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Abstract—This paper presents a new prediction approach
based on deep learning ensemble for very short-term (10-minute-
ahead) wind power forecasting for a look–ahead period of 1h, 3h,
and 6h. The proposed deep learning ensemble approach combines
several individual and hybrid deep learning models, such as
Long Short-Term Memory (LSTM), Convolutional Neural Net-
work (CNN), Hybrid Deep Neural Network (HDNN), with the
formation of four different ensembles, in particular HDNN+CNN,
HDNN+LSTM, CNN+LSTM, and HDNN+CNN+LSTM. The pro-
posed approach considers the historical data of wind speed as
major input through ensemble averaging in order to produce
the final wind power prediction. The major advantage of the
proposed ensemble learning is that they make the best use
of predictions from multiple deep learning models and their
capability to effectively ”cancel out” the individual errors, which
in turn help enhance the final prediction accuracy. The simulation
on actual data, acquired from the real wind farm in Texas,
demonstrates the effectiveness of the presented approach to
produce a higher degree of very short-term wind power forecast
accuracy for multiple seasons of the year in comparison to other
soft computing as well as to individual deep learning models.

Index Terms—Convolutional Neural Networks, Deep Learning,
Ensemble Learning, Hybrid Deep Neural Network, Long Short-
Term Memory Networks, Wind Power Forecasting.

I. INTRODUCTION

The integration of wind energy into the power grid has
been rapidly increasing due to several advantages that it
offers, such as, but not limited to, clean-generation technol-
ogy, grid decarbonization, and improvement in grid efficiency
and reliability. However, wind power is highly dependent on
weather conditions [1], and its output power variability brings
challenges to the power system operators while integrating
this environmental-friendly renewable resource into the grid.
Several wind power forecasting techniques are available in
order to facilitate the integration of wind power into the
grid. However, there is still a great need to develop a more
accurate forecasting technique. This calls for a new and better
forecasting approach, such as deep learning algorithms, to
enhance its efficient integration to the grid [2].
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Recently, deep learning models have been used for wind
power forecasting. In [3], the data set is partitioned prior to
training and preprocessed using a state-space reconstruction
technique with delay embedding, and they achieved accuracy
close to 97% using an auto-encoder Elman Recurrent Neural
Network (RNN) considering several wind power time inter-
vals. Furthermore, as it is reported in [4], a Long Short-Term
Memory (LSTM) network obtained a mean absolute error of
0.5432 considering previous values of wind speed, tempera-
ture, and pressure, and they utilized a fuzzy-rough set theory
to reduce the dimension of the input data in order to speed up
the training process by eliminating noisy and redundant data
samples. Additionally, Chen et al. [5] proposed an application
of Convolutional Neural Network (CNN) and achieved a low
absolute average wind power forecast error. In [5], the model
hyperparameters are tuned using a genetic algorithm. However,
the data preprocessing and hyperparameter tuning are found
to be computationally expensive and time-consuming.

Although deep learning models have achieved state-of-the-
art results across many applications, they are sensitive to
specific training data features and hyperparameter values [6].
Additionally, deep learning algorithms overfit when the data
set is not extensive, or the number of features is limited
[7]. One way of alleviating the aforementioned issues is
through ensemble learning, which is a deep learning technique
that combines several base deep learning models to produce
optimal predictive models [8]. This parts from the idea that
individual models perform predictions with mutually exclusive
errors. Therefore, making the best use of predictions from
multiple models because their individual errors ”cancel out.”
Moreover, ensembles provide extra degrees of freedom, allow-
ing for solutions that would be difficult or impossible to obtain
by individual deep learning models.

There have been several ensemble models proposed in the
literature including boosting [9], AdaBoost [10], and random
forest [11] showing promising results across several domains.
In [12], two deep learning ensemble-based classification mod-
els, including a CNN ensemble and deep residual network
ensemble, perform hyperspectral image classification with
accuracy of more than 90% where only the noisy bands were
removed from the data set before training. A deep ensem-
ble machine for video classification achieved classification
accuracy up to 91.6% on five different action recognition
data set without data preprocessing [13]. Furthermore, in
[14], an ensemble of CNNs reduce false-positive detection of
lung nodules while increasing the sensitivity. However, to the
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best of our knowledge, the application of ensemble models
has not been thoroughly studied in power system forecasting
problems, e.g., wind power forecasting. The work described
in this paper contributes to developing new ensemble models
combining several deep learning models through ensemble
averaging [15], [16] to significantly improve the accuracy of
very short-term (10-minute-head) wind power forecasting for
different forecasting horizons, e.g., 1h, 3h, and 6h. This paper
presents four types of ensemble models, such as (i) combi-
nation of Hybrid Deep Neural Network (HDNN) and CNN,
i.e., HDNN+CNN, (ii) HDNN+LSTM, (iii) CNN+LSTM, and
(iv) HDNN+CNN+LSTM. The advantages of the proposed
ensemble models over existing deep learning and soft com-
puting techniques reported in the literature are: (1) decreased
architecture complexity as the individual models are trained
before they are combined, (2) significant reduction in training
time, (3) lower degree of risk of overfitting, and (4) avoiding
the need of feature engineering or hyperparameter tuning.

This paper is organized as follows. Section II describes the
data set. Section III introduces the proposed ensemble models
for wind power forecasting. In Section IV, the experimental
results are presented and compared to other models. Finally,
the conclusion and future work are discussed in Section V.

II. DATA DESCRIPTION

The data set of wind power for training, validation, and
testing the proposed ensemble models is acquired from a wind
farm located close to Midland, Texas, including 10-minute
interval samples of the year 2006. Fig. 1 shows the variable
output power characteristic of the wind farm for the selected
month. The features of the collected data include the wind
speed in m/s and wind power in MW . The capacity of the
selected wind farm is 450 MW . The first step in preparing the
data set involves dividing the samples into seasons, i.e., winter,
spring, summer, and fall. The last step involves normalizing
the feature vectors within the unit range [0, 1] using the min-
max function defined in [17].

Fig. 1: Variable output power of a wind farm during March 2006.

III. PROPOSED DEEP LEARNING ENSEMBLE MODELS

The proposed ensemble models consist of the input layer
followed by a set of deep learning models including the
CNN, LSTM, Multi-Layer Perceptron Network (MLPN), and
HDNN. The combination of these models through ensemble

averaging allows the proposed models to perform improved
feature extraction from historical trends in the data.

A. Input Layer

The input layer distributes the data feature vectors to each
of the deep learning models. Each data sample corresponds to
a vector with one feature, including the historical wind speed.
The output dimension of this layer is (1, 1).

B. Soft Computing Models

1) Convolutional Neural Network: CNNs is a deep learning
algorithm that emulates the organization of the visual cortex
in the animal brain. In each convolutional layer, a set of ker-
nels perform feature extraction through convolution operations
[18]. Our CNN model contains three convolutional layers with
512, 256, and 128 kernels, respectively. Each convolutional
layer is followed by a pooling layer that replaces the output
vector of the preceding layer with a summary statistic of the
closest outputs [19].

2) Long Short-Term Memory: The LSTM is a type of RNN
with cells containing gates that manage the storage and flow
of information [19]. Our LSTM model contains three LSTM
of 256, 256, and 64 cells, respectively.

3) Multi-Layer Perceptron Network: The MLPN is a type
of neural network composed of multiple layers of perceptrons
that map weighted inputs to the output of each unit through
activations. This network has three layers with 512, 1024, and
256 units, respectively.

4) Hybrid Deep Neural Network: The HDNN [20] model
consists of the combination of a convolutional, LSTM, and
perceptron units at the layer level (See Fig. 2).

Fig. 2: The HDNN model, including the convolutional and LSTM
layers of 1024 units and 512 cells, respectively.

C. Ensemble Averaging and Proposed Forecasting Procedure

Ensemble averaging [15], [16] is a type of committee
machine that takes advantage of the ”divide and conquer”
strategy by combining the predictions of multiple deep learn-
ing models. Ensembling deep learning models involves three
stages (see Fig. 3):
Stage 1. Building N ≥ 2 deep learning models with initial

weight values,
Stage 2. Training the models to obtain the set of weight

values that yield the best forecasts, and
Stage 3. Combining the models through ensemble averaging

to obtain improved final predictions.
The deep learning models are built using their correspond-

ing hyperparameters. During the training stage, individual
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Fig. 3: Flow of forecast process: An example of the high-level architecture of one of the four ensemble–models, i.e., ensemble-4 model
(ENS4), for wind power forecasting that considers ensembling of three different deep learning models: HDNN, CNN, and LSTM. In
this figure, the individual model first produces a separate wind power forecast (ŵ1

p by HDNN, ŵ2
p by CNN, and ŵ3

p by LSTM) that are
averaged to obtain the associated final very short-term wind power forecasts. Other three ensemble–models 1–3 (not shown here) are ENS1
(HDNN+CNN), ENS2 (HDNN+LSTM), and ENS3 (CNN+LSTM) follow the similar forecast process.

The deep learning models are built using their correspond-
ing hyperparameters. During the training stage, individual
wind speed data samples are forward passed through each
model to obtain the wind power forecast values. Using the
associated wind power actual and forecasted values, an error
is computed and back propagated through the layers of the
models to adjust the weights accordingly. This process is
repeated several times until the models achieve convergence.
During the testing stage, the deep learning models are loaded
using the weights obtained during training. Some of the
models are connected to the average layer, depending on
the specific ensemble model implementation. Then, the wind
speed data samples are forward passed through the models
to obtain their associated wind power forecast values. The
result is the average of the individual deep learning model’s
wind power forecasts ŵi

p that contribute to the final forecasting
ŵfinal

p with associated wind power forecast:

ŵfinal
p (x) =

1

N

N∑

i=1

ŵi
p, (1)

where x is the input. The benefits of this approach include
decreased architecture complexity as the individual models
are trained before they are combined and decreased training
time and risk of overfitting as there are less weight values to
set. Also, no feature engineering is required as the individual
models consider diffierent aspects of the data improving the
final prediction. In this paper, four ensembles (ENS1—ENS4)
are developed for wind power forecasting.

D. Activation Functions, Loss Function, and Optimizer

All the models implement the linear activation function for
the hidden layers and sigmoid for the output layer [19]:

S(x) =
ex

ex + 1
, (2)

where S(x) is the sigmoid activation function and x is the
is the weighted sum of the layer’s input and the associated
weight values. The Huber loss function [21] is used for all the
deep learning models in this work because it is less sensitive

to outliers in comparison to the mean squared error. The
Nesterov-accelerated Adaptive Moment Estimation (Nadam)
optimizer is used in all the models and is similar to the Root
Mean Square Propagation (RMSprop) but with momentum
[19]. A detailed description of these model architectures and
their hyperparameters can be found in [20].

IV. SIMULATION RESULTS AND DISCUSSION

We compare the performance of the proposed ensemble
models (ENS1—ENS4) with other deep learning models:
CNN, LSTM, MLPN, and HDNN using the following ac-
curacy measures: Mean Absolute Percentage Error (MAPE),
Normalized Mean Absolute Error (NMAE), and Normalized
Root Mean Squared Error (NRMSE) [1]:

MAPE =
1

N

N∑

t=1

|W a
t − Ŵ p

t |
Wt

a,N
× 100%, (3)

where N is the number samples with the actual wind power
data (W a

t ) at time t, vector containing the predicted wind
power (Ŵ p

t ) at time t, and average of the actual wind power:

Wt
a,N

=
1

N

N∑

t=1

W a
t , (4)

NMAE =
1

N

N∑

t=1

|W a
t − Ŵ p

t |
WN

× 100%, (5)

where WN is the capacity of the wind farm system (450 MW ).

NRMSE =

√√√√ 1

N

N∑

t=1

(
W a

t − Ŵ p
t

WN

)2

× 100%. (6)

Proposed Deep Learning Based Ensemble Model

Fig. 3: Flow of forecast process: An example of the high-level architecture of one of the four ensemble-models, i.e., ensemble-4 model
(ENS4) presented inside the dashed lines, for wind power forecasting that considers ensembling of three different deep learning models
(HDNN, CNN, and LSTM). In this figure, the individual model first produces a separate wind power forecast (ŵ1

p by HDNN, ŵ2
p by CNN,

and ŵ3
p by LSTM) that are averaged to obtain the final wind power forecasts. Other three ensemble-models 1–3 (not shown here) are ENS1

(HDNN+CNN), ENS2 (HDNN+LSTM), and ENS3 (CNN+LSTM) follow the similar forecast process.

wind speed data samples are forward passed through each
model to obtain the wind power forecast values. With the
associated wind power actual and forecasted values, an error
is computed and backpropagated through the layers of the
models to adjust the weights accordingly. This process is
repeated several times until the models achieve convergence.
During the testing stage, the deep learning models are loaded
using the weights obtained during training. Some of the
models are connected to the average layer, depending on
the specific ensemble model implementation. Then, the wind
speed data samples are forward passed through the models to
obtain their associated wind power forecast values. The result
is the average of the individual deep learning model’s wind
power forecasts ŵi

p that contribute to the final forecasting
ŵfinal

p , which is given by:

ŵfinal
p (x) =

1

N

N∑

i=1

ŵi
p, (1)

where x is the input and N is the number of deep learning
models for ensembling purpose. The benefits of this approach
include decreased architecture complexity as the individual
models are trained before they are combined and decreased
training time and risk of overfitting as there are fewer weight
values to set. Also, no feature engineering is required as
the individual models consider different aspects of the data
improving the final prediction. In this paper, four ensembles
(ENS1—ENS4) are developed for wind power forecasting.

D. Activation Functions, Loss Function, and Optimizer

All the models implement the linear activation function for
the hidden layers and sigmoid for the output layer [19]:

S(x) =
ex

ex + 1
, (2)

where S(x) is the sigmoid activation function and x the
weighted sum of the layer’s input and the associated weight
values. The Huber loss function [21] is used for all the
deep learning models in this work because it is less sensitive
to outliers in comparison to the mean squared error. The
Nesterov-accelerated Adaptive Moment Estimation (Nadam)
optimizer is used in all the models and is similar to the Root

Mean Square Propagation (RMSprop) but with momentum
[19]. A detailed description of these model architectures and
their hyperparameters can be found in [20].

IV. SIMULATION RESULTS AND DISCUSSION

We compare the performance of the proposed ensemble
models (ENS1—ENS4) with other deep learning models:
CNN, LSTM, MLPN, and HDNN using the following ac-
curacy measures: Mean Absolute Percentage Error (MAPE),
Normalized Mean Absolute Error (NMAE), and Normalized
Root Mean Squared Error (NRMSE) [1]:

MAPE =
1

N

N∑

t=1

|W a
t − Ŵ p

t |
Wt

a,N
× 100%, (3)

where N is the number samples with the actual wind power
data (W a

t ) at time t, vector containing the predicted wind
power (Ŵ p

t ) at time t, and average of the actual wind power:

Wt
a,N

=
1

N

N∑

t=1

W a
t , (4)

NMAE =
1

N

N∑

t=1

|W a
t − Ŵ p

t |
WN

× 100%, (5)

where WN is the capacity of the wind farm system (450 MW ).

NRMSE =

√√√√ 1

N

N∑

t=1

(
W a

t − Ŵ p
t

WN

)2

× 100%. (6)

Table I presents the performance metric values obtained
from the considered models applied over the one-hour look-
ahead period. The MAPE values range from 0.782% to
89.845% through the seasons, being the LSTM and CNN
the models with the lowest values among the deep learning
models. The proposed ensemble models show superior perfor-
mance with MAPE values between 0.691% and 3.288% for the
spring and summer seasons, respectively. This demonstrates
the effectiveness of combining several deep learning models
to improve wind power forecasts.
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TABLE I: Comparison of 10-minute-ahead wind power forecasting
performance of the proposed ensemble models with other deep
learning models over the horizon of 1 hour.

Model Metric (%) Spring Summer Fall Winter

CNN
MAPE 1.214 3.433 2.818 1.812
NMAE 0.012 0.004 0.026 0.012

NRMSE 1.380 0.483 3.300 1.460

RNN
MAPE 1.099 3.682 2.637 1.842
NMAE 0.011 0.004 0.024 0.012

NRMSE 1.256 0.490 3.351 1.499

LSTM
MAPE 0.782 4.981 2.745 2.102
NMAE 0.008 0.006 0.026 0.013

NRMSE 0.914 0.685 3.664 1.661

MLPN
MAPE 1.214 89.845 2.762 1.803
NMAE 0.012 0.102 0.026 0.011

NRMSE 1.380 10.250 3.246 1.449

HDNN
MAPE 2.056 5.925 2.734 1.647
NMAE 0.020 0.007 0.026 0.011

NRMSE 2.230 0.774 3.517 1.146

ENS1
HDNN+CNN

MAPE 0.850 3.595 2.776 1.630
NMAE 0.008 0.004 0.026 0.010

NRMSE 1.052 0.512 3.384 1.130

ENS2
HDNN+LSTM

MAPE 1.029 5.453 2.277 1.816
NMAE 0.010 0.006 0.021 0.012

NRMSE 1.151 0.729 3.214 1.340

ENS3
CNN+LSTM

MAPE 0.988 3.288 2.311 1.638
NMAE 0.010 0.004 0.021 0.011

NRMSE 1.131 0.452 3.497 1.172

ENS4
HDNN+CNN+LSTM

MAPE 0.691 3.835 2.403 1.641
NMAE 0.007 0.004 0.022 0.011

NRMSE 0.890 0.561 3.383 1.134

TABLE II: Comparison of 10-minute-ahead wind power forecasting
performance of the proposed ensemble models with other deep
learning models over the horizon of 3 hours.

Model Metric (%) Spring Summer Fall Winter

CNN
MAPE 3.004 6.002 4.034 2.576
NMAE 0.026 0.014 0.010 0.017

NRMSE 3.142 1.696 1.277 2.121

RNN
MAPE 2.901 5.979 4.823 2.563
NMAE 0.025 0.014 0.013 0.017

NRMSE 3.055 1.711 1.515 2.124

LSTM
MAPE 3.191 4.924 3.064 2.547
NMAE 0.026 0.012 0.008 0.017

NRMSE 3.352 1.352 0.925 1.918

MLPN
MAPE 2.994 124.032 4.430 2.588
NMAE 0.026 0.304 0.011 0.017

NRMSE 3.134 31.527 1.400 2.125

HDNN
MAPE 2.508 4.918 3.035 2.484
NMAE 0.021 0.011 0.008 0.016

NRMSE 2.720 1.343 0.929 1.888

ENS1
HDNN+CNN

MAPE 2.416 5.452 3.510 2.483
NMAE 0.021 0.013 0.009 0.016

NRMSE 2.623 1.486 1.063 1.952

ENS2
HDNN+LSTM

MAPE 2.179 4.878 3.029 2.473
NMAE 0.018 0.011 0.008 0.016

NRMSE 2.429 1.341 0.923 1.845

ENS3
CNN+LSTM

MAPE 2.508 5.385 3.529 2.386
NMAE 0.021 0.013 0.009 0.016

NRMSE 2.720 1.469 1.057 1.802

ENS4
HDNN+CNN+LSTM

MAPE 2.356 5.224 3.356 2.418
NMAE 0.020 0.012 0.008 0.016

NRMSE 2.558 1.421 1.003 1.829

TABLE III: Comparison of 10-minute-ahead wind power forecasting
performance of the proposed ensemble models with other deep
learning models over the horizon of 6 hours.

Model Metric (%) Spring Summer Fall Winter

CNN
MAPE 6.597 7.334 4.516 5.082
NMAE 0.014 0.009 0.012 0.008

NRMSE 1.710 1.132 1.571 1.089

RNN
MAPE 7.415 7.816 4.876 5.204
NMAE 0.016 0.010 0.013 0.008

NRMSE 1.876 1.154 1.665 1.099

LSTM
MAPE 4.328 7.243 4.539 4.399
NMAE 0.009 0.009 0.012 0.007

NRMSE 1.305 1.260 1.442 0.884

MLPN
MAPE 6.544 115.862 4.618 4.990
NMAE 0.014 0.144 0.012 0.008

NRMSE 1.699 15.394 1.593 1.068

HDNN
MAPE 4.303 7.172 4.306 4.768
NMAE 0.009 0.009 0.011 0.008

NRMSE 1.292 1.231 1.381 0.929

ENS1
HDNN+CNN

MAPE 5.160 6.752 4.154 4.726
NMAE 0.011 0.008 0.011 0.008

NRMSE 1.435 1.115 1.383 0.973

ENS2
HDNN+LSTM

MAPE 4.273 7.199 4.412 4.488
NMAE 0.009 0.009 0.012 0.007

NRMSE 1.289 1.244 1.408 0.887

ENS3
CNN+LSTM

MAPE 4.824 6.803 4.252 4.328
NMAE 0.011 0.008 0.011 0.007

NRMSE 1.382 1.133 1.407 0.872

ENS4
HDNN+CNN+LSTM

MAPE 4.592 6.768 4.226 4.503
NMAE 0.010 0.008 0.011 0.007

NRMSE 1.342 1.151 1.386 0.905

To further study the wind power forecasting capability
of the proposed ensemble models, we performed 10-minute-
ahead wind power forecasting for the look-ahead period of
the next 3 hours and 6 hours (see Tables II and III). The
HDNN shows better performance than the other deep learning
models with MAPE values ranging from 2.484% and 4.918%
for the 3-hour horizon scenario. However, in the same case,
the proposed ensemble models showed improved performance
with the MAPE values between 2.179% and 4.878%, being the
HDNN+CNN ensemble (ENS2) the best model on three out of
four seasons (from spring to fall). Furthermore, in the 6-hour
time horizon case, the HDNN obtained MAPE values between
4.303% and 7.172%, which outperform the other deep learning
models. In the same scenario, the proposed ensemble models
produced the MAPE values between 4.154% and 6.752%,
which are superior to the values obtained by the other deep
learning models.

From the results presented in Tables I–III, it can be observed
that the ENS2 (HDNN+LSTM) performed better than the other
ensembles, winning two out of three scenarios in spring (3-
hour and 6-hour time horizons) and fall (1-hour and 3-hour
time horizons). The ENS3 obtained the winning accuracy
on the winter data set for 3-hour and 6-hour time horizon
cases. These ensembles can extract useful information from
historical trends in the data taking advantage of their individual
deep learning models to enhance the forecasting accuracy.
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Furthermore, ENS3, ENS2, and ENS1 displayed their best
performance during the summer data set for 1-hour, 3-hour,
and 6-hour forecasting horizon cases, respectively. ENS1,
which combines the HDNN and CNN deep learning models,
performed better feature extraction on the longest forecasting
horizon scenario as both models include convolutional units.
The rest of the accuracy measures and associated values are
presented in Tables I-III.

Fig. 4: Seasonal forecasting accuracy improvement as the data passes
through different models in the HDNN+LSTM ensemble (ENS2).

Figure 4 illustrates the MAPE as the data flows from the
input to the output layers of the ENS2 (HDNN+LSTM) in
different seasons for 10-minute-ahead wind power forecasting
over the period of 3 hours. This figure further demonstrates the
capability of the proposed ensemble learning to improve wind
power prediction combining the strengths of the individual
forecasting models.

V. CONCLUSION

This paper developed ensemble models combining various
deep learning models through ensemble averaging to predict
very short-term wind power. It is found that wind speed is
the most influencing factor in predicting wind power output.
We used historical data of wind speed and fed it to the
proposed ensemble and other deep learning models to perform
10-minute-ahead wind power forecasting over the horizon of
1, 3, and 6 hours in multiple seasons of the year. The test
results demonstrated that the proposed deep learning-based
ensemble approach show superior performance over other five
individual deep learning models, i.e., a CNN, LSTM, MLPN,
and HDNN. Therefore, our proposed ensemble models are
suitable for renewable electric power forecasting application as
they yield higher forecasting accuracy regardless of the season
of the year. The proposed ensemble models can also be applied
to other power system forecasting and classification problems.
Future work includes (i) performing wind power forecasting
considering more meteorological features and (2) integrating
the proposed ensemble models into power systems scheduling
problems such as unit commitment and economic dispatch.
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