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Abstract: This paper presents a power-efficient complementary metal-oxide-semiconductor (CMOS)
neural signal-recording read-out circuit for multichannel neuromodulation implants. The system
includes a neural amplifier and a successive approximation register analog-to-digital converter
(SAR-ADC) for recording and digitizing neural signal data to transmit to a remote receiver. The
synthetic neural signal is generated using a LabVIEW myDAQ device and processed through a
LabVIEW GUI. The read-out circuit is designed and fabricated in the standard 0.5 µm CMOS process.
The proposed amplifier uses a fully differential two-stage topology with a reconfigurable capacitive-
resistive feedback network. The amplifier achieves 49.26 dB and 60.53 dB gain within the frequency
bandwidth of 0.57–301 Hz and 0.27–12.9 kHz to record the local field potentials (LFPs) and the action
potentials (APs), respectively. The amplifier maintains a noise–power tradeoff by reducing the noise
efficiency factor (NEF) to 2.53. The capacitors are manually laid out using the common-centroid
placement technique, which increases the linearity of the ADC. The SAR-ADC achieves a signal-to-
noise ratio (SNR) of 45.8 dB, with a resolution of 8 bits. The ADC exhibits an effective number of bits
of 7.32 at a low sampling rate of 10 ksamples/s. The total power consumption of the chip is 26.02 µW,
which makes it highly suitable for a multi-channel neural signal recording system.

Keywords: LabVIEW; neural amplifier; neuromodulation implants; noise–power tradeoff; read-out;
SAR-ADC; two-stage OTA

1. Introduction

Recent advancements in neuropotential recording pave the way for observing and
understanding the various neurophysiological disorders [1–3]. Recording various neural
activities also enables control of machines such as prosthetic limbs and other commu-
nication tools with the help of brain–machine interfaces (BMI) [4]. In addition to these,
multi-channel recording with an estimation of neural biomarkers in a closed-loop neu-
romodulation system improves the treatment of Parkinson’s disease by implementing
deep brain stimulation (DBS) [5]. Developing a device with biomarker detection and
controlling stimulation at a high spatial and temporal resolution, simultaneously recording
from multiple sites, is imperative [6–8]. This necessitates the design of a low-power neural
signal recording system with a very small footprint [9]. A customized application-specific
integrated circuit (ASIC) would be a good choice for meeting these requirements.

Several implantable multi-channel wireless neural signal recording architectures are
proposed in the literature [10–13]. One of the most common architectures is the one that has
one shared analog-to-digital converter (ADC) among all the channels through an analog
multiplexer (MUX). Alternatively, another architecture is proposed where each recording
channel has an individual ADC for every amplifier [14], which obviously results in more
power consumption. Finally, there is another architecture that has been proposed, which
has m rows and n columns of channels [15]. Each column uses one ADC, and there are n
number of ADCs implemented in the implant. This architecture is usually used for a large
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number of recording channels. This paper utilizes the first architecture: one shared ADC
for all the channels, which is shown in Figure 1. Using the analog MUX leads to a simpler
architecture and lower power consumption compared to the other two techniques. As the
prototype of an on-chip neural implant, a single-channel amplifier is implemented in this
work. The implantable neural signal recording system includes neural amplifiers, an analog
multiplexer, an ADC, a transmitter (TX), and an on-chip antenna for wireless transmission
of the acquired data. The time-division multiplexing (TDM) technique could be used in de-
signing the multiplexer for multiplexing the recording from the multiple sites in the analog
domain [16,17]. Direct transmission of the multiplexed analog data has the advantage of a
straightforward architecture and lower power dissipation [18]. As the number of channels
increases, the sampling frequency of the multiplexer increases. An effective and precise
acquisition system includes multi-channel recordings from a large number of neural probes,
which are connected to the same number of amplifiers. The total power budget limits the
high-density recording read-out circuit since the surrounding tissue of the probes could
be damaged due to excessive power dissipation [19]. Another important consideration
for designing the recording unit is the reduction of the chip area in order to minimize the
surgical effects or neuronal damage, risk of infection, and risk of trauma, which could
impact the behavioral study of the small subjects, such as mice or rats [20–23]. Moreover, a
large number of recording sites may cause electromagnetic interference (EMI) and noise at
the electrode–tissue interface, which degrades the performance of the system [24]. Thus,
the analog read-out circuit design should target low-noise performance [25,26]. Hence, the
objective of this simultaneous multi-channel neuropotential recording system is to meet
the constraints of low power, low noise, and minimized chip area to perceive brain signal
insights [16,27].

Figure 1. Overview of the neural signal recording system for brain neuromodulation implant.

The neuropotential signal of interest containing biomarkers for neuroscience research
and other BMI applications are mostly the local field potentials (LFPs) and the action
potentials (APs). They occupy different frequency bandwidths as well as maintain different
amplitude levels. Typically, LFPs have peak amplitudes of about several mVs while
occupying the frequency range of 0.1–250 Hz [28]. The peak amplitude of APs can be
about a few µV within the 0.25–5 kHz of frequency bandwidth [29]. Since the neural
signals can be as low as few µVs, the amplifier gain should be as high as ∼60 dB, with the
low-frequency pole being as low as 500 mHz to detect them accurately [2,30]. Since a large
number of recording sites would dissipate high power, the single-unit amplifier requires
very high energy efficiency (noise efficiency factor (NEF) ∼1) [31,32]. This necessity for low-
power consumption poses a tradeoff with noise performance, as the input-referred noise
voltage is inversely correlated with the total power consumption [33]. Several architectures
have been proposed in the literature considering these constraints [34–37]. The folded-
cascode technique as the operational transconductance amplifier (OTA) along with the
current-reuse or current-splitting technique is widely used for improving noise–power
efficiency [38,39]. Current-reusing among the differential pair of transistors and the folded-
cascode branches may affect current mirroring as well as supply voltage variation due
to the large source degeneration. In order to improve the noise–power efficiency, this
paper presents a two-stage amplifier architecture. The proposed closed-loop amplifier also



Electronics 2021, 10, 590 3 of 15

minimizes the large electrode-DC-offset (EDO) with a high power-supply rejection ratio
(PSRR) to prevent saturation.

The neural signal recording read-out circuit includes an ADC to digitize both the
APs and the LFPs faithfully. The ADC requires 7–8 effective number of bits (ENOB) at
the minimum to reconstruct the acquired neural signal reliably as well as to maintain
the signal integrity [1,29,40]. Several architectures are reported in prior work, such as
the successive approximation register (SAR) [41], logarithmic pipeline [42], sigma-delta
modulators [43,44], and dual-mode single-slope ADC [45], for biomedical system-on-chip
(SoC) applications. Most of them suffer from oversampling data conversion compared to
Nyquist-rate, large area, and high power consumption. Considering all these limitations,
SAR is the most widely used ADC architecture due to its high energy efficiency and modest
resolution data conversion at a low sampling rate [46]. Since the unit capacitance of the
binary parallel capacitor array could be miniaturized without affecting the ENOB, the SAR
architecture can achieve low-input capacitance [47]. The SAR-ADC featuring a simple
architecture is suitable for a low-frequency neural signal recording system at a sampling
rate of kHz order of magnitude. This paper presents a single-ended output 8-bit SAR-ADC
considering the constraints and specifications for neural signal recording. For the sake of
reducing the total power consumption of the whole recording unit, a low-sampling rate
of 10 ksamples/s is used in this work. The single-ended configuration allows us to have
a fixed reference voltage for the comparator as half of the supply voltage, thus reducing
the complexity. The proposed capacitor array in the ADC is designed manually with poly
layers since the process design kit does not have laid-out capacitors. The common-centroid
routing technique is adopted in the charge-scaling digital-to-analog converter (DAC) of
the ADC. Common-centroid placement alleviates the systematic mismatches as well as the
parasitic capacitance, which is induced in the layout [48,49]. Poly layers are used instead of
metal layers to prevent the charges from getting lost to the substrate. The design achieves
exact capacitance values in the post-layout simulation, which improves the linearity of
the ADC.

In order to experimentally validate the performance of the designed on-chip neural
amplifier and the SAR-ADC, most prior work without undergoing the in vivo/in vitro
measurements perform standalone bench-top measurements [50–52]. This work proposes
an approach to generate the neural signal using National Instrument’s LabVIEW and
applies a synthetic signal to the read-out circuit through the myDAQ data acquisition
device. A LabVIEW-based graphical user interface (GUI) is employed along with a myDAQ
device to characterize the neural signal recording system.

The objective of this work involves designing a recording read-out circuit with high
gain while minimizing the NEF level. The system is biased in the subthreshold region to
reduce power consumption even with a high process supply voltage. The digitization part
achieves high linearity, which results in more accurate and precise measurements. The
contributions of the paper are as follows: (i) development of a neural signal recording
read-out circuit with a low-power and low-noise configuration considering the noise–
power tradeoff, (ii) digitization of the acquired signal at a low sampling rate, and (iii) a
LabVIEW-based GUI to process and analyze the signal from the read-out circuit. Part of the
design of the amplifier is published in [30], while additional simulation and experiments
are conducted in this work. The organization of the paper is as follows: Sections 2 and 3
discuss the detailed architectures and design of the amplifier and ADC, respectively. All of
the experimental results are included in Section 4, which is then followed by a concluding
remark in Section 5.

2. Amplifier Architecture

A neural signal recording system requires very low power consumption in order to
ensure the functionality and compatibility of an implantable system and to support a large
number of recording sites. Hence, the front end needs to have low-noise performance
while also minimizing the EDO. Additionally, in order to prevent saturation due to the
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large input DC current resulting from the electrode offset, a large DC input impedance of
greater than 100 MΩ is suitable for the neuropotential recording system. The equivalent
input impedance in the AP and the LFP frequency bandwidth should also be large enough
to match the electrode impedance.

Figure 2 presents a full schematic of the closed-loop amplifier with the two-stage
OTA. A fully differential architecture was employed with a resistive-capacitive (R f –C f )
feedback network. An input capacitance (Cin) was used as the AC-coupling capacitor
to eliminate the large DC offset voltage at the electrode–tissue interface. The mid-band
gain of the amplifier was set by the ratio of the input and the feedback capacitor (Cin/C f ).
The gain was designed to be 1000 V/V (60 dB) to amplify the APs, which can be as low
as ∼1µV, setting the values of Cin as 1 nF and C f as 1 pF. Similarly, Cin and C f were
chosen to be 31 pF and 12 nF for detecting the mV-level LFPs with a gain of >50 dB. The
low-pass corner frequency ( fL) was determined by the feedback resistor and capacitor,
( fL = 1/(2 × pi × R f × C f )) and was set to be 0.5 Hz and 250 Hz to accurately detect the
LFPs and the APs, respectively. The feedback resistor value R f was set to be 10 GΩ for
a low pole frequency of 0.5 Hz. Another high-pass frequency was achieved by setting
R f as 649 MΩ. Though pseudo-resistors could be one option for the implementation of a
high-valued resistor, they may result in higher total harmonic distortion (THD), poor filter
performance, and noise due to variation in the process of the chip, supply voltage, and the
ambient temperature [53,54]. Since the process design kit does not provide controllable
resistors, surface mount off-chip resistors were used in this work to implement the feedback
network to achieve the reconfigurable bandwidth. The high-pass corner frequency was set
to be ∼300 Hz and ∼15 kHz.

Figure 2. Schematic of the amplifier with the operational transconductance amplifier (OTA).

A fully differential two-stage topology was employed as the OTA in the amplifier
design due to its simple and robust architecture [30]. It provides a high DC gain, wide
output voltage swing, and good linearity, which are the significant specifications in de-
signing the amplifier. The two-stage OTA also achieves a high common-mode rejection
ratio (CMRR) and power supply rejection ratio (PSRR) in comparison with the single–stage
counterpart [55]. In this work, the transistors were optimized considering the noise–power
tradeoff. To correlate the amplifier performance specifications, this work took into account
all the core elements, such as the total bias current, the transistors sizing, and the values of
the compensation capacitors and resistors. In order to bring the total power dissipation
below 5 µW, the bias current for each branch (Iin) was set to 250 nA. At this low bias
current, the input transistors were sized to operate in the sub-threshold region. Two PMOS
transistors (M1–M2) with a large channel width were chosen as the input pair to reduce
the low-frequency flicker noise components. The PMOS input transistors also achieve
lower common-mode voltage than the NMOS input pair. M1–M2 was designed to have the
size of 120/1 µm/µm. They achieved a high transconductance over the DC drain current
ratio (gm/ID) of 28.13 V−1, operating in the weak inversion region, resulting in a high
total transconductance of the OTA. NMOS and PMOS current mirror transistors such as
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M11, M12, M13, and M5, M6, M7, respectively are used to supply the bias current through
each branch. The aspect ratios (W/L) of the transistors, as well as the gm/ID are presented
in Table 1.

Table 1. Transistor parameters of the operational transconductance amplifier (OTA) shown in
Figure 2.

Transistors W/L (µm/µm) gm/ID(V−1)

M1, M2 120/1 28.13
M3, M4 10/1 22.7

M11 40/1 22.76
M12, M13 20/1 23.5

M5 120/1 23.82
M6, M7 30/1 23.54

M8 120/1 23.8

Transistor M8 is biased with the common-mode voltage (Vcm in Figure 2) of the
OTA, which is set by the common-mode feedback (CMFB) circuitry (1.65 V). In order to
ensure stability of the amplifier, a zero is introduced by implementing the common-mode
resistance (Rcm) and capacitance (Ccm). Rcm and Ccm are designed to be set as 10 kΩ and
1 pF, respectively.

Both the flicker noise (1/ f noise) and the thermal noise components contribute to the
input-referred noise of the amplifier. The channel gate width of the input pair transistors
is set to a high value in the interest of reducing 1/ f noise since 1/ f noise is inversely
proportional to the channel area [56]. The thermal and 1/ f noise can be expressed as
follows [56].

v2
ni,thermal =

16kT
2gm1

∆ f (1)

v2
ni,1/ f =

( 1
Cox × ∆ f

)( Kng2
m1

(WL)M1

)( 1
g2

m1

)
(2)

v2
ni,1/ f =

Kn

Cox × ∆ f

( 1
(WL)M1

)
(3)

where gm1 is the transconductance of the input transistor M1–M2, T is the ambient temper-
ature (300 K), and k is the Boltzmann constant. In this design, gm1 of the input pair is kept
high to reduce the effects of thermal noise. The amplifier bandwidth (∆ f ) is maintained
within the neural signal frequency. In the flicker noise Equation (2), the input-referred noise
includes the process parameter (Kn), the gate dielectric capacitance per unit area (Cox), and
the channel area of the transistor (W × L).

3. ADC Architecture

A low-power ADC architecture is required for the sake of achieving a prolonged
battery life for the implantable neural interfaces. To meet the requirements of low power
consumption (below 25 µW), low sampling rate (below 100 ksamples/s), and resolution
(8–10 b), several architectures are proposed in prior work, such as oversampling modula-
tors [57], single-slope (SSR) or multiple-slope ramp (MSR) ADCs [58], and SAR-ADCs [52].
In this paper, the SAR-ADC architecture is designed due to its simpler architecture as well
as meeting all the above criteria.

Figure 3 presents a schematic of the 8-bit SAR-ADC. To reduce the power consumption,
a single-ended ADC architecture is implemented in this work. While the single-ended
configuration could be prone to common-mode noise, it is mostly eliminated by a high
CMRR of the front-end amplifier. It includes an 8-bit charge-scaling digital-to-analog
converter (DAC), a sample and hold circuit, a dynamic comparator, and a SAR logic. The
sample and hold stage samples the analog input signal and holds until the next sampling
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period of the ADC. After sampling, the analog input is compared with the output voltage
of the charge-scaling DAC. The output of the comparator is sent to the SAR-logic block.
The SAR logic includes a 3-bit counter, D flip-flops, and 3-bit shift registers. After eight
consecutive clock cycles, the digital output bits are evaluated and applied to the DAC
capacitor array. The clocks at the flip-flops are generated externally using a crystal oscillator.

Figure 3. Schematic of the 8-bit successive approximation register analog-to-digital converter
(SAR-ADC).

3.1. Charge-Scaling DAC

The charge-scaling DAC is comprised of a parallel array of binary-weighted capacitors.
The unit capacitor (C0) value was chosen to be 35 fF, which resulted in the total capacitance
of the array as 8.96 pF. The unit capacitors were designed from the process design kit of the
0.5 µm library. The capacitor was manually laid out from the poly-poly2 layer, which forms
the capacitor’s top and bottom plate, respectively. Poly-metal1 and poly2-metal1 contacts
were used for the layout configuration of the capacitors. The overall capacitance per unit
area is found to be 0.048 fF/µm2 from the post-layout simulation of the DAC. Common
centroid placement was adopted for the layout of the capacitors to avoid mismatches.

At the beginning of the digitization, the reset switch at the charge-scaling DAC
(Figure 3) was turned on and all the capacitors were switched to reset. During the sampling
phase, the analog input Van was sampled and fed to the comparator as Vp. After the
sampling period and the initial discharging through the reset, the largest capacitor 128 C0
was connected to Vre f , and the other capacitors were connected to the ground. Since the rest
of the capacitor array’s total capacitance was equal to 128 C0, the analog output (Vn) from
the DAC after the voltage division became half of Vre f . Vn was compared with Vp in the
comparator. If the DAC output was greater than the analog input signal, the comparator
output Vcomp changed the most significant bit (MSB) of the SAR logic, which was initially
set to 1 while keeping the other bits at 0. Then, in the next clock cycle, the second-largest
capacitor 64 C0 was switched to Vre f for the next comparison while still keeping the rest
of the capacitors (except 128 C0) connected to the ground. The comparator repeats the
procedure depending on the comparator output until the least significant bit (LSB) is found.

3.2. Comparator

The designed comparator consists of a pre-amplifier, a decision stage, and an output
buffer, as shown in Figure 3. In order to improve the comparator sensitivity, the analog
input signal is amplified in the pre-amplifier stage. The decision stage (positive feedback)
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makes a decision about which input is of higher amplitude. Lastly, the latch provides the
output as a digital bit.

The pre-amplifier stage takes the two analog input signals Vn and Vp. The transconduc-
tance of the input transistors determines the gain of the amplifier. This stage is employed
to reduce the offset and to eliminate kickback noise (switching noise) by separating the
sensitive input from the positive feedback stage. The decision stage utilizes positive feed-
back from the cross-gate connection to further amplify the gain from the decision circuit.
The output buffer was employed as the final stage, which converts the decision element
into the logic bits (either 0 or VDD). The buffer used in this design is a PMOS differential
amplifier driving an inverter.

4. Measurement Results and Discussion

The neural signal recording read-out circuit was designed in the standard 0.5 µm
CMOS process. The characterization of each block and the recording and digitization of
the synthetic neural signal are described in the below subsections.

4.1. Amplifier Characterization

The neural amplifier was characterized to measure the gain, bandwidth, noise, and
power performance. The measured closed-loop gain with the capacitive-resistive feed-
back network is presented in Figure 4a. The mid-band gain within the LFP bandwidth
(0.57–301 Hz) is found as 49.26 dB. In the AP bandwidth of 0.27–12.9 kHz, the gain is
measured as 60.53 dB. In order to estimate the gain variability from channel-to-channel
mismatches, a Monte Carlo simulation was performed on the closed-loop gain of LFPs.
The mean of the simulated AC gain is found to be 49.65 dB for 200 samples, which implies
device and process mismatches. The standard deviation of the mid-band gain is evaluated
as 276 mdB, which exhibits a trivial effect on the whole circuit. As can be seen from
Figure 4b, very few samples go beyond the gain variation window (48.2–49.8 dB). The
high gain of the amplifier within the reconfigurable bandwidth of APs and LFPs allows us
to achieve a high CMRR, which helps to eliminate common-mode noise. The open-loop
gain performance is measured as 67.18 dB, with 14.3 kHz as the unity gain frequency. The
DC-offset voltage of the amplifier with the DC-blocking capacitor is measured to be 12 mV.

Figure 4. (a) Measured closed-loop gain of the amplifier for detecting both the action potential (AP)
and the local field potential (LFP) in different bandwidths, (b) Monte Carlo simulation of the AC
gain of LFPs for 200 samples.

The noise efficiency factor (NEF) of the amplifier estimates the tradeoff between the
power consumption and the input-referred noise calculated from Equations (1) and (2). It
can be approximated from the following Equation [30]:

NEF = vni,rms

√
2Ibias

π.Ut.4kT.∆ f
(4)
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where vni,rms is the rms value of the input-referred noise voltage in the bandwidth of
interest (∆ f ). Ut represents the thermal voltage, which is 25 mV. The total bias current
through all the branches of the amplifier is Ibias. Since the ideal value of the NEF is 1,
the lower the NEF, the better the tradeoff performance of the amplifier. Looking into
Equations (3) and (4), it can be seen that increasing the channel area (channel width and
length) improves the NEF performance. From Equation (4), the NEF is calculated as 2.53
within 0.5 Hz to 12.9 kHz of the frequency bandwidth. In this work, the noise level is kept
below 4 µVrms while also minimizing the power consumption as 4.12 µW, which maintains
the noise–power tradeoff. The measured CMRR and PSRR of the neural amplifier are
found to be 97.1 dB and 84.4 dB.

Table 2 shows the performance metrics of the neural amplifier compared to other prior
work. The recording front-end achieves the lowest NEF and the highest gain within the
reconfigurable neural signal bandwidth. Although [59] exhibits lower NEF compared to
this work, their gain is too low to amplify µV-level signals.

Table 2. Amplifier Performace Comparison.

Amp. Process Supply Gain Power BW IRN NEF CMRR PSRR
(µm) (V) (dB) (µW) (Hz) (µVrms) (dB) (dB)

Lee et al. [2] 0.035 1.8 40 19.3 1–10 k 2.9 nr 56.4 65.5

Kim and Cha [60] 0.18 1.2 39.2 2.4 1–10 k 5.79 3.2 78 85

Ng and Xu [61] 0.035 3.0 38.1 6 1–9 k 13.3 7.87 74 55

Ng and Xu [62] 0.065 1.0 52.1 2.8 1–8.2 k 4.13 2.93 90 78

Abdelhalim et al. [63] 0.13 1.2 54–60 3.5 10–5 k 5.1 4.4 78 nr

Lee et al. [59] 0.18 1.0 40 0.95 nr 2.88 2.38 nr nr

Rodovalho et al. [64] 0.18 0.3 51 0.5 0.1–10 k 25.6 nr 37 41

Samiei and Hashemi
[65] 0.18 1.2 41–59 2.6 0.5–5 k 3.2 3.2 70 nr

Jomehei and Sheikhaei
[66] 0.18 ±1.2 60 7.68 102–10 k 3.87 2.65 >50 >53

Nikas et al. [67] 0.18 1.8 37.5 23 1–5 k 7.3 14.2 90 92

This work 0.5 3.3 49.26,
60.53 4.12 0.5–301,

270.2–12.9 k 3.16 2.53 97.1 84.4

IRN: input-referred noise, nr: not reported.

4.2. ADC Characterization

The SAR-ADC was measured using National Instrument’s (NI) myDAQ data acquisi-
tion device (part number: 781326-01, National Instrument, Austin, TX USA) in LabVIEW
GUI. The myDAQ device was used as an interface between the test board and the GUI.
The digital i/o pins of the myDAQ card were connected with the ADC’s 8-bit outputs.
A sinusoidal AC voltage of 100 mV and 1 kHz frequency were applied as the analog
inputs to the ADC. The digitized data were collected and converted back to the analog
domain to observe the reconstructed signal. The sampling rate of the ADC was set to be
10 ksamples/s, maintaining the Nyquist-rate for the highest frequency of neural signals.
The performance of the ADC was validated for the parameters such as the differential
nonlinearity (DNL), the integral nonlinearity (INL), the total harmonic distortion (THD)
power spectrum, and the signal-to-noise ratio (SNR).

Figure 5 presents the results describing the characteristics of the ADC. In order to be
8-bit accurate, the ADC is required to have a DNL and an INL less than ±0.5 LSB. The
measured DNL and INL are 0.32/−0.24 LSB and 0.17/−0.28 LSB, respectively (Figure 5a,b),
which confirm less than the maximum error of the data conversion and high linearity.
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Figure 5c shows the power spectrum for the fundamental signal and the harmonics. The
fundamental signal (set to be 1 dB below full scale) frequency is at 10 kHz. The first
harmonic is found to be −59.8 dB. The THD is expressed as the ratio of the summation
of the first five harmonics to the power of the fundamental component. Hence, the less
the THD is, the more accurate the ADC output would be. The lower amplitude values
of the harmonics demonstrate a lower THD. The SNR is found to be 45.75 dB, which
is calculated from the ratio of the power of the fundamental input signal to the power
of the noise associated with it. The SNR power spectrum is shown in Figure 5d. The
ENOB is one of the significant parameters in characterizing the ADC, which expresses
the actual bits of resolution. ENOB is calculated from the THD with noise, also known as
signal-to-noise-and-distortion (SINAD), and is calculated as below:

SINAD =
Psig + Pn + Pdistort.

Pn + Pdistort.
(5)

ENOB =
SINAD − 10log(3/2)

20log2
(6)

where Psig is the power of the input signal. Pn and Pdistort. are the noise and other spectral
components of the harmonics. The ENOB of the designed ADC is calculated as 7.32 from
Equations (5) and (6). The total power consumption of the ADC is measured to be 21.9 µW,
with a voltage supply of 3.3 V.

Figure 5. (a) ADC differential nonlinearity (DNL), (b) ADC integral nonlinearity (INL), (c) ADC
total harmonic distortion power spectrum (fundamental vs. harmonics), and (d) signal-to-noise ratio
power spectrum (fundamental vs. noise).

Table 3 presents the performance comparison of the ADC among the prior works. The
SAR-ADC exhibits a good SNR value at a lower sampling rate compared to prior work.
The figure of merit (FoM) [68] of the proposed ADC is calculated from the Nyquist rate as
31.4 fJ/conversion step, which is better than that presented in prior work. Although [69,70]
shows better FoM than this work, the power consumption is very high. While [40,63,68,71]
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exhibited a lower power consumption compared to this work, they have a higher DNL
and INL, which degrades the linearity performance of the ADC. They also exhibit a lower
ENOB. The DNL and the INL in the proposed work present the best linearity performance
among the previous works with respect to the 1 LSB change (in volts) in analog signal. The
SNR of the proposed work also performs better than most of the works with a comparably
lower sampling rate. The SNR shows the ADC’s sensitivity to ENOB to effectively digitize
analog signals.

Table 3. ADC performance comparison.

ADC Process Supply Res./ DNL INL SNR S. Rate Power FoM
(µm) (V) ENOB (LSB) (LSB) (dB) (S/s) (W) (fJ/C-s)

Zou et al. [1] 0.18 1.0 9.5/8.3 0.55/−0.55 1.20/−1.20 51.5 24.5–
245 21.66 µ nr

Shahrokhi et al.
[40] 0.35 3.3 8/6.2 nr nr nr 111 k 15.5 µ nr

Wang et al. [41] 0.18 1.8 10/9.77 0.57/−0.47 0.40/−0.38 61.2 25 k 24.81 µ 129

Abdelhalim
et al. [63] 0.13 1.2 8/7.6 0.60/−0.60 0.70/−0.70 47.5 100 k 10 µ nr

Jiang et al. [72] 0.028 1.2 7/nr 0.86/−0.98 1.50/−1.40 36.4 2 G 7.62 m 70.8

Xu et al. [70] 0.055 1.0 8/6.9 0.21/−0.22 0.42/−0.25 43.5 320 M 1.2 m 30

Wang et al. [73] 0.055 1.2 8/6.05 0.93/−0.85 0.71/−0.91 31.8 2.6 G 60 m 348

Chaturvedi
et al. [71] 0.13 1.0 8/7.7 0.26/−0.67 0.60/−0.70 48.0 1 M 8.8 µ 42.3

Li et al. [74] 0.065 1.2 8/nr 0.90/−0.60 0.70/−0.70 45.7 350 M 2.1 m 38.1

Oh et al. [69] 0.028 1.1 8/7.36 0.59/−0.58 0.82/−0.82 45.0 1.0 G 2.55 m 16.6

Reyes et al. [75] 0.13 1.2 8/7.12 0.76/−0.58 0.65/−1.08 44.6 3.2 G 3.28 m 218

Aiello et al. [68] 0.04 1.0 8/6.4 1.90/−1.90 1.50/−1.50 40.4 2.8 k 7.3 µ 30.9 k

This work 0.5 3.3 8/7.32 0.32/−0.24 0.17/−0.28 45.8 10 k 21.9 µ 31.4

nr: not reported.

4.3. Neural Signal Amplification and Digitization

The test setup to experimentally validate the fabricated on-chip amplifier and ADC
performances are shown in Figure 6. Figure 6a shows a block diagram of the setup, whereas
Figure 6b presents the actual test board and LabVIEW myDAQ card with the fabricated chip
microphotograph. The single-channel amplifier occupies an area of 0.0144 mm2, which is
very low in the multi-channel neural signal recording configuration. The area of the ADC
is 0.375 mm2, which will be eventually shared among all the channels. The dimension of
the designed fabricated chip is 1.5 mm × 1.5 mm, which is packaged in a 7 mm × 7 mm
quad-flat no-lead (QFN) packaging.

Synthetic neural signals are generated from Matlab [76] and then applied to the
amplifier to amplify the signal using the myDAQ acquisition device. After the amplification,
the on-chip SAR-ADC is used to digitize the signal. The same myDAQ device is used to
process the digitized data. LabVIEW GUI is used again as the digital-to-analog converter
(DAC) to reconstruct the analog neural signal. The NI measurement and automation
explorer (NI MAX) from National Instrument, Austin, TX, USA is used to apply the analog
input to the amplifier and to acquire the digital output from the ADC.
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Figure 6. (a) Block diagram of the experimental test setup of the system, (b) actual test-setup with
the quad-flat no-lead (QFN) chip and chip microphotograph.

Figure 7a presents the amplified neural signal for 10 s. The peak-to-peak voltage is
2 V, which shows the amplification of the low-amplitude neural signal of several µVs. This
amplified signal is digitized using the proposed ADC and then again reconstructed to
compare with the original signal.

Figure 7. (a) Amplified synthetic neural signal, (b) reconstructed signal after the digital to
analog conversion.

Figure 7b presents the amplified original signal and the reconstructed signal for 1 s as
the zoomed view of the full signal. It can be seen from the figure that the reconstructed
signal matches the original signal in terms of amplitude and peaks. There exists some
time delay between the two signals, which could be due to the RC delay coming from the
additional wires, which are used to connect the myDAQ card with the chip. The spikes are
detected properly in terms of peak amplitude and frequency of occurrences of the spikes.
The standard deviation of the percentage error ((Vactual − Vreconstructed)/Vactual × 100%)
between the two signals is calculated as 0.87, which shows the high accuracy performance
of the digitization of the ADC. Overall, the high-gain low-noise neural signal recording
amplifier along with the ADC in this paper performs well with low power consumption
and a high SNR value.
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5. Conclusions

This paper presents a power-efficient and low NEF approach for neural signal record-
ing systems. The full system includes a reconfigurable bandwidth amplifier and an 8-bit
SAR-ADC, operating at a lower sampling rate with high linearity yet able to construct the
signal reliably. This paper also discusses an approach for the measurement system using
LabVIEW myDAQ card and GUI for the validation before the in vivo experiment.
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