
A Low-Power Front-End with Compressive sensing
Circuit for Neural Signal Acquisition Designed in

180 nm CMOS Process
Karthik Kakaraparty, Nishat Tasneem, and Ifana Mahbub

Department of Electrical Engineering
University of North Texas

Denton, USA
Karthik.Kakaraparthy@gmail.com

Abstract—Multi-channel data acquisition of bio-signals is a
promising technology that is being used in many fields these days.
Compressed sensing (CS) is an innovative approach of signal
processing that facilitates sub-Nyquist processing of bio-signals
such as an electrocardiogram (ECG) and electroencephalogram
(EEG). This strategy can be used to lower the data rate to realize
ultra low power performance, As the count of recording channels
increase, data volume is increased resulting in impermissible
transmitting power. In this paper, the implementation of a CMOS
based front-end design for CS using standard 180 nm technology
is presented. A novel pseudo-random sequence generator is
proposed, which consists of two different types of D flip-flops
that are used for obtaining a completely random sequence. The
power consumed by the bio-signal amplifier block is 277 µW . The
SAR-ADC block that is designed to digitize the amplified signal
consumes 2.35 µW of power and the power consumption value of
pseudo-random bit sequence generator (PRBS) is 546 µW . The
low power consumption per channel confirms the importance of
the proposed approach for multiple channel high-density neural
interfaces.

Index Terms—Compressive sensing, Pseudo random sequence
generator, LFSR, Pseudo Random sampling, Sub-Nyquist Sam-
pling.

I. INTRODUCTION

Compressive sensing (CS) as the name suggests, is an
approach of the acquisition of the data itself that is imple-
mented in an efficient and compressive way. The signals can
be interpreted sparsely or in a compressible way, Based on
signals that are sparsed, The compressed sensing method lets
us sample the Signals at a much lower rate than that of the
conventional sampling rate that is suggested by the Nyquist
sampling theory [1].

CS lets the original signal to be faithfully reconstructed
back from the pseudo-randomly sampled signal which needs
far fewer data bits when compared to the signal sampled
using the conventional Nyquist sampling approach.In the ap-
plications specifically in domains where there are high data
rates and low-power constraints CS can play important role in
performing the tasks efficiently. For example, in the medical
imaging domain, the speed or the data rate is the highest
priority. In the circuit implementation of the data compression
of the physiological signals such as EEG, ECG [2], low power

Figure 1: Proposed CS-based neural signal acquisition system.

consumption is considered as the highest priority. While other
strong survey articles are available in CS literature [3], [4].
CS strategy is used in many biomedical applications such
as signal processing of bio-signals, efficient neural signal
acquisition, genomic sensing, and bacterial composition recon-
struction. Here, in this paper, the application of neural signal
acquisition based on CS is emphasized.

II. COMPRESSED SENSING METHODOLOGY

A. Primary objective

The chief objective of our work is to implement a CMOS
based circuit which can compressively acquire the EEG/ ECG
data without actually losing the essence of the original data.
This CS strategy results in the reduced amount of data needed
for transmission and thus results in reduction in the power
required for data transmission.

B. Conventional CS Methodologies

The method of detection of spikes based on the threshold
values [5] is commonly used for compression of data of bio-
signals based on activity parameters. It transmits the spike-
activity signal segments while omitting the segments of signal



that wont involve any essential spike activity. The threshold
crossing detection method is the most common spike detection
method. However, this approach retains the spike’s shape
While discarding the inter-spike signal, which involves unde-
tected spikes and other significant neural voltage variations. As
the research scholars are interested in the analysis of the entire
neural signal, this compression approach can not be used.
The nearly lossless alternative of the wavelet transform based
compression approach which involves the off-chip transmis-
sion of only the important coefficients values of wavelet after
the signals are converted into their wavelet representations
using an on-chip circuit. Wavelet transform systems allow
for impressive compression rates, thus ensuring excellent effi-
ciency for the signal reconstruction [6]. However, in terms of
the power and area consumption, wavelet transformation based
on the ASIC implementation is insignificant as it involves the
digital filter implementation and memories that are on-chip
running at faster rate than the Nyquist sampling rate.

The conventional multi-channel compressive sensing (MCS)
architecture has many problems, For Instance, the need for
analog to digital converter (ADC) with high resolution. [7]
Improving the conventional MCS architecture, there is another
architecture consisting of a block of multiple inputs with
single output compressive sensing (MISOCS) which utilises
the methodology to embed data present in all channels into
each sample of the compressed signal. [8].

Proceeding further in improving this CS system architecture,
there is another methodology that involves implementing an
optimized neural signal recording system for wireless com-
pressed sensing [9], [10]. The system benefits from both
integrated circuits which are custom and compatible wire-
less solutions. An wireless system-on-chip (SoC) which is
implantable and an external relay which is wireless based
are involved in their proposed system. Another approach in
implementing the CS is involved in the design of a system-on-
chip (SoC) CS current sensor using bipolar 0.16 µm CMOS-
DMOS technology. For the data rate reduction, two current
sensing cores which are broadband, each constitutes of a 9-
bit ADC and Hall-effect probe are integrated together mono-
lithically with a multiple mode digital compressive sensing
encoder (DCSE) [8], [11].

III. DESIGN ARCHITECTURE

Even though all the previously proposed methodologies are
achieving the improvement in the compressed sensing perfor-
mance [12], however low power consumption criteria have
been compromised to significant level. Thus, we have pro-
posed a simple and novel CS system design block giving the
highest priority to the low power consumption criteria. To
address the problem of high power consumption in a multi-
channel neural data acquisition system, a new CS system is
proposed. In this proposed design, unlike the conventional CS
strategy [13] where the input analog signal is multiplied with
a random sequence using a Gilbert multiplier which alone
consumes 10 mW power with a supply of 1.8 V, we have
proposed a new strategy, that is to use this random sequence

Figure 2: Schematic of the closed-loop amplifier.

as a clock to the ADC block and feed the analog neural data
signal as input directly to the ADC. The proposed approach
is also presented in Fig.1, the entire proposed CS system
consumes the total power of 825.35 µm which is significantly
less amount when compared to the power consumed by Gilbert
multiplier [14] alone in the conventional methodology. The
individual sub-blocks that are involved in the proposed CS
system are discussed in the upcoming sub-sections III-A, III-B,
III-C respectively.

A. Neural amplifier

This paper presents a fully-differential neural amplifier with
a capacitive-resistive feedback network [15]. A folded-cascode
(FC) architecture is used as the operational transconductance
amplifier (OTA) [16]. The FC-OTA which achieves wider
swing in the signal along with high gain is presented in this
paper. The complete amplifier schematic with the closed-loop
is presented in Fig.2. The reference input of the amplifier
uses the reference neural electrode data. Two DC-blocking

Figure 3: SAR-ADC block diagram.



capacitors are connected to each of the inputs to block the
DC component from the inputs. This amplifier design gives
enhanced performance in terms of gain-bandwidth (GBW).
The neural amplifier achieves a gain of 50.3 dB within the
neural signal bandwidth of 0.1 Hz - 5 kHz.

B. ADC

To digitize the amplified version of input neural data from
the designed amplifier, a successive approximation register
analog-to-digital converter (SAR-ADC) is designed in the 180
nm CMOS process [16]. The block diagram of the SAR-ADC
is shown in Fig.3. It consists of the 8-bit shift register, SAR
logic block, DAC (digital-to-analog converter), and a dynamic
comparator. This SAR-ADC has a sampling rate ranging from
10 to 40 kHz and consumes a 277 µW of power.

C. Pseudo random bit sequence (PRBS) generator block

Even before designing the PRBS block, we ask ourselves
the following questions: Can we generate a long random bit
sequence without compromising the low power criteria? Can
this random bit sequence be generated using fewer components
when compared to conventional methods that involve complex
design blocks? [17] The conventional way to implement the
pseudo-random bit sequence (PRBS) generator is to use 14 D-
flip flops, 2 xors, and one Mux [18]. As this method involves
more number of register blocks (D-flip flops) resulting in a
significant increase in power consumption, we have proposed
a simple PRBS block through efficient usage of components.
The Proposed pseudo-random bit sequence topology consists
of two different types of D-flip flops which are responsible
to attain a high data rate simultaneously satisfying the low-
power and low area constraints. Two extended genuinely
single-phase clock (E-GSPC) logic dependent D-flip flops are
used to shorten the critical path delay and thus boost the
data rate. The power consumption value of pseudo-random
bit sequence generator (PRBS) is 546 µW at 1.8-V VDD
including the clock buffer. The E-GSPC, GSPC D-flip flops
along with an XOR and buffer constitutes to form the proposed
PRBS generator block. An XOR gate is used to maintain the
randomness of the generated bit sequence and a feedback loop
is used for the repetition of the random signal sequence. Unlike
the conventional methods where 14 D-flip flops, 2 XOR’s, and
one Mux are used to generate random bit sequence [18], this
proposed PRBS block is simply built with just 7 D-flip flops,
XOR, and a buffer. There is a possibility of dynamic flip flops
losing their states when the PRBS block is made to run with
a slow sequence rate. So, while designing the PRBS block we
made sure that there is no loss of the state in D-flip flops.

IV. SIMULATION RESULTS

A previously recorded neural signal as shown in Fig.10a,
whose maximum amplitude is 4 mV is imported in the
Cadence Virtuoso Custom IC design tool to be used as an
input to the amplifier. The resultant amplified version of the
neural signal has its peak amplitude as 0.96 V. The mid-band
gain of the designed amplifier is 50.3 dB.

Figure 4: Pseudo random bit sequence block.

Figure 5: Schematic of Genuinely Single-phased clock depen-
dent D-flip flop.

Figure 6: Schematic of Extended Genuinely Single-phased
clock dependent D-flip flop.

(a) Input neural signal (b) Amplified neural signal

Figure 7: Simulation results of the proposed neural amplifier



Figure 8: Simulation results of the ADC.

Figure 9: Output of the PRBS block.

In this paper, we have considered collecting neural data
from the 32 channels, each sampled at 20 KS/s with an 8-
bit SAR-ADC, making the total data rate of 32×20 K×8. The
analog neural data from one channel among the 32 channels is
considered and its equivalent digitized version with the 8-bit
resolution is presented in Fig.8.

The amplitude of this PRBS is 1.8 V. A transient run for 4 µ-
sec time-frame is done and the output of the proposed pseudo-
random bit sequence generator is shown in Fig.9. To verify
the quality of reconstruction of the original signal from the
compressively sensed signal, the digitized output data is given
as an input to Ideal ADC and the corresponding reconstructed
signal is presented in Fig. 10b.

The output of SAR-ADC is reconstructed using an Ideal
DAC (digital to analog converter) in LabVIEW (Laboratory
Virtual Instrument Engineering Workbench) software and the
resultant output is presented in Fig. 10b.

V. CONCLUSION

This paper proposes the design of a novel compressed sens-
ing system which is implemented using 180 nm CMOS
technology. The highest priority is given to the low power
consumption of the proposed novel CS system design. The
proposed CS-based neural acquisition system needs 825.35
µW of power, the performance and power consumption results
show the significance of the proposed approach.
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(a) Original neural signal (b) Reconstructed signal.

Figure 10: Comparision between original and reconstructed
signal.

Table I: Comparision among previous works

Comparision of works
Parameters Tsung [19] O.U Khan [20] This Work

CMOS Technology 180nm 180nm 180nm
Signal type ECG Sinusoidal signal Neural

Compression methodology Algorithm based CS CS
No. of channels 2 NA 32
Sampling rate 90 MHz 1.2 GHz 10 to 40 kHz

Power consumption 6.7 mW 11.2 mW 825.35 µW
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