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Abstract

Neural interfaces bridge the nervous system and the outside world by recording and stimulating
neurons. Combining electrical and optical modalities in a single, hybrid neural interface system
could lead to complementary and powerful new ways to explore the brain. It has gained robust and
exciting momentum recently in neuroscience and neural engineering research. Here, we review
developments in the past several years aiming to achieve such hybrid electrical and optical
microsystem platforms. Specifically, we cover three major categories of technological advances:
transparent neuroelectrodes, optical neural fibers with electrodes, and neural probes/grids
integrating electrodes and microscale light-emitting diodes. We discuss examples of these probes
tailored to combine electrophysiological recording with optical imaging or optical neural

stimulation of the brain and possible directions of future innovation.
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1. Introduction

Understanding the brain has always been challenging yet rewarding. Over the past centuries,
our knowledge on our own brain has exploded from both studying the brain mechanisms and
exploring therapeutic interventions for neurological disorders like epilepsy and Parkinson's disease
[1]. Concomitantly, various neural interface technologies have been developed, including optical
and electrical methods, to probe and interrogate the brain [2-5]. Historically, Ramén y Cajal
pioneered modern neuroscience by elucidating and recognizing the fundamental neuron-based
microscopic structure of the brain in the late 19" century through improved Golgi staining and
microscopy [6]. Observed by du Bois-Reymond though first in animal nerves [7], action potential
was found to be the information carrier for cell-to-cell communication, which was later established
by Nobel laureates Adrian Edgar and Charles Sherrington in the early 20" century [8, 9]. After
that, the establishment of the ion-permeation-based mechanism by Hodgkin and Huxley in the
1950s has laid the foundation for the most of our knowledge of neuronal signaling [10, 11].
Measuring and interrogating neuronal signals therefore are crucial to the reverse engineering of

the brain to understand normal or pathological dynamics of underlying neural circuits.

The brain, however, is extremely complex, containing networks of billions of neurons with
different types, shapes, and complicated connections surrounding them. Conventional
neuroelectrodes have proven their ability to probe the electrical activity from the brain with high
temporal resolution but intrinsically lacks the spatial precision, while existing optical methods
have established as the workhorse to reveal the finest spatial intricacies in brain tissue though they
are still catching up in recording fast neuronal activities [12]. Combining these two modalities, in
a single, hybrid platform could lead to complementary and powerful new ways to explore the brain
and has gained much exciting momentum recently in neuroscience and neural engineering research
[13]. As the device technology developed, biological aspects have also taken into consideration to
minimize the damage of the brain and to maximize the device performance in terms of engineering
perspective. During device implantation, it is crucial to understand the reaction of tissues in terms
of cellular and molecular level to mitigate tissue damage, which would otherwise degrade the
performance of devices in terms of signal sensitivity and longevity [14]. To reduce the footprint
of the device implantation, developments in both materials and device designs have also been
made to use softer materials to have better mechanical compliance with the brain and smaller

devices to decrease the insertion footprint [15].



In this paper, we review developments in the past several years aiming to achieve such hybrid
electrical and optical microsystem platforms. Specifically, we cover three major categories of
technological advances, namely (i) transparent neuroelectrodes, (ii) optical neural fibers with
electrodes, and (iii) neural probes/grids integrating electrodes and micro-light-emitting diodes
(u-LEDs). In the first category, transparent electrodes enable high spatiotemporal resolution of
brain activity mapping since they are capable of recording/stimulating electrical neural activity,
and allow optical imaging and interrogation of the neurons simultaneously. The combination of
high temporal resolution from the electrophysiology recording and superior spatial resolution from
optical imaging will bridge the fast neuronal networks to the underlying molecular and cellular
structures in detail. For example, this method revealed spontaneous firing activity of single neurons
in the brain network dynamics with corresponding spatial patterns in the cortical area [16]. The
second and third categories are both related to optogenetics, a powerful new optical method that
can deliver cell-type-specific stimulation of neurons [17], and modulates and controls the neural
activity by light stimulating genetically modified neurons with light-sensitive opsins, such as
channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR). Significant improvements have been
made recently for optogenetic tools in neurobiology including optical fibers and implantable
probes [18-20]. The use of optical fiber has drawn considerable attention for effective light
delivery in optogenetics due to its well-established optical waveguide property and miniaturized
footprint [21]. Fiber-optic based hybrid platforms could offer various properties such as being
compact, light-weight, immune to large dynamic range, electromagnetic interference, and their
chemical and biological inertness in nature [22, 23]. On the other hand, u-LEDs have emerged as
the other popular means for localized light sources in optogenetics. Systems integrating electrodes
with light stimulation capability has also been demonstrated, which incorporated pu-LED on a
single or multiple shanks. Together, these hybrid electrical and optical neural interfaces, and their

future developments will pave promising pathways for next-generation brain research.

2. Transparent neuroelectrodes

There has been tremendous progress in developing transparent electrodes in recent years, due
to their capabilities of simultaneous electrical and optical recordings [24]. The state-of-the-art of
microelectrode arrays (MEAs) have achieved high-density microelectrodes for recording and/or
modulating of brain signals with electrical stimulation with high sensitivity and selectivity.

However, electrode recording alone intrinsically lacks high-level of spatial resolution compared



to optical imaging, which is critical as it allows to differentiate cell types, shapes, and complicated
neural network connections among the brain cells. In the past, there have been the usage of optical
imaging techniques to examine tissue surrounding electrode sites [25]. However, an exact
correlation of neural signals with imaging data has been difficult. The development of completely
transparent neuroelectrode devices is critical for next-level neural research, allowing both cortical
imaging and optogenetic interventions concurrently with electrical recording. Over the past decade,
a large number of studies aiming to integrate electrodes with optical imaging methods resulted in
many different types of transparent electrodes to meet this need, which can be loosely categorized
by the transparent electrode materials in use.

2.1 Indium tin oxide neuroelectrodes

Having high conductivity and transparency over the entire visible spectrum, transparent
conductive oxides like indium tin oxide (ITO) have been utilized in numerous industrial
applications. ITO has long been used in transparent and flexible applications, including displays,
LEDs, solar cells and more recently in neural microelectrodes (Fig. 1a-d), due to its outstanding
optical properties, such as extremely high transmittance and low auto-fluorescence. Figure 1a
presents a 49-ch MEA using sputtered ITO as electrodes, gold (Au) as its interconnect and Parylene
C as substrate [26]. It demonstrated 90% transparency and impedance of 30 kQ with an electrode
size of 250 um in diameter. Parylene C is a widely used polymer for transparent and flexible neural
devices, due to its biostability, biocompatibility, durability, lubricity, transparency, corrosion
resistance, flexibility and surface consolidation, thus evading flaking or dusting [27]. Although
ITO provides excellent electrical conductivity and transparency at the same time, it intrinsically
has a brittle property [28]. To mitigate the brittleness, a hybrid structure of ITO and Au has been
developed by confining ITO only to the electrodes while the long interconnect traces and bonding
pads are fabricated with ductile Au (Fig. 1b) [29]. This opto-array showed 94% transparency and
impedance of 1 ~ 5 kQ with an electrode size of 200 um in diameter, and utilized integrated LEDs
for optical stimulation and simultaneous electrical recording. More about LED-integrated
electrodes will be discussed in Section 4 of this review. Another ITO electrode array had 93%
transparency and impedance of 345 kQ with an electrode size of 100 um in diameter and was able
to facilitate two-photon imaging of Ca" signals and simultaneous electrical recording of cortical
electroencephalogram (EEG) (Fig. 1¢) [30]. They were able to perform the imaging without

noticeable distortion of detected neuronal structures. Two-photon combines energy from two light



sources, so excitation light arising from near-infrared wavelength range (700 ~ 1000 nm) will be
less scattered in the tissues and penetrates deeper [31]. In chronic settings, it showed that
fluorescent Ca?* signals from individual neurons could be collected after 51 days. ITO has also
been made into penetrating electrodes for spatial mapping and broader functionality of ITO-based
electrodes (Fig. 1d) [32]. This type of electrode is fabricated similarly to the Utah array but with
a ZnO crystal, which is an optically transparent, electrical highly conductive semiconductor and
the electrode tip is made with ITO-coated ZnO. It demonstrated 90% transparency and impedance
of 300 kQ with an electrode size of ~10,000 um?. This electrode successfully validated intracortical
acute neural recording in an in vivo mouse model. Its recorded spike amplitude was comparable to
commercial products from their Si counterpart. Rapid progress has been made recently to
overcome the relative brittleness, moderate conductivity, and capacitive nature of ITO-based
neuroelectrodes.

2.2 Graphene neuroelectrodes

Graphene has also been deployed as a material for transparent neuroelectrodes recently. Due
to its high transparency and conductivity, graphene serves as an excellent candidate for transparent
and flexible neuroelectrodes. Graphene's advantages include broad-spectrum transparency,
flexibility, transferability, strength, and tunable electronic properties [33, 34]. Park et al. were
among the first to demonstrate graphene-based neuroelectrodes with also 16 individual channels,
showing 90% transparency and 243 kQ with an electrode size of 200 um in diameter (Fig. 1e) [35].
The impedance characteristics of graphene electrodes were found to be similar to those of
conventional platinum electrodes. By using four-layer graphene films, they showed having more
graphene layers could increase electrical conductivity to minimal transparency loss. Any
transparent conductor film has inherent trade-offs between transparency and conductivity, where
a thicker material increases conductivity but decreases the transparency. They chose four layers of
graphene to achieve the lowest sheet resistance to have ~90% transmittance, and better yield and
mechanical strength than fewer-layered graphene. Through in vivo experiment, the device recorded
evoked potentials with stimulation to both ipsilateral and contralateral, showing
electrophysiological responses of ~ 100 uV evoked potentials. This result demonstrates that
graphene electrodes can record both spontaneous baseline activities and evoked signals similarly
to conventional platinum electrodes. Another seminal work in graphene neuroelectrodes

demonstrated doping of graphene increases electrical performance of the graphene electrodes



(Fig. 1f) [36]. Through doping, it achieved a significant improvement of signal to noise ratio (SNR)
and decreased electrical interference noise compared to Au electrodes. This 16-ch graphene
neuroelectrode showed 90% transparency and impedance of 541 kQ with an electrode size of
50x50 pm?. It also demonstrated simultaneous electrophysiology measurement and calcium
imaging, which was performed with confocal or two-photon microscopy setups, having small
laser-induced artifacts. The combination of both modalities revealed temporal and spatial
characteristics of the high-frequency bursting activities and synaptic potentials. Another work on
graphene microelectrodes has been conducted to reduce the artifact during local field potentials
recordings, optogenetics and deep 2-photon imaging. They developed a new fabrication process
to avoid crack forming during conventional graphene transfer process [37]. More recently, there
has been exciting progress in improving the impedance and charge stimulation capabilities of
graphene neuroelectrodes while not substantially degrading their transparency.

2.3 Functional nanomesh neuroelectrodes

Functional nanomesh is also emerging as a contender for transparent neuroelectrode material
[38]. Stacked layers of conventional metal (e.g., Au) and low-impedance coating (e.g., poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate, PEDOT:PSS) of the same nanomesh pattern
results in transparency with significant electrical performance increase due to faradaic interfacial
layer [39]. A 32-ch bilayer nanomesh MEA with Au and PEDOT: PSS demonstrated comparable
electrical performance to non-transparent, commercial Michigan arrays, having an impedance of
130 k€ and electrode size of 20 um in diameter with 73% transparency (Fig. 1g) [40]. This array
presented concurrent electrical recordings of visual-evoked activities in vivo along with two-
photon imaging of individual neurons from the visual cortex of awake mice. More recently,
penetrating probes with nanomesh neuroelectrodes demonstrated the measuring of single-unit
action potentials in the brain (Fig. 1h) [41]. These 32-ch probes demonstrated 67% transparency
and impedance of 149 kQ with electrode size of 15x15 pm?, and was able to detect single-unit
electrophysiological neuronal activities. During in vivo experiment, they recorded spontaneous and
evoked neuronal single-unit activities across the visual cortex of mice with high yield. For the
penetration, the soft Parylene C shanks were temporarily stiffened with PEG for better insertion.
Because of the ability to include the low-impedance coatings, which typically are opaque,
functional nanomesh offers high electrode performance and great scalability, which could enable

high-channel-count transparent neuroelectrode arrays for large-scale brain mapping.



2.4 Neuroelectrodes from other nanostructures

Other types of nanomaterials can also be great candidates for transparent neuroelectrodes, and
nanowires (NWs) are one of them. For example, a 16-ch transparent MEA fabricated from Au
NWs on polydimethylsiloxane (PDMS) showed 90% transparency and electrical impedance of
1 kQ with electrode size of 94,200 pm? (Fig. 1i) [42]. It was chronically stable in vivo for weeks,
suitable for 2-photon calcium imaging, and performed multiple sessions of electrophysiological
recording in awake and anesthetized animals. A post-mortem histology study revealed that there
was no qualitative difference between implanted and non-implanted regions after 6 weeks. From
the concurrent imaging and electrical recording, the calcium signal demonstrated a correlation in
positive and negative peaks with electrocorticography (ECoG) signals. Neto et al. used
combination of silver nanowires (AgNWs) and indium-doped zinc oxide (IZO) as their transparent
material (Fig. 1j) [43]. Its performance showed 60% transparency and electrical impedance of 20
kQ with an electrode size of 500 pm in diameter. These metal nanowire networks maintained the
properties of patterned metal films with simple fabrication using solution-based deposited
techniques. Also, IZO coating increased adhesion between the substrate and nanowires, preventing
corrosion of AgNW film over time, thus improving conductivity of the NWs. The electrodes
recorded electrical neural activities in vivo from the surface of the rat cortex under anesthesia.
Another similar approach is to use nanonetwork (NN) (Fig. 1k) [44]. A 16-ch Au NN MEA had
81% transparency and electrical impedance of 34 kQ with an electrode size of 200 pm in diameter.
Patterning Au films and polymer nanofibers together helped microelectrodes to achieve high
transparency and low sheet resistance. It also has tunability by controlling the density of Au NN.
This device recorded multi-channel in vivo neural activities with high SNR and minimal
photoelectric artifacts. Fast and accurate responses from the optically stimulated neurons were
measured by the microelectrodes. Simultaneous in vivo recording with optogenetics also achieved
efficient and precise visualization of neural activities, spreading from the light-stimulated neurons
to interneurons, interpreting neural dynamics accurately and precisely. Finally, polymer
conductors can also serve as transparent neuroelectrodes. Figure 11 showed a 15-ch transparent,
flexible, and active electrode, which consisted of transparent and organic electrochemical
transistors (OECTs) with PEDOT:PSS as low-impedance coating and transparent Au grid
interconnects [45]. This device demonstrated 69% transparency and electrical impedance of 10 kQ

with an electrode size of 1,400 um? in diameter. The active electrodes demonstrated mapping of



evoked responses in vivo with an amplitude of 800 puV at the same region where the surface of
cortex is optogenetically modulated by a laser beam. This effort also presented the spatial mapping
of EEG recordings from an optogenetic rat with low light-induced artifacts. The field of transparent
neuroelectrode is growing rapidly to not only facilitate concurrent electrophysiology and optical
approaches, but also achieve large-throughput devices for brain mapping with high spatiotemporal
resolution.

3. Optical fibers with electrodes

Achieving better optical interfaces with the brain needs new technologies to deliver light in a
more spatially resolved fashion to precisely illuminate the target brain structures. In many studies,
it is required to deliver wide-field illumination over a large area of the brain, while for other
applications, focused illumination to small brain areas is better. Due to optical fiber's preservation
of energy, it has long been used in many applications such as communications, biomedical
technology, and imaging [46-48]. The versatility of optical fiber-based devices is becoming more
widely leveraged for in vivo applications [49]. For example, light collection from deep brain
regions using fiber-photometry techniques has enabled neural activity recording [50-52]. In
addition, multiphoton microscopy through Gradient Index (GRIN) lenses has established as a
minimally invasive optical method for imaging of deep structures and subcellular resolution to
several millimeters in intact animals. GRIN lenses are needle-like dimension that have been
utilized for fiber bundle which is coupled with confocal microscopy [53, 54]. With the advent of
optogenetics, optical fibers have become the primary tool for light delivery in neuroscience
experiments. Integrating microelectrodes with optical fibers can therefore enable simultaneous
electrical recording and optogenetic stimulation to allow cell-type-specific neuronal circuit

investigations.

3.1 Materials to form optical fibers

Optical fiber is a flexible filament, like a hair, made of a molten glass or an appropriate
polymeric material. Generally, inorganic glasses such as vitreous silica dioxide materials are used
in the preparation of optical fiber. Researchers have extended the usage of glass fibers in
neuroscience by adding extra functionalities [55-57] or combining them with the neural recording
systems [58-63]. To improve mechanical compliance with the brain and optical fibers [64-66],

several polymers are used including polymethylmethacrylate (PMMA), polystyrene (PS),



polycarbonates (PC), cyclic olefin copolymer, and amorphous fluoropolymer [67-72]. These
polymer-based fibers are flexible and biocompatible [73, 74]. However, trade-offs have to be
considered in thermal expansion and thermo-optic coefficients, photosensitivity, glass transition
temperature, moisture absorption , and refractive index stress-optic coefficient [75, 76]. In this
regard, various groups have improved optical fibers by different chemical and physical
modifications [77-79].

Fibers can be manufactured into complex structures with multiple classes of materials
including metals, semiconductors, and insulators. Optoelectronic devices are formed by
conducting and semiconducting domain integration, which is manufactured by utilizing standard
wafer based processes [80]. Although these devices are small and also low-cost, they have
mechanically rigid substrates and restriction to planar geometries. The unique integration of
metals, semiconductors, and insulators into one-dimensional (1D) fibers made optoelectronic
functionalities in large-scale and soft substrates (flexible and stretchable) [80, 81]. These types of
multi-material fibers are integrated tools to sense and deliver multiple signals into and from the
nervous tissue. Various examples of fibers made from multi-material have been reported across
multiple applications in several engineering fields [63, 82-85]. Multi-material fibers have
developed an easy solution to combine optogenetics with other nervous interrogation devices while
decreasing the elastic mismatch between the rigid implanted devices and the soft tissue [22, 86-
88].

3.2 Optical fiber designs

In many optogenetic experiments, an optical fiber is inserted into the brain tissue to transmit
light to the brain for activating or silencing neurons. One end of the fiber is coupled to the light
source, and the opposite end serves as the photo-stimulation site. Light sources can be xenon lamps
[89], LED [90, 91], and mostly laser diodes due to their high light intensity, coherence with narrow
bandwidth, and low light beam divergence [61, 92-94]. Optical fibers with long, light-weight, and
flexible structures are capable of reaching deep neural layers. Dimensions and shapes of the
devices play the main role in chronic external body response of the neural tissue, as well as the
implantation techniques. To shrink their implantation footprint, optical fibers tolerate mechanical
stripping [90] or chemical etching process [95], or simply attain a tapered profile at the end of the

fiber for smoothly penetrating into the tissue during the implantation.



Optical fiber-based devices demonstrated several designs (Fig. 2). Aravanis, ef al. reported the
first approach to improve photo-stimulation in an animal, in which to deliver light to the neural
tissue using a single optical fiber attached to an outer light source [96]. In this work, the optical
fiber was embedded by using a cannula mounted on the animal skull for spatial guidance (Fig. 2a).
A multimode fiber to have simultaneous activation and inhibition [97], neural probes combined
electrophysiological recordings and optical channels based on optical fibers arrays [90], and an
array of 3D optical fiber for optogenetics along with integrated LEDs and flexible substrate [98]
were also reported. Although they can study a large number of neurons, array-based solutions need
more complex designs and confront more challenges. Indeed, optical sites were simultaneously
transformed with conventional electric recording sites for electrophysiology studies.

3.3 Hybrid systems from integrating optical fibers with neuroelectrodes

Over the years, several optical-fiber-based system designs have been reported, integrating one
or more optical fibers with different numbers of electrodes. Fig. 2b indicated a single optical fiber
with a single electrode [99], and a combination of single optical fibers with multiple electrodes is
shown in Figs. 2¢-k. For electrophysiology recordings, the single electrode fabrication process
includes a thin-film metallic layer deposition over the body of the fiber [95] or simply a metallic
wire coupled to the fiber [62, 100]. Also, glass-based optical fiber has been introduced to prevent
undesired photoelectric artifacts in the metal electrodes [62, 86]. In contrast, optical fiber designs
along with various sites electrode include hybrid solutions which are depending on a single fiber
unit integration into simply tetrodes (Fig. 2¢) [101], and tapered optical fiber (Fig. 2d) [102], efc.
Fig. 2d presents the fabrication flow of such device that has multipoint optical stimulation sites
for in vivo mouse striatum and cerebral cortex where the tapered fiber is attached to planar
microelectrode array that carries out extracellular recordings.

Recording and stimulation at large scale and with great spatial and temporal accuracy are major
prerequisites to study the real-time dynamics of neuronal networks. With high-density electrodes,
the large-scale of individual neurons can be monitored. For example, optical fibers integrated with
silicon MEA [92] can attain a good spatial resolution of optical stimulation by delivering light
adjacent to the probe recording sites (Fig. 2¢). High-density electrodes can gather clinical data in
the proximity of photo-stimulation focus and in other targets of neural circuits simultaneously. In
the optical fiber coupled with 6x6 MEA, in which the pitch between neighboring electrodes is
400 pm and the length of electrode shank is 1 mm approximately (Fig. 2f), the extracellular neural



activity can be recorded [103]. This technique provided accurate optical stimulation and
electrophysiological neural response monitoring simultaneously, both close and distant from the
stimulation site. On the contrary, both the electrodes and optical fibers have a drive mechanism to
certify careful guidance and alignment in the optical electrode method [101]. Fig. 2g illustrates an
integrated device with MEA attached to an optical fiber to optically stimulate and record electrical
signals from the deep brain. This device design is a suitable tool for the acquisition of neural signals
in optogenetics and other neuroscience fields [104].

An interfacing implantable optical fiber with in vivo electrophysiological arrays is presented
to manipulate neural circuit elements with minimal tissue damage or change in light output over
time (Fig 2h). In this optical fiber coupled with MEA, selective control of neural circuit elements
with simultaneous recording of spike activities and local field potentials is achievable [105].
Microfabrication approaches which depend on optical fibers to deliver light to neural cells have
been illustrating successful photo stimulation results. Also, optical fibers coupled with LEDs can
pattern the delivery of light to the deep targets in the brain (Fig. 2i) [90]. To have better
accessibility to neural populations, a tapered optical fiber with a 16-ch electrode neural probe is
introduced. Optical fibers can be applied to deliver light to deep targets, and LEDs can be spatially
arranged in places in order to deliver light into a pattern. Integration of arrays and LED-coupled
optical fibers can also enable patterned light delivery to deep targets in the brain (Fig. 2j) [106].

Recent approaches of neural interrogation depend on flexible and multifunctional devices that
need the spatiotemporal resolution, selection of cell-type, and long-term stability. Due to urgent
needs for understanding and treatment of nervous system disorders, different types of
multifunctional tools have been constructed to record and also control the neural activity [86].
Furthermore, thermal drawing (TD), three-dimensional (3D) printing [107], lithographic
processes [108], and molding [74] are all techniques to fabricate implantable fiber and waveguides.
Generally, TD is a technique used for silica and other inorganic material-based optical fibers [109,
110] or multifunctional polymer fibers [86]. Recent attempts have been made with respect to a
light-guiding probe to provide a bigeminal functionality, such as concurrent recordings of
potentials and light guidance [32]. A multifunctional probe with optical waveguide and electrical
recording capability is considered for bidirectional communication with neural circuits, allowing
simultaneous optical stimulation, electrophysiological recording, and drug delivery at high spatial

resolution in vivo [111]. A multifunctional fiber probe proportionate with an optical ferrule, an



injection tube, and an electrical connector is presented in Fig. 2k [87]. This device is made of an
optical waveguide, two microfluidic channels, and six electrodes made with fiber drawing which
comforted injections of viral vectors taking opsin genes while supplying optical stimulation and
collocated neural recording.

To increase the range of spatial coverage, more advanced optical fiber design emerges,
including multicore through bunching multiple single cores of optical fibers [112], with a single
(Fig. 21) [93] or several electrode sites for recording (Fig. 2m) [113]. The integration of several
recording sites relies on processes of assembly between the optical fiber and metallic recording
wires that are manually inserted into the guide tubes later. The binding of light sources to any
optical fiber core becomes a more intricate process and can reduce its energy link efficiency.
Minimize brain tissue damage is another key consideration for these hybrid fibers and achieving
multifunctionality on a coaxial optrode through micro-nanofabrication coupled fiber
manufacturing demonstrates a promising direction for future system miniaturization [99]. The
future of optical-fiber-based hybrid neural systems will enjoy continuous advances on performance
development and expansions in neuroscience applications.

4. Neural probes/grids integrating electrodes and p-LEDs

Another important approach to combine optical stimulation and electrophysiology is to
integrate pu-LEDs and electrodes [114]. These probes use integrated p-LEDs to provide
individually controllable optical excitation sites, each of which stimulates a local, specific region
of the tissue. Over the past years, several probes have been introduced for these purposes [89, 115-
117]. The most popular approach has been leveraging probes of Michigan types [118, 119]. Other
approaches were also reported, such as through integrating carbon-based transparent ECoG grids
with u-LEDs in which the electrical recording and optical stimulation can be carried out [120,
121]. u-LEDs directly produce light on site instead of piping light from external sources, and they
allow multiple light sources with different stimulation wavelengths [119]. These LEDs typically
are of sizes from 10 to 100 pm resulting in successful integration of the light delivery in neural
probes monolithically [119, 122]. The commercial availability of p-LEDs with diverse features in
terms of output power, wavelength, configuration and size [123-125] make this approach a

promising pathway towards functional hybrid systems.



4.1 Stiff, penetrating probes integrating electrodes and p-LEDs

Due to absorption of light and light scattering in the brain, silicon-based stiff, penetrating
probes have been developed to deliver the light into the brain with small insertion footprints. Also,
to reduce the heat dissipation from pu-LEDs, which could result in tissue damage when used for
long-term, the good thermal conductivity of silicon can dissipate the heat effectively. Schart, et al.
presented an optoelectronic neural interface consisting of 6 silicon-shanks with 16 u-LEDs per
shank (Fig. 3a) [126]. In this work, all 96 p-LEDs were easily controlled by readily available
integrated circuits. During in vivo validation, they captured a distinct spatiotemporal population
induced by u-LED stimulation. The other neural probe provided spatially limited optical
stimulation of monitored neurons in dealing with animals simultaneously (Fig. 3b) [127]. This
probe with 4-shank had 32 recording electrodes and 12 u-LEDs, which were integrated
monolithically at the tip of the probes to cover a 200 mm vertical area. In deep structures of
animals, this configuration will allow for multiscale manipulation of neural circuit behavior in an
unprecedented spatiotemporal resolution. Furthermore, complex analysis of the brain requires
high-density of both p-LEDs and recording electrodes, which inevitably causes high stimulation
artifact. This 4-shank device with 8 recording electrodes and 3 p-LEDs per shank incorporated a
substrate with heavily doped silicon by boron to eliminate the photovoltaic effect from the LED
illumination (Fig. 3¢) [128]. As a result, during the in vivo validation, this system demonstrated
stimulation-artifact-free electrical recording without any signal degradation.
4.2 Soft probes integrating electrodes and p-LEDs

Having flexible or soft neural probes can alleviate micromotion-induced tissue damage [129-
134]. While traditional silicon probes have been widely used, soft polymer materials are recently
getting attention due to their flexibility and biocompatibility. For chemical sensing of the deep-
brain and agent delivery, a flexible and multifunctional neural probe using liquid metal provided
ultra large tunable stiffness [135]. There are several efforts on implantable flexible neural probes
[122, 136-142], their biodegradable materials covering [143-147], and their usage in vivo
validation.

Ji, et al. demonstrated a flexible PI-based hybrid optoelectric neural interface integrated with
16 p-LEDs and 16-ch IrOx-modified electrodes (Fig. 3d) [148]. They showed stability of the
device with 3-month soaking tests, and extensive research on thermal and electrochemical

properties to show usefulness of this device for an optogenetic tool. Figure 3e presents a flexible



probe array with multi-channel p-LEDs and wireless-enabled, for bidirectional wireless neural
interface [149]. For accurate delivery of light and recording of neural signals in multiple cortical
layers altogether, the array integrated wirelessly addressable u-LED chips with an inclined
polymer probe array. In vivo tests on the brains of the rats found that the u-LEDs could be powered
inductively and controlled by utilizing a stimulator of wireless switched capacitor. A light induced
neural activity was recorded simultaneously using integrated recording electrodes.

The development of the III-V compound semiconductor p-LEDs enabled a dramatic
improvement of optical and electrical performance compared to conventional LEDs due to their
miniaturization [150]. Among many different compound semiconductors, GaN has a long history
in LEDs to produce blue, violet, and ultra-violet (UV) laser diodes [151]. The major parameter of
binary and ternary III-Nitride alloys is their bandgap energy value, which directly affects the output
light wavelength on optoelectronic applications of the material. Figure 3f introduces a flexible,
multifunctional, and wireless system, integrated with GaN-based p-LEDs, having injectable
capability [119]. In this work, ultra-small "cellular-scale" u-LEDs with a size of 50 x 50 um? and
thickness of 6.45 um were utilized, having attenuated tissue damage, effective thermal
management, and minimal inflammation for chronic uses. This multifunctional integrated system
was mainly divided into four different layers, consisted of recording electrodes, photodetectors, p-
LEDs, and temperature sensors. This demonstration analyzed optical, thermal, and
electrophysiological extensively, as well as chronic in vivo validation, including cell-type-specific
expression of ChR2, electrical signal detection and real-time thermal sensing.

Utilizing elastomeric materials can create probes which are flexible and also remarkably softer,
which can tolerate local stretching. Elastomeric probes are usually slightly thicker than flexible
ones, but they have better mechanical compliance with the brain. A PDMS probe consisting of
metallic structures with serpentine-shaped and off the shelf components along with embedded p-
LEDs is fabricated (Fig. 3g) [152]. It is a soft optoelectronic neural system for wireless
optogenetics, controlling different cells and field oscillations in mobile mice with a unique spatial
resolution. Another stretchable optoelectronic neural interface was reported, having 4 p-LEDs and
9 recording electrodes (Fig. 3h) [153]. This device used Dragonskin as substrate and encapsulation
layers and incorporated serpentine-shaped interconnects for enhanced stretchability. They also
successfully demonstrated ECoG signals with optogenetic stimulation of ChR2 from focal cortical

areas of the awaked mouse in vivo recording.



In addition to optogenetic stimulation, implantable p-LEDs can also be used for neural
recording and imaging. Lee, et al. introduced an interesting approach combining the merits of
electronics (CMOS for recording, signal amplification and encoding) and of optics (u-LED for
power and data uplink) by using microscale opto-electrically transduced electrodes (MOTEs) [154,
155]. These devices recorded in vivo neural activities in a tether-less fashion when implanted into
the brain. While not demonstrated yet, MOTEs hold the potential to perform dual-modal
optogenetic stimulation and electrical recording. Another example was an implantable single-
photon imager integrated monolithically in the form of a complementary metal-oxide-
semiconductor Integrated Circuit (CMOS IC) and optical image sensor array based on shank [156].
It could localize the fluorescent objects beyond conventional systems depth with a minimal tissue
displacement. The other approach was an implantable lens-less, shank-based image sensor array
and optical-filter-less allowing cellular-resolution recording at the arbitrary depths along with
excitation which is provided by an outer laser light source [157].

Utilizing p-LEDs can also realize three or more modalities (e.g., optical, chemical, fluidic, and
electrical) integrated together by downscaling the component and developing creative fabrication
methods with microfabricated polymer probes [86, 158]. These integrated systems often
incorporate various tools and components, including implantable waveguides, control electronics,
light sources, power supply, tools for implantation, and electrical interfaces [159]. Multiple
components can be applied with microfabrication technology as a result of the small size of the
p-LEDs. Generally, combining optical and electrical techniques provides an exciting opportunity
to examine the stimulation effect on organ-level activity. The combination of magnetic modality
with both optogenetic stimulation and electrical recording to consider how optogenetic stimulation
affects the extensive brain activities is another great approach [160]. This technique has recently
been demonstrated as an effective tool to study depression and schizophrenia which are related to
neural circuits in awake rats [161].

5. Conclusion and outlook

Neural interface with hybrid electrical-optical modalities consisted of new sets of circuits and
sensors represents unique tools to understand the brain [162]. Especially, transparent electrodes
allow simultaneous electrical recording and optical approaches especially imaging, converging
complementary information on neuronal dimensions, types, and their activities. In addition to

imaging, the invention and rapid development of optogenetics subsequently spurred the birth of a



cohort of neural probes for light delivery, enabling cell-type-specific brain stimulation. Today,
optical fiber-based probes are widely used in neuroscience studies, some even with compact and
wireless devices for brain mapping. In parallel, hybrid probes with u-LEDs have been developed
significantly in the recent years, allowing optical stimulation with increased spatial resolution and
stimulation with various wavelengths. Combining optical fibers or p-LEDs with electrodes have
therefore been enabling closed-loop interrogation of the brain and its underlying network. On the
other hand, combining electrical and optical modalities could create new challenges where photo
stimulation causes light-induced artifact due to photovoltaic effects that interfere with electrical
signals from the brain. Great efforts have been made and will continuously be to reduce such
artifacts by using different materials with low photovoltaic effects or developing new shielding
strategies.

Looking ahead, a natural evolution of hybrid electrical-optical systems is also to scale up in a
way that is minimally invasive. A variety of system functionalities, including signal multiplexing,
data processing, signal digitalization, pattern recognition, and even data classification, may also
be implanted in the brain altogether, permitting multipurpose interactions and reducing latency
dramatically. Furthermore, the possibility of constructing hybrid electrical and optical systems on
a chip still remains largely unexplored. Such an advanced hybrid system could greatly facilitate
the acquisition of spatial data around the stimulation site and allow researchers to understand the
area to area interaction and propagation of the brain signaling. Finally, it is also necessary to reduce
the cost of manufacturing for widespread applications. Achieving these milestones will
significantly advance fundamental neuroscience research as well as enable biomedical devices for

clinical purposes.
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Figure Captions

Figure 1. State-of-the-art transparent electrodes. /70: (a) 16-ch hybrid Au-ITO ECoG array [26],
(b) Opto-uECoG array [29], (c) ITO-based array [30], (d) 16-ch penetrating ITO array [32],
Graphene: (e) 16-ch graphene-based device [35], (f) doped-graphene 8-electrode hippocampal
slice array [36], Nanomesh: (g) 32-ch Au/PEDOT:PSS nanomesh MEA [40], (h) 32-ch penetrating
nanomesh electrode [41], Nanostructure: (i) Opto-e-Dura [42], (j) AuNW-based electrodes [43],
(k) Au NN ECoG devices on a mouse brain and the single microelectrode from SEM [44], and
Organic transistor: (1) 3 x 5 transparent electrophysiology organic electrochemical transistors
array [45].

Figure 2. State-of-the-art optical neural fibers with electrodes. (a) Close-up view of how an optical
fiber neural interface coupled on rodents [96]. (b) Cross sectional (on the top) and side view coaxial
probe photograph displaying main parts (on the bottom). The center of the optical fiber with a 10
micrometer diameter optical aperture leads to have highly and directional light output [99]. (c)
Single optical fibers and 16 electrodes with 64 channels [101]. (d) Schematic demonstration of a
tapered optical fiber [102], (e) Multi-array(MA) silicon probes with integration of optical fibers
[92]. (f) optical fiber coupled to MEA (bottom), detailed structure of the probe (top). Light can be
delivered through the tapered optical fiber aperture locally, while the nearby cells neural activities
are recorded simultaneously [103]. (g) The integrated multi-electrode array coupled with fiber
optic [104]. (h) Interfacing implantable optical fibers by in vivo electrophysiological [105]. (i)
LED array and LED-coupled optical fibers [90]. (j) Tapered Fibers composed with a Multi-
Electrode Array [106]. (k) A multifunctional fiber probe be equipped with an optical ferrule, an
injection tube , and electrical connector [87]. (1) Optical fibers are tightly limit to the tungsten
shank without a notable gap [93]. (m) Multiple optical fibers with multiple electrode combination
[113].

Figure 3. State-of-the-art neural probes/grids integrating electrodes and pu-LEDs. Stiff: (a) 6-shank
u-LED probe with 16 p-LEDs per shank [126], (b) 4-shank probe with 3 u-LEDs and 8 electrodes
per shank [127], (c) Minimal-stimulation-artifact u-LED optoelectrodes [128], Flexible: (d) The
front side (left) and back side (right) of the flexible hybrid optoelectric neural interface based
polyimide with 16 channels of both electrodes and p-LEDs [148], (¢) Probes array coupled with
16 u-LEDs and 16 electrodes [149], (f) The ultra-flexible probe by the blue light-on p-LED. The
inset image display the integrated device concluding a wireless radio frequency scavenger [119],
Stretchable: (g) soft, stretchable, fully implantable optoelectronic system integrated with u-LEDs
[152], and (h) Stretchable opto-electronic neural interface with 4 p-LEDs and 9 recording
electrodes (right) and schematic (left) [153].
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