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te  change  will  reduce  the  potential  distribution  ranges  of
bia’s  most  valuable  pollinators

H.  Gonzaleza,∗, Marlon  E.  Cobosb,  Joanna  Jaramilloc, Rodulfo  Ospinac

uate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS, 66045, USA
y Institute and Ecology and Evolutionary Biology Department, University of Kansas, Lawrence, KS, USA
o de Investigaciones en Abejas, Universidad Nacional de Colombia, Santa Fé de Bogotá, Colombia

l  i g  h  t  s

ecies  have  restricted  distri-
ithin  the  natural  regions  of

a.
f nine  species  would  experi-
uction  in  their  climatically

 areas.
on  of  nests  outside  bees’
nge  needs  to be avoided.

ation  policies  and  monitoring
s are urgently  needed.

g  r  a  p  h  i  c  a  l  a  b  s  t  r  a  c  t

 l  e  i  n  f  o

ry:
 July 2020

0 February 2021
nline 3 March 2021

n
lture
es

ity

a  b  s  t  r  a  c  t

Plants  and  pollinators  might  respond  differently  to  changes  in  climate,  and thus  plant-pollinator  rela-
tionships  are  vulnerable  to spatial,  temporal,  morphological  and  recognition  mismatches.  Although  the
effects  of  climate  change  on  pollinators  and  pollination  services  are  expected  to be  greater  in  the  tropics
than  in  other  latitudes,  these  effects  remain  poorly  documented.  Herein,  we assessed  the  spatial  distri-
bution  of  nine  species  (of five  genera)  of  Colombian  stingless  bees  used  in  meliponiculture  under  present
and  future  climate  scenarios.  Stingless  bees  are  major  pollinators  in  tropical  areas  and  their  use  in  man-
aged  pollination,  to  produce  high-value  honey,  and as recreation  is  increasingly  popular  worldwide.  Our
models  indicate  that  most  species  of stingless  bees  exhibit  restricted  distributions  to ecosystems  within
the  continental  natural  regions  of Colombia.  Using  intermediate  (RCP  4.5)  and  high  (RCP  8.5)  greenhouse
gas  emission  scenarios,  our  models  predict  that  seven  of  the  nine  species  would  experience  a  signifi-
cant  reduction  in  their  climatically  suitable  areas,  and  thus  will  likely  influence  agriculture  and  rural
livelihoods.  These  results  are  critical  to developing  new  conservation  policies  and  climate  adaptation

strategies  that  include  restrictions  in the  relocation  of  colonies,  as  well  as monitoring  programs  that  help
beekeepers  to  shift  to  other  species  in areas  where  our  models  predicted  a  likely  reduction  or  loss  of
habitat  suitability.

©  2021  Published  by  Elsevier  B.V.  on behalf  of  Associação  Brasileira  de  Ciência  Ecológica  e
Conservação. This  is  an open  access  article  under  the  CC  BY-NC-ND  license  (http://creativecommons.
onding author.
ddresses: victorgonzab@gmail.com (V.H. Gonzalez),

@gmail.com (M.E. Cobos), rospinat@unal.edu.co (R. Ospina).
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tion of climatic events, such as rainfall and drought. These
n climate will directly influence livelihoods, food supply,
an infrastructures (IPCC, 2019), as well as the geographical
on of species and their interactions with other organisms
system (e.g., Rodríguez-Castañeda et al., 2017).

te  change will disrupt beneficial, mutualistic relationships
plants and insects, such as pollination. The IPCC (2013)

 that during this century, temperatures will rise between
d 6.4 ◦C worldwide, resulting in mismatches between the
ce time of pollinators and the blooming period of plants,
s latitudinal and elevational shifts in the distribution of
d pollinators (Feehan et al., 2009). Such disruptions in
linator interactions might threaten our food security, as

 of global food production depends on animal pollination
al., 2007).
gh  the magnitude of the impact of climate change will
nding on the location and season, rising temperatures will
ngly affect tropical pollinators than those living at other

. This is because tropical insects are already living close to
um temperature they tolerate, and they have a narrower

olerance than insects at higher latitudes (Deutsch et al.,
us, the effects of climate change on the pollination and

rs of tropical crops will be greater than crops at higher
.
re the most important pollinators for both wild and cul-
lants. Bees play an important role in ecosystem health
t reproduction and, therefore, in general food security.

 more than 20,000 bee species worldwide (Michener,
t stingless bees (Apidae: Meliponini) are perhaps one of

 ecologically, economically, and culturally significant of
. Stingless bees, a group consisting of about 400 species,

lonies and produce honey and wax, similar to honey bees
r, 2007). However, they do not have a stinger and are
tropical and subtropical areas of the world. Stingless bees
r pollinators of many native, introduced, and cultivated
d some species are managed to promote pollination of

rops (e.g., Cauich et al., 2006; Slaa et al., 2006). Indige-
 non-Indigenous populations in many regions of the world
oney, pollen, cerumen, and propolis of numerous species
e purposes, including food, medicine, and crafts. In some
se bee products represent unique or additional sources

e or alternative medicines (e.g., Gonzalez et al., 2018a;
Euán et al., 2018).
other tropical countries, some Colombian farmers and

us people also depend on stingless bees and their prod-
ch are highly valued for their medicinal honey and pollen
rra, 2001; Engel et al., 2019). More than 100 species of

bees occur in all natural regions of Colombia, from sea level
0 m in the Andes (Nates-Parra, 2001; Gonzalez and Engel,
lthough records indicate that about 28% of Colombia’s
bee species are used in beekeeping or meliponiculture
rra and Rosso-Londoño, 2013), the popularity of stingless

ng has increased dramatically in recent years, particularly
ember 2016 with the Peace Accords between the FARC

Armadas Revolucionarias de Colombia or Armed Revolu-
orces of Colombia) and the Colombian government.
nearly 60 years of conflict, Colombia is now facing new
d environmental challenges, such as providing for the
lfare of ex-combatants and displaced peoples, as well as
se in deforestation, illegal mining, and coca plantations

 et al., 2017; Salazar et al., 2018; Suarez et al., 2018). Dur-
ansition to peace, the Colombian government and several
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lleviating practice, as honey represents a readily available
 calories for children and sick people. It also improves food

hile enhancing mental and physical health, and family
unity relationships (e.g., Amulen et al., 2017; Chanthayod

7).
cent popularity of stingless bees in Colombia has resulted
mall-scale stingless bee keeping projects across the coun-
romoted the creation of private companies, and bolstered
marketing, as well as the extraction and relocation of
etimes from outside their native range (V.H. Gonzalez,

obs.). Anthropogenic movement of stingless bee nests
tially negative consequences to local populations and the

f sustainable management practices. Moving nests to loca-
ide bees’ native range with unsuitable habitats might lead
es of colony establishment or total loss, thus wasting per-

 financial efforts, which has already occurred in Colombia
zalez, personal obs.). Additionally, nest movement might
the spread of parasites and pathogens, and might alter
ic structure of both wild and managed populations (e.g.,
l., 2016; Chapman et al., 2018). However, information on
bution ranges of Colombia’s stingless bees is limited.
ttempt to understand the distribution of Colombia’s most

ollinators, as well as to forecast the effects of human-
lobal warming, here we  assess the spatial distribution of
ies of stingless bees that are relevant in meliponiculture
uct analyses under present and future climate scenarios

 to the year 2050. Two  of these species, namely Melipona
riese and Meliponafavosa (Fabricius), are also threatened
nsidered as vulnerable species to extinction (Nates-Parra,

e  discuss the implications of our results to guide on-going
tion efforts as well as the promotion of sustainable pro-
lternatives in the country.

and methods

a

red by the Caribbean Sea to the north and the Pacific
the west, Colombia is one of the hotspots of biodiversity

 its structural complexity, altitudinal gradient, and loca-
rthern South America. Despite being about one-seventh

ea of Brazil and comprising less than 1% of the Earth’s
, Colombia hosts approximately 10% of the Earth’s bio-
(Rangel-Ch and Aguilar, 1995; Myers et al., 2000; Orme
05). The Andes transverse the country from the south-
ortheast and create five distinct natural regions (Amazon,
aribbean, Orinoquia, and Pacific), each characterized by a
f biomes and ecosystems. The Andean is the most species-
n, but it is also the most densely populated. This region
f three mountain ranges or cordilleras (Oriental, Central,
ental) that create multiple isolated inter-Andean valleys,

 large gradients of climatic conditions. The Andean region
land and highland xeric areas, dry and rain forests, and

 forests and grasslands. The Amazon is the second rich-
ographic region of the country and holds about 10% of
on rainforest. The Chocó biogeographic area is a narrow
umid forest along the Pacific coast, and it is consid-

 of the world’s biodiversity hotspots due to the high
endemism of animals and plants (Myers et al., 2000).

 subxerophytic vegetation types dominate the Caribbean

ereas deltaic savannas are predominant in the Orinoquia
th regions are extremely understudied and lack of biolog-
tories for most taxonomic groups (e.g., Rangel-Ch, 2012;
Cuervo et al., 2012; Arbeláez-Cortés, 2013).
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s and occurrence data

uide in the selection of taxa for our analyses, we  used
f stingless bee species used in beekeeping in Colom-
ates-Parra and Rosso-Londoño (2013). First, we  chose
at most people commonly used, as indicated by the high

of hives kept by beekeepers recorded by these authors.
e chose species from different genera to increase the

ic and geographic representation in our study. Third, we
a with a stable taxonomy. For example, more than half of
ged hives recorded by Nates-Parra and Rosso-Londoño

re from Tetragonisca angustula Latreille, a species that
om southern Mexico to Brazil and is composed of sev-
tic, undescribed species. The ‘true’ T. angustula might
cted to Brazil, as it was described from a worker col-

 that country and whose whereabouts are unknown
 and Pedro, 2007). Thus, we did not include this species
alyses. Our last criterion in the selection of taxa was
bility of species-occurrence data. Despite the academic,
d economic interest on stingless bees, the bee fauna

bia remains largely unexplored, taxonomic revisions are
 data for many specimens of most species in Colom-
ctions are not digitized and available in databases. We

data availability by searching for the occurrence of each
ecies listed by Nates-Parra and Rosso-Londoño (2013) in

w.gbif.org), SpeciesLink (http://splink.cria.org.br/), and
bia (https://sibcolombia.net/). Based on these criteria

e selected the following nine species: Frieseomelitta pau-
vancher), Melipona eburnea Friese, M. favosa (Fabricius),
ona gaboi Jaramillo et al., N. melanocera (Schwarz), N.

(Friese), Paratrigona eutaeniata Camargo & Moure, P. opaca
, and Scaura longula Lepeletier. Because no species of
litta Ihering was indicated by Nates-Parra and Rosso-
(2013), we chose F. paupera, one of the most common

f the genus in the country. Another frequently used species
bia is Nannotrigona mellaria (Smith). However, Jaramillo
9) revised the species of this genus and found that most
s in Colombian collections standing under that name

 a new species, which they described as Nannotrigona
millo et al. Thus, we included N. gaboi and excluded N.
rom our analyses. Except for N. gaboi, which is presently
nly from Colombia, all other target species occur through
nd/or South America (Fig. 1).

processing and calibration area

tained species-occurrence data from GBIF and Species-
ich we complemented from Jaramillo et al. (2019) for
f Nannotrigona, and Nates-Parra et al. (1999); Gonzalez and
07), and Fernández et al. (2010) for species of Paratrigona.
cies-occurrence data might have come from specimens

 at flight, at flowers or from either wild colonies or man-
s. Stingless bees are also often captured while collecting
aterials (mud, feces, resins, etc.). However, such a detailed

ion is often absent from specimen labels. Because the spe-
ins of the specimens are often uncertain, we used all
ccurrence data independently of the specimens’ prove-
e senior author checked all occurrence records to prevent
ble errors in georeferencing and taxonomy.
rformed further processes of data cleaning that included
val of occurrences with no coordinates, exclusion of
ith 0, 0 coordinates, and duplicate removal. All data clean-
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 were performed in R 3.5.1 (R Core Team, 2018) following
l. (2018). Finally, to reduce problems derived from spatial
lation, we spatially thinned the data (spatial rarefaction)
nce of 10 km using the spThin package (Aiello-Lammens

and the w
olation fe
curves we
olation (i
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5) in R. Considering the density of available records, reso-
layers, and environmental heterogeneity in mountainous
h as in the Andes, the selected distance avoids excluding
ental conditions in highly heterogeneous areas and helps

 sampling bias. Final sets of occurrences were randomly
 for training and 50% for testing models (Supplementary
e S1).
ironmental data, we  used 15 of the so-called “bioclimatic”

 obtained from the WorldClim database version 1.4 at 2.5′

n (available at www.worldclim.org). Such variables are
rom the interpolation of average monthly temperature
all data (Hijmans et al., 2005). We  removed four variables
g information of temperature and precipitation (BIO8,
18 and BIO19) due to known spatial artefacts (Escobar
4). We  performed principal component analyses with the
g variables to reduce dimensionality and prevent for mul-
rity in our analyses. We  prepared four sets of predictors

 sixth first raster principal components (PCs), including
umber of PCs per set (Supplementary Data, Table S2). All
s were directly included in the process of model calibra-
is has been suggested as an option for optimal selection
es for ecological niche modeling (Cobos et al., 2019c).
ation  area is an important element to consider in ecolog-

 modeling, as it represents a geographic space that has
ssible to the species and is relevant for model calibra-
e et al., 2011). Here we  defined these areas as the zones
in a buffer of 200 km from the occurrence points. This

 was used to avoid including areas that could be inhabited
ecies but do not contain records only because of sampling
rson, 2014). We  also considered that the distance selected
s a good estimation of long-term dispersal potential for

es of interest.

l  niche modeling

odel calibration, we tested a total of 315 Maxent (v 3.4.1;
t al., 2006) candidate models per species. Each calibra-
ess with distinct settings resulted from combinations of
environmental variables, 7 feature classes (all combina-
near = l, quadratic = q, product = p), and 8 regularization
rs (0.1–1 at intervals of 0.3, and 2–5 at intervals of 1). Fea-
es control the way  Maxent treats and uses the variables;
ce, only linear responses of suitability to the variable are

 if linear features are used, whereas convex or concave
s are obtained if combinations of quadratic responses are
inct values of the regularization multiplier help to explore
egrees in which the model is smoothed, which is the way
y is fit to climatic values that are similar to those where the
ccur (Simões et al., 2020). Candidate models were evalu-
d on statistical significance (partial ROC; Peterson et al.,
edictive ability (omission rates, E = 5%; Anderson et al.,
d complexity (Akaike information criterion corrected for
ple sizes, AICc; Warren and Seifert, 2011). We  chose the

meterizations among the significant modes that had the
ission rates (below 5% when possible) and delta AICc
er than 2, in that order.

 species, we  created final models using the complete set
ences and parameterizations selected during model cal-
We  performed 10 replicates by bootstrap, and projected
ls to Colombia in current and future climate scenarios.
ed for extrapolation in our model, differently for each
onsidering the response curves found per each species

ay  Maxent performs projections depending on extrap-

atures selected (Merow et al., 2013). When the response
re or tended to be bell shaped, we  allowed for free extrap-

.e., suitability in conditions outside limits of calibration

http://www.gbif.org
http://splink.cria.org.br/
https://sibcolombia.net/
http://www.worldclim.org
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nhouse Gas (GHG) emissions (IPCC, 2013). We  used three
irculation Models (GCMs) for each scenario to represent
onditions (see Supplementary Data, Table S3 for details on
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d all calibration exercises, as well as finals models and
sfers, using the kuenm R package (Cobos et al., 2019a)

es Maxent as the modeling algorithm.

eling analyses

lculated medians of all replicates of final models to sum-
e results (across all parameterizations when more than

setting was selected). We defined suitable areas as those

itability values above a threshold equivalent to a 5% omis-
entage in the areas of calibration. For each future scenario

 and 8.5), we  identified changes in the suitable areas
current and future projections and represented the agree-
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changes of suitable areas (stable, gain, loss) among the
s used (Cobos et al., 2019b).

tect areas of strict extrapolation (i.e. areas with future
conditions non-analogous to current ones), we  used the
oriented parity metric (MOP; Owens et al., 2013). This
valuates levels of similarity between calibration and pro-
reas and identifies areas of strict extrapolation when

 is zero. We  conducted all post-modeling analyses using
m R package.

ed  parameters settings for final models varied among
upplementary Data, Table S4). Feature classes including

 responses were the most common among the selected
 types. Regularization multipliers used in selected param-
ged from 0.1 to 3.0. For four of the nine species minimum

 rates were right above 0.05 (the maximum expected
 rate), with values of 0.06 or 0.07; for one species the

 omission rate was 0.18 (Supplementary Data, Table
polation types used for model projections, chosen after
ion of predictor response curves, were as follows: free
tion for F. paupera, M.  eburnea, N. gaboi, N. melanocera,
ei, and P. eutaeniata; and extrapolation with clamping for
, P. opaca, and S. longula.

distribution models

tterns of potential distribution varied significantly among
ed stingless bee species. For species recorded from low
evations in the Andean region (F. paupera, M.  eburnea, N.
utaeniata, and P. opaca), the models predicted high suit-

 habitats either across most lowland areas of Colombia
ra, Fig. 2), certain areas (P. opaca) or most areas of the
egion (M. eburnea, N. gaboi, and P. eutaeniata). For species
rrence records in the Amazon and Orinoquia regions (N.

ra, N. schultzei, and S. longula), the models predicted high
y in some areas of those regions as well as lowland habi-
orthwestern Colombia. For M.  favosa, high suitability is

 across lowland areas of the Caribbean regions, as well as
as along the Magdalena and Cauca’s River valleys, Amazon
quia regions.

f potential distribution under climate change scenarios

ossible impacts of climate change on the species distri-
either gain or loss) varied among taxa, with most species

 nine) losing more suitable areas than gaining (Figs. 3–5,
entary Data, Table S5). Under both RCP 4.5 and RCP 8.5,
ls predicted more gains than losses of suitable areas for

 and P. opaca whereas for the remaining species they
 relatively medium (23.4–36.3%) to high losses (>50.0%)
eir areas of occurrence. In particular, M.  eburnea, N. gaboi,
taeniata will experience the greatest losses (47.6–55.9%)
P 4.5, which increases up to 20% under RCP 8.5.
l  species, namely M.  eburnea, M.  favosa, N. schultzei, and S.
ained suitable areas but these were outside of the known
onal range. For example, M.  favosa, a species that primarily
ong the dry forests of the Caribbean region, gained large
.1–71.7%) in the Amazon and Orinoquia regions. Similarly,
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n

nd potential distribution models

 we presented the known and potential distributions
species of stingless bees commonly used in Colom-
iponiculture. Our results show that most species exhibit

 distributions to particular ecosystems or areas within the
al natural regions of the country, even if they are widely
d in the neotropical region. For example, M.  eburnea
rough Bolivia, Peru, Ecuador, and Brazil (Fig. 1, Camargo
, 2007). However, this species appears to be restricted to

an region of Colombia, although records from the Brazil-
on exist. Such restricted distributions within Colombia
hat these species have distinct and specialized ecological
d that, among the diversity of ecosystems of Colombia,

 more suitable than others. The predicted distribution for
cies supports this idea, but it also shows high suitability
utside their known distribution range (Fig. 2).
larly interesting are those species with occurrence

n the Amazon and Orinoquia regions (N. melanocera, N.
and S. longula), for which our models predicted high

y in lowland habitats in northwestern Colombia, on the
e of the Cordillera Oriental. This Cordillera is the longest
st of three mountain ranges that traverse Colombia from
t to northeast, and it intersects with dry Caribbean coastal

 its northern tip (e.g., Rangel-Ch and Aguilar, 1995).
ng that the Andes represents a major barrier for the distri-
d dispersal of many organisms, the presence of these taxa
estern Colombia seems unlikely. However, some taxa

ared to be restricted to the Amazon or Orinoquia regions
ntly been recorded from lowland northwestern Colombia
ent of Antioquia). For example, Melipona titania Gribodo is
o be endemic to the western Amazon (Camargo and Pedro,
t it has been recently found from mid-elevations on the

lopes of the Central Cordillera in Antioquia (D. Guevara &
alez, unpublished observations). Likewise, species from

 taxa that were also presumably restricted to the west-
on, such as the South American leaf-cutter bee Megachile

 Zonomegachile, have recently been found in this area
z et al., 2018b).

 the antiquity of stingless bees and that major diversifica-
e New World occurred about 30–40 Mya (Rasmussen and

, 2010), the presence of these Amazonian taxa in inter-
cosystems in Colombia suggests that they were present
ore the uplifting of the Oriental Cordillera less than 14
Gregory-Wodzicki, 2000). Although recent cross-Andean

 is possible for some taxa, as reported for orchid bees
l., 2004), this seems unlikely for stingless bees because
ot capable of long-distance flights and new colonies are

pendent on the mother nest (e.g., Roubik, 2006). These
orthwestern Colombia are poorly sampled and future sur-
test the predictions by our models. Finally, it is likely that
ently restricted distribution of the species considered in

 might just be a sampling bias. Most collecting effort in
 has been focused on the Andean region, particularly in the
ndes near Bogotá, where major universities and research
re located (Gonzalez and Engel, 2004; Arbeláez-Cortés,
us, our results are useful to plan further sampling efforts
bia.

distribution under future climate scenarios
odels predict that seven of the nine stingless bee species
perience reduction in their climatically suitable areas
eir areas of occurrence. In particular, M.  eburnea, N. gaboi,
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, a crop that benefits from pollination by stingless bees
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ffee plantations in Colombia, such as P. eutaeniata and P.
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mon visitor of this crop (Giraldo et al., 2011; V.H. Gon-

s. obser.). Models under future climatic scenarios predict
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her a significant reduction in size along with a decline

ollinators or a relatively small increase in coffee-suitable
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cause small farmers are the main producers of coffee in
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Fig. 3. Potential changes in suitable areas in Colombia for the studied species considering RCP 4.5. Changes in suitable areas represent the agreement of predictions among
GCMs; for gain and loss, darker colors indicate greater agreement. Areas of strict extrapolation are shown in green colors, color level indicates agreement of these areas
among GCMs. Broken lines enclose areas with occurrence data. Genus names: F = Frieseomelitta, M = Melipona, N = Nannotrigona, P = Paratrigona, S = Scaura (For interpretation
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Fig. 4. Potential changes in suitable areas in Colombia for the studied species considering RCP 8.5. Changes in suitable areas represent the agreement of predictions among
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ns for conservation and sustainable use

sults have significant implications for the future of con-
 and sustainable use of stingless bees in Colombia. We
that species have restricted distribution ranges as well
le areas in the country (Fig. 2), results that support con-
from previous taxonomic studies (Jaramillo et al., 2019;
et al., 2020). From a practical standpoint, this means that
ance relocation of nests, an increasingly common practice
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tions east of the Andes (Fig. 1) but our models predicted
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ight disrupt pollinator networks, promote the spread of
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ccurring in the bees’ native range can dramatically change
f introduction; thus, the effects of such introductions into
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hange is not the only driver that will affect Colombian
rs. Although pollinator losses due to deforestation, agricul-
nsification, and rampant pesticide use have not yet been
ted in Colombia, circumstantial evidence suggests this is
appening. For example, due to the loss of insect pollina-
ombatants in Caquetá have abandoned passion fruit crops
a edulis Sims), a highly dependent pollinator crop that gov-
agencies promoted as an alternative to illegal crops. Many
n Huila now rely entirely on hand pollination, an unsus-
ractice that was rare a decade ago (Calle et al., 2010; V.H.

, per. obs.). Farmers in other departments have followed
tice as well. A law that safeguards pollinators and their
as well as promotes the sustainable use of pollinators has
er consideration by the Colombian Congress. Last year,

 turned it down because of disagreements in the law’s
ns on pesticides. Sadly, the loss of passion fruit pollina-
t represent the canary in the mine shaft for Colombia’s
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