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Abstract—This paper contributes to the field of deep generative
learning applied to solar photovoltaic (PV) synthetic data gen-
eration problems by exploring Deep Generative Model (DGM)
that combines Variational Autoencoders (VAE) and Generative
Adversarial Networks (GAN), i.e., VAEGAN. We build upon
knowledge in the area of deep learning to incorporate our Hybrid
Deep Neural Network (HDNN), combining convolutional and
Long Short-Term Memory (LSTM) layers at the encoding level
for producing robust latent representations and subsequently
high-quality synthetic PV data samples. The major advantage
of these approaches is that it allows the DGMs to perform better
feature extraction as well as to capture the historical trends in
data effectively. The simulations on actual data acquired from
a real PV system demonstrate the effectiveness of the DGMs to
produce high-quality samples for multiple seasons of the year.

Index Terms—Deep Learning, Generative Adversarial Net-
works, Solar Photovoltaic, Synthetic Data, Variational Autoen-
coders.

I. INTRODUCTION

ODELING electric power generation from solar pho-
tovoltaic (PV) panels is essential due to its significant
impact on realizing smart and intelligent power grids. How-
ever, as energy prosumers comprise heterogeneous renewable
energy sources, modeling the PV system components becomes
extremely complex. Additionally, the spreading of advanced
metering infrastructures in the distribution network has led
to enormous amounts of energy generation data. While trans-
mission datasets are relatively easier to get a hand on, the
accessibility and availability of distribution level datasets are
particularly challenging due to security and privacy consider-
ations [1]. Moreover, PV power output primarily depends on
solar radiation, which is highly intermittent due to the presence
and movement of clouds at a particular location. This calls for
novel techniques for the generation of high-quality synthetic
PV datasets. Synthetic data generation is considered to be the
way of alleviating the aforementioned issues.
Existing literature includes several methods for generating
PV synthetic data. For instance, a Markov model was ap-

D. A. Rosa de Jesiis and P. Mandal are with the Power and Renewable En-
ergy Systems (PRES) Lab. within the Department of Electrical and Computer
Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
(e-mail: danrosa@miners.utep.edu; pmandal @utep.edu).

T. Senjyu is with the Department of Electrical and Electronics Engineering,
University of the Ryukyus, Nishihara, Okinawa 9030213, Japan (email:
b985542 @tec.u-ryukyu.ac.jp).

S. Kamalasadan is with the Energy Production Infrastructure Center, and the
Department of Electrical and Computer Engineering, University of North Car-
olina at Charlotte, Charlotte, NC 28223 USA (e-mail: skamalas@uncc.edu).

978-1-6654-0507-2/21/$31.00 ©2021 IEEE

plied in [2] for simulating solar radiance time-series, which
were converted to PV power time-series. The considered
metrics showed the model’s capability to reproduce the ground
truth data with low variability. Lave et al. [3] generated
PV synthetic data is generated through a three-step method
that builds relationships between high and low-frequency
data for different locations obtained from hourly satellite
irradiance and sub-minute ground measured solar irradiance,
respectively. Simulation results demonstrated the method’s
ability to produce unique, high-resolution PV synthetic data.
Power et al. [4] reported a Bayesian method for residential
demand and PV generation. The mean absolute error for the
weekday profile is computed to be less than 10%, which
demonstrates the accuracy of the model to resemble the real
data. However, these methods are model-based, meaning that
they require modeling the weather conditions and PV systems
based on mathematical formulas or characteristics, increasing
the synthetic data generation complexity. An alternative to
these methods to alleviate these issues is the development and
application of novel Deep Generative Models (DGM) [5].

DGMs learn the underlying ground-truth data probability
distributions through unsupervised learning. In recent years,
DGMs has gained popularity due to their superiority to
perform a wider number of tasks, including but not limited
to, feature extraction for dimensionality and noise reduction.
DGMs have a number of parameters significantly smaller than
the amount of data it is trained on. This encourages the
models to discover and efficiently internalize the time-series
sequential dependencies from historical trends. Notably, two of
the most commonly used and efficient DGMs are Variational
Autoencoders (VAE) and Generative Adversarial Networks
(GAN). VAEs aims at maximizing the lower bound of the
data log-likelihood, whereas GANs achieve an equilibrium
between two networks, the generator, and discriminator. In
the literature, VAEs and GANs have been used for data
compression and denoising [6], [7] as well as for anomaly
detection [8] applications. Furthermore, the combination of the
VAE and GAN into the VAEGAN has improved the generation
of synthetic data in terms of its quality and diversity [9],
[10]. However, to the best of our knowledge, the application
of DGMs has not been thoroughly studied in the context of
power system time-series data applications, in particular, solar
PV power synthetic data generation.

The work described in this paper contributes to develop-
ing DGMs for PV synthetic data generation and leveraging
from previously developed performance measures for other
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Fig. 1: Hybrid deep generative model illustrating VAEGAN’s high-level architecture incorporating the HDNN in the encoder. Data samples
forward pass through the encoder, which gives the distribution parameters to sample latent representations. The regularization term (Lprior)
is computed using the Kullback-Leibler divergence. The decoder maps latent representations back to data space, and the reconstruction
error (Eﬁ;,f ) is computed. A latent representation (zp) is sampled from prior (NV(0,1)) and its associated reconstruction is passed to the
discriminator along with the ones of the true and generated samples. Finally, the VAE and GAN combined models produce the robust

£ = ['prio'r + ££;}:é + ;CGAN loss.

applications to measure the performance of the generated PV
data samples. This paper explores different DGMs, such as
VAE and a hybrid model using the combination of VAE
and GAN, i.e., VAEGAN, incorporating convolutional and
Long Short-Term Memory Networks (LSTM) layers at the
encoding level of the generator. The major advantages of
these DGMs over the existing techniques are: (1) lower degree
of risk of overfitting, (2) avoiding the need for extensive
feature engineering or hyperparameter tuning, and (3) better
generalization and reconstruction diversity through learning
the joint distribution over the real data and their corresponding
latent representations.

This paper is organized as follows. Section II describes
the data set. Section III introduces the considered DGMs for
PV synthetic data generation. In Section IV, the experimental
results are presented and compared. Finally, the conclusion
and future work are discussed in Section V.

II. DATA DESCRIPTION

The PV dataset, which is acquired from Ashland, Oregon
for the purpose of training and testing of the considered
DGMs, consists of hourly data samples of PV power, Global
Solar Radiation (GSR), and temperature [11], [12]. The first
step in preparing the dataset involves segregating the samples
into spring, fall, summer, and winter seasons. The next step
involves the normalization of the features within the unit range
[0, 1] using the min-max function defined in [13]. The last step
requires framing the season datasets as multivariate unsuper-
vised learning problems where the inputs and outputs for the
considered DGMs correspond to hourly samples, including the
features mentioned above.

III. DEEP GENERATIVE MODELS

This section provides a background of VAE and GAN
models and further describes how they are incorporated into
the VAEGAN (see Fig. 1) with the purpose of improving the
VAE with a robust loss function to measure the reconstruction
performance during training.

A. Variational Autoencoder

The VAE [14] comprises two networks that encode data
samples x into latent vectors z = Enc(x) = ¢(z|x) and de-
code latent representations back to data space X = Dec(z) =
p(x]z). The encoder is regularized by making the latent
distribution p(z) as similar as possible to the prior z, which
is typically chosen as z ~ N(0,I). The loss is equal to the
negative expected log likelihood plus the prior regularization
(Kullback-Leibler divergence) term:
ey

Lyap = —Eqx llogp(x|2)] + Dic 1 (q(2]x)[|p(2))-

B. Generative Adversarial Network

The GAN [15] incorporates the generator and discriminator
networks that maps latent representations z to data space and
assigns probability y = Dis(x) that x is an actual data sample
and probability 1 — y that x is generated using the generator
network, respectively. The loss function objective is to obtain
the binary classifier that discriminates between the true and
generated data samples while encouraging the generator to fit
the underlying distribution of the true data samples Loan =
log(Dis(x)) +log(1 — Dis(Gen(z))), where x and z are the
data samples and latent vector, respectively.
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C. Variational Autoencoders Generative Adversarial Network

The VAEGAN takes advantage of the observation that while
the discriminator discerns between true and generated data,
it also learns the joint distribution over the real data and
its corresponding latent representations. The characteristics
of sequential dependencies from historical trends in the data
learned by the discriminator are integrated into the VAE in
terms of a robust reconstruction loss. This results in the
combination of the GAN’s high-quality generative capabilities
and the encoding effectiveness of the VAE —as a feature
extractor— to produce latent representations.

In order to achieve a robust VAE error, the expected log
likelihood is replaced with a reconstruction error in terms of
the GAN discriminator, which introduces a Gaussian obser-
vation model for the hidden representation of the [-th layer
of the discriminator p(Dis;(x)|z) = N (Dis;(x)|Dis;(X), 1),
where X ~ Dec(z) is sample from the decoder of x and the
VAE error becomes L],/ = —Eq(zx) [logp(Dis;(x)|z)]. The
combined model considers the following loss function:

L= Eprior + »Cl?,;ksé + ACGAN~ (2)

A detailed description of the VAEGAN’s encoder, decoder,
and discriminator network architectures is presented next, and
for which, we refer to Fig. 1 for the steps followed through
the training procedure.

1) Input Layer: This layer distributes the data feature vec-
tors to the VAEGAN model. The data samples contain vectors
with 24 time-steps (one per hour) and three features, including
the historical PV power output, GSR, and temperature.

2) Encoder Network: The encoder includes a modified
version of the HDNN [11], combining convolutional and
LSTM units at the layer level (see Fig. 2), which allows it
to obtain meaningful latent representations through feature
extraction and sequential dependency capture from historical
trends using the convolutional and LSTM layers, respectively.

Encoder
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Fig. 2: VAEGAN encoder network high-level architecture incorporat-
ing the HDNN that combines a convolutional layer with 512 feature
extractors and two LSTM layers of 256 and 128 units. The network
computes the parameters —mean and variance— to sample the values
of the latent vector using the normal distribution.

The convolutional deep learning algorithm that resembles
the organization and functionality of the animal visual cortex

[16], where kernels extract features through convolutional
operations:

S(nla"'anM) = (I*K)(n17"'7n1\/1)7 (3)

where *, I, and K are the convolutional operation, input, and
kernel. This layer contains 512 kernels with size 3 and stride
2. The LSTM is a type of recurrent neural network with
units containing gates that manage the storage and flow of
information to avoid the vanishing gradient problem [17]:

hi = oltanh(cl), 4)

where h‘l, o{, and c{ are the recurrent state output, output
of the gate that controls the amount of memory outputted,
and memory cell, respectively. The subsequent LSTM layers
contain 256 and 128 units, respectively. The dense layer at the
end of the encoder network outputs two vectors describing the
mean () and variance (0'3) of the latent distributions.

3) Latent Vector: Latent representations (z) are sampled
from N ~ (pg,02). This process requires a reparameteri-
zation to randomly sample an epsilon € ~ (0,I) to compute
the network’s relationship of the distribution parameters with
respect to the loss using backpropagation.

4) Decoder Network: The decoder network maps latent
representations (z) back to data space (x). The architecture
comprises two fully-connected layers of 288 and 144, a
reshape layer, and one convolutional transpose layer. The
reshape layer simply transforms the output of the last fully-
connected layer from 144 to 72. Subsequently, the 1D con-
volutional layer transforms the data from 72 to 24 x 3, cor-
responding to the number of hours and features, respectively,
with the number of filters, kernels, and strides set to 3.

5) Discriminator Network: The discriminator network tells
if a sample is real or generated with probability y € [0, 1]. Its
architecture includes three convolutional layers with 512, 256,
and 128 kernels of size 3 and stride 2 and the output with one
neuron.

IV. SIMULATION RESULTS AND DISCUSSION

We compare the performance of the VAEGAN with that of a
VAE through the precision, recall, density, coverage, Discrete
Fréchet Distance (DFD), and Maximum Mean Discrepancy
(MMD) [18]-[20] in terms of the quality of the generated
solar PV synthetic data. Given a real distribution P(X) and
a generative model Q(Y'), let us assume that samples X
and Y; can be sampled, respectively. The precision is defined
as the portion of Q(Y) that can be generated by P(X),
where N and M are the number of real and generated data
samples, respectively, and 1.y is the indicator function (see
(5)). Similarly, the recall is defined as the portion of P(X)
that can be generated by Q(Y). The density improves upon
the precision dealing with the overestimation of the manifold
around real outliers. The coverage improves upon the recall by
building nearest neighbor manifolds around real samples. The
DFD measures the similarity between curves considering the
location and order of their points, where L, d, and d(u,, vp,)
are the length of the longest link in L (the coupling between

Authorized licensed use limited to: Univ of Texas at El Paso. Downloaded on January 25,2022 at 05:51:54 UTC from IEEE Xplore. Restrictions apply.



TABLE I: Comparison of PV synthetic data generation performance between VAE and VAEGAN.

Season
Spring Summer Fall Winter
Metric PV GSR T PV GSR T PV GSR T PV GSR T
Precision 0.4946 0.5679 0.9565 0.4084 0.4826 0.9121 0.4075 0.4730 0.9565 0.3418 0.4003 0.8226
Recall 0.5100 0.5888 0.9352 0.4286 0.5046 0.9332 0.4277 0.5037 0.8320 0.3600 0.4373 0.9761
g Coverage 0.4792 0.5530 0.9049 0.3910 0.4579 0.8919 0.3915 0.4707 0.7811 0.3254 0.4162 0.8610
> Density 0.4785 0.5597 0.9673 0.3737 0.4551 0.9109 0.3771 0.4517 0.9601 0.2908 0.3713 0.7460
DFD 0.1025 0.0898 0.0785 0.1139 0.0931 0.0708 0.1373 0.1078 0.0856 0.1384 0.1085 0.1074
E MMD 0.0013 0.0015 0.0055 0.0008 0.0012 0.0070 0.0011 0.0015 0.0097 0.0008 0.0011 0.0106
§ Precision 0.5000 0.5811 0.9606 0.3933 0.4702 0.9693 0.4048 0.4812 0.9103 0.3464 0.4265 0.9106
z Recall 0.5059 0.5883 0.9778 0.4281 0.5046 0.9029 0.4249 0.4977 0.8951 0.3596 0.4368 0.9059
é Coverage 0.4742 0.5507 0.9438 0.4006 0.4776 0.8814 0.3933 0.4725 0.8503 0.3277 0.4176 0.8310
ﬁ Density 0.4983 0.5772 0.9698 0.3665 0.4475 0.9665 0.3995 0.4840 0.8810 0.3099 0.3858 0.8812
> DFD 0.1092 0.0911 0.0634 0.0850 0.0746 0.0646 0.1154 0.0916 0.0670 0.1129 0.0958 0.1012
MMD 0.0015 0.0017 0.0031 0.0007 0.0009 0.0044 0.0021 0.0023 0.0130 0.0008 0.0009 0.0095
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Fig. 3: Comparison between the real (green) and synthetic data generated (red) over a spring day.

P and @), distance function, and distinct pairs of points from
the coupling between P and (@, respectively. The MMD is
a distance on the space of probability measures based on the
idea of embedding probabilities in a reproducing kernel Hilbert
space.
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Table I presents the average performance measure values
obtained from the considered DGMs. The coverage values
obtained from the VAE model range between 0.3254 and
0.4792, 0.4162 and 0.5530, and 0.7811 and 0.9049 for the
PV power output, GSR, and temperature, respectively, over
the seasons. The VAEGAN model obtained coverage values
in the range of 0.3277 and 0.4742, 0.4176 and 0.5507, and
0.8310 and 0.9438, respectively. The VAE obtained density

values between 0.2908 and 0.4785, 0.3713 and 0.5597, and
0.7460 and 0.9673, whereas the VAEGAN generated between
0.3099 and 0.4983, 0.3858 and 0.5772, and 0.8810 and 0.9698
across the seasons. Both models showed DFD values as low
as 0.0708 for the VAE and 0.0634 for the VAEGAN. In
the context of the MMD, the VAE obtained values as low
as 0.0008 for the PV power output in summer, whereas the
VAEGAN improved it to 0.0007. Both VAE and VAEGAN
models show similar performance with high values for the
precision, recall, coverage, and density; and low values for
the DFD and MMD. Both of these VAE and VAEGAN models
excel better at generating synthetic data over the spring with
density as high as 0.9673 and 0.9698 and in the summer with
MMD as low as 0.0008 and 0.0007, respectively, based on the
average values obtained across the seasons.
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Fig. 4: Performance measure deviation for the PV power output over
the spring season obtained from the VAEGAN model.

Fig. 3 shows the synthetic data generated (red) for the true
data sample (green) corresponding to March 11, 2011. From
the reconstructions, it can be noticed that the VAEGAN can
perform feature extraction through the generator, which is a
VAE incorporating a modified version of the HDNN at the
encoding level. This and the robust loss function present in
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the VAEGAN make the best use of the features extracted to
produce high-quality synthetic samples. A box-whisker plot in
Fig. 4 shows the distribution of the values for each measure
obtained for the PV power output by the VAEGAN over the
spring, the season in which it obtained the best measure values.
The model can produce reconstructions for the PV power
output with precision, recall, coverage, and density values
spanning between 0.33 and 0.625, 0.33 and 0.625, 0.333 and
0.583, and 0.250 and 0.677, respectively. In terms of DFD
and MMD, the measures spread from 0.029 to 0.289 and
from 0.0002 to 0.0186, respectively. However, the test results
and the overall performance demonstrate that both individual
(VAE) and hybrid (VAEGAN) deep generative models are
capable of generating high-quality reconstructions case-wise
over the seasons.

Research on generative models for synthetic data generation
is a relevant challenge in the context of smart power grid. This
paper contributed to solving the problem of PV synthetic data
generation over the seasons through the exploration of DGMs
and presented the appropriate performance metrics in terms of
their generalization and diversity considering the underlying
distributions of the real and generated PV samples.

V. CONCLUSION

This paper presented the VAE and the GAN as the two
most relevant and popular DGMs due to their good per-
formance in other applications (e.g., data compression and
denoising, anomaly detection, etc.) and described the proce-
dure of combining these two efficient models to form the
VAEGAN for a robust loss function with an application
to generate PV synthetic data. Furthermore, the associated
model’s encoder network implements a modified version of
the HDNN, combining convolutional and LSTM layers, which
allows both VAE and VAEGAN models to perform efficient
feature extraction obtaining high-quality synthetic PV data
samples. Additionally, we described a set of previously de-
veloped metrics —precision, recall, density, coverage, DFD,
and MMD- that measure the generalization and diversity
capabilities of both VAE and VAEGAN models in generating
synthetic PV data. The performance of the DGMs using the
accuracy measures presented in this paper indicated high-
quality generated samples by both models, which can also be
applied and extended to other down-the-stream tasks including
microgrid simulation for cybersecurity without compromising
the security and the privacy associated with the power grid
and prosumers, respectively. The DGMs are successful to
this end because they include the HDNN in the encoder,
which performs salient feature extraction and capture sequence
dependency trends in data. Future work includes applying the
considered DGMs to (i) cybersecurity and (ii) interoperability
in the context of smart grid applications.
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