Green’s function method for dynamic contact calculations
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Resolving atomic scale details while capturing long-range elastic deformation is the principal
difficulty when solving contact mechanics problems with computer simulations. Fully atomistic
simulations must consider large blocks of atoms to support long-wavelength deformation modes,
meaning that most atoms are far removed from the region of interest. Building on earlier methods
that used elastic surface Green’s functions to compute static substrate deformation, we present a
numerically efficient dynamic Green’s function technique to treat realistic, time-evolving, elastic
solids. Our method solves substrate dynamics in reciprocal space and utilizes pre-computed Green’s
functions that exactly reproduce elastic interactions without retaining the atomic degrees of freedom
in the bulk. We invoke physical insights to determine the necessary number of explicit substrate
layers required to capture the attenuation of sub-surface waves as a function of surface wavevector.
We observe that truncating substrate dynamics at depths that fall as a power of wavevector allows us
to accurately model wave propagation without implementing arbitrary damping. The framework we
have developed substantially accelerates molecular dynamics simulations of large elastic substrates.
We apply the method to single asperity contact, impact, and sliding friction problems and present

our preliminary findings.

I. INTRODUCTION

Mechanical contacts occur in many technical and bio-
logical systems, and they determine our experience with
the surrounding through touch or when walking. Contact
is governed by a balance between the energy gained when
making intimate atomic contact and the deformation en-
ergy required for surfaces to conform [1, 2]. Sophisticated
analytical [3-7] and computational [8-12] continuum mod-
els have been developed over the last century that accu-
rately describe the deformation energy and contact in the
static limit. Those numerical models typically map the
sub-surface deformation on the surface degrees of freedom
(DOF), leading to a boundary-element formulation [1, 13]
of the surface’s small-strain elastic response. Continuum
boundary-element formulations have also been developed
for the dynamic (typically viscoelastic) response of a sur-
face within the last decade [14-17].

While continuum contact models accurately depict
deformation of solids above the atomic scale, they
break down where stresses, strains and densities change
rapidly [18]. On the other hand, molecular dynamics
(MD) simulations are a powerful tool commonly used for
studying mechanics at atomic scales [19], but can quickly
be limited in size and time by computational costs. Yet
in contact mechanics, it is often necessary to retain an
atomic-level description of the sample while studying
long-range elastic deformations [20-22].
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The number of DOF in atomic systems of linear di-
mension L and correspondingly, the computational time
per time step of brute force MD simulations, scales with
the sample volume L3. Furthermore, the time to relax
the longest wavelength modes grows as L, so the total
computational time scales as L*. Interfacial phenomena
such as friction, adhesion, and wear are strongly sensitive
to the atomic nature of the interfacial region but also
depend on strain fields away from the interface. As a
result, a principal challenge for atomic simulations is to
resolve the interface while retaining the correct long-range
response.

One way to bridge scales in contact mechanics simu-
lations is to couple an atomic treatment of the contact
interface where strains may be large with effective descrip-
tions of the bulk where the response is linear. Continuum
boundary element methods exploit the linearity in the
small-strain limit to integrate out all bulk and construct
a Green’s function for the surface’s elastic response. In a
similar spirit, bulk can be integrated out for full molec-
ular models of crystalline substrates, leading to lattice
surface Green’s functions [23, 24]. Those formulations
have proven successful in quickly and efficiently determin-
ing the elastic deformation induced by quasi-statically
applied interfacial forces.

We will here refer to the surface Green’s function for-
mulation of crystalline lattices as the contact Green’s
function method (CGF) [23, 24]. In combination with
damped dynamics for the relaxation of the system, this
method is sometimes termed Green’s function molecular
dynamics (GFMD) [23, 25-27]. In our approach, the CGF
is constructed from a harmonic approximation for lattice
vibrations, followed by integrating out DOF far from the



region of interest. The harmonic assumption is justified
provided that nonlinear behavior is confined to the in-
terfacial domain. CGFs are precomputed in O(L?In L)
time [24] and contribute negligibly to the total simula-
tion run time. The quasi-static response of the system is
sufficient for simulations conducted at rates of motion far
below the sound speed, for which the substrate is always
able to relax before interfacial interactions change. In
many scenarios, however, a full dynamical treatment is
necessary and in these cases the quasi-static CGF method
is inadequate.

In this paper we present a new dynamic contact Green’s
function method (DCGF) for solving time-dependent con-
tact mechanics problems in atomistic settings. In a semi-
infinite system, modes with in-plane wavevectors ¢ are
excited at the surface and propagate into the bulk. Sur-
face modes disperse through phonon-phonon coupling into
the continuum of three dimensional (3D) wavevectors in
the bulk, and do not return to the surface. Modes are
effectively damped as they move away from the interface.
Our approach is motivated by the simple observation that
large ¢ = |¢] modes propagate the shortest distance into
solids, while small-¢ modes persist over large ranges and
times.

We note that analytic dynamic Green’s functions for
semi-infinite substrates have been derived by Kajita,
Washizu, and Ohmori [28-30], who presented an elegant
solution to the time-dependent contact problem without
adding explicit damping [29, 30]. Their technique differs
from ours in that they use a memory kernel to capture
sub-surface DOF (see also [14-17] for the equivalent con-
tinuum formulation). Rather than utilizing a memory
kernel, our approach retains the sub-surface DOF explic-
itly but cuts them off as a function of the depth that
modes propagate into the solid. To justify this truncation,
we add damping to our dynamical equations to model
the phonon-phonon interaction. We use Kelvin damp-
ing, a momentum-conserving damping scheme similar
to dissipative particle dynamics (DPD) [31-33]. There
are numerous other techniques for adding physically mo-
tivated damping to dynamics [27, 28, 33-36]. Kelvin
damping acts on relative motions between atoms rather
than motion itself, a property that respects Galilean in-
variance. This leads to a dynamic scheme that scales as
L?In L (rather than L?), or L?In L (rather than L*) if
we consider relaxation of the longest wavelength modes.

Our formulation has the added benefit that it is straight-
forward to include thermal fluctuations. We present the
relevant stochastic differential equation and derive the
corresponding fluctuation-dissipation theorem. While the
CGF is able to capture equilibrium thermal fluctuations
if combined with an appropriate thermostat [23, 37], our
approach extends such treatment to dynamical situations.
Since we operate in real-space, implementation is simple
and compatible with existing massively parallel molecular
dynamics software packages, e.g. LAMMPS [38], which
we used for the simulations described in this paper.

II. DAMPING OF EXCITED MODES

Dissipation emerges naturally when coarse-graining a
molecular system [39], e.g. by partitioning it into a re-
gion of interest and a heat-bath region. This dissipation
typically takes the form of viscous damping, which in the
simplest Markovian incarnation of a drag force on each
atom is given by: F‘id = —(U; — Urer) Where #; is the veloc-
ity of atom ¢ and ¥yt is a reference velocity that is often
set to zero. The corresponding relaxation timescale is of
order m/+, where m is the atomic mass, and is indepen-
dent of the wavelength of the excitation. Viscous damping
assigns a reference frame, the laboratory rest frame mov-
ing at velocity Uyef, and therefore violates conservation of
momentum and Galilean invariance. The eigenmodes of
elastic solids are preserved with weak viscous damping,
but all modes are overdamped in the long-wavelength
limit [40].

The lowest order combination of spatial and temporal
derivatives that satisfies Galilean invariance is Kelvin
damping, which adds a force that damps relative velocities
between nearby atoms Fé = 37 i Fy; with

By = —(@ = 70007 — 7)), 1)

where 0(|7; —7;]) is a weighting factor that depends on the
distance between atoms and is often set to zero outside
the range of atomic interactions. There is no effect on
locally homogeneous motion or uniform translations of
the sample. For fully 3D wavevectors E, the rate of energy
removed by this type of damping is proportional to k2
as k — 0. This is most easily seen by writing v; =
[ &k 7(k) exp(—ik - 7), which transforms F; = > Fy
(using Eq. (1)) into
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with 7;; = 7; — 7. For an isotropic system, ZJE
7;:0(|7ji|) =~ 0 and the leading order dissipation is pro-
portional to k2. Note that this corresponds to a discrete
double spatial derivative and is a general consequence of
momentum conservation.

Consequently, long-wavelength modes in solids are al-
ways underdamped while short-wavelength modes can be
over or underdamped depending on ~y [41]. Note that this
is similar to DPD [31-33] which applies the damping
force only along the direction between atoms, rather than
in all directions. DPD damping also conserves angular
momentum while Kelvin damping does not.

In some non-equilibrium MD simulations, it may be de-
sirable to have position-dependent damping. An example
is the so-called “stadium damping” technique, wherein
the damping coefficient increases in strength away from
the interface. This technique has been used with viscous
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FIG. 1. Decomposition of DCGF method simulations. The
topmost region is the MD region treated explicitly. The bound-
ary region must be thicker than r. (gray, shaded circle) to
account for all interactions with explicit atoms. Below the
boundary, the total depth Nio is divided into Nayn layers
treated using the DCGF method and Ngiat layers treated us-
ing CGF. The precise decomposition of Niot depends upon

q.

damping in fracture simulations to absorb phonons at the
simulation cell boundaries [34]. Tt is straightforward to
to make Kelvin damping position-dependent by varying
the prefactor v with depth.

All damping schemes can be used to run simulations
at finite temperature by implementing suitable random
forces as determined by the fluctuation-dissipation the-
orem (FDT) [42]. The FDT relates the temperature
to the damping strength and correlations in the ran-
dom noise. While we focus on athermal systems in this
paper, the derivation of an FDT and the inclusion of
finite-temperature fluctuations for the formulation pre-
sented here is straightforward and similar to DPD (see
Section IIIB) [32].

IIT. THE DYNAMIC CONTACT GREEN’S
FUNCTION METHOD

The DCGF method seeks to alleviate the computa-
tional costs of simulating bulk elastic solids in dynamic
contact mechanics simulations. Similar to the earlier CGF
method [24], this is accomplished by splitting the phys-
ical system into a region that is treated exactly and an
elastic substrate handled using the harmonic approxima-
tion. The simulation is decomposed into three domains

as illustrated in the schematic shown in Fig. 1. Each
domain is discussed separately below. Note that in all
the discussion here, the physical system is a crystal with
a free surface.

A. Explicit atoms

The uppermost region in Fig. 1 contains atoms that
are explicitly represented in the simulation cell. The
explicit atoms domain is composed of the MD region
(blue) and the boundary layer (green), which lies on top
of the substrate. Atoms in the MD region contribute
to the potential energy via arbitrary interactions within
the MD region and with atoms in the boundary layer.
Interactions between atoms in the MD region with the
boundary layer must have a cutoff r. (shaded gray circle),
beyond which the Hessian vanishes. The boundary layer
must be larger than r. to prevent direct interactions with
the substrate. Note that for the pair-potentials used
here, r. is the cut-off radius of the pair-interactions, but
for many-body potentials, r. is generally larger than the
cutoff used for the construction of the neighbor list.

The boundary layer bridges the divide between the
linear elastic crystalline substrate and any atoms located
above. Atoms in the boundary layer are also coupled
together by linear elasticity, and interactions between
them and the substrate are governed by the harmonic
approximation as described below. The dynamics of all
atoms in the explicit domain are computed in real space
and real time using traditional MD techniques.

B. Harmonic approximation

The substrate is composed of Niot + 1 crystalline layers,
including the boundary layer. Each layer is labeled with
index a < Niot; the boundary layer is a = 0. With the
exception of the boundary layer, atoms in the substrate
are not represented explicitly in the simulation cell—as
such, they cannot interact directly with atoms above the
boundary layer. Rather, substrate atoms are coupled via
linearized interactions that facilitate accelerated compu-
tation of their dynamics. We additionally choose layers
to be thick enough that direct interactions only couple
adjacent layers. This simplifies the analytical expressions
considerably.

Following the notation of Ref. 24, we invoke the har-
monic approximation within the substrate and expand the
energy to second order about its equilibrium state. The
corresponding dynamical equation of a damped harmonic
solid is
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where u;,, is the displacement of an atom from its equi-
librium position. In Eq. (3), m is diagonal and contains
atomic masses, Djq ;g is the force-constant matrix that
couples atom 4 in layer o with atom j in layer £, and
Giqjp is a matrix that allows for coupled damping be-
tween the same atom pairs. The forces on the boundary
layer (o = 0) from the substrate f;o and from the explicit
MD domain _fg( P do not vanish in general. Note that fi

is a constant while fo is a function of the positions of
the atoms in the explicit atoms domain (see Fig. 1).
Note that Eq. (3) can be turned into a Langevin equa-

tion simply by adding a fluctuating random force

i =" Siaipsn (4)
iB

to the right hand side of that equation. Here g; g is a vector
of independent white-noise variables and S;,;s is the
noise amplitude matrix. The noise amplitude is related
to the dissipation Gajs by the fluctuation-dissipation
theorem [32, 42, 43]

> SiakyS)pry = 2k5TGiajs (5)
ky

where T' is the temperature and kp is Boltzmann’s con-
stant.

To simplify the problem, the system is transformed
into Fourier space by using the set of in-plane reciprocal
lattice vectors ¢ while keeping a real-space representation
of the dimension perpendicular to the substrate’s surface.
This construction decouples the dynamics of the harmonic
system for each ¢ in the first surface Brillouin zone (BZ).
For each wavevector ¢, one must solve the dynamics of a
chain with Ny + 1 nodes, where each node corresponds
to a substrate layer with index a.

To frame this more concretely, we now construct the
Fourier transform. The real space lattice vectors that con-
nect unit cells in the boundary layer are éio, so that unit
cells in lower layers are given by ﬁm = 1321-0 + «ad, where
@ is the basis vector between unit cells in neighboring
layers. The forward and reverse Fourier transforms of the
displacement are as follows

To(q,t) = Z o (t)e ™0 Fi0 (6)
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The sum in the first equation runs over all the unit cells
in the boundary layer, while the integral in the second
equation is evaluated over the BZ, with area Agy. Because
unit cells are equivalent due to translational invariance,
the force-constant and damping matrices only depend on
distances between unit cells, given by ﬁio — ﬁjo and 8 —a.

The Fourier transforms of the matrices are

Dg-a ((j) = Z Djakge_iq'(ﬁjo_éko) (8)
k

Gp-a (@) = Z Gjakﬁe_i‘j'(ﬁjo—éko) 9)
k

S:@—Oé (@ = Z Sjak/ge_i(j(ﬁj()—éko). (10)
k

All matrix elements with |3 —a| > 1 are zero because the
coupling extends only to neighboring layers. The index
j vanishes because of in-plane translational invariance.
In what follows, we use the short-hand notation D,g =
Dgs_q.

In Fourier space, the dynamical equations for each ¢
are decoupled and thus block diagonal

82 0
Z{maﬁéaﬁ + Dozﬁ(q) + Gaﬁ(q_)at}ﬁﬁ((j’ t)
E ) B (11)
= Z Sas(DEs(q) + dao fror (5 t)
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Here, ﬂot is the net force acting on the boundary layer
from the substrate and from explicit atoms and g}(q) are
white-noise variables. The fluctuation-dissipation theorem
becomes

S Sar (@Sh, (@) = 2ksTCap(@.  (12)

The elements of D, 3 and G,z (and thereby S,z) de-
pend upon lattice structure, but only a few elements are
unique. The (Niot +1) X (Nioy + 1) force-constant matrix
D, is given in Eq. (10) of Ref. 24 and is reproduced
here

Uy V.o ... 0 0
vty vo... 0 0
o viu ... 0 0
D= (13)
0 0 0 u v
0 0 0 Vi U,

The damping matrix G, has a similar tridiagonal form

Gy H 0 ... 0 0
H'' ¢ H ... 0 0
0 H' & ... 0 0
G=1|. . . . . (14)
0 0 0 ... G H
|0 0 0 HT Gy, |

Diagonal elements D;y;0 and Gjqiq represent the intra-
layer coupling of layer a. The boundary layer o = 0
has missing neighbors relative to the o > 0 layers, and
the intra-layer coupling elements U} and Gj, reflect this.



Off-diagonal elements V and VT, and H and H repre-
sent inter-layer coupling of layer o to layers a + 1 and
a — 1, respectively. All other elements of D and G are
zero because atoms are only coupled within and between
adjacent layers.

The final diagonal elements Uy, —and G’y depend
on the choice of boundary conditions at the Hottom of
the substrate. Free (zero force) boundary conditions
correspond to Uy, = Uy and Gy, = Gy, while the
rigid (zero displacement) boundary condition is given by
Uy,., =U'and Gy, =G

C. Reduction of the dynamic degrees of freedom

The equations above fully describe the dynamics of
the substrate in the harmonic approximation. The dy-
namical equation is propagated forward in time for each
¢ independently. For each ¢, the dynamics is that of a
chain with Niot + 1 nodes that are free to move in all
directions. Solving the full dynamical problem for a cubic
box therefore involves oc (Nyor + 1)% oc L3 DOF.

Three-dimensional contact mechanics simulations often
seek to work in the limit of semi-infinite solids. This
limit is typically approximated by using a finite but large
Niot to mitigate boundary effects, such as the reflection
of pressure waves at boundaries. Computations become
prohibitive for large N;ot because of the cubic scaling
discussed above. We now propose a scheme to reduce the
total number of for the dynamical contact problem.

In order to understand the dynamics of excited modes in
this system, we consider an infinitely extended 3D crystal.
Carrying out the Fourier transform (see Egs. (8) and
(9)) in all three Cartesian directions gives the dynamical
equation

{fmwQ +D(k) — in(E)} as(k,w) =0,  (15)

where we have also transformed the time-dependency into
the Fourier domain. Equation (15) describes a collection
of coupled damped harmonic oscillators for each (3D) bulk
wavevector k. We now assume that we can simultaneously
diagonalize D(k) and G (k) with eigenvalues d(k) and g(k).
(For the specific forms for D and G discussed below this
is not possible, but the general discussion still holds.)
By virtue of momentum conservation, the asymptotic
behavior is given by d(k) = x(ka)? and g(k) = v(ka)? for
small k£ where a is some lattice constant. The admissible
values for the wavevectors are therefore

mw2

(ka)? = P (16)

For a surface excitation with in-plane wavevector ¢ and

frequency w, this yields

(kza)® = ——— — (qa)® (17)

for the admissible k, traveling into the bulk. For static
loading (w — 0), we obtain k, = i¢g. This is an evanes-
cent field that decays exponentially in the bulk with a
characteristic length A = 2wg~!. This tells us that defor-
mation can only extend to a depth proportional to the
wavelength, a result known as Saint-Venant’s principle in
the contact mechanics literature [13, 44, 45].

For dynamic loading at ¢ > 0, the imaginary part of
k.(w) has a minimum near the frequency that corresponds
to the phase velocity of propagating waves, w = cq, where
c is the speed of sound. This minimum describes the wave
that decays slowest and hence determines the maximum
depth a wave will travel. With «(¢) = min,, S [k, (qw)],
we find k(gq) ¢ for large ¢. This means Saint-Venant’s
principle holds even in the dynamic limit.

The observations above suggest that keeping a full
description of the Nyt substrate layers is unnecessary
for all ¢. If all DOF are retained, Nayn(¢) = Niot, and
the DCGF method reduces to the brute force approach.
However, since the deformation travels at most down to a
depth of order ¢!, we can limit the number of layers that
we need to explicitly model for each ¢ to a value Nqyn(q) <
Niot. In particular, we can choose Nayn (¢) < Niot for
q > 2m /L without substantially altering the dynamics of
the boundary layer. The dynamics of the Ny, — Nayn(q)
nodes at the bottom of the solid are simply discarded (see
Fig. 1 for a visual representation of this decomposition).
This procedure is only possible because all g-chains are
independent in the harmonic approximation.

When terminating the g-chains, we benefit from the fact
that the vast majority of wavevectors are concentrated
near the BZ boundary while only a handful of wavevectors
are close to ¢ = 0. Thus, the lengths of chains for large-q
modes comprising the bulk of the substrate DOF can be
significantly reduced, while the handful of small-¢ modes
whose dynamics are sensitive to the substrate depth are
handled without approximation. The only bookkeeping
required is that the minimum number of layers cannot
be less than unity, and that the maximum number of
layers for ¢ — 0 must be capped. In the simulations for
L x L surfaces discussed below, we use Ngyn(¢ > 0) =
max [Niot (270 /L) /q, Niin], where Nyi, > 2 is the smallest
allowed number of substrate layers. For simplicity, in most
cases we choose Nyt = L/d, using the layer spacing d..

The response to a homogeneous load is determined by
Nayn(g = 0). If Nqyn(0) diverges, the stiffness resisting
uniform translations vanishes [10, 24]. A practical choice
that we opt for is to set Ngqyn(0) to the value for the
smallest non-zero in-plane wavevector, i.e. Ngyn(0) =
Niot. This fixes the substrate reference frame and prevents
unbounded translations that would otherwise result from
net forces on the (periodic) boundary layer. It effectively
models a system with a finite depth of N layers.

Care must be taken to ensure that the long-time sub-
strate response is correct. Choosing Nayn (q) o< ¢!
essentially guarantees that all modes have the correct
zero-frequency stiffness by Saint-Venant’s principle. For
completeness, we replace the Ngtat (¢) = Niot — Nayn (¢)



discarded layers with appropriate effective stiffness ma-
trices @ () obtained by integrating over Nt (q) layers
using the CGF method [24]. (This corresponds to the
GF domain in Fig. 1.) Stiffness matrices are computed
once at the beginning of the simulation in L?In L time,
resulting in a negligible increase in total run time. The
stiffness matrix @ () replaces Uy, as the final entry of
D in Eq. (13) and stitches the two substrate domains
together.

The dynamics of the Ngyn(g) layers are computed in
reciprocal space but in real time for each ¢ using a veloc-
ity Verlet algorithm [46]. The DGF domain contributes
to the total kinetic energy and to the potential energy
within the harmonic approximation. The GF domain only
contributes to the potential energy.

D. Kelvin damping

Our choice of Ngyy, (¢) for each chain is justified if reflec-
tions from the ends of shortened chains are negligible. As
described above, this is ensured by using Kelvin damping
for the dissipation of the energy. Kelvin damping mimics
coupling of vibrational modes and thereby thermalization
of the system. We can also simply regard it as a means
of eliminating reflection from the bottom boundary. As
a consequence of Galilean invariance, Kelvin damping
acts preferentially on large-¢ modes without significantly
affecting small-¢ modes.

We include the elements of the damping matrix for
nearest-neighbor-coupled fcc lattices. The fcc crystal is
oriented with the (110), (110), and (001) directions along
the z, y, and z axes, respectively. (The surface normal
is along the z axis.) The basis vector connecting unit
cells in adjacent layers is then @ = dyy, (1/27 1/2, —1/\/5)7
where d,,;,, is the nearest neighbor spacing. We find

G'=7[12=2(cy +¢)]1 (18)
0=7[8=2(cs +¢y)|1

H = —4yc,5¢ /2 €Xp {z <qx;_qy> dnn} I (20)

with ¢; = c08(qzdun), Czj2 = COS(%)7 and I is the
3 x 3 identity matrix. The elements of the force-constant
matrix for this lattice structure with atoms interacting
via nearest-neighbor springs with spring constant k; were
derived in Ref. 24 and are reproduced for completeness

here
4 — 2¢, 0 0
U (q) = ks 0 4-2¢, 0 (21)
0 0 4
3—2¢c, 0 0
UN(q) = ks 0 3-2¢, 0 (22)
0 0 2
V'(q) = kyv(§) exp {z (q ‘2“@) dnn} with  (23)
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It is straightforward but tedious to derive G for other
crystalline structures. (See Ref. 24 for expressions for D
for other crystalline structures.) In principle, it is possible
to allow 7 to vary with depth as in stadium damping [34].

E. Parallel scaling and time complexity

Typically, molecular dynamics simulations are made
parallel by decomposing the simulation cell into a grid,
with each process owning one piece of the grid [38]. Short
range interactions facilitate the decomposition because
atoms on each processor only interact with atoms on
processors owning adjacent grid sections. This procedure
fails for dynamics in reciprocal space because the Fourier
representation couples atomic dynamics over all length
scales.

Because Fourier components are decoupled in our sim-
ulations, each process can handle a subset of ¢ indepen-
dent of other processes. Communication costs in the
DCGF method are primarily associated with collecting
all wavevectors to take Fast Fourier Transforms (FFTs).
The forward FFT of the velocities and displacements of
the boundary layer and the reverse FFT of the forces on
the boundary layer must be calculated each time step, but
the time for each calculation is only ~ L?In L. Our im-
plementation carries out parallelization through domain
decomposition using a Cartesian decomposition of the
surface with equal areas for each domain. The same de-
composition is used for the BZ. Improved parallel scaling
can be obtained by balancing the number of substrate
DOF belonging to each processor for the velocity Verlet
integration because more DOF are associated with small
q than with large ¢. This is analogous to load balancing in
MD simulations with traditional domain decomposition
where the density varies in space.

The total number of DOF after truncating the chains
scales as L?In L, a marked reduction from the O(L3)
DOF in the atomic solid. The associated scaling of the
computational time is shown in Fig. 2. The time required
to relax the longest wavelengths adds an additional scaling
factor of L to the computational time, so that the DCGF
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FIG. 2. Comparison of DCGF method and atomic compu-
tational time per time step for systems with L x L atoms
in the boundary layer. The fully atomic system contains L?
atoms and the computational time per time step scales sim-
ilarly as L (dashed line). DCGF method systems contain
L? (DCGF+0) and 9L? (DCGF+8) atoms in the MD domain.
The corresponding computational time per time step scales as
L?In L (solid line).

method scales as L?In L compared to L* scaling for its
fully atomic counterpart.

The scaling is essentially unchanged for more aggressive
choices of Nqyn(q), which motivates our choice of ~ ¢~
Systems with more than 10° lattice sites in the bound-
ary layer are easily accessible on just a few processors
using the DCGF method, whereas the largest fully atomic
simulations are usually limited to much smaller sizes.

In cases where the linear response assumed by the
DCGF method is insufficient, it is easy to stack additional
lattice planes on top of the boundary region as part of
the explicit atoms domain. Atoms in these planes are not
governed by the harmonic approximation and can respond
nonlinearly. Figure 2 demonstrates that the scaling of
the computational time is unaffected provided that the
number of added layers is much smaller than Nyot. We
demonstrate the utility of this approach in later sections.

IV. EFFECT OF DAMPING PARAMETER ON
WAVE PROPAGATION

We have noted that the strength of Kelvin damping
depends on wavevector, with long-wavelength modes be-
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FIG. 3. Depth of the first layer where the kinetic energy
of a pulsed surface wave drops below e~2 ~ 0.05 of the ini-
tial surface value as a function of wavelength A and damping
coefficients indicated in the legend. The substrate is fully
atomic with Kelvin damping between neighboring atoms, and
the boundary layer contains at least (A/dnn) X (A/dnn) lat-
tice sites. The solid line indicates attenuation depth equal
to wavelength corresponding to Saint-Venant’s principle (see
text).

ing essentially undamped. In the absence of other energy
scales, the damping parameter can be freely chosen to
control the attenuation depth of large ¢q. To illustrate
this effect, we show the sub-surface attenuation of sur-
face waves with different ¢ = (27/A,0) for an atomic fcc
substrate with harmonic bonds. The waves are excited
by turning on and then off (pulsing) a small-amplitude
force F, = fosin(2rx/X), where fo o< [1 — cos(2nt/T)].
The force is applied over a single period T' ~ d,,,,/c so
that the precursor wave propagating with speed ¢ only
penetrates 1-2 layers before the pulse turns off. The am-
plitude of waves propagating in the solid as a function of
depth is calculated by computing |v,(g,t)|? for each layer
during the time interval prior to the first reflection off
the bottom boundary. Then, we identify the depth z.
where the maximum amplitude drops below e~3 ~ 0.05
of the initial value |v,(q,0)|? at the surface. The attenua-
tion depth trend was similar for other thresholds, but we
found that the results had greater uncertainty for larger
thresholds and smaller thresholds required significantly
deeper atomic substrates.

Figure 3 illustrates the attenuation of surface waves
with increasing wavelength A = 27 /¢ for different damp-



ing parameters. The attenuation depth scales linearly for
small A irrespective of v or threshold, although the abso-
lute depth shifts with both. For large v and A, the depth
saturates at a value much smaller than A, suggesting that
the relative motion between layers is responsible for the
rapid attenuation. Note that surface modes attenuate
even in the absence of damping due to dispersion into
phonons in the full 3D space.

Saint-Venant’s principle says that the zero-frequency
deformation for wavevectors with magnitude ¢ scales as
exp(—gz). Based on our choice of threshold, z, is the
depth where qzatt = 3, or zatt/dnn = 3X/(27dpy,). This
is the solid line drawn in Fig. 3, and it is reasonable
to consider the regimes above and below the line as the
under and overdamped limits, respectively.

V. COMPARISON WITH ATOMIC
SIMULATIONS

In order to demonstrate the efficacy of the DCGF
method, we conducted several simulations to directly
compare fully atomic calculations with DCGF method
calculations. Figure 4 shows results from an example sim-
ulation in which a dense, rigid, atomically rough sphere
under light load presses into the substrate after starting
just out of contact. Atoms in the sphere interact with
the substrate using a repulsive truncated Lennard-Jones
potential

vor=[(2)"- (2]

In this system, the atomic substrate has 128 x 128 x 130
lattice sites and the sphere has a nominal radius of 500.
The magnitude of the load applied to the sphere is 5¢/02.
Kelvin damping acts opposite to relative velocities be-
tween bonded nearest-neighbors. The damping coefficient
is v =1 y/me/o to hasten the approach of the sphere to
its resting position.

Comparison of the methods is most easily accomplished
by showing the evolution of a single coordinate that en-
capsulates the state of the system. Plotted in Fig. 4 is the
change in height z(t) — z; of the center of mass (COM) of
the sphere, where z; is the initial height, normalized by
the final change in height z; — z;, where z; is the (mean)
resting height of the sphere in the atomic system. Note
that results for the DCGF method are also normalized
by the height change in the atomic system. The time
axis has been shifted to the first crossing point of the
resting position to exclude the initial acceleration period
before contact, which is identical for all systems. While
the sphere COM passes the resting position early on, it
oscillates about the final result for an extended duration
because long-wavelength modes are excited in the sub-
strate. The fluctuations of long-wavelength modes are
unavoidable with Kelvin damping but do not influence
time-averaged dynamics. They are absent for quasi-static

r< V2. (24)

I —— Atomic
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0.2 —
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Time

FIG. 4. Center of mass displacement of a rigid disordered
sphere under fixed load as a function of time for different
DCGF and atomic systems. The reference system is fully
atomic (black) with 128 x 128 x 129 mobile lattice sites. z; is
fixed across all simulations and zy is defined based on the fully
atomic system. The denominator zy — z; = —0.540 under an
applied load of magnitude 56/0‘2. A truncated atomic system
(gray) with 128 x 128 x 33 mobile lattice sites is included to
emphasize the importance of depth on both dynamic and static
properties. Agreement with the atomic result is incrementally
improved by stacking additional lattice planes on top of the
DCGF boundary layer. DCGF method systems contain 128
x 128 lattice sites in the boundary layer with the number of
additional lattice planes indicated in the legend.

loading. To highlight the importance of resolving long-
wavelength modes, we also include a truncated atomic
system with 128 x 128 x 34 lattice sites.

The DCGF method computes the dynamics of the
boundary layer assuming linear response, but surface dis-
placements are usually significant in contact simulations.
In order to better capture nonlinear behavior at the sur-
face, we can treat more layers of the crystal explicitly.
These additional layers are coupled to each other and
the boundary layer using the same bonding and damping
schemes as the fully atomic system. The number of layers
in the harmonic region is reduced by the same number of
layers. While the bare DCGF method (DCGF+0) cap-
tures the features of the sphere dynamics, Fig. 4 shows
that simulating more layers explicitly progressively im-
proves the DCGF result. There is a similar shift in the
accuracy of the resting position. Careful consideration
is needed to weigh the additional computational costs of
simulating more lattice planes against the accuracy of the
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FIG. 5. Fractional error in the coefficient of restitution for
the DCGF method compared to a fully atomic system with
128 x 128 x 129 mobile lattice sites. DCGF method systems
contain 128 x 128 lattice sites in the boundary layer with the
number of additional lattice planes indicated in the legend.
The system is a rigid disordered sphere with variable initial
velocity perpendicular to the boundary. The sphere rebounds
away after contact. Bond length changes are measured in
the atomic system, and always corresponded to the most
compressed bond.

nonlinear response.

VI. DEMONSTRATION OF ERROR

Quantifying error between the DCGF method and
atomic computation is challenging because the set of
dynamical variables is large. Even in a nominally deter-
ministic system like the bouncing sphere discussed above,
there are deviations between simulations that decorrelate
over time. To circumvent this issue, we present a slight
variant of the test above to illustrate how additional lat-
tice planes reduce the deviations of the DCGF method
from atomic calculations. In this system, the unloaded
sphere travels with a prescribed initial velocity v = —v;2
into contact, after which it rebounds to infinity. The
initial speed wv; is varied to control the dynamics of the
impact. All other interactions are the same as described
above for the bouncing sphere.

The substrate imposes a force F on the COM of the
sphere that acts to slow it down and reverse its momen-
tum. The impulse responsible for the change in momen-
tum is dominated by the perpendicular force component
F,, which is always positive and has a pulse-like shape
during the collision. The final speed of the sphere is

vy = /¥y - Uy and the coefficient of restitution is defined
as Cr = vy /v;. In-plane force components and resulting
in-plane velocities are small so that vy =~ v, . In a per-
fectly elastic collision, Cr = 1, but our simulations treat
viscoelastic solids with internal damping that dissipates
some of the initial total energy.

To provide an estimate of the reliability of the DCGF
method, we computed the maximum change in bond
length found in the fully atomic system, which gives a
sense of the peak strain during the collision. The largest
change in bond length always coincided with the most
compressed bond and grew with the initial speed. The rel-
ative error of Cr versus maximum bond length change is
plotted in Fig. 5. The figure shows that even the DCGF+0
system performs well when bonds are compressed only a
few percent but the error grows substantially with greater
changes in bond length. Error is reduced by introducing
additional lattice planes—from about 2% to close to 0.05%
in the low strain regime by adding up to 32 planes—and
can be made arbitrarily small with more lattice planes.
When the maximum bond length change approached 9%
for an impact depth ~0.12R, the similarity in the errors
for the DCGF+8, DCGF+16, and DCGF+32 systems
suggests that even 32 additional lattice planes are insuf-
ficient to fully capture nonlinearities. Nonetheless, the
error only reached ~ 1% despite the large strain imposed
during the collision, demonstrating the efficacy of the
DCGF method outside the light load limit.

VII. APPLICATION TO SLIDING FRICTION

Static friction is the lateral force required to initiate
sliding between objects, while kinetic friction refers to
the time-averaged force required for steady sliding. The
CGF method and related techniques have been applied to
the problem of the static friction and quasi-static sliding
of nanoscale contacts [21, 22, 27, 47]. Here, we focus on
kinetic friction and in particular, viscous friction. Viscous
friction is a friction law that relates the kinetic friction
force to sliding velocity as Fjy o v, such that Fj vanishes
at zero velocity, i.e. there is no static friction [48-50].

We seek to study the kinetic friction on a 1D sinusoidal
potential sliding over an elastic fcc solid with nearest-
neighbor coupling k;, using the DCGF method. The slid-
ing potential imposes a lateral force Fy, = fosin[27/A(x —
vt)] to the L x L DCGF layer. Note that the force acts
in the direction of sliding. As a result, the force on each
substrate atom is homogeneous across the y axis. We
report the kinetic friction force F} normalized by the
total mass of the surface layer M = m(L/d,,)?, where
m is the mass of an atom. The substrate side length L is
always a multiple of A\, and A > 4d,,,,. The typical atomic
displacements A = fy/ky < dpn, so linear response is
valid here.

A stationary wave with v = 0 exerts zero total force on
the substrate when atoms are located at their equilibrium
positions. For v > 0, instantaneous atomic displacements
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FIG. 6. Kinetic friction per unit length imposed by the 1D
sinusoidal potential moving along & as a function of wavelength.
The friction is normalized by the damping parameter and
sliding speed. (a) Kinetic friction on 3D substrates with
sliding speeds indicated in the legend. The solid line indicates
F, o< A7'. (b) Kinetic friction on effectively 2D substrates
with sliding speed v = 0.01dn,/7. The solid line indicates
Fj oc A2,

lead to a net force on the boundary layer. The kinetic
friction force is the negative of the total force imposed on
the boundary layer. We compute F} by calculating the
mean force after long sliding times, well after the initial
transient period.

To test the effect of substrate depth on the ki-
netic friction, we ran simulations with large depth
(L/dpn = 1024, Nioy = 1024) and small depth (L/d,,, =

10

4096, Niot = 4), representative of bulk and quasi-2D sub-
strates, respectively. Simulation results are shown for
different v and A in Fig. 6(a) (bulk) and Fig. 6(b) (quasi-
2D) . For any given set of parameters, we found viscous
friction when the sliding velocity was smaller than about
0.1c, resulting in a universal curve for Fy /~yv. As expected
from linear response theory, Fj, was proportional to A2
[49, 50].

Perhaps the most interesting dependence shown in
Fig. 6 is the scaling with wavelength A. There is rel-
atively little dependence on wavelength for small A, but
both deep and shallow substrates show power law de-
cays in F} for wavelengths larger than about 20d,,. We
observed that the crossover behavior shifted to larger A
with increasing . Kelvin damping yields Fj, oc ¢ ~ A\ 72
for large ), but we instead find that Fj, oc A~! for deep
substrates. For thin substrates, all atoms contribute to
Kelvin damping down to a constant (small) depth for all A,
yielding the expected A™2 dependence. However, for deep
substrates the deformation extends down to distances of
order \. For sufficiently small velocities, the deformation
simply translates along with the surface excitation and
there is no emission of waves into the bulk [51]. This
means that the volume from which dissipation emerges is
proportional to A for deep substrates while it is constant
for shallow substrates. Thus, the kinetic friction force
for deep substrates rises by the same factor compared
to shallow ones. This argument also holds for shallow
substrates when A is smaller than the depth, explaining
the similarity of F}, for panels (a) and (b) for A < 8.

VIII. CONCLUSIONS

In this paper, we have outlined the DCGF method
for accelerating simulations of elastic solids. Using a 2D
Fourier decomposition of the top plane of a crystalline
solid and a real-space representation of the perpendicular
direction, we compute the dynamics of a linear elastic
substrate in real time. In the harmonic approximation, the
dynamics of each surface wavevector ¢ are decoupled and
may be solved as a chain of nodes corresponding to layers
in the substrate. By leveraging the fact that large-g modes
disperse rapidly in solids, we demonstrated that g-chains
can be terminated at successively smaller depths with
increasing ¢ without significantly altering the dynamics
at the surface. To that end, we incorporated Kelvin
damping in our methodology as a model for phonon-
phonon coupling which prevents reflections for large-q
modes with foreshortened g-chains. We presented the
associated damping matrices for Kelvin damping of an
fce (001) surface with nearest-neighbor coupling. We also
discussed how finite temperature calculations are possible
within the present scheme and derived the fluctuation-
dissipation theorem for the underlying Langevin equation.

As a result of the chain-termination procedure, the total
number of degrees of freedom and resultant computational
time per time step are O(L?In L) rather than O(L?),



meaning that the DCGF method allows for the simulation
of much larger substrates than conventional brute force
MD simulations. This also implies a similar acceleration
factor for the computational time to relax long-wavelength
modes compared to brute force MD (O(L*) reduces to
O(L*InL)).

In cases where linear response is inadequate to study
interfacial dynamics, we showed that nonlinear behavior
can still be captured by stacking additional lattice planes
on top of the DCGF boundary layer. In particular, this
procedure allows for the study of surface plasticity pro-
vided that the plastic zone is confined to the explicitly
represented lattice planes. We provided guidelines for
the attenuation of surface modes away from the interface
based on Kelvin damping strength and gave examples of
error compared to atomic simulations based on the maxi-
mum change in bond length. Finally, we demonstrated
that Kelvin damping leads naturally to a viscous friction
law for a sliding sinusoidal potential in the unpinned limit.
For shallow substrates, the kinetic friction force exhibited
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the expected ¢? scaling resulting from Kelvin damping.
For deep substrates, the kinetic friction instead scaled as
q as a result of the extra volume available to dissipate
energy within the bulk, leading to higher friction forces
compared to the shallow substrate.
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