predictions of any classifier.
Proceedings of the 22nd ACM SIGKDD Interna- tional
Conference on Knowledge Discovery and Data Mining, 1135—
1144. https://doi.org/10.1145/2939672.2939778.

[10] Shrikumar, A., Greenside, P., Shcherbina, A., and Kun- daje,
A. (2016). Not just a black box: Learning important features
through propagating activation differences. CoRR,
abs/1605.01713. http://arxiv. org/abs/1605.01713. (Access
Date: 12 September 2021).

Copyright © IICE-2021 and i-Society 2021 Published by Infonomics Society 132

