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ENSEMBLE CONTROL ON LIE GROUPS*

WEI ZHANG! AND JR-SHIN LI#

Abstract. Problems involving control of large ensembles of structurally identical dynamical
systems, called ensemble control, arise in numerous scientific areas from quantum control and robotics
to brain medicine. In many of such applications, control can only be implemented at the population
level, i.e., through broadcasting an input signal to all the systems in the population, and this new
control paradigm challenges the classical systems theory. In recent years, considerable efforts have
been made to investigate controllability properties of ensemble systems, and most works emphasized
on linear and some forms of bilinear and nonlinear ensemble systems. In this paper, we study
controllability of a broad class of bilinear ensemble systems defined on semisimple Lie groups, for
which we define the notion of ensemble controllability through a Riemannian structure of the state
space Lie group. Leveraging the Cartan decomposition of semisimple Lie algebras in representation
theory, we develop a covering method that decomposes the state space Lie group into a collection of
Lie subgroups generating the Lie group, which enables the determination of ensemble controllability
by controllability of the subsystems evolving on these Lie subgroups. Using the covering method,
we show the equivalence between ensemble and classical controllability, i.e., controllability of each
individual system in the ensemble implies ensemble controllability, for bilinear ensemble systems
evolving on semisimple Lie groups. This equivalence makes the examination of controllability for
infinite-dimensional ensemble systems as tractable as for a finite-dimensional single system.

1. Introduction. Finely manipulating a large ensemble of structurally identical
dynamical systems has emerged as an essential demand in diverse areas from quan-
tum science and technology [22, 34, 19, 38, 20], brain medicine [55, 33, 17, 28, 57]
and robotics [5] to sociology [8, 11]. In many applications involving ensemble sys-
tems, control can only be exerted at the population level because it is infeasible and
often impossible to receive state feedback for each individual system. As a result,
considerable efforts have been made over the past years to understand the funda-
mental limit on the extent to which an ensemble system can be manipulated with a
broadcast open-loop signal. This new control paradigm raised significant challenges in
classical systems theory, while offering abundant opportunities for making theoretical
advancements.

Among the developments in this rising area, referred to as ensemble control,
extensive focuses have been placed on investigating the controllability property of
ensemble systems, including linear [32, 25, 36, 48, 18, 39], bilinear [35, 4, 14], and
some forms of nonlinear ensemble systems [33, 13, 30]. The work on analyzing con-
trollability of an ensemble consisting of systems defined on the Lie group SO(3) set
the milestone in formal and rigorous study of ensemble systems [35]. In this work,
using Lie algebraic tools, the controllability analysis was translated to the problem
of polynomial approximation, which opened the door for addressing ensemble con-
trol problems from the perspective of “approximation”. This new notion has led to
seminal works on developing necessary and/or sufficient conditions for ensemble con-
trollability [32, 25, 36, 48, 52, 18, 39] and observability [50, 49], and novel theory-
and computational-based techniques for optimal ensemble control design and syn-
thesis [38, 56, 10, 42, 45, 46]. Notable developments involve various analytical and
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geometrical methods for examining controllability. For example, symmetric group
and graph-theoretic approaches were established to characterize and interpret con-
trollability of ensemble systems in terms of permutation orbits and graph connec-
tivity [51, 54, 12, 16]; representation-theoretic and moment-based approaches were
introduced to analyze controllability, structural controllability, and observability of
ensemble systems [48, 49, 13, 15]; and methods based on the infinite-dimensional
Lie extension were developed extending the Lie algebra rank condition for classical
nonlinear systems to ensemble systems [1, 2]. Although progress in understanding
fundamental properties of ensemble systems is persistent, much remains to be ex-
plored. One particular angle is to delve into the relationship of such properties for
ensemble and classical control systems. In this regard, the work presented in [35]
sheds light on revealing the equivalence between ensemble controllability and classical
controllability for certain classes of ensemble systems.

In general, controllability of each individual system (i.e., classical controllability)
in an ensemble is a necessary, but not sufficient, condition to ensemble controllability.
Namely, if an ensemble system is ensemble controllable, then each individual system
in the ensemble must be controllable in the classical sense; however, the converse is
generally not true. Motivated by the work on the control of ensemble systems on SO(3)
[35], where controllability of each individual system led to controllability of the entire
ensemble, in this paper, we extend this previous finding to explore such equivalence
in classical and ensemble controllability for more general classes of ensemble systems.
Specifically, we study the bilinear ensemble system in which each individual system
evolves on the same semisimple Lie group. In our approach, such an ensemble is
regarded as a single system defined on the space of Lie group-valued functions, which
is an infinite-dimensional Lie group, and the concept of ensemble controllability is
rigorously defined in the sense of approximate controllability through a bi-invariant
metric on this infinite-dimensional Lie group. The main tool developed in this work
is the covering method. The central idea of this method is to decompose the state
space Lie group of a bilinear ensemble system into a collection of Lie subgroups,
which generates the Lie group, so that controllability of the ensemble is determined
by that of the subsystems evolving on these Lie subgroups. The covering method
is further used to reveal a significant consequence of equivalence between ensemble
and classical controllability of bilinear systems defined on semisimple Lie groups, i.e.,
classical controllability of each individual system in the ensemble implies ensemble
controllability. Moreover, we show that this equivalence is not constrained to systems
evolving on compact Lie groups and holds for bilinear ensemble systems induced by
Lie group actions on vector spaces, for which each individual system is defined on a
non-compact Lie group.

This paper is organized as follows. In the next section, we introduce the notion
of ensemble controllability for parameterized families of control systems evolving on
Lie groups through the bi-invariant Riemannian structures of the groups. In Section
3, we revisit and extend our previous results in ensemble controllability of bilinear
systems on SO(3), which lays a foundation for the investigation into controllability
of bilinear ensemble systems on general semisimple Lie groups. In Section 4, we
introduce the covering method to establish the equivalence between ensemble and
classical controllability for bilinear systems. In particular, we first illustrate the main
idea by using systems evolving on SO(n) with n > 3, and then extend the analysis
to systems defined on general semisimple Lie groups by using Cartan decompositions.
The generality of the equivalence to ensemble systems induced by Lie group actions
on vector spaces is presented in Section 5.
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2. Preliminaries. In this section, we review the classical controllability results
characterized by the Lie algebra rank condition (LARC) for control systems defined
on compact, connected Lie groups. Then, we introduce the notion of ensemble con-
trollability for a parameterized family of systems defined on a Lie group through
the Riemannian structure of this group, and address the major obstacle to ensemble
controllability analysis of such systems when applying LARC.

2.1. Controllability of systems on compact and connected Lie groups.
Controllability of systems evolving on compact, connected Lie groups has been ex-
tensively studied [9, 27, 26, 44]. The analysis is based on examining whether the Lie
algebra generated by the drift and control vector fields is equivalent to the underlying
Lie algebra of the Lie group. Specifically, a right-invariant bilinear control system
defined on a compact, connected Lie group G of the form,

(2.1) 4 x() = [By+ Y wnB] X0, XO)=T,
i=1

is of great theoretical and practical interest, where X (t) € G is the state, By, ..., B
are elements in the Lie algebra g of G, I is the identity element of G, and u;(t) €
R are piecewise constant control functions for ¢ = 1,...,m. In addition, we de-
note the Lie algebra generated by the set of vector fields F = {By, B1,...,Bm} by
Lie{By, B1,..., B}, i.e., the smallest linear subspace of g, which contains F and
is closed under the Lie bracket operation defined by [M,N] = MN — NM for all
M, N € g. Controllability of the system of the form in (2.1) can be evaluated by the
following theorem.

THEOREM 2.1. The system in (2.1) is controllable on the Lie group G if and only
if Lie(F) = g, where F = {Bg, B1,...,Bn}.

Proof. See [9, 27, 29, 43]. O
If the dimension of g is n, then the only linear subspace of g that also has di-
mension n is g itself. Thus, checking controllability of a control system as in (2.1)
is equivalent to checking the dimension of Lie(F). Conventionally, the necessary and

sufficient condition in Theorem 2.1 is referred to as the Lie algebra rank condition
(LARC).

2.2. Control of ensemble systems. An ensemble control system is a family
of control systems defined on a manifold M,

d

(2.2) Za

t, B) = f(ta Z(t, 5)7 u(t))7

parameterized by a parameter 3 € K C R? such that x(t,3) € M for each t € R
and § € K, where the parameter space K is generally assumed to be compact. In
this case, for each fixed t € R, z(t,-) is an M-valued function defined on K, i.e., the
state space of the ensemble system in (2.2) is actually a space of M-valued functions
defined on K, denoted by F(K, M). The parameter independent open-loop control
input u(t) € R™ is a broadcast signal that simultaneously manipulates the ensemble
between desired functions in F(K, M). Note that when the parameter space K is
an infinite set, i.e., the ensemble system in (2.2) contains infinitely many dynamic
units, F(K, M) is an infinite-dimensional manifold so that the ensemble system is
an infinite-dimensional system. For such systems, we define the notion of ensemble
controllability in the approximation sense.

3
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DEFINITION 2.2 (Ensemble Controllability). Let F(K, M) denote a space of M-
valued functions defined on K. The family of systems in (2.2) is said to be ensemble
controllable on the function space F(K, M), if for any € > 0 and starting with any
ingtial state xg € F(K, M), where zo(-) = x(0,-), there exists a control law u(t) that
steers the system into an e-neighborhood of a desired target state xp € F(K, M) at a
finite time T > 0, i.e., d(x(T,),zp(:)) < e, where d: F(K,M) x F(K,M) - R is a
metric on F(K, M).

REMARK 1. Note that in Definition 2.2, the final time T may depend on &, and
ensemble controllability is a notion of approximate controllability.

In this work, we focus on the time-invariant bilinear ensemble system evolving on
a Lie group G of the form

d m
(2:3) ZX(t,6) = | BoBo + > w(t)Bi| X(1,8), X(0.8) =1,
where 8 = (Bo,...,Bm)" is the parameter vector varying on a compact subset K C

R™H X (t,-) € C(K,G) is the state and C(K,G) denotes the space of continuous
G-valued functions defined on K, By, ..., B, are elements in the Lie algebra g of G, I
is the identity element of G, and ug, ..., u,, are real-valued piecewise constant control
inputs.

According to Definition 2.2, a metric on C'(K,G) is necessary in the study of
ensemble controllability of the system in (2.3). In the next section, we will introduce
metrics on C(K, G) and C(K, g) through a Riemannian structure of G such that these
two metrics are locally compatible with respect to the exponential map, exp : g — G.
Consequently, ensemble controllability of systems defined on C(K,G) can be studied
through their drift and control vector fields in C'(K, g).

2.3. Metric space structures on C(K,G). In Definition 2.2, ensemble con-
trollability is defined in the sense of approximate controllability, where it only requires
to steer the considered system into an e-neighborhood of the desired final state. How-
ever, the properties of neighborhoods depend on the topology of the state space of the
system. Therefore, in this section, we will introduce a metrizable topology on C(K, G)
such that ensemble controllability of an ensemble system evolving on C'(K, G) can be
defined through the metric induced by this topology.

The compact-open topology is commonly used on the space of continuous func-
tions between two topological spaces. In our case, K is compact and G is a met-
ric space as a Riemannian manifold, then the compact-open topology on C(K,G)
is metrizable. Specifically, it is equivalent to the topology of uniform convergence
[24], i.e., the topology induced by the metric d(f,g) = supgek p(f(B),g(B)) for any
fig € C(K,QG), where p: G x G — G is the metric induced by a Riemannian metric
on G. This observation illustrates that it suffices to define a Riemannian structure on
G, which in turn induces a metric on C(K, G).

A bi-invariant Riemannian metric is a good candidate of Riemannian metrics de-
fined on a compact, connected Lie group G for understanding the relationship between
its geometric and algebraic structures. Because, under this metric, the exponential
map from g to G coincides with the Riemannian exponential map from T;G to G,
where T7G denotes the tangent space of G at the identity element I [41]. Corre-
spondingly, the trajectory of each individual system in the ensemble in (2.3) is a
concatenation of some geodesics of G. Computationally, a bi-invariant Riemannian

4
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metric can be obtained by averaging an arbitrary inner product defined on g over the
group G, where g is identified with T;G of G [47].

Let (-,-) : g x g — R denote an inner product on g that extends to a bi-
invariant metric on G, then the uniform norm on C(K,so(n)), that is, ||f — gllcc =
supgere |£(B) — g(B)| for f,g € C(K,s0(n)), is well-defined because K is compact,

where || £(8) = g(8)|| = /(F(B) — 9(B), f(B) — g(B)) is the norm on g induced by the
inner product. If ||f — g|lec < € for some e smaller than the injectivity radius of
the Riemannian exponential map, then p(exp(f(8)),exp(g(8))) < [ f(B) —g(B)| <
I/ — glloc < € holds for any 8 € K, because the Lie group G with the bi-invariant
Riemannian metric has non-negative sectional curvature [41], where p is the metric
on G induced by the bi-invariant Riemannian metric. On the other hand, since G is
connected and compact, the exponential map exp : g — G is surjective [23], and thus
the uniform topology of C(K, Q) is carried over from the uniform norm of C(K,g).
This property enables the study of ensemble controllability of the system in (2.3) on
C(K,G) through its drift and control vector fields on C'(K, g).

It can be shown that C'(K, Q) itself is an infinite-dimensional Lie group with the
Lie algebra C'(K, g). Furthermore, since every element f € C'(K,g) can be expressed
in the form f = Y1 | f;E; for some f; € C(K,R) with {E1,..., E,} a basis of g, this
indicates that C(K,g), as a C(K,R)-module, is isomorphic to C(K,R) ® g, where
C(K,R) is the set of continuous real-valued functions defined on K and ® denotes
the tensor product over R. However, C'(K,R) is generally not compact with respect
to the topology of uniform convergence, e.g., the sequence f,(8) = 8™ in C([0,1],R)
has no convergent subsequence. Consequently, C'(K,G) is a non-compact infinite-
dimensional Lie group, which disables the application of the LARC, as presented in
Theorem 2.1, to examine controllability of ensemble systems defined on C(K,G) and
hence motivates the need of developing new tools to achieve this goal.

To this end, in Sections 3 and 4, we integrate tools from geometry, analysis, and
algebra to synthesize the machinery for controllability analysis of ensemble systems
defined on C(K,G) in the form of (2.3). In particular, our framework will be elabo-
rated through the study of the ensemble system defined on C(K,SO(n)) by leveraging
the nice structure of so(n), where SO(n) is the special orthogonal group consisting of
all n-by-n orthogonal matrices with determinant 1 and so(n) is its Lie algebra con-
sisting of all n-by-n skew-symmetric matrices. In the next section, we will initiate our
investigation with the ensemble system evolving on C'(K, SO(3)).

3. Ensemble control of systems on SO(3). Manipulating an ensemble of
systems evolving on SO(3) is an important problem arising in many areas, notably
in quantum control and robotics [22, 34, 19, 20, 37, 5]. In this section, we revisit
and extend our previous results in ensemble controllability of systems on SO(3) [35],
which will lay the foundation for analyzing controllability of ensemble systems defined
on SO(n) and, further, on SE(n).

We first consider the driftless ensemble system on SO(3), given by

(3.1) %X(t, B) = B[qu + va}X(t,/g’), X(0,8) =1,

where 8 € K = [a,b] C H, H=R" = (0,0), and

0 0
Q=] 0 0
0
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are the generators of rotation around the y- and the x-axis, respectively. According to
the discussion in Section 2, a metric on C(K,SO(3)) is required to define the notion
of ensemble controllability for the system in (3.1). The detailed construction of a bi-
invariant metric on C(K,SO(n)) is shown in Section 4.2. At present, let’s assume that
the state space C'(K,SO(3)) has already been equipped with a bi-invariant metric d :
C(K,S0(3))xC(K,SO(3)) — R, which is induced by an inner product on so(3).Then,
in the following lemma, we prove ensemble controllability of the system in (3.1) over
the topology induced by d.

LEMMA 3.1. The system in (3.1) is ensemble controllable on C(K,SO(3)).

Proof. We revisit the proof in our previous work [35] by using the metric space
structure on C'(K,SO(3)) introduced above. Observe that the Lie brackets generated
by the set of matrices {89, 8Q;} are

adge"t (BQ,) = (-1)FB*Q.,
ade, (B2) = (-1)*671Q,,

where adsB = [4, B] and ad% B = [A,ad" ' B], k € N, for all A, B € s0(3), and

0
Q.=11 0
0 0

—_
o O O

is the generator of rotation around the z-axis. Now using elements in {8Q,, 33Q,,
oo, B2I0, ) as generators, we are able to produce an evolution of the form

R.(B) = exp(co %) exp(c1 83 - - -exp(c, 2" T10Q,)

(3.2) = exp { i ck62k+1ﬂ$} = exp {éw(ﬁ)Qz} .
k=0

As a result, given any [-dependent rotation exp{0.(5)2,} around z-axis with 6, €
C(K,R), the order of the polynomial n and the coefficients ¢ can be appropri-

ately chosen so that [|0, — 0,]lcc = SUPgex \/(éz(ﬁ) —0.(8),0.(8) — 0,(8)) < e for
any given approximation error & > 0 by the Weierstrass theorem [3]. Similar ar-
guments can be developed to show that any [-dependent rotations exp{f,(5),}
and exp{0,(8)2.} around the y- and the z-axis, respectively, can be approximately
generated as exp{f,(8)Q,} and exp{f.(8)Q.}, and hence any three-dimensional ro-
tations can also be uniformly approximated. Namely, given any -dependent rotation
© € C(K,S0(3)), one can parameterize it by using the Euler angles © = (0,,6,,6.)
such that

0(B) = eXp{ew(B)Qw}eXP{ay(ﬁ)Qy}eXP{HZ(ﬁ)Qz}
= 0:(8)0y(8)0:(8),

and then the desired rotation ©(3) characterized by the three continuous functions,

02,0y,0. € C(K,R), can be synthesized by using piecewise constant control vector

fields as described in (3.2). Specifically, for any £ > 0, the approximated rotations

0., 0, and 6. can be generated such that ||6, — 0, < /3, |6y — 0=]lee < £/3, and
6
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6. — 6.]|oe < £/3. As a result, the total evolution

0(8) = exp{0(8)2} exp{f, (82, } exp{0.(8)Q.}
=6,(8)0,(8)6.(8)

satisfies

\_/

CH
0.

>®®®

4(0.0,,0.0,)+d(O.,0,)
d(@zv@ ) d( )+d(®z79 )
< ”936 - ‘91”00 + ”911 - ‘9y||oo + ”92 - GZHOO <g,

.0,
.0,
)+ d(@ @)
Oy) +
6,

where we repeatedly used the triangle inequality and bi-invariance of the metric d.
This then concludes ensemble controllability of the system in (3.1) on C(K,SO(3)).
O

REMARK 2 (Topological characterization of ensemble controllability). In the
proof of Lemma 3.1, the key observation leading to ensemble controllability of the sys-
tem in (3.1) is the uniform approximation of S-dependent rotations 6, (3)Q,, 6, (5)Q,
and 60,(B)S2, by iterated Lie bracketing the control vector fields in G = {59, 8Q,}.
This implies that the closure of the Lie algebra generated by G satisfies Lie(G) =
C(K,R) ®s0(3) = C(K,s0(3)), which gives rise to a topological characterization of
ensemble controllability of the system in (3.1) on C'(K,SO(3)). In general, a family of
driftless bilinear systems defined on a compact, connected Lie group G parameterized
by a vector 8 = (o, ..., m) varying on a compact subset K C R™ of the form

GX(5) = [ LA uB] X5, X0.8)=1.

is ensemble controllable on C'(K, G) if and only if Lie(G) = C(K, g), where G = {51 B1,
.+ BmBm} is the set of control vector fields evaluated at the identity element I of
G, and g is the Lie algebra of G.

It was also shown in our previous work that the ensemble with a dispersion in the
drift, i.e., the system

d

dt
where w € K4 C R with Ky compact, is ensemble controllable on C(K x Kg4,SO(3))
[35]. In the following, we illustrate the applicability of the polynomial approximation
technique exploited in the proof of Lemma 3.1 to analyze ensemble systems on SO(3)
with three parameter variations. This analysis constitutes the key element in the
covering method to be developed in Section 4 for the controllability analysis of bilinear
ensemble systems defined on compact, connected Lie groups.

X(t,8,w) = [ws + BuQy + Q. ] X (¢, B,w), X(0,8,w) =

PROPOSITION 3.2. An ensemble system of the form,

(3.3) %X(t B) = [BrurQe + BouaQly + B3uszQ.| X (¢, 8), X(0,8) =1,

7
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is ensemble controllable on C'(K,SO(3)), where 8 = (51,82, 03) € K is the parameter
vector varying on a compact subset K of the three-dimensional upper half space H? =
{(B1,B3,83) €ER®: B; >0 foralli =1,...,3}, I is the 3-by-3 identity matriz, and
u;(t) are piecewise constant control inputs for all i =1,2,3.

Proof. By successive Lie brackets of the control vector fields 52€2, and 55(2., we
obtain

ad3is) (850:) = (~1)"B3 B3,

adZih (B3 Be) = (—1)' 3351 B3,

where k,l € N. Then, defining L ;) = ﬁgkﬂﬁglﬂ and applying iterated Lie brackets
of [$1Qq, B29,] and Ly 1)S2, yields

3 S s n2(k+s)+1
ad[2[31£2m,/3’2ﬂy](L(k,l)Qx) =(-1) 6% 52( +s)+ 5§l+191
(—1)° 8285 B2 (2 852,),

where s € N. Furthermore, let L) (8) = B%Sﬁg(kﬂ)ﬁ%l and A = span{L . :
s, k0 =0,1,...} € C(K,R), then we claim that A is a subalgebra of C(K,R) by
checking that fg € A for any f,g € A. Now, pick any two points = (x1,z2,23)
and y = (y1,92,y3) in K and assume f(x) = f(y) for all f € A, in particular,
L(1,0,o)(x) = L(l,O,O)(y)a L(0,1,0)($) = L(0,1,0)(Z/)7 and L(0,0,1)($) = L(0,0,1)(y) hold.
This gives z; = y; for each i = 1,2, 3, i.e., x = y. Therefore, A separates points in K
[39] and hence A is dense in C(K,R) by Stone-Weierstrass Theorem [21]. Equivalently,
for any f € C(K,R), we can uniformly approximate f(3)Q, by iterated Lie brackets
of the control vector fields in G = {81Qy, B2Qy, B30, }. A similar argument can be
applied to show that, for any g, h € C(K,R), g(5)€2, and h(5)S2, can also be uniformly
approximated. It follows that Lie(G) = C(K,R) ®s0(3) = C(K,s0(3)), and hence the
system in (3.3) is ensemble controllable on C'(K,SO(3)) by Remark 2. O

4. Ensemble control of systems on compact Lie groups. In this section,
we will carry out an extension of the ensemble controllability analysis developed in
the previous section dedicated to the system on SO(3) to general systems defined on
compact, connected Lie groups. To this end, we will introduce a covering method
based on the decomposition of the state space Lie group into a collection of Lie
subgroups, which generates this Lie group, and, correspondingly, decomposes the
ensemble system defined on this Lie group into a collection of subsystems, each of
which evolves on one of these Lie subgroups. This decomposition then enables the
determination of controllability of the ensemble by controllability of each subsystem,
since the state space Lie group is generated by the Lie subgroups defining the state
space of the subsystems.

Before the discussion of systems evolving on general semisimple Lie groups, this
method will be best motivated and illuminated with the system defined on SO(n) first.
To facilitate our exposition, we review some key properties of the Lie algebra so(n)
that are relevant to the subsequent ensemble controllability analysis in the following
section.

4.1. Basics of the Lie algebra so(n). The Lie algebra so(n) is the vector space
containing all n x n real skew-symmetric matrices, which has dimension n(n — 1)/2.
Let E;; € R™*™ denote the matrix whose ij*" entry is 1 and others are 0, then the

8
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matrix ;; = E;; — Ej; satisfies

Yo, ifi=j,

taking value 1 in the ij*" entry, -1 in the jit? entry, and 0 elsewhere. Moreover, the
set B={;; : 1 < i< j < n} forms a basis of so(n), which is referred to as the
standard basis of so(n).

LEMMA 4.1. The Lie bracket of Q;; and Qi satisfies the relation [Q;, Q] =
06821 + 05k + 610 + Ji8di;, where § is the Kronecker delta function, i.e.,

5o 1, if m=n,
"0, if mo#£n.

Proof. Notice that E;jEy = 0,E, so [E

ij7Ekl] = jkEil — 5liEkj- FOHOWing the
bilinearity of the Lie bracket, we get

[, Q] = [Eij — Eji, By — Ew) = [Eij, Ent| — [Eij, Eig] — [Ejis Ew] + [Ejis Eu)
= 0jpEa — 01 Er; — 0Bk + OniEyy — iy + 615 By + 0uljr — Onj By
= 01 + 0uSjk + 050 + 031 5.

O
According to Lemma 4.1, for any Q;;, Qi € B, [Q;5, Q] # 0 if and only if ¢ =1
j=k,i=korj=I.

4.2. Bi-invariant metrics on SO(n). By Definition 2.2 in Section 2.2, a metric
on C(K,S0(n)) is required to define the notion of ensemble controllability for systems
evolving on SO(n). Moreover, because SO(n) is a Lie group, the discussion in Section
2.3 implies that a metric on C'(K,SO(n)) can be induced by an inner product on the
Lie algebra so(n). In particular, we introduce an inner product (-,-) : so(n) x so(n) —
R such that the standard basis elements in B form an orthonormal basis for so(n),
or equivalently, (Q;;, Q) = tr(ngle)/Z Then, we extend this inner product to a
left-invariant Riemannian metric on SO(n) by defining (€2;; X, Qi X) = tr(€2],; Q1) /2
for any X € SO(n). Notice that (-, ) is invariant under the adjoint action of SO(n) on
so(n), e, (XYX 1 XZX™1) = (Y, Z) for any X € SO(n) and Y, Z € so(n). Hence,
this left-invariant Riemannian metric is also bi-invariant [41], which then induces
a bi-invariant metric p on SO(n). Consequently, by the discussion in Section 2.3,
the compact-open topology induces a bi-invariant metric d on C(K,SO(n)), which
coincides with the topology of uniform convergence with respect to p, i.e., d(f,g) =
supge e p(f(B),9(B)) for any f,g € C(K,SO(n)). In particular, for the case of SO(3)
discussed in Section 3, the bi-invariant metric d is just obtained by defining the set
{Q2,9Q,,Q.} to be an orthonormal basis of so0(3).

In the following sections, ensemble controllability will be analyzed under this
bi-invariant metric d on C(XK,SO(n)).

4.3. The covering method for ensemble controllability analysis. In this
section, we develop a covering method for examining ensemble controllability of bi-
linear systems evolving on semisimple Lie groups. Together with the technique of
polynomial approximation, we then establish an equivalence between ensemble and
classical controllability for such bilinear ensemble systems. The existence and con-
struction of this covering method are based on the Cartan decomposition of semisimple

9
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F1G. 1. The demonstration of the cover V = {G1,G2,G3,G4} of SO(4) constructed in Example
1. In particular, G1, G2, Gs, and G4, illustrated by blue, purple, orange, and green shadows
bounding by the dashed lines with the corresponding colors, respectively, are Lie subgroups of SO(4)
tsomorphic to SO(3).

Lie algebras in representation theory [23]. Specifically, given such a system, we apply
the Cartan decomposition to the semisimple Lie algebra of the state-space Lie group,
which gives rise to a cover of the Lie algebra consisting of Lie subalgebras isomorphic
to s0(3) or su(2). Correspondingly, the ensemble system also admits a decomposition
into a family of ensemble subsystems with each defined on SO(3) or SU(2). In this
way, the controllability analysis of the ensemble system is equivalently carried over to
these ensemble subsystems. To showcase the main idea of the decomposition in the
covering method, we use an example of the Lie group SO(4).

ExaMPLE 1 (A simple illustration of the covering method). In this example, we
will construct a set of generators of SO(4) such that every generator is a Lie subgroup
of SO(4) isomorphic to SO(3). We start our construction with decomposing the Lie al-
gebra so0(4) into a collection of Lie subalgebras isomorphic to so(3). This is equivalent
to constructing a cover of the standard basis B = {Q12, Qi3, 14, Qas, Qog, 34}, To
this end, let U = {81762,33,64}, where Bl = {9127913,923}, Bg = {912,924,914},
Bg = {9137914,934}7 and B4 = {9237934,924}, then it is clear that U forms a
cover of B, because B = By U By U B3 U By. Moreover, let F' = {Lie(B;), Lie(Bs),
Lie(Bs), Lie(B,)}, then we have span(F') = so(4), and hence F is a set of generators
of s0(4). Notice that each Lie(B;), i = 1,...,4, is isomorphic to so(3) so that its Lie
group G; is a Lie subgroup of SO(4) isomorphic to SO(3). In addition, because F
generates s0(4), V = {G1, G2, G3,G4} is a set of generators of SO(4) as desired. This
cover of SO(4) is illustrated in Figure 1.

The covering idea illustrated in Example 1 for SO(4) can be directly generalized
to SO(n). This generalization immediately enables the adoption of the polynomial
approximation based technique developed for systems on SO(3) in Section 3 to the
ensemble controllability analysis of systems on SO(n) with n > 3. More importantly,
the covering method paves the way for understanding and quantifying the equivalence
between ensemble and classical controllability.

THEOREM 4.2 (The main result). Consider an ensemble of systems on SO(n),
given by

d m

(4.1) Xt B) = [Zﬁkuk(t) Qikjk}X(t,ﬁ), X(0,8) =1,
k=1

dt

where the parameter vector 5 = (1,...,Pm) takes values on a compact subset K C
H™, the state X (t,-) € C(K,SO(n)), and the control inputs ux(t) € R are piecewise
constant for all k = 1,...,m. This system is ensemble controllable on C(K,SO(n))
if and only if each individual system with respect to a fixed B € K in this ensemble is

10

This manuscript is for review purposes only.



423
424
125

126
427

428
429
130
431
432
433
434
135

controllable on SO(n).

Proof. The necessity is obvious, and hence it remains to show the sufficiency. In
particular, we divide the proof of sufficiency into three steps.
(Step I): An ensemble of systems defined on SO(n) of the form,

d

(4.2) =

X(twﬁ):{ > Bijuij(t)gij}x(tvﬂ)a X(0,8) =1,

1<i<j<n

is ensemble controllable on C(I]; ., <j<n K;;,S0(n)), where the parameter vector
B = (B12;- .-, Bn-1n) takes values in the product space [Ti<icj<n Kij with each K
a compact subset of H, X(t,-) € C( [licicj<n Kijs SO(n)) is the state, and u;;(t) € R
are piecewise constant for all 1 <i < j <mn.

For any Q;; € B and ky € {1,...,n}\{7,j}, the subset S; = {Q;, Qir,, U, } of
B generates a Lie subalgebra of so(n) isomorphic to so0(3). By Proposition 3.2, the
controllable submanifold of the system obtained by setting uo, = 0 for all o,y €
{1,...,n}\{4, 4, k1} in the system (4.2), i.e.,

d
%X(tv ﬂ) = [ﬂijuij (t)Qij + ﬁi/ﬂ Uiky (t)Qikl + ﬂkljuklj(t)gklj]X(t7 B)?

X(0,8) =1,
is a Lie subgroup of C'(Ki2 X -+ - X Ky, _1,»,50(n)) isomorphic to C(K};,SO(3)), where
Kilj = Kij X Kikl X Kk'lj' Consequently, ﬁzlj = Lie{/BijQijvﬂiklgik)17ﬁk‘1j9k1j} is iso-
morphic to C(K};,s0(3)) by Remark 2. Notice that the cardinality of {1,...,n}\{s,j}
is n—2, so there are n—2 distinct subsets of B (including S;), denoted by Sy, ..., Sp—2,
in the form of & = {Qij, Qir,, U, ; } for some k; € {1,...,n}\{4,}, and their inter-
section only contains ;. Similar to L£j;, L}, = Lie{Bi;Qij, Bit, Vi, > Bryj Qs } i
isomorphic to C(Kfj,ﬁo(ii)) for each [ = 1,...,n — 2, where Kfj = K;; x K, %
Ky, j. As aresult, for any f € C(K{;,R) and g € C(K;;,R) with a # 7, we have

FBigy Bika» Brai)ij € L35 and (9(Bij, Biky s Bk 5)/ Bik, )ik, € ij Because of

([f (Bijs Bikas Brai)iss Bik, Qiney 15 (9(Bis Bikey s Bryi )/ Biney ) ik, ]
= f(Bij> Bika> Brai)9(Bij, Biky > Br )i

the set of the coefficients of §2;; in Lie(Ulnz_lzﬁﬁj), denoted by A;;, is a subalgebra of
C(H1§i<j§n Kl-j,]R) generated by C(K!,R),..., C’(KZ-‘Q,R). Furthermore, let A

79
denote the subalgebra of C'( [li<icj<n Kij R) generated by A;;, 1 <i < j <n, then

Lie(Ui<icj<n U2 L!;) = A®so(n) holds. Because C(K};, R) separates points in K;
foreachl=1,...,n—2and 1 < i < j < n as shown in the proof of Proposition 3.2, A
is able to separate points in H1<i<j<n K;;j. By Stone-Weierstrass theorem, A is dense
in C(H1§i<j§n K;;,R), and then so is A ® so(n) in C(H1§i<j§n K;j,R) @ so(n) =
C(ITi<icj<n Kij,50(n)). Notice that A ® so(n) C Lie({8;Q;:1<i<j<n})
holds by the construction of A, thus we conclude Lie({8;;€; : 1 <i<j<n}) =
C(H1<i<j<n Kij750(n)), which then implies ensemble controllability of the system
in (4.2) on C'( H1§i<j§n Kij, SO(n)).

(Step II): Given the ensemble system in (4.1), there is an ensemble system in the
form of (4.2) so that these two systems have the same controllable submanifold.

11
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By the condition that each individual system in the ensemble system (4.1) is
controllable on SO(n), any Q;; € B can be generated by iterated Lie brackets of the
elements in F = {Q;,;,,...,Q,,,,.}. As a result, for each Q;; ¢ F, there exists a
positive monomial function 7;; : K — H such that 7;;(3)$2;; can be generated by
successively Lie bracketing the elements in G = {B;,j, i1y - - s Bivjom Linjm }- NOW,
consider the following ensemble system,

d
%X t B |: Z BU QU_'_ Z "71] UU X,

Qi;€F Qi ¢F
(4.3) X(0,8) =1,

its controllable submanifold has Lie algebra Lie(G U G’), where G" = {n;;(5)Q; : Qs &
F}. Because 1;;(8)Q;; € Lie(G) for each i,5 = 1,...,n, Lie(G) = Lie(G U G’) holds,
which also implies Lie(G) = Lie(GUG’). Since we have shown that Lie(G) is the
Lie algebra of the controllable submanifold of the system in (4.1), the two ensemble
systems (4.1) and (4.3) have the same controllable submanifold.

(Step III): The system in (4.1) is ensemble controllable on C(K,SO(n)).

In step II, we have shown that each n;;(5) is a positive monomial function defined
on the compact subset K of H™, where we define n;,;, (8) = B;,j, for k=1,...,m
Let Ri; = 1;;(K) be the image of 7;;, then R = H1§i<j§n Rij is a compact subset of
H"("=1)/2 by the continuity of each n;; and Tychonoft’s product theorem [40]. Then,
the conclusion in Step I implies that the following ensemble system parameterized by

n= (M2 Mm-1n) €ER

(14) X=X mes9] Xem, X0 =1

is ensemble controllable on C(R,s0(n)).

Now, consider 1 as a function of § from K to R given by (Bi 1., Bimin)
(Bivjrs -+ Bimjms -+ Mmn—1), then 1 is smooth and its differential
I
dn = { . } ;

is full rank, where I,,, is the m-by-m identity matrix. This implies that 7 is a smooth
embedding, and hence n(K) is a compact m-dimensional embedded submanifold of R
[31]. By Tietze’s Extension Theorem [40], for any f € C(n(K),SO(n)), there exists
g € C(R,S0(n)) such that f = g|n(K), which implies that the map from C(R,SO(n))
to C(n(K),SO(n)) given by g — gn(K) is surjective. Then, by Step II, ensemble
controllability of the system in (4.4) on C'(R,SO(n)) leads to ensemble controllability
of the system in (4.1) on C(n(K),SO(n)). Moreover, since 7 is a diffeomorphism
between K and 7n(K), the function from C(K,SO(n)) to C(n(K),SO(n)) given by
f = fon~lis a Lie group isomorphism, which then concludes ensemble controllability
of the system in (4.1) on C(K,SO(n)). O

In Step IIT above, the key observation leading to ensemble controllability of the
system in (4.1) is the compactness of n(K) ¢ H*("~1/2_ Consequently, the proof still
holds if the parameter space is diffeomorphic to a compact submanifold of the upper
half space as shown in the following corollary.

12
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COROLLARY 4.3. The ensemble of systems defined on SO(n), given by

d

(4.5) =

X(t8) = [ S fulBur(t) Qi | X (8), X(0.8) =1,

k=1
is ensemble controllable on C(K,SO(n)) if and only if each individual system with
respect to a fivzed § € K in this ensemble is controllable on SO(n), where K is a
compact smooth manifold, and f : K — H™ defined by 5 — (f1(8),..., fm(B)) is a
smooth embedding.

Proof. The necessity is clear, and thus we only need to prove the sufficiency. By defin-
ing n; = f;(B) for each i = 1,...,m, Theorem 4.2 implies that the system in (4.5) pa-
rameterized by n = (91,...,nm)’ is ensemble controllable on C(f(K),SO(n)). In addi-
tion, because f is a smooth embedding, the map from C(K,SO(n)) to C(f(K),SO(n))
given by g — go f~! is a Lie group isomorphism, and hence the system in (4.5) is
ensemble controllable on C(K,SO(n)). O

Because Step I in the proof of Theorem 4.2 follows from ensemble controllability
of systems on SO(3), this theorem, as well as Corollary 4.3, do not hold for systems
defined on SO(2).

REMARK 3. An ensemble of bilinear systems defined on SO(2) is not ensemble
controllable. Because s0(2) is a one-dimensional real vector space with the only basis
element q3, any ensemble system on SO(2) in the form of (4.1) can be uniquely
represented by

d 0 -1
46) X8 = pueX(.8) = pu| | ' xws, X081,
where £ is the parameter taking values on a compact set K C H, X (¢,-) € C(K,SO(2))
is the state, and u(t) € R is a piecewise constant control input. However, s0(2) is
nilpotent, which disables the generation of terms *Q;, for k > 2 by iterated Lie
brackets of the single control vector field 515. As a result, Lie(8€;2) only contains
first order terms of 8, and hence the system in (4.6) is ensemble uncontrollable on

C(K,S0(2)).

4.4. Ensemble controllability of systems on semisimple Lie groups. The
equivalence between ensemble and classical controllability established in Theorem 5.4
reduced the evaluation of controllability for infinite-dimensional ensemble systems
to finite-dimensional single systems. This reduction made it possible to explicitly
characterize the generically elusive ensemble controllability property using classical
approaches for finite-dimensional control systems, i.e., the LARC for bilinear systems
and the Kalman rank condition for linear systems. A natural question concomitant
with this property for systems on SO(n) is what other classes of ensemble systems
inherit such equivalence in controllability to their subsystems. In this section, we show
that ensemble systems defined on semisimple Lie groups exhibit such an equivalence
property.

To elaborate this extension, we begin with our discussion on the system defined
on SU(2), the special unitary group of 2 x 2 unitary matrices with determinant 1,
which is also the most elementary semisimple Lie group. Notice that its Lie algebra
s5u(2), containing all 2 x 2 skew-Hermitian traceless matrices, is isomorphic to s0(3)
by identifying the three basis elements of su(2),

1 0 1 1 0 -1 1 i 0
B-glio] Byl O] mem-gl0 5
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with Q,, Q, and €., respectively, and By, Bz, and B3 are the Pauli matrices mul-
tiplied by i/4/2, where i is the imaginary unit. In particular, this is called the spin
representation of su(2). Consequently, following the same proof as that of Proposition
3.2, the system defined on SU(2),

3
%X(tﬁ) - [ZﬁkukBk}X(t,,B)
k=1

is ensemble controllable on C(K,SU(2)), where 8 = (81, f2,03) is the parameter
vector taking values on a compact set K C H?. This result forms the basis of inves-
tigating ensemble controllability for systems evolving on semisimple Lie groups using
the covering method. The prerequisite for this investigation is to cover semisimple
Lie groups by Lie subgroups isomorphic to SU(2). Similar to Example 1, it suffices
to construct covers consisting of Lie subalgebras isomorphic to su(2).

Given a semisimple Lie group G, its semisimple Lie algebra g admits a root space
decomposition as g = b ® P, ¢ 9o, Where b is the Cartan subalgebra, R is the set of
nonzero roots, and g, is the space of root vectors for the root « [23]. Then, for each
root @ € R, we can construct a Lie subalgebra s,, of g so that s,, is isomorphic to su(2).
To proceed, we first equip the Cartan subalgebra h an inner product (-,-), through
which we define the notion of coroot of a as H, = 2a/{«, a). Then, any element X,, €
0o satisfies [Hy, Xo] = (o, Hy) X, = 2X,, by the definition of a root. Let Y, = —X,,
where X, denotes the complex conjugate of X,, then we can show that Y, € g_,
[Hy, Y, = —2Y,, and [X,,Y,] = H,. As a result, H,, X,, and Y,, generate a Lie
subalgebra of g isomorphic to su(2), denoted by s,. However, H,, X, and Y,, do not
give rise to the spin representation of s,, as desired, i.e., H,, X, and Y, do not satisfy
the same Lie bracket relations as By, By and Bs. To construct the spin representation
of s, we further define BY = iH, /2, B = i(X,+Y,)/2 and B = (Yo—X4)/2, which
lead to the Lie bracket relations [B{, BS] = B, [BY, BS| = BY, and [BY, BY] = BS.
Moreover, because the roots span the Cartan subalgebra b [23], we have constructed
a cover of g as U = {s, : a € R}, in which each s, = Lie(B*) = Lie({By, B, B$'}) is
isomorphic to su(2) with the spin representation. As a result, the proof of Theorem
4.2 for systems on SO(n) can be adopted to show ensemble controllability of systems
evolving on semisimple Lie groups based on covering its Lie algebra by Lie subalgebras
in the form of s, that are isomorphic to su(2) with the spin representation.

THEOREM 4.4. Given an ensemble of bilinear systems defined on a semisimple
Lie group G of the form,

(4.7) 9x(t,0) =3 [pen)B] X(0.8), X0.8) =1,

k=1

where 8 = (P1,...,Bm) is the parameter vector taking values on a compact subset
K of H™, X(t,-) € C(K,G) is the state, ui(t) € R are piecewise constant control
inputs, and I denotes the identity element of G; By, ..., By, are elements in the Lie
algebra g of G with the property that for any B;, i =1, ..., m, there exist some B; and
By, such that the Lie subalgebra of g generated by {B;, Bj, By} is isomorphic to the
spin representation of su(2). Then, this system is ensemble controllable on C(K,Q)
if and only if each individual system with respect to a fized f € K in this ensemble is
controllable on G.

Proof. The proof is constructive based on the construction described above and
then follow the proof of Theorem 4.2. To be more specific, after obtaining the cover
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U = {54 : a« € R} of g, we adopt the proof of Theorem 4.2 by replacing §; =
{45, Qiny, Q5+ by B = {BY, By, BS'}. u

Note that when the semisimple Lie algebra g associated with the system in (4.7)
is over C, the field of complex numbers, the control inputs uy are also required to be
complexed-valued. Correspondingly, the Lie subalgebra of g generated by {B;, B;, By}
is the special linear Lie algebra sl(2,C), the vector space over C consisting of 2-by-2
complex matrices with trace 0. This is because s[(2,C) is the complexification of
s5u(2), that is, for any A € sl(n,2) there exist A;, Ay € su(2) such that A = A; +iA,,
[23].

REMARK 4. A bilinear ensemble system of the form,
4 X(t.6) = [ 3 6l B] X (2,5
dt ) P ) )

evolving on a Lie group G that is not semisimple can never be ensemble controllable.
To see this, let g be the Lie algebra of G, then g has a nontrivial center 3, whose
elements commute with every element in g. Suppose B; € 3 for some i =1,...,m,
then [8;B;, 8;B;] = 0 for any j = 1,...,m. Consequently, the Lie algebra generated
by the control vector fields is a module of g over a space of functions independent of
Bi, and hence the system cannot be ensemble controllable (on a space of functions of

Bi, s Bm)

5. Ensemble control of systems defined on non-compact Lie groups. In
Section 4.3, by introducing the covering method, we established the equivalence be-
tween ensemble and classical controllability for parameterized populations of bilinear
systems evolving on compact and connected Lie groups. Fortunately, this equivalence
also holds true for broader classes of bilinear systems, for example, for bilinear systems
induced by Lie group actions on vector spaces. The finding sheds light on possible
extension of the equivalence property to systems defined on non-compact Lie groups.
In particular, we will show that the system evolving on the special Euclidean group
SE(n), which contains the action of SO(n) on R™, inherits this property. Moreover,
it is also worth noting that the action of SO(n) on R™ is neither free nor transitive.
In the following section, we briefly review some essential properties of the Lie group
SE(n) and its Lie algebra se(n) as a prerequisite for carrying out the analysis of
ensemble controllability for the system defined on SE(n).

5.1. Basics of the SE(n) and se(n). Consider the Euclidean space R™ as a Lie
group under addition, then its semidirect product with SO(n), denoted by SE(n) =
R™ x SO(n), is called the special Euclidean group. Therefore, every element in SE(n)
can be represented by a 2-tuple (x, X) with x € R™ and X € SO(n). Algebraically,
the group multiplication is given by (z, X)(y,Y) = (z + Xy, XY) for any z,y € R"
and X,Y € SO(n), which also indicates that (0,I) is the identity element of SE(n).
Topologically, due to the non-compactness of R™, SE(n) is also a non-compact Lie
group. In addition, SE(n) can be smoothly embedded into GL(n + 1,R), the general
linear group consisting of all (n + 1)-by-(n + 1) invertible matrices. This embedding
immediately yields a matrix representation for each (x, X) € SE(n) as

X =z
(.’E,X) - |: O 1 :| ’

which also reveals that SE(n) contains SO(n) and R™ as Lie subgroups.
15
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Geometrically, let v(t) = (x(¢), X(t)) be a smooth curve in SE(n) with ~v(0) =
(0,1), then its time derivative at ¢t = 0, i.e., 4(0) = ((0), X(0)), gives rise to an
element in the Lie algebra se(n) by identifying se(n) with T(o )SE(n), the tangent
space of SE(n) at the identity (0, I'). Note that X (¢) is a curve in SO(n) with X (0) = I,
and hence we have X (0) € so(n). Therefore, every element (v, Q) € se(n) also admits
a matrix representation as

where ) € so(n) and v € R™.

Similar to so(n), se(n) is also a finite-dimensional vector space, and hence has a
basis. Let {e1,...,e,} denote the standard basis of R, and define R = {R;; € se(n) :
R;; =(0,9;),1 <i<j<n}and T = {T} € se(n) : T, = (ex,0),1 < k < n}, then
the set RUT forms a basis of se(n). The following lemma then characterizes the Lie
bracket relations among the basis elements of se(n).

LEMMA 5.1. The Lie brackets among elements in the basis of se(n) satisfy that
[Rij, Ri) = 0ju Rt +0uRji + 051 Ri +0ir Rij, [Rij, Tie) = 6T — 0Ty, and [Ty, T3] = 0
for all1 <i,j,k, 1 <n, where § is the Kronecker delta function.

Proof. The proof follows from direction computations of Lie brackets by using the
matrix representations of R;;, Ry, Tk, and T;. O

Notice that Lie brackets among the elements in R = {R;; : 1 <i < j < n} follow
the same relation as those elements in B = {Qij :1 <i< j<n} as shown in Lemma
4.1. This indicates that the Lie algebra se(n) contains so(n) as a Lie subalgebra.
Together with the inclusion of SO(n) in SE(n) as a Lie subgroup, a system defined
on SE(n) also contains a system on SO(n) as a subsystem. These relations will help
facilitate the controllability analysis of the system on SE(n).

5.2. A decomposition method for controllability analysis of systems on
SE(n). In this section, we focus on the controllability analysis of a single bilinear
system defined on SE(n), which builds the foundation towards examining control-
lability of an ensemble of such systems detailed in the next section. This analysis
also illuminates the framework for analyzing controllability of systems induced by
Lie group actions on vector spaces. Controllability of systems induced by Lie group
actions has been extensively studied [7, 6, 26], however, these previous works were
largely restricted to consider systems induced by free or transitive Lie group actions.
Unfortunately, the action of SE(n) on R™ is neither free nor transitive, which disables
the use of the previously developed conditions to examine controllability of systems
on SE(n). Here, we leverage the semidirect product structure of SE(n) to decompose
a system defined on this Lie group into two components, the rotational (SO(n)) and
translational (R™) components, so that controllability of SE(n) can be analyzed by
individually examining that of each component. This approach works for systems on
SE(n) because the semidirect product structure is independent of the freeness and
transitivity of the group action. It is also potentially applicable to systems induced
by general Lie group actions.

For systems on SE(n), we are particularly interested in those governed by the
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vector fields in R U T of the form,

I R o T S I ) | A

(2(0), X(0)) = (0, 1),

where €Q;_ ;. € B is a basis element of so(n), ey, is the k;-th standard basis vector of
R™, and us(t),v;(t) € R are piecewise constant control functions for all s =1,...,my
and I = 1,...,mg. Because SE(n) contains SO(n) and R™ as Lie subgroups, the
system in (5.1) can be decomposed into two subsystems on SO(n) and R™, given by

(5.2) X(t) = [ 3 ue®5,| X0, X(0)=1,

(5.3) i(t) = | 3 us®5, o) + Y wber,  @(0) =0,
s=1 =1

representing the rotational and translational dynamics of the system, respectively.
This decomposition enables a tractable way to understand controllability of the system
in (5.1).

THEOREM 5.2. A system defined on SE(n) as in (5.1) is controllable if and only
if its rotational component in (5.2) and translational component in (5.3) are simulta-
neously controllable on SO(n) and R™, respectively.

Proof. (Necessity): Geometrically, SE(n) is trivially diffeomorphic to R™ x SO(n)
through the identity map (z, X) — (z, X). Therefore, if the system in (5.1) is con-
trollable on SE(n), then the direct product of the controllable submanifolds of its
subsystems in (5.3) and (5.2) must be R™ x SO(n), and hence, the systems in (5.2)
and (5.3) are controllable on SO(n) and R™, respectively.

(Sufficiency): Given any X € SO(n) and xp € R”, it suffices to show that there
exist piecewise constant control inputs ui,...,um,,v1,...,Vm, that simultaneously
steer the systems in (5.2) from I to X and (5.3) from 0 to zp.

At first, we claim that mgo > 1 must hold if the system in (5.3) is controllable on
R™. Otherwise, the system reduces to

(5.4) ilt) = [f_ljus@misjs}x(t),

which describes the dynamics of the system in (5.2) on SO(n) acting on R™. However,
the homogeneous spaces of the Lie group action of SO(n) on R™ are spheres centered
at the origin [31]. Consequently, the controllable submanifold of the system in (5.4)
must be contained in a sphere, which contradicts the controllability of the system on
R™.

Now, let SIT\L;FIH denote the sphere centered at the origin with radius ||z ||, where
| - || denotes the Euclidean norm on R™, and V' be the subspace of R™ spanned by

€kys- s Chy,, then VN Sﬁ;plu # @ holds. Pick a point z € V' N Slrll;;”, because SO(n)
acts on Sﬁ‘;Fl” transitively [31], there exists A € SO(n) such that xp = Az.

In the following, we will develop a control strategy to simultaneously steer the
system in (5.2) from I to X and the system in (5.3) from 0 to xp in three steps. First,

because the system in (5.2) is controllable on SO(n), the control inputs uy, . . . , U, can
17
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be appropriately designed to steer the system from I to A~! X, and simultaneously,
the system in (5.3) stays at the origin by setting v; = -+ = v,,, = 0. Then, we
set up = -+ = Uy, = 0 and apply v1,...,Unm, to steer the system in (5.3) from the
origin to z. In this step, the rotational component in (5.2) stays at A~ Xr. At last,
UL, -, U, can be turned on again to steer the system in (5.2) from A='Xp to Xp.
Since xp = Az, the translational component in (5.3) will be simultaneously steered
to xr from z, which also completes the proof. O

The proof of Theorem 5.2 indeed provides a systematic control design procedure
to simultaneously steer the systems in (5.2) and (5.3) between desired states, which
concludes controllability of the system in (5.1). Alternatively, the proof can also be
carried out algebraically by computing the Lie algebras generated by the control vector
fields of these systems. Furthermore, notice that the translational component in (5.3)
also involves the rotational dynamics through the SO(n) action on R™, therefore, it is
possible to completely determine controllability of the system in (5.1) on SE(n) solely
by its translational component in (5.3) on R™.

COROLLARY 5.3. A system on SE(n) as in (5.1) is controllable if and only if
its translational component in (5.3) is controllable on R™ and remains controllable
on S*1 if 2(0) € S* ! and v; = 0 for all | = 1,...,mo, where S*~1 denotes the
(n — 1)-dimensional unit sphere centered at the origin.

Proof. We have shown in the proof of Theorem 5.2 that if v; = --- = v, = 0,
then the rotational component in (5.3) reduces to a system induced by the action of
SO(n) on R™. The conclusion then follows from the fact that this Lie group action is
transitive on S"! [31]. O

The above analyses for a single system defined on SE(n) offer the basics for us to
move on to the ensemble case in the next section.

5.3. Ensemble controllability of systems on SE(n). In this section, we will
investigate controllability of an ensemble of bilinear systems defined on SE(n). In
particular, we focus on the ensemble of the form,

d[X(gﬂ) } Zus { iodo SHXW) z(t,8)

(5.5) —I—Zvl [ %HX(E’ﬁ) 9”(’51’/3)}, X(0,8) =1, «(0,8)=0,

where = (81, ..., Bm,) is the parameter vector varying on a compact set K C H™,
Q;,j. € B is a standard basis element of so(n) for each s = 1,...,mq, and ey, is
the k;-th standard basis vector of R™ for each [ = 1,...,mq. Analogous to the
case of a single bilinear system defined on SE(n) discussed in the previous section,
the ensemble system in (5.5) also admits a decomposition into its rotational and
translational components as follows,

(5.6) ixm [Zﬁsus 3| X(E8), X(0,8) =1,

(5.7) %m(t,m:[Zﬂsus@)%}x(t,ﬁ)+Zw<t>ekn 2(0,8) = 0,
s=1 =1

which in turn leads to a characterization of ensemble controllability of the system in
(5.5) in terms of ensemble controllability of its rotational and translational compo-
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nents in (5.6) and (5.7), respectively.

THEOREM 5.4. An ensemble of systems as in (5.5) is ensemble controllable on
C(K,SE(n)) if and only if its rotational component in (5.6) and translational compo-
nent in (5.7) are ensemble controllable on C(K,SO(n)) and C(K,R™), respectively.

Proof. The proof is based on the development of a control strategy that simultaneously
steers the ensemble systems in (5.6) and (5.7) between the respective desired states,
which follows the same proof as for Theorem 5.2. Alternatively, we can also adopt
the covering method by acting the cover U = {ﬁéj l=1,...,.n—-21<i<j<n}
of C(K,s0(n)) constructed in Theorem 4.2 on R™. Consequently, U U {eg,,...,ex,,, }
forms a cover of C(K,R™), treated as the Lie algebra of the Lie group C(K,R™).
Then, the rest of the proof follows that of Theorem 4.2. O

In Theorem 4.2, we proved the remarkable result that an ensemble system on
C(K,SO(n)) is ensemble controllable if and only if each individual system in this
ensemble is controllable on SO(n). By using the decomposition in (5.6) and (5.7),
this equivalence between ensemble controllability and classical controllability can be
extended to ensemble systems defined on C(K,SE(n)).

COROLLARY 5.5. The system in (5.5) is ensemble controllable on C(K,SE(n)) if
and only if each individual system in this ensemble is controllable on SE(n).

Proof. To facilitate the proof, we define the notations 71 = {Qij,,--+, L, 4o, }s
.7:2 = {Qi1j1xﬂ ey Qimljm1.’lf, Clyyers ekm2}7 gl = {519i1j17 PN 7ﬁm19im1jm1 }, and
g2 == {BlQi1j1$, “e ,Bml Qi'rnl.j'ml TyCloyyen- ,ekm2 }

The necessity is obvious, so it remains to prove the sufficiency. Assume that
each system with a fixed § € K in the ensemble (5.5) is controllable on SE(n),
then by Theorem 5.2, any individual system in the ensemble (5.6) or (5.7) is also
controllable on SO(n) or R", respectively. Hence, the ensemble system in (5.6) is
ensemble controllable on C(K,SO(n)) by Theorem 4.2. Then, Theorem 5.4 implies
that it suffices to prove ensemble controllability of the system in (5.7) on C'(K,R"™) =
C(K,R)®R"™, which is equivalent to showing f(5)e € Lie(Gs) for any standard basis
element e, € R™ and f € C(K,R) by Remark 2.

Because each individual system in the ensemble (5.7) is controllable on R™, there
exists ;; € F1 and ¢; € Fy such that [Qijx7el] = ep. Furthermore, ensemble con-
trollability of the system in (5.6) guarantees f(3)Q;; € Lie(Gi), which then gives
[f(B)Qjz,e)] = f(B)ek, i.e., f(B)er € Lie(G2). Therefore, the ensemble system in
(5.7) is ensemble controllable on C(K,R™). O

As a consequence of Theorem 5.4 and Corollary 5.5, the equivalence between
ensemble controllability and classical controllability also holds for the translational
component of the ensemble system as in (5.7). This in turn gives rise to a char-
acterization of ensemble controllability of systems on C(K,SE(n)) solely by their
translational components.

COROLLARY 5.6. The system in (5.5) is ensemble controllable on C(K, SE(n)) if
and only if its translational component in (5.7) is ensemble controllable on C'(K,R™),
and remains ensemble controllable on C(K,S" 1) if 2(0,-) € C(K,S"" 1) and v; =0
foralll=1,...,ms.

Proof. The proof directly follows from Theorem 5.4 and Corollaries 5.3 and 5.5. [

Notice that the proof of Corollary 5.5 relies on ensemble controllability of systems
evolving on C(K,SO(n)). Because all the results regarding ensemble controllability
of systems on C(K,SO(n)) established in Section 4.3 concerned the cases of n > 3,
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they do not apply to systems defined on C'(K, SE(2)).

REMARK 5. An ensemble of systems on SE(2) in the form of (5.5) admits a
decomposition,

68 gxes=po| ] | xes, X(0.6)=1.
59 ets) = | |

where X (t,-) € C(K,S0(2)) and z(t,-) € C(K,R?) for each t > 0, and f € K C H
with K compact. According to Remark 3, the rotational component in (5.8) is not
ensemble controllable on C(K,SO(2)), or, equivalently, the translational component
in (5.9) is not ensemble controllable on C(K,S') for v(t) = 0 and x(0,-) € C(K,S%).
This implies uncontrollability of this ensemble on C'(K, SE(2)) by Theorem 5.4. How-
ever, this does not hinder controllability of the translational component in (5.9) on
C(K,R?). In particular, let u(t) = 1 be a constant control input, then the ensemble
system in (5.8) becomes a linear ensemble system with linear parameter variation,
0 -1

1 0
has disjoint spectra i.e., the images of the two eigenvalue functions, A;(8) = i and
A1(B) = —ifB, are disjoint, this ensemble system representing the translational com-
ponent is ensemble controllable [36].

studied in our previous work [36]. Because the system matrix A(8) =

REMARK 6. In our previous work on linear ensemble systems, the equivalence
between ensemble controllability and classical controllability requires disjoint spectrum
among the system matrices of individual systems [39]. However, for bilinear ensemble
systems, the equivalence revealed by utilizing the covering method holds naturally due
to their algebraic structure. This finding also indicates that bilinear ensemble systems
are easier to be ensemble controllable than linear ensemble systems, which is owing to
the nonlinearity in bilinear systems.

6. Conclusion. In this paper, we propose a unified framework for analyzing en-
semble controllability of bilinear ensemble systems defined on semisimple Lie groups.
Our main contribution is to develop the covering method that leverages the covering
of the state-space Lie group of an ensemble system by its Lie subgroups to enable the
controllability analysis of an ensemble through its ensemble subsystems. Exploiting
this method, we establish the equivalence between ensemble and classical controlla-
bility. This nontrivial property not only reduces the analysis of infinite-dimensional
ensemble systems to finite-dimensional single systems, but also empowers the utiliza-
tion of controllability conditions developed for classical bilinear systems for examining
ensemble controllability for bilinear ensemble systems, for example, the LARC and
the symmetric group-theoretic controllability conditions in terms of permutation or-
bits developed in our recent works [54, 53]. Moreover, this equivalence property holds
for bilinear ensembles in which the individual systems are defined on non-compact
Lie groups, in particular those induced by Lie group actions on vector spaces. This
work broadens our understanding of ensemble control systems and opens the door for
systematic investigation of fundamental properties of nonlinear ensemble systems.
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