

1 **TITLE:**

2 Synthesis of Masarimycin, a Small Molecule Inhibitor of Gram-Positive Bacterial Growth.

3

4 **AUTHORS AND AFFILIATIONS:**

5 Mika Gallati¹, Bryant Point¹, Christopher W. Reid^{1,2}

6

7 ¹Department of Science and Technology, Bryant University

8 ²Center for Health and Behavioral Sciences, Bryant University

9

10 **Corresponding Author:**

11 Christopher W. Reid (creid@bryant.edu)

12

13 **Email addresses of co-authors:**

14 Mika Gallati (mikagallati@gmail.com)

15 Bryant Point (bpoint1989@gmail.com)

16 Christopher W. Reid (creid@bryant.edu)

17

18 **KEYWORDS:**

19 Peptidoglycan, metabolism, autolysin, chemical biology, inhibitor, cell wall

20

21 **SUMMARY:**

22 A detailed protocol is presented for preparing the bacteriostatic diamide masarimycin, a small
23 molecule probe that inhibits the growth of *Bacillus subtilis* and *Streptococcus pneumoniae* by
24 targeting cell wall degradation. Its application as a chemical probe is demonstrated in
25 synergy/antagonism assays and morphological studies with *B. subtilis* and *S. pneumoniae*.

26

27 **ABSTRACT:**

28 Peptidoglycan (PG) in the cell wall of bacteria is a unique macromolecular structure that confers
29 shape, and protection from the surrounding environment. Central to understanding cell growth
30 and division is the knowledge of how PG degradation influences biosynthesis and cell wall
31 assembly. Recently, the metabolic labeling of PG through the introduction of modified sugars or
32 amino acids has been reported. While chemical interrogation of biosynthetic steps with small
33 molecule inhibitors is possible, chemical biology tools to study PG degradation by autolysins are
34 underdeveloped. Bacterial autolysins are a broad class of enzymes that are involved in the tightly
35 coordinated degradation of PG. Here, a detailed protocol is presented for preparing a small
36 molecule probe, masarimycin, which is an inhibitor of N-acetylglucosaminidase LytG in *Bacillus*
37 *subtilis*, and cell wall metabolism in *Streptococcus pneumoniae*. Preparation of the inhibitor *via*
38 microwave-assisted and classical organic synthesis is provided. Its applicability as a tool to study
39 Gram-positive physiology in biological assays is presented.

40

41 **INTRODUCTION:**

42 Peptidoglycan (PG) is a mesh-like polymer that delineates cell shape and structure in both Gram-
43 positive and Gram-negative bacteria^{1,2}. This heteropolymer is a matrix of amino sugars cross-
44 linked by short peptides³⁻⁶ with a backbone composed of β -(1,4)-linked alternating N-

45 acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) residues (**Figure 1**)¹. Attached
46 to the C-3 lactyl moiety of MurNAc is the stem peptide. The metabolism of PG involves a tightly
47 coordinated system of biosynthetic and degradative enzymes to incorporate new material into
48 the cell wall^{7,8}. Degradation of PG is carried out by enzymes collectively referred to as autolysins⁹
49 and further classified based on the specificity of the bond cleaved. Autolysins participate in many
50 cellular processes including cell growth, cell division, motility, PG maturation, chemotaxis,
51 protein secretion, genetic competence, differentiation, and pathogenicity^{10,11}. Unraveling the
52 specific biological functions of individual autolysins can be daunting, due in part to
53 functional redundancy. However, recent biophysical^{8,12,13} and computational studies¹² have
54 provided new insight into their roles in PG metabolism. In addition, recent reports have provided
55 further insight into the synthesis¹⁴ and membrane-mediated^{15–17} steps in PG metabolism. A
56 thorough understanding of the relationship between degradative and synthetic pathways of PG
57 metabolism could give rise to previously untapped antibiotic targets.

58

59 While there have been significant advances in methodology to study glycobiology in eukaryotes,
60 bacterial glycobiology and, in particular, PG metabolism has not advanced at a similar rate.
61 Current chemical approaches to study PG metabolism include fluorescently labeled antibiotics¹⁸,
62 fluorescent probes^{19,20}, and metabolic labeling^{21–24}. These new approaches are providing new
63 ways to interrogate bacterial cell wall metabolism. While some of these strategies are capable of
64 labeling PG *in vivo*, they can be species-specific¹⁹, or only work in strains lacking a particular
65 autolysin²⁵. Many PG labeling strategies are intended for use with isolated cell walls²⁶ or with *in*
66 *vitro* reconstituted PG biosynthesis pathways^{20,27,28}. The use of fluorescently labeled antibiotics
67 is currently limited to biosynthetic steps and transpeptidation¹⁸.

68

69 The current knowledge of bacterial autolysins and their role in cell wall metabolism comes from
70 genetic and *in vitro* biochemical analysis^{11,29–32}. While these approaches have provided a wealth
71 of information on this important class of enzymes, deciphering their biological role can be
72 challenging. For instance, due to functional redundancy³³, deletion of an autolysin in most cases
73 does not result in halting bacterial growth. This is despite their implied role in cell growth and
74 division^{7,12}. Another complication is that genetic deletion of bacterial autolysins can give rise to
75 meta-phenotypes³⁴. Meta-phenotypes arise from the complex interplay between the pathway
76 affected by the genetic deletion and other interconnected pathways. For instance, a meta-
77 phenotype can arise *via* a direct effect such as the lack of an enzyme, or an indirect effect such
78 as a disruption of regulators.

79

80 Currently, there are only a few inhibitors of glycosidase autolysins such as N-
81 acetylglucosaminidases (GlcNAcase) and N-acetylmuramidases, which can be used as chemical
82 probes to study the degradation of PG. To address this, diamide masarimycin (previously termed
83 as fgkc) has been identified and characterized³⁵ as a bacteriostatic inhibitor of *Bacillus*
84 *subtilis* growth that targets the GlcNAcase LytG³² (**Figure 1**). LytG is an *exo*-acting GlcNAcase³⁶,
85 a member of cluster 2 within glycosyl hydrolase family 73 (GH73). It is the major active GlcNAcase
86 during vegetative growth³². To our knowledge, masarimycin is the first inhibitor of a PG-acting
87 GlcNAcase that inhibits cellular growth. Additional studies of masarimycin with *Streptococcus*
88 *pneumoniae* found that masarimycin likely inhibits cell wall metabolism in this organism³⁷. Here,

89 the preparation of masarimycin is reported for use as a chemical biology probe to study
90 physiology in the Gram-positive organisms *B. subtilis*, and *S. pneumoniae*. Examples of
91 morphological analysis of sub-minimum inhibitory concentration treatment with masarimycin,
92 as well as a synergy/antagonism assay are presented. Synergy and antagonism assays using
93 antibiotics with well-defined modes of action can be a useful way to explore connections
94 between cellular processes³⁸⁻⁴⁰.

95

96 **PROTOCOL:**

97

98 **1. General methods**

99

100 NOTE: All compounds were purchased from standard suppliers and used without further
101 purification.

102

103 1.1 Carry out thin-layer chromatography (TLC) on an aluminum plate precoated with silica gel XG
104 F254. Detect spots under a UV lamp, by immersion in *p*-anisaldehyde stain, or by exposing to I₂
105 vapor.

106

107 1.2 Record all nuclear magnetic resonance (NMR) spectra on a 400 MHz spectrometer.

108

109 NOTE: ¹H- NMR and ¹³C-NMR spectra were referenced to residual solvent peaks. Coupling
110 constants are given in [Hz] and chemical shifts in [ppm].

111

112 1.3 Record atmospheric pressure chemical ionization (APCI) mass spectrometry spectra of
113 masarimycin on a compact mass spectrometer equipped with an atmospheric solids analysis
114 probe.

115

116 **2. General procedure for preparation of masarimycin**

117

118 NOTE: Perform the below steps in a fume hood.

119

120 2.1 Prepare a 0.1 M solution in methanol of each reactant: cyclohexylamine, cyclohexyl
121 carboxaldehyde, *o*-iodobenzoic acid, and cyclohexyl isocyanide³⁵.

122

123 CAUTION: Cyclohexylamine, cyclohexyl isocyanide, and cyclohexyl carboxaldehyde are
124 flammable. They can cause skin corrosion and induce oral, dermal, respiratory, or reproductive
125 toxicity. Keep compounds away from open flames, hot surfaces, and ignition sources. Wear
126 appropriate skin and eye protection, work in a well-ventilated area and avoid inhalation of vapors
127 or mist. For storage, keep bottles tightly closed and store them in a cool, dry place. Store
128 cyclohexyl carboxaldehyde in a desiccator under an N₂ atmosphere.

129

130 2.2 Mix 5 mL of cyclohexylamine (0.1 M solution in methanol) and 5 mL of cyclohexyl
131 carboxaldehyde (0.1 M in methanol) in a capped round bottom flask and stir the solution using a

132 magnetic stir bar on a stir/hot plate for 30 min at 40 °C in a sand bath. Monitor temperature using
133 a thermometer placed approximately 1 cm below the sand surface.

134
135 2.3 After 30 min, add 5 mL of cyclohexyl isocyanide (0.1 M solution in methanol) to the solution
136 from step 2.2 and stir for an additional 20 min at 50 °C. Lastly, add 5 mL of *o*-iodobenzoic acid
137 (0.1 M solution in methanol) to the reaction mixture and continue stirring at 55 °C for 3–5 h.

138
139 2.4 Monitor the progress of the reaction periodically by TLC approximately every hour after the
140 above reaction mixture had been stirred for 3 h.

141
142 2.5 Cut a 3 cm x 6 cm strip of aluminum-backed TLC plate. Using a #2 pencil, draw a line
143 approximately 1 cm from the bottom. Using a glass microcapillary, spot approximately 5 µL of
144 the reaction mixture onto the TLC plate and allow it to dry.

145
146 2.6 To a 150 mL beaker, add enough mobile phase (90:10 hexane: isopropanol) to cover the
147 bottom of the beaker. Using a pair of tweezers, carefully place the above TLC plate into the
148 beaker ensuring that the TLC plate enters the mobile phase evenly. Cover the top of the beaker
149 with a piece of tinfoil.

150
151 NOTE: Ensure that the mobile phase does not cover the line and spotted sample.

152
153 2.7 Allow the mobile phase to travel up the TLC plate until it is approximately 1 cm below the top
154 of the plate. Remove the TLC plate and using a pencil, draw a line indicating the distance traveled
155 by the mobile phase. Allow the TLC plate to dry in a fume hood.

156
157 2.8 Once dried, place the TLC plate in a beaker containing a small amount of solid I₂ and cover
158 the beaker with a piece of tin foil. Monitor the TLC for the development of yellow/brown spots.
159 Once developed, remove the TLC plate and mark the location of the spots using a pencil
160 (**Supplementary Figure 1**).

161
162 NOTE: If I₂ spots are not marked, the stain will dissipate over time. Spots can also be visualized
163 on the TLC plate by UV-light, *p*-anisaldehyde staining, or potassium permanganate staining (see
164 **Supplementary Information**).

165
166 2.9 Calculate R_f values for all visualized spots using the following formula:

$$R_f = \frac{\text{distance travelled by spot (mm)}}{\text{distance travelled by mobile phase (mm)}}$$

168
169 2.10 Consider the reaction complete when only one spot with R_f = 0.3 is visible on the TLC plate.
170 Remove the solvent in a rotatory evaporator under reduced pressure and dry the crude product
171 (obtained as a yellowish-brown oil) under a high vacuum until all methanol is evaporated.

172
173 2.11 Dissolve the dried crude product in 30 mL of ethyl acetate and transfer it to a separatory
174 funnel. Extract ethyl acetate sequentially with 1 M HCl (2 x 30 mL), H₂O (30 mL), saturated

175 NaHCO₃ solution (2 x 30 mL), H₂O (30 mL) and saturated NaCl solution (2 x 30 mL). Discard the
176 aqueous layers.

177
178 NOTE: The ethyl acetate layer is the top layer in each of the extractions. For each extraction,
179 vigorously shake the separatory funnel containing the ethyl acetate and aqueous solution (HCl,
180 H₂O, NaHCO₃, or NaCl) and allow the layers to fully separate.

181
182 2.12 Remove the ethyl acetate layer from the separatory funnel and collect it in an Erlenmeyer
183 flask. Add a spatula full of Na₂SO₄ (anhydrous) to remove residual water from ethyl acetate.

184
185 NOTE: The ethyl acetate solution is considered dry when Na₂SO₄ in the flask runs freely and does
186 not clump. If Na₂SO₄ is clumping, an additional spatula of Na₂SO₄ can be added.

187
188 2.13 Filter the dried ethyl acetate solution through #1 filter paper to remove Na₂SO₄. Wash the
189 filter paper with a small amount of ethyl acetate. Take the filtered ethyl acetate into a round
190 bottom flask and remove the solvent on a rotatory evaporator under reduced pressure to obtain
191 masarimycin as oil once all the ethyl acetate is removed.

192
193 2.14 Dissolve the masarimycin oil obtained above in a minimal amount (1–2 mL) of 9:1 hexane:
194 isopropanol and stir on a magnetic stir plate until all the compound is dissolved.

195
196 2.15 Purify the dissolved masarimycin by flash chromatography using a 12 g normal phase silica
197 flash column.

198
199 2.15.1 Equilibrate the flash column with 10 column volumes of mobile phase (99:1 hexane:
200 isopropanol) with the instrument set at a flow rate of 15 mL/min.

201
202 NOTE: After equilibration is completed, stop the flow and disconnect the top of the column from
203 the system.

204
205 2.15.2 Draw the dissolved masarimycin using a 5 mL syringe. Connect the syringe directly to the
206 top of the equilibrated flash column and inject the solution into the column. Reconnect the
207 loaded column to the flash chromatography system and initiate the gradient elution.

208
209 2.15.3 Elute masarimycin from the column using gradient elution to a final mobile phase
210 concentration of 10:90 hexane: isopropanol over 12 column volumes. Monitor the elution of
211 masarimycin *via* absorption at 230 and 254 nm.

212
213 2.15.4 Collect the compounds eluted from the column by a fraction collector that collects 20 mL
214 of solvent per fraction.

215
216 NOTE: If a flash chromatography system is not available, purification of masarimycin can be
217 performed *via* a gravity silica column with a 3:1 (hexane: ethyl acetate) mobile phase. Fractions

218 containing masarimycin can be identified by TLC using the same mobile phase. Visualization of
219 TLC spots was done with either UV light, I₂ vapor, or potassium permanganate staining.

220
221 2.15.5 Identify fractions containing masarimycin by TLC (steps 2.5–2.9) or mass spectrometry on
222 a compact mass spectrometer equipped with an atmospheric solids analysis probe. Dry the final
223 product under vacuum (~0.3 mbar).

224
225 NOTE: Masarimycin is routinely obtained as a colorless oil or solid with a yield of 55%–70% with
226 respect to mmol of cyclohexyl carboxaldehyde added to the reaction. Calculate the final yield of
227 masarimycin by obtaining the mass of the purified masarimycin and calculating the theoretical
228 yield of the reaction using the following formula:

229
230
$$\% \text{ yield} = \frac{\text{mass of purified product}}{\text{theoretical mass of product}} \times 100\%$$

231
232 2.16 Confirm the structure of masarimycin by NMR.

233
234 2.16.1 Dissolve ~10 mg of masarimycin sample in 0.5 mL of CDCl₃. Using a Pasteur pipet, transfer
235 the solution to a 5 mm NMR tube and cap the tube. Place the NMR tube in the spectrometer.

236
237 2.16.2 Acquire ¹H and ¹³C NMR spectra using manufacturer preset experiments. Chemical shift
238 assignments and representative spectra are provided in **Supplementary Figures 3–4**.

239
240 2.17 Store masarimycin dry or dissolved in DMSO (25 mM final concentration) at -20 °C until use.

242 3. Microwave procedure for preparation of masarimycin

243
244 3.1 Prepare 0.6 M solutions of cyclohexylamine, cyclohexyl carboxaldehyde, cyclohexyl
245 isocyanide, and o-iodobenzoic acid in acetonitrile.

246
247 3.2 Add a stir bar and 10 mL of acetonitrile to a glass microwave reaction vial.

248
249 3.3 Add 2 mL of cyclohexylamine (0.6 M in acetonitrile), 2 mL of cyclohexyl carboxaldehyde (0.6
250 M in acetonitrile), and 7 mL of acetonitrile to the vial.

251
252 3.4 Place the microwave reaction vial in the microwave carousel. Stir the mixture, heat it for 30
253 min at 50 °C at a power setting of 400 W, and allow it to cool to room temperature.

254
255 3.5 Add 2 mL of o-iodobenzoic acid (0.6 M in methanol) and 2 mL of cyclohexyl isocyanide (0.6
256 M in acetonitrile) to the vial. Stir the mixture, heat it to 100 °C in the microwave for 40 min at a
257 power setting of 400 W and allow it to cool to room temperature.

258
259 3.6 Monitor the progress of the reaction by TLC (90:10 hexane: isopropanol) using I₂ vapor after
260 the completion of step 3.5.

261
262 NOTE: If TLC shows that the reaction is incomplete (i.e., multiple spots on TLC), place the reaction
263 vial back in the microwave and set the microwave conditions described in step 3.5.
264
265 3.7 Once the reaction is complete, pour the solution into a 100 mL round-bottom flask and
266 evaporate it to dryness using a rotary evaporator.
267
268 3.8 Follow steps 2.6–2.16 above to complete the aqueous workup, purification, and
269 characterization of masarimycin.
270
271 **4. Synergy and antagonism assay**
272
273 4.1 Grow *Streptococcus pneumoniae* R6 on Mueller-Hinton (MH) agar plates containing 5% (v/v)
274 sheep blood at 37 °C under anaerobic conditions. In all experiments, use second passage cells
275 grown in 5 mL of MH broth at 37 °C under anaerobic conditions until OD₆₀₀ is ~0.4.
276
277 4.2 Subject the inhibitors masarimycin and optochin to serial 1:2 dilutions in respective solvents,
278 with the resulting concentrations flanking the minimum inhibitory concentration (MIC) values of
279 each inhibitor.
280
281 4.2.1 Make the initial dilution of masarimycin in dimethyl sulfoxide (DMSO) until a concentration
282 of 100 μM was reached. From this point, make masarimycin dilutions in MH broth. Prepare
283 optochin stock solution (3.5 mM) by dissolving commercially available optochin (see **Table of**
284 **Materials**) in sterile MH broth.
285
286 NOTE: Masarimycin stock solutions were made at 25 mM in DMSO.
287
288 4.3 To a sterile 96-well microtitre plate, add 2 μL aliquots of each optochin dilution to each row
289 of the plate. To the same plate, add 2 μL aliquots of each masarimycin dilution to each column
290 to create an array of optochin and masarimycin concentrations on the plate (**Figure 2**).
291
292 4.4 Add sterile MH broth (93 μL) to each well containing the above inhibitors. Inoculate the
293 microtitre plates with 5 μL of culture (OD₆₀₀ ~0.4) from step 4.1.
294
295 NOTE: Inoculation of the 96-well plate is typically done under anaerobic conditions in an
296 anaerobic workstation. The final volume in the well is 100 μL.
297
298 4.5 Grow cultures for 18 h at 37 °C under anaerobic conditions, followed by the addition of 30 μL
299 of 0.01% (m/v) solution of resazurin sodium salt. Incubate the plate at room temperature for 15
300 min to allow the formation and stabilization of color.
301
302 NOTE: Resazurin solution is prepared by dissolving the compound in distilled water and can be
303 stored at 4 °C for up to two weeks.
304

305 4.6 Directly read the concentration values from the plate and assign the lowest inhibitor
306 concentration for which no bacterial growth is observed (blue color) as [X] (see step 4.7.1), i.e.,
307 the lowest inhibitory concentration of the drug in the presence of the co-drug.

308

309 NOTE: Positive bacterial growth is identified in the wells by the resazurin dye turning pink. MIC
310 values for each drug alone (i.e., in the absence of co-drug) are determined in a similar manner
311 using the resazurin MIC assay³⁵ with each drug separately (**Supplemental Figure 5**). MICs in *S.*
312 *pneumoniae* are 7.8 μ M and 15.85 μ M for masarimycin and optochin, respectively.

313

314 4.7 Determine the fractional inhibitory concentration (FIC) and FIC index (FIC_I) using the following
315 equations.

316

317 4.7.1 $FIC = [X]/MIC_x$, where [X] (from step 4.6) is the lowest inhibitory concentration of the drug
318 in the presence of the co-drug, and MIC_x is the lowest inhibitory concentration of the drug in the
319 absence of the co-drug.

320

321 4.7.2 $FIC_I = FIC_{masarimycin} + FIC_{antibiotic}$

322

323 NOTE: $FIC_I < 0.5$ = synergistic, $0.5 < FIC_I < 1$ = additive, $1 < FIC_I < 4$ = indifferent, $FIC_I > 4$ =
324 antagonistic.

325

326 5. Morphological study

327

328 5.1 Grow *Bacillus subtilis* 11774 on Luria-Bertani (LB) agar plates (10 g/L tryptone, 5 g/L yeast
329 extract, and 5 g/L NaCl) containing 1.5% Bacto agar at 37 °C. In all experiments, use second
330 passage cells grown in 5 mL of LB broth at 37 °C until $OD_{600} = 1$. Grow *S.pneumoniae* in the same
331 manner as in step 4.1.

332

333 5.2 After obtaining a cell culture density with $OD_{600\text{nm}} = 1$ for *B. subtilis*, or $OD_{600\text{nm}} = 0.4$ for *S.*
334 *pneumoniae*, add masarimycin using a pipette to the culture tube labeled “treated” to a final
335 concentration of 3.8 μ M (0.75x MIC for *B.subtilis*), or 5.85 μ M (0.75x MIC for *S.pneumoniae*). To
336 the second culture tube labeled “control”, add an equivalent volume of DMSO.

337

338 5.3 For *B.subtilis*, place the samples in an incubator at 37 °C for 90 min with shaking at 150 rpm.
339 For *S. pneumoniae*, incubate the cells without shaking under anaerobic conditions.

340

341 5.4 After 90 min, chemically fix the cultures in a 1:10 mixture (v/v) of culture media and fixing
342 buffer (20 mM HEPES, 1% formaldehyde (pH 6.8)) at 4 °C overnight. After fixing is complete, apply
343 10–20 μ L of samples to glass microscope slides using a pipette and allow them to air dry. Fix the
344 air-dried samples by heating the glass slides using a Bunsen burner.

345

346 5.5 After heat-fixing, stain samples with the addition of 100 μ L of 0.1% (m/v) methylene blue
347 (solution in 20% (v/v) ethanol). Incubate the stained slides for 10 min and wash away the excess
348 dye with dH₂O. Then, gently heat the stained slides to 60 °C in an oven for 15–20 min to bring

349 cells to a common focal plane.

350
351 5.6 Seal the stained samples by placing a microscope coverslip over the stained cells. Then, seal
352 the edges using microscope slide cement. Place the sealed microscope slide on the microscope
353 stage and bring the image into focus at 100x magnification using bright-field microscopy.

354
355 5.7 Place a drop of immersion oil on the microscope slide and bring the field of view to focus
356 using 1000x magnification. Acquire micrographs using a camera attached to the microscope and
357 its associated software. Acquire images using the auto white balance and aperture settings on
358 the software.

359
360 NOTE: Alternatively, images can be processed using the open-source ImageJ software.

361
362 **REPRESENTATIVE RESULTS:**

363 Masarimycin is a small molecule bacteriostatic inhibitor of *B. subtilis* and *S. pneumoniae* and has
364 been shown to inhibit the exo-acting GlcNAcase LytG in *B. subtilis*^{35,37} and target the cell wall in
365 *S. pneumoniae*³⁷. Masarimycin can be efficiently prepared either by the classical or microwave-
366 assisted organic synthesis with yields in the 55%–70% range. Microwave-assisted synthesis has
367 the advantage of a significant reduction in time to synthesize the compound. Microwave-assisted
368 synthesis shortens the synthesis from 5–6 h (traditional synthesis) to 2–3 h while maintaining
369 comparable yields. Flash chromatography provides a rapid purification of masarimycin in high
370 purity (**Supplementary Figures 1–2**). Structural assignments from ¹H and ¹³C NMR spectra along
371 with representative spectra are provided in **Supplementary Figures 3–4**.

372
373 Synergy and antagonism screens can be a useful tool to reveal functional connections among
374 cellular components (synergy) and to investigate genetic networks and mechanisms of drug
375 action (antagonism)⁴⁰. Evaluation of synergy/antagonism with the ATPase inhibitor optochin in
376 *S. pneumoniae* is presented in **Figure 2**. Resazurin microtitre plate assay⁴¹ provides an easy
377 readout of the growth/non-growth of the organism. The lowest concentration of compound to
378 inhibit bacterial growth (blue color) is taken as the MIC value in the presence of a co-drug. Wells
379 with bacterial growth will be pink in color. The relationship between masarimycin and optochin
380 was determined by calculating the fractional inhibitor concentration index (FIC_i) using equations
381 in protocol step 4.7. The FIC_i value for the masarimycin-optochin interaction is calculated to be
382 1.5, indicating an indifferent relationship based on published standards⁴². Phenotypic assays
383 using masarimycin in *B. subtilis* at sub-MIC concentrations presented a sausage-like phenotype
384 (**Figure 3B**) which differs from reported phenotypes of the Δ lytG mutant in the literature³² and
385 more closely resembles multiple autolysin knockouts²⁹. Phenotypic analysis of *S. pneumoniae*
386 with masarimycin at sub-MIC concentrations presented a clumping phenotype (**Figure 3D**). This
387 clumping phenotype is distinct from those reported for *S. pneumoniae* cell-wall-acting
388 GlcNAcases^{43–45}.

389
390 **FIGURE AND TABLE LEGENDS:**

391 **Figure 1:** Structure of peptidoglycan showing the cleavage site of the exo-acting N-acetyl
392 glucosaminidase LytG from *Bacillus subtilis*. Inset shows the structure of the LytG inhibitor

393 masarimycin.
394

395 **Figure 2: Synergy/Antagonism assay to explore antagonistic/synergistic relationships with**
396 **masarimycin and optochin in *S. pneumoniae*.** Blue or purple color indicates no bacterial growth,
397 while pink color indicates bacterial growth. The MIC in the presence of co-drug is taken as the
398 lowest concentration that shows no bacterial growth (blue color).

399

400 **Figure 3: Morphological analysis.** Morphological changes to *B. subtilis* (**A,B**) and *S. pneumoniae*
401 (**C,D**) when treated with 0.75x MIC (MIC_{*B. subtilis*} = 3.8 μ M and MIC_{*S. pneumoniae*} = 7.8 μ M) masarimycin.
402 Cells were fixed and stained with 0.1% (m/v) methylene blue and visualized by bright field
403 microscopy under oil immersion at 1000x magnification. This figure has been modified from ³⁵.

404

405 **Supplementary Figure 1: Representative thin layer chromatography of masarimycin post**
406 **aqueous workup.** The mobile phase is 90:10 hexane: isopropanol and iodine vapor is used for
407 staining spots. R_f = 0.3 for masarimycin.

408

409 **Supplementary Figure 2: Representative flash chromatogram for the purification of**
410 **masarimycin.** The peak at approximately 1.2 column volumes contains masarimycin.

411

412 **Supplementary Figure 3: Representative ^1H NMR of masarimycin dissolved in CDCl_3 and**
413 **recorded on a 400 MHz NMR spectrometer.** Spectrum is referenced to residual CHCl_3 solvent
414 peak at δ = 7.26. Numbers in green above chemical shifts indicate proton assignments at the
415 corresponding positions in the structure of masarimycin (see inset).

416

417 **Supplementary Figure 4: Representative ^{13}C NMR spectrum of masarimycin dissolved in CDCl_3**
418 **at 100 MHz.** Spectrum referenced to residual CHCl_3 solvent peak at δ = 77.36. Numbers in green
419 above chemical shifts indicate carbon atom assignments at the positions in the structure of
420 masarimycin (see inset).

421

422 **Supplementary Figure 5: Representative resazurin MIC assay of masarimycin against *B. subtilis*.**

423

424 **DISCUSSION:**

425 Masarimycin is a single micromolar bacteriostatic inhibitor of *B. subtilis*³⁵ and *S. pneumoniae*³⁷
426 growth. In *B. subtilis*, masarimycin has been shown to inhibit the GlcNAcase LytG³⁵, while the
427 precise molecular target in the cell wall of *S. pneumoniae* has not been identified³⁷. Synthesis of
428 masarimycin using either the classical organic synthesis or microwave procedure provides the
429 inhibitor in good yield and high purity. Low yields of masarimycin can typically be attributed to
430 the oxidation of the cyclohexyl carboxaldehyde. To overcome this, it is recommended to store
431 cyclohexyl carboxaldehyde under an inert atmosphere in a desiccator. Oxidation of the aldehyde
432 to the corresponding carboxylic acid can be seen as a white solid in the bottle. Purchasing small
433 quantities of cyclohexyl carboxaldehyde without storing it for extended periods greatly reduces
434 this problem.

435

436 NMR assignment of masarimycin structure is complicated by the presence of a mixture of *cis* and

437 *trans* forms of the amide bond as well as atropisomers around the *o*-iodophenyl ring that results
438 in multiple peaks. This can result in a proton chemical shift spread over 1 ppm thereby
439 complicating assignments³⁵. As a result, partial assignment of NMR chemical shifts for both ¹H
440 and ¹³C NMR spectra along with representative spectra are provided in **Supplementary Figures**
441 **3–4**. If there is difficulty in assigning ¹H and ¹³C chemical shifts for masarimycin due to the mixture
442 of isomers, 2-dimensional NMR experiments can be used. Correlated spectroscopy (COSY) can be
443 used to identify proton spin systems, while heteronuclear single quantum coherence
444 spectroscopy (HSQC) NMR experiments can be used to identify proton-carbon single bond
445 correlations. Once purified, masarimycin can be stored at -20 °C as oil or dissolved in DMSO to a
446 concentration of 25 mM until needed. It is recommended to store in small aliquots to reduce the
447 number of freeze-thaw cycles. After repeated freeze-thaw cycles of the compound, the
448 masarimycin stock solution should be checked by TLC to monitor for any degradation.

449

450 Synergy and antagonism screens can be an effective strategy to identify pathway interactions
451 and can be used to understand the mode of action of small molecules. **Figure 2** shows an example
452 of a synergy/antagonism assay with *S. pneumonia* R6 using masarimycin and the ATPase inhibitor
453 optochin (note that the synergy/antagonism screening in *B. subtilis* is still an ongoing
454 investigation). For reproducibility, second passage cells were used and grown to an OD_{600nm} of no
455 more than 0.4. A FIC_I of 1.5 was observed for the interaction between masarimycin and optochin,
456 indicating an indifferent relationship between the antibiotic pair. The indifferent relationship
457 between masarimycin and optochin indicates no apparent interaction between the pathways
458 these antibiotics target. While these assays can provide useful information about drug
459 interactions, it is important to note that synergy/antagonism assays should be run with biological
460 replicates and use of the more conservative cutoffs as described by Odds⁴². This helps to prevent
461 the interpretation of observed minor synergistic or antagonistic relationships.

462

463 Phenotypic analysis of *B. subtilis* cells treated with sub-MIC masarimycin (**Figure 3B**) indicates a
464 phenotype that differs from phenotypes reported for genetic deletion of *lytG*³² and more closely
465 resembles phenotypes of *B. subtilis* strains with multiple autolysin deletions²⁹. This discrepancy
466 in phenotype is intriguing because while *in vitro* inhibition of LytG has been demonstrated³⁵, a
467 *ΔlytG* mutant has no observable phenotype³². This discrepancy can in part be explained by
468 differences in genetic and chemical inactivation^{46,47}. The observed differences in the chemical or
469 genetic inactivation of LytG is an intriguing question that is currently under investigation. *S.*
470 *pneumoniae* cells treated with masarimycin presented a phenotype (**Figure 3D**) distinct from the
471 genetic deletion of the corresponding GlcNAcase (GH73, cluster 2) LytB^{37,43,44,48}. This
472 morphological discrepancy highlights the challenges in assigning the mode of action or attributing
473 the biological target of small molecule inhibitors. Morphological phenotypes can arise from a
474 more complex set of interactions other than a single genetic deletion or chemical inactivation of
475 a cell-wall acting enzyme. These meta-phenotypes³⁴ can arise from complex interactions *via*
476 direct (lack of an enzyme(s)) or indirect (loss of regulators) mechanisms.

477

478 To the best of our knowledge, masarimycin is the first inhibitor of a bacterial autolysin that
479 demonstrates inhibition of bacterial growth (**Supplementary Figure 5**). It is a narrow-spectrum
480 bacteriostatic inhibitor of growth in *B. subtilis* and *S. pneumoniae*. This narrow spectrum is a

481 limitation for multi-species comparative studies of cell-wall metabolism between Gram-positive
482 and Gram-negative organisms. This narrow spectrum is in part due to differences in some of the
483 glycosyl hydrolase autolysins used during vegetative growth between Gram-positive (GlcNAcase)
484 and Gram-negative (lytic transglycosylase) organisms. Using small-molecule inhibitors such as
485 masarimycin for inhibiting PG autolysins, in particular, GlcNAcases can provide an orthogonal
486 approach to traditional genetics for elucidating autolysin function. Masarimycin has a distinct
487 advantage over some chemical biology methods, in that it can be used in more than one species
488 (*B. subtilis* and *S. pneumoniae*). It can allow for comparative studies of cell wall metabolism
489 between rod-shaped (*B. subtilis*) and coccoid (*S. pneumoniae*) species. The less coregulated cell
490 wall metabolism and division in *S. pneumoniae* provides a counter-point in the more tightly
491 regulated system of rod-shaped species^{49,50}. Future applications of this technique will be to
492 identify the molecular target in *S. pneumoniae* and explore the differences between genetic and
493 chemical inactivation of autolysins in *S. pneumoniae* and *B. subtilis*.

494

495 **Critical Steps in the Protocol**

496 It is important to pay attention to the effective concentration of masarimycin in biological and
497 biochemical assays. Due to its hydrophobic nature, concentrations above 250 µM (65x MIC in *B.*
498 *subtilis*) can result in solubility and aggregation issues that can impact the interpretation of
499 biological data. Properly controlling for the effect of vehicle (i.e., DMSO) in all experiments is
500 essential.

501

502 **ACKNOWLEDGMENTS:**

503 Research was supported by the National Science Foundation under grant number 2009522. NMR
504 analysis of masarimycin was supported by the National Science Foundation major research
505 instrumentation program award under grant number 1919644. Any opinions, findings, and
506 conclusions, or recommendations expressed in this material are those of the authors and do not
507 necessarily reflect the views of the National Science Foundation.

508

509 **DISCLOSURES:**

510 Reid, C. W. has intellectual property involving specific applications of masarimycin.

511

512 **REFERENCES:**

- 513 1 Vollmer, W., Blanot, D., de Pedro, M. A. Peptidoglycan structure and architecture. *FEMS*
514 *Microbiology Review*. **32** (2), 149–167 (2008).
- 515 2 Munita, J. M., Bayer, A. S., Arias, C. A. Evolving resistance among Gram-positive
516 pathogens. *Clinical Infectious Diseases*. **61** (suppl_2), S48–S57 (2015).
- 517 3 Vollmer, W., Bertsche, U. Murein (peptidoglycan) structure, architecture and biosynthesis
518 in *Escherichia coli*. *Biochimica Biophysica Acta*. **1778** (9), 1714–1734 (2008).
- 519 4 Vollmer, W., Höltje, J. -V. The architecture of the murein (peptidoglycan) in Gram-
520 negative bacteria: vertical scaffold or horizontal layer(s)? *Journal of Bacteriology*. **186**
521 (18), 5978–5987 (2004).
- 522 5 Clarke, A. J. Compositional analysis of peptidoglycan by high-performance anion-
523 exchange chromatography. *Analytical Biochemistry*. **212** (2), 344–350 (1993).
- 524 6 Kim, S. J., Chang, J., Singh, M. Peptidoglycan architecture of Gram-positive bacteria by

525 solid-state NMR. *Biochimica Biophysica Acta*. **1848** (1 Pt B), 350–362 (2014).

526 7 Koch, A. L., Doyle, R. J. Inside-to-outside growth and turnover of the wall of gram-positive
527 rods. *Journal of Theoretical Biology*. **117** (1), 137–157 (1985).

528 8 Beeby, M., Gumbart, J. C., Roux, B., Jensen, G. J. Architecture and assembly of the Gram-
529 positive cell wall. *Molecular Microbiology*. **88** (4), 664–672 (2013).

530 9 Shockman, G. D., Daneo-Moore, L., Kariyama, R., Massidda, O. Bacterial walls,
531 peptidoglycan hydrolases, autolysins, and autolysis. *Microbial Drug Resistance*. **2** (1), 95–
532 98 (1996).

533 10 Dijkstra, A. J., Keck, W. Peptidoglycan as a barrier to transenvelope transport. *Journal of*
534 *Bacteriology*. **178** (19), 5555–5562 (1996).

535 11 Blackman, S. A., Smith, T. J., Foster, S. J. The role of autolysins during vegetative growth
536 of *Bacillus subtilis* 168. *Microbiology*. **144** (Pt 1) 73–82 (1998).

537 12 Misra, G., Rojas, E. R., Gopinathan, A., Huang, K. C. Mechanical consequences of cell-wall
538 turnover in the elongation of a Gram-positive bacterium. *Biophysical Journal*. **104** (11),
539 2342–2352 (2013).

540 13 Wheeler, R. et al. Bacterial cell enlargement requires control of cell wall stiffness
541 mediated by peptidoglycan hydrolases. *mBio*. **6** (4), e00660, doi:10.1128/mBio.00660-15,
542 (2015).

543 14 Taguchi, A., Kahne, D., Walker, S. Chemical tools to characterize peptidoglycan synthases.
544 *Current Opinion in Chemical Biology*. **53**, 44–50 (2019).

545 15 Welsh, M. A., Schaefer, K., Taguchi, A., Kahne, D., Walker, S. Direction of chain growth and
546 substrate preferences of shape, elongation, division, and sporulation-family
547 peptidoglycan glycosyltransferases. *Journal of the American Chemical Society*. **141** (33),
548 12994–12997 (2019).

549 16 Rubino, F. A. et al. Detection of transport intermediates in the peptidoglycan flippase
550 MurJ identifies residues essential for conformational cycling. *Journal of the American*
551 *Chemical Society*. **142** (12), 5482–5486 (2020).

552 17 Sjodt, M. et al. Structure of the peptidoglycan polymerase RodA resolved by evolutionary
553 coupling analysis. *Nature*. **556** (7699), 118–121 (2018).

554 18 Tiyanont, K. et al. Imaging peptidoglycan biosynthesis in *Bacillus subtilis* with fluorescent
555 antibiotics. *Proceedings of the National Academy of Science U S A*. **103** (29), 11033–11038
556 (2006).

557 19 Lebar, M. D. et al. Reconstitution of peptidoglycan cross-linking leads to improved
558 fluorescent probes of cell wall synthesis. *Journal of the American Chemical Society*. **136**
559 (31), 10874–10877 (2014).

560 20 Do, T., Page, J. E., Walker, S. Uncovering the activities, biological roles, and regulation of
561 bacterial cell wall hydrolases and tailoring enzymes. *Journal of Biological Chemistry*. **295**
562 (10), 3347–3361 (2020).

563 21 Liang, H. et al. Metabolic labelling of the carbohydrate core in bacterial peptidoglycan and
564 its applications. *Nature Communications*. **8**, 15015, (2017).

565 22 DeMeester, K. E. et al. Metabolic incorporation of N-acetyl muramic acid probes into
566 bacterial peptidoglycan. *Current Protocol in Chemical Biology*. **11** (4), e74 (2019).

567 23 Lazor, K. M. et al. Use of Bioorthogonal N-acetylcysteamine (SNAc) analogues and
568 peptidoglycan O-acetyltransferase B (PatB) to label peptidoglycan. *The FASEB Journal*. **32**

569 (S1), 673.630–673.630 (2018).

570 24 Wang, Y., Leimkuhler-Grimes, C. Fluorescent labeling of the carbohydrate backbone of
571 peptidoglycan to track degradation in vivo. *The FASEB Journal*. **29** (S1), 718.710 (2015).

572 25 Kuru, E. et al. In situ probing of newly synthesized peptidoglycan in live bacteria with
573 fluorescent D-amino acids. *Angewandte Chemie International Edition*. **51** (50), 12519–
574 12523 (2012).

575 26 Zhou, R., Chen, S., Recsei, P. A dye release assay for determination of lysostaphin activity.
576 *Analytical Biochemistry*. **171** (1), 141–144 (1988).

577 27 Qiao, Y. et al. Lipid II overproduction allows direct assay of transpeptidase inhibition by β -
578 lactams. *Nature Chemical Biology*. **13** (7), 793–798 (2017).

579 28 Lebar, M. D. et al. Forming cross-linked peptidoglycan from synthetic Gram-negative lipid
580 II. *Journal of the American Chemical Society*. **135** (12), 4632–4635 (2013).

581 29 Chen, R., Guttenplan, S. B., Blair, K. M., Kearns, D. B. Role of the D-dependent autolysins
582 in *Bacillus subtilis* population heterogeneity. *Journal of Bacteriology*. **191** (18), 5775–5784
583 (2009).

584 30 Yukie, S., Miki, K., Yoshio, N., Kuniaki, T., Yoshihisa, Y. Identification and characterization
585 of an autolysin-encoding gene of *Streptococcus mutans*. *Infection and Immunity*. **73** (6),
586 3512–3520 (2005).

587 31 Domenech, M., García, E., Moscoso, M. In vitro destruction of *Streptococcus pneumoniae*
588 biofilms with bacterial and phage peptidoglycan hydrolases. *Antimicrobial Agents and*
589 *Chemotherapy*. **55** (9), 4144–4148 (2011).

590 32 Horsburgh, G. J., Atrih, A., Williamson, M. P., Foster, S. J. LytG of *Bacillus subtilis* is a novel
591 peptidoglycan hydrolase: the major active glucosaminidase. *Biochemistry*. **42** (2), 257–
592 264 (2003).

593 33 Vermassen, A. et al. Cell wall hydrolases in bacteria: insight on the diversity of cell wall
594 amidases, glycosidases and peptidases toward peptidoglycan. *Frontiers in Microbiology*.
595 **10**, 331 (2019).

596 34 Martin-Galiano, A. J., Yuste, J., Cercenado, M. I., de la Campa, A. G. Inspecting the
597 potential physiological and biomedical value of 44 conserved uncharacterised proteins of
598 *Streptococcus pneumoniae*. *BMC Genomics*. **15**, 652 (2014).

599 35 Nayyab, S. et al. Diamide inhibitors of the *Bacillus subtilis* N-acetylglucosaminidase LytG
600 that exhibit antibacterial activity. *ACS Infectious Diseases*. **3** (6), 421–427 (2017).

601 36 Lipski, A. et al. Structural and biochemical characterization of the β -N-
602 acetylglucosaminidase from *Thermotoga maritima*: Toward rationalization of mechanistic
603 knowledge in the GH73 family. *Glycobiology*. **25** (3), 319–330 (2014).

604 37 Haubrich, B. A. et al. Inhibition of *Streptococcus pneumoniae* autolysins highlight distinct
605 differences between chemical and genetic inactivation. *bioRxiv*. 2020.2009.2016.300541
606 (2020).

607 38 Farha, M. A. et al. Inhibition of WTA synthesis blocks the cooperative action of PBPs and
608 sensitizes MRSA to β -lactams. *ACS Chemical Biology*. **8** (1), 226–233 (2013).

609 39 Lehár, J. et al. Chemical combination effects predict connectivity in biological systems.
610 *Molecular Systems Biology*. **3** (1), 80 (2007).

611 40 Farha, M. A. et al. Antagonism screen for inhibitors of bacterial cell wall biogenesis
612 uncovers an inhibitor of undecaprenyl diphosphate synthase. *Proceedings of the National*

613 41 *Academy of Science U S A.* **112** (35), 11048–11053 (2015).
614 41 Palomino, J. C. et al. Resazurin microtiter assay plate: simple and inexpensive method for
615 detection of drug resistance in *Mycobacterium tuberculosis*. *Antimicrobial Agents and*
616 *Chemotherapy*. **46** (8), 2720–2722 (2002).
617 42 Odds, F. C. Synergy, antagonism, and what the chequerboard puts between them. *Journal*
618 *of Antimicrobial Chemotherapy*. **52** (1), 1 (2003).
619 43 Arrigucci, R., Pozzi, G. Identification of the chain-dispersing peptidoglycan hydrolase LytB
620 of *Streptococcus gordonii*. *PLoS One*. **12** (4), e0176117 (2017).
621 44 Bai, X.-H. et al. Structure of pneumococcal peptidoglycan hydrolase LytB reveals insights
622 into the bacterial cell wall remodeling and pathogenesis *Journal of Biological Chemistry*.
623 **289** (34), 23403–23416 (2014).
624 45 Garcia, P., Gonzalez, M. P., Garcia, E., Lopez, R., Garcia, J. L. LytB, a novel pneumococcal
625 murein hydrolase essential for cell separation. *Molecular Microbiology*. **31** (4), 1275–1281
626 (1999).
627 46 Giladi, M., Altman-Price, N., Levin, I., Levy, L., Mevarech, M. FolM, a new chromosomally
628 encoded dihydrofolate reductase in *Escherichia coli*. *Journal of Bacteriology*. **185** (23),
629 7015–7018 (2003).
630 47 Chua, P. R. et al. Effective killing of the human pathogen *Candida albicans* by a specific
631 inhibitor of non-essential mitotic kinesin Kip1p. *Molecular Microbiology*. **65** (2), 347–362
632 (2007).
633 48 Rico-Lastres, P. et al. Substrate recognition and catalysis by LytB, a pneumococcal
634 peptidoglycan hydrolase involved in virulence. *Scientific Reports*. **5**, 16198–16198 (2015).
635 49 Vollmer, W. et al. The cell wall of *Streptococcus pneumoniae*. *Microbiology Spectrum*. **7**
636 (3), 7.3.19 (2019).
637 50 Massidda, O., Nováková, L., Vollmer, W. From models to pathogens: how much have we
638 learned about *Streptococcus pneumoniae* cell division? *Environmental Microbiology*. **15**
639 (12), 3133–3157 (2013).
640
641