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Abstract. Problems involving control of large ensembles of structurally identical dynamical3
systems, called ensemble control, arise in numerous scientific areas from quantum control and robotics4
to brain medicine. In many of such applications, control can only be implemented at the population5
level, i.e., through broadcasting an input signal to all the systems in the population, and this new6
control paradigm challenges the classical systems theory. In recent years, considerable e↵orts have7
been made to investigate controllability properties of ensemble systems, and most works emphasized8
on linear and some forms of bilinear and nonlinear ensemble systems. In this paper, we study9
controllability of a broad class of bilinear ensemble systems defined on semisimple Lie groups, for10
which we define the notion of ensemble controllability through a Riemannian structure of the state11
space Lie group. Leveraging the Cartan decomposition of semisimple Lie algebras in representation12
theory, we develop a covering method that decomposes the state space Lie group into a collection of13
Lie subgroups generating the Lie group, which enables the determination of ensemble controllability14
by controllability of the subsystems evolving on these Lie subgroups. Using the covering method,15
we show the equivalence between ensemble and classical controllability, i.e., controllability of each16
individual system in the ensemble implies ensemble controllability, for bilinear ensemble systems17
evolving on semisimple Lie groups. This equivalence makes the examination of controllability for18
infinite-dimensional ensemble systems as tractable as for a finite-dimensional single system.19

1. Introduction. Finely manipulating a large ensemble of structurally identical20

dynamical systems has emerged as an essential demand in diverse areas from quan-21

tum science and technology [22, 34, 19, 38, 20], brain medicine [55, 33, 17, 28, 57]22

and robotics [5] to sociology [8, 11]. In many applications involving ensemble sys-23

tems, control can only be exerted at the population level because it is infeasible and24

often impossible to receive state feedback for each individual system. As a result,25

considerable e↵orts have been made over the past years to understand the funda-26

mental limit on the extent to which an ensemble system can be manipulated with a27

broadcast open-loop signal. This new control paradigm raised significant challenges in28

classical systems theory, while o↵ering abundant opportunities for making theoretical29

advancements.30

Among the developments in this rising area, referred to as ensemble control,31

extensive focuses have been placed on investigating the controllability property of32

ensemble systems, including linear [32, 25, 36, 48, 18, 39], bilinear [35, 4, 14], and33

some forms of nonlinear ensemble systems [33, 13, 30]. The work on analyzing con-34

trollability of an ensemble consisting of systems defined on the Lie group SO(3) set35

the milestone in formal and rigorous study of ensemble systems [35]. In this work,36

using Lie algebraic tools, the controllability analysis was translated to the problem37

of polynomial approximation, which opened the door for addressing ensemble con-38

trol problems from the perspective of “approximation”. This new notion has led to39

seminal works on developing necessary and/or su�cient conditions for ensemble con-40

trollability [32, 25, 36, 48, 52, 18, 39] and observability [50, 49], and novel theory-41

and computational-based techniques for optimal ensemble control design and syn-42

thesis [38, 56, 10, 42, 45, 46]. Notable developments involve various analytical and43
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geometrical methods for examining controllability. For example, symmetric group44

and graph-theoretic approaches were established to characterize and interpret con-45

trollability of ensemble systems in terms of permutation orbits and graph connec-46

tivity [51, 54, 12, 16]; representation-theoretic and moment-based approaches were47

introduced to analyze controllability, structural controllability, and observability of48

ensemble systems [48, 49, 13, 15]; and methods based on the infinite-dimensional49

Lie extension were developed extending the Lie algebra rank condition for classical50

nonlinear systems to ensemble systems [1, 2]. Although progress in understanding51

fundamental properties of ensemble systems is persistent, much remains to be ex-52

plored. One particular angle is to delve into the relationship of such properties for53

ensemble and classical control systems. In this regard, the work presented in [35]54

sheds light on revealing the equivalence between ensemble controllability and classical55

controllability for certain classes of ensemble systems.56

In general, controllability of each individual system (i.e., classical controllability)57

in an ensemble is a necessary, but not su�cient, condition to ensemble controllability.58

Namely, if an ensemble system is ensemble controllable, then each individual system59

in the ensemble must be controllable in the classical sense; however, the converse is60

generally not true. Motivated by the work on the control of ensemble systems on SO(3)61

[35], where controllability of each individual system led to controllability of the entire62

ensemble, in this paper, we extend this previous finding to explore such equivalence63

in classical and ensemble controllability for more general classes of ensemble systems.64

Specifically, we study the bilinear ensemble system in which each individual system65

evolves on the same semisimple Lie group. In our approach, such an ensemble is66

regarded as a single system defined on the space of Lie group-valued functions, which67

is an infinite-dimensional Lie group, and the concept of ensemble controllability is68

rigorously defined in the sense of approximate controllability through a bi-invariant69

metric on this infinite-dimensional Lie group. The main tool developed in this work70

is the covering method. The central idea of this method is to decompose the state71

space Lie group of a bilinear ensemble system into a collection of Lie subgroups,72

which generates the Lie group, so that controllability of the ensemble is determined73

by that of the subsystems evolving on these Lie subgroups. The covering method74

is further used to reveal a significant consequence of equivalence between ensemble75

and classical controllability of bilinear systems defined on semisimple Lie groups, i.e.,76

classical controllability of each individual system in the ensemble implies ensemble77

controllability. Moreover, we show that this equivalence is not constrained to systems78

evolving on compact Lie groups and holds for bilinear ensemble systems induced by79

Lie group actions on vector spaces, for which each individual system is defined on a80

non-compact Lie group.81

This paper is organized as follows. In the next section, we introduce the notion82

of ensemble controllability for parameterized families of control systems evolving on83

Lie groups through the bi-invariant Riemannian structures of the groups. In Section84

3, we revisit and extend our previous results in ensemble controllability of bilinear85

systems on SO(3), which lays a foundation for the investigation into controllability86

of bilinear ensemble systems on general semisimple Lie groups. In Section 4, we87

introduce the covering method to establish the equivalence between ensemble and88

classical controllability for bilinear systems. In particular, we first illustrate the main89

idea by using systems evolving on SO(n) with n > 3, and then extend the analysis90

to systems defined on general semisimple Lie groups by using Cartan decompositions.91

The generality of the equivalence to ensemble systems induced by Lie group actions92

on vector spaces is presented in Section 5.93
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2. Preliminaries. In this section, we review the classical controllability results94

characterized by the Lie algebra rank condition (LARC) for control systems defined95

on compact, connected Lie groups. Then, we introduce the notion of ensemble con-96

trollability for a parameterized family of systems defined on a Lie group through97

the Riemannian structure of this group, and address the major obstacle to ensemble98

controllability analysis of such systems when applying LARC.99

2.1. Controllability of systems on compact and connected Lie groups.100

Controllability of systems evolving on compact, connected Lie groups has been ex-101

tensively studied [9, 27, 26, 44]. The analysis is based on examining whether the Lie102

algebra generated by the drift and control vector fields is equivalent to the underlying103

Lie algebra of the Lie group. Specifically, a right-invariant bilinear control system104

defined on a compact, connected Lie group G of the form,105

d

dt
X(t) =

h
B0 +

mX

i=1

ui(t)Bi

i
X(t), X(0) = I,(2.1)106

107

is of great theoretical and practical interest, where X(t) 2 G is the state, B0, . . . , Bm108

are elements in the Lie algebra g of G, I is the identity element of G, and ui(t) 2109

R are piecewise constant control functions for i = 1, . . . ,m. In addition, we de-110

note the Lie algebra generated by the set of vector fields F = {B0, B1, . . . , Bm} by111

Lie{B0, B1, . . . , Bm}, i.e., the smallest linear subspace of g, which contains F and112

is closed under the Lie bracket operation defined by [M,N ] = MN � NM for all113

M,N 2 g. Controllability of the system of the form in (2.1) can be evaluated by the114

following theorem.115

Theorem 2.1. The system in (2.1) is controllable on the Lie group G if and only116

if Lie(F) = g, where F = {B0, B1, . . . , Bm}.117

Proof. See [9, 27, 29, 43]. ⇤118

If the dimension of g is n, then the only linear subspace of g that also has di-119

mension n is g itself. Thus, checking controllability of a control system as in (2.1)120

is equivalent to checking the dimension of Lie(F). Conventionally, the necessary and121

su�cient condition in Theorem 2.1 is referred to as the Lie algebra rank condition122

(LARC).123

2.2. Control of ensemble systems. An ensemble control system is a family124

of control systems defined on a manifold M ,125

d

dt
x(t,�) = f(t, x(t,�), u(t)),(2.2)126

127

parameterized by a parameter � 2 K ⇢ R
d such that x(t,�) 2 M for each t 2 R128

and � 2 K, where the parameter space K is generally assumed to be compact. In129

this case, for each fixed t 2 R, x(t, ·) is an M -valued function defined on K, i.e., the130

state space of the ensemble system in (2.2) is actually a space of M -valued functions131

defined on K, denoted by F(K,M). The parameter independent open-loop control132

input u(t) 2 R
m is a broadcast signal that simultaneously manipulates the ensemble133

between desired functions in F(K,M). Note that when the parameter space K is134

an infinite set, i.e., the ensemble system in (2.2) contains infinitely many dynamic135

units, F(K,M) is an infinite-dimensional manifold so that the ensemble system is136

an infinite-dimensional system. For such systems, we define the notion of ensemble137

controllability in the approximation sense.138
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Definition 2.2 (Ensemble Controllability). Let F(K,M) denote a space of M -139

valued functions defined on K. The family of systems in (2.2) is said to be ensemble140

controllable on the function space F(K,M), if for any " > 0 and starting with any141

initial state x0 2 F(K,M), where x0(·) = x(0, ·), there exists a control law u(t) that142

steers the system into an "-neighborhood of a desired target state xF 2 F(K,M) at a143

finite time T > 0, i.e., d(x(T, ·), xF (·)) < ", where d : F(K,M) ⇥ F(K,M) ! R is a144

metric on F(K,M).145

Remark 1. Note that in Definition 2.2, the final time T may depend on ", and146

ensemble controllability is a notion of approximate controllability.147

In this work, we focus on the time-invariant bilinear ensemble system evolving on148

a Lie group G of the form149

d

dt
X(t,�) =

h
�0B0 +

mX

i=1

�i ui(t)Bi

i
X(t,�), X(0,�) = I,(2.3)150

151

where � = (�0, . . . ,�m)0 is the parameter vector varying on a compact subset K ⇢152

R
m+1, X(t, ·) 2 C(K,G) is the state and C(K,G) denotes the space of continuous153

G-valued functions defined on K, B0, . . . , Bm are elements in the Lie algebra g of G, I154

is the identity element of G, and u1, . . . , um are real-valued piecewise constant control155

inputs.156

According to Definition 2.2, a metric on C(K,G) is necessary in the study of157

ensemble controllability of the system in (2.3). In the next section, we will introduce158

metrics on C(K,G) and C(K, g) through a Riemannian structure of G such that these159

two metrics are locally compatible with respect to the exponential map, exp : g ! G.160

Consequently, ensemble controllability of systems defined on C(K,G) can be studied161

through their drift and control vector fields in C(K, g).162

2.3. Metric space structures on C(K,G). In Definition 2.2, ensemble con-163

trollability is defined in the sense of approximate controllability, where it only requires164

to steer the considered system into an "-neighborhood of the desired final state. How-165

ever, the properties of neighborhoods depend on the topology of the state space of the166

system. Therefore, in this section, we will introduce a metrizable topology on C(K,G)167

such that ensemble controllability of an ensemble system evolving on C(K,G) can be168

defined through the metric induced by this topology.169

The compact-open topology is commonly used on the space of continuous func-170

tions between two topological spaces. In our case, K is compact and G is a met-171

ric space as a Riemannian manifold, then the compact-open topology on C(K,G)172

is metrizable. Specifically, it is equivalent to the topology of uniform convergence173

[24], i.e., the topology induced by the metric d(f, g) = sup�2K ⇢(f(�), g(�)) for any174

f, g 2 C(K,G), where ⇢ : G⇥G ! G is the metric induced by a Riemannian metric175

on G. This observation illustrates that it su�ces to define a Riemannian structure on176

G, which in turn induces a metric on C(K,G).177

A bi-invariant Riemannian metric is a good candidate of Riemannian metrics de-178

fined on a compact, connected Lie group G for understanding the relationship between179

its geometric and algebraic structures. Because, under this metric, the exponential180

map from g to G coincides with the Riemannian exponential map from TIG to G,181

where TIG denotes the tangent space of G at the identity element I [41]. Corre-182

spondingly, the trajectory of each individual system in the ensemble in (2.3) is a183

concatenation of some geodesics of G. Computationally, a bi-invariant Riemannian184
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metric can be obtained by averaging an arbitrary inner product defined on g over the185

group G, where g is identified with TIG of G [47].186

Let h·, ·i : g ⇥ g ! R denote an inner product on g that extends to a bi-187

invariant metric on G, then the uniform norm on C(K, so(n)), that is, kf � gk1 =188

sup�2K kf(�) � g(�)k for f, g 2 C(K, so(n)), is well-defined because K is compact,189

where kf(�)� g(�)k =
p
hf(�) � g(�), f(�) � g(�)i is the norm on g induced by the190

inner product. If kf � gk1 < " for some " smaller than the injectivity radius of191

the Riemannian exponential map, then ⇢(exp(f(�)), exp(g(�)))  kf(�) � g(�)k 192

kf � gk1 < " holds for any � 2 K, because the Lie group G with the bi-invariant193

Riemannian metric has non-negative sectional curvature [41], where ⇢ is the metric194

on G induced by the bi-invariant Riemannian metric. On the other hand, since G is195

connected and compact, the exponential map exp : g ! G is surjective [23], and thus196

the uniform topology of C(K,G) is carried over from the uniform norm of C(K, g).197

This property enables the study of ensemble controllability of the system in (2.3) on198

C(K,G) through its drift and control vector fields on C(K, g).199

It can be shown that C(K,G) itself is an infinite-dimensional Lie group with the200

Lie algebra C(K, g). Furthermore, since every element f 2 C(K, g) can be expressed201

in the form f =
Pn

i=1 fiEi for some fi 2 C(K,R) with {E1, . . . , En} a basis of g, this202

indicates that C(K, g), as a C(K,R)-module, is isomorphic to C(K,R) ⌦ g, where203

C(K,R) is the set of continuous real-valued functions defined on K and ⌦ denotes204

the tensor product over R. However, C(K,R) is generally not compact with respect205

to the topology of uniform convergence, e.g., the sequence fn(�) = �
n in C([0, 1],R)206

has no convergent subsequence. Consequently, C(K,G) is a non-compact infinite-207

dimensional Lie group, which disables the application of the LARC, as presented in208

Theorem 2.1, to examine controllability of ensemble systems defined on C(K,G) and209

hence motivates the need of developing new tools to achieve this goal.210

To this end, in Sections 3 and 4, we integrate tools from geometry, analysis, and211

algebra to synthesize the machinery for controllability analysis of ensemble systems212

defined on C(K,G) in the form of (2.3). In particular, our framework will be elabo-213

rated through the study of the ensemble system defined on C(K, SO(n)) by leveraging214

the nice structure of so(n), where SO(n) is the special orthogonal group consisting of215

all n-by-n orthogonal matrices with determinant 1 and so(n) is its Lie algebra con-216

sisting of all n-by-n skew-symmetric matrices. In the next section, we will initiate our217

investigation with the ensemble system evolving on C(K, SO(3)).218

3. Ensemble control of systems on SO(3). Manipulating an ensemble of219

systems evolving on SO(3) is an important problem arising in many areas, notably220

in quantum control and robotics [22, 34, 19, 20, 37, 5]. In this section, we revisit221

and extend our previous results in ensemble controllability of systems on SO(3) [35],222

which will lay the foundation for analyzing controllability of ensemble systems defined223

on SO(n) and, further, on SE(n).224

We first consider the driftless ensemble system on SO(3), given by225

d

dt
X(t,�) = �

⇥
u⌦y + v⌦x

⇤
X(t,�), X(0,�) = I,(3.1)226

227

where � 2 K = [a, b] ⇢ H, H = R
+ = (0,1), and228

⌦y =

2

4
0 0 1
0 0 0
�1 0 0

3

5 , ⌦x =

2

4
0 0 0
0 0 �1
0 1 0

3

5229

230
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are the generators of rotation around the y- and the x-axis, respectively. According to231

the discussion in Section 2, a metric on C(K, SO(3)) is required to define the notion232

of ensemble controllability for the system in (3.1). The detailed construction of a bi-233

invariant metric on C(K, SO(n)) is shown in Section 4.2. At present, let’s assume that234

the state space C(K, SO(3)) has already been equipped with a bi-invariant metric d :235

C(K, SO(3))⇥C(K, SO(3)) ! R, which is induced by an inner product on so(3).Then,236

in the following lemma, we prove ensemble controllability of the system in (3.1) over237

the topology induced by d.238

Lemma 3.1. The system in (3.1) is ensemble controllable on C(K, SO(3)).239

Proof. We revisit the proof in our previous work [35] by using the metric space240

structure on C(K, SO(3)) introduced above. Observe that the Lie brackets generated241

by the set of matrices {�⌦y,�⌦x} are242

ad2k+1
�⌦y

(�⌦x) = (�1)k�2k⌦z,243

ad2k
�⌦y

(�⌦x) = (�1)k�2k+1⌦x,244
245

where adAB = [A,B] and adk
AB = [A, adk�1

A B], k 2 N, for all A,B 2 so(3), and

⌦z =

2

4
0 �1 0
1 0 0
0 0 0

3

5

is the generator of rotation around the z-axis. Now using elements in {�⌦x, �
3⌦x,246

. . . , �
2n+1⌦x} as generators, we are able to produce an evolution of the form247

Rx(�) = exp(c0�⌦x) exp(c1�
3⌦x) · · · exp(cn�

2n+1⌦x)248

= exp
n nX

k=0

ck�
2k+1⌦x

o
.
= exp

n
✓̂x(�)⌦x

o
.(3.2)249

250

As a result, given any �-dependent rotation exp{✓x(�)⌦x} around x-axis with ✓x 2251

C(K,R), the order of the polynomial n and the coe�cients ck can be appropri-252

ately chosen so that k✓̂x � ✓xk1 = sup�2K

q
h✓̂x(�) � ✓x(�), ✓̂x(�) � ✓x(�)i < " for253

any given approximation error " > 0 by the Weierstrass theorem [3]. Similar ar-254

guments can be developed to show that any �-dependent rotations exp{✓y(�)⌦y}255

and exp{✓z(�)⌦z} around the y- and the z-axis, respectively, can be approximately256

generated as exp{✓̂y(�)⌦y} and exp{✓̂z(�)⌦z}, and hence any three-dimensional ro-257

tations can also be uniformly approximated. Namely, given any �-dependent rotation258

⇥ 2 C(K, SO(3)), one can parameterize it by using the Euler angles ⇥ = (✓x, ✓y, ✓z)259

such that260

⇥(�) = exp{✓x(�)⌦x} exp{✓y(�)⌦y} exp{✓z(�)⌦z}261

= ⇥x(�)⇥y(�)⇥z(�),262263

and then the desired rotation ⇥(�) characterized by the three continuous functions,264

✓x, ✓y, ✓z 2 C(K,R), can be synthesized by using piecewise constant control vector265

fields as described in (3.2). Specifically, for any " > 0, the approximated rotations266

✓̂x, ✓̂y, and ✓̂z can be generated such that k✓̂x � ✓xk1 < "/3, k✓̂y � ✓zk1 < "/3, and267
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k✓̂z � ✓zk1 < "/3. As a result, the total evolution268

b⇥(�) = exp{✓̂x(�)⌦x} exp{✓̂y(�)⌦y} exp{✓̂z(�)⌦z}269

= b⇥x(�)b⇥y(�)b⇥z(�)270271

satisfies272

d(b⇥,⇥) = d(b⇥x
b⇥y
b⇥z,⇥x⇥y⇥z)273

 d(b⇥x
b⇥y
b⇥z,⇥x⇥y

b⇥z) + d(⇥x⇥y
b⇥z,⇥x⇥y⇥z)274

= d(b⇥x
b⇥y,⇥x⇥y) + d(b⇥z,⇥z)275

 d(b⇥x
b⇥y,⇥x

b⇥y) + d(⇥x
b⇥y,⇥x⇥y) + d(b⇥z,⇥z)276

= d(b⇥x,⇥x) + d(b⇥y,⇥y) + d(b⇥z,⇥z)277

 k✓̂x � ✓xk1 + k✓̂y � ✓yk1 + k✓̂z � ✓zk1 < ",278279

where we repeatedly used the triangle inequality and bi-invariance of the metric d.280

This then concludes ensemble controllability of the system in (3.1) on C(K, SO(3)).281

⇤282

Remark 2 (Topological characterization of ensemble controllability). In the
proof of Lemma 3.1, the key observation leading to ensemble controllability of the sys-
tem in (3.1) is the uniform approximation of �-dependent rotations ✓x(�)⌦x, ✓y(�)⌦y,

and ✓z(�)⌦z by iterated Lie bracketing the control vector fields in G = {�⌦x,�⌦y}.
This implies that the closure of the Lie algebra generated by G satisfies Lie(G) =
C(K,R) ⌦ so(3) = C(K, so(3)), which gives rise to a topological characterization of
ensemble controllability of the system in (3.1) on C(K, SO(3)). In general, a family of
driftless bilinear systems defined on a compact, connected Lie group G parameterized
by a vector � = (�0, . . . ,�m)0 varying on a compact subset K ⇢ R

m of the form

d

dt
X(t,�) =

h mX

i=1

�i ui(t)Bi

i
X(t,�), X(0,�) = I,

is ensemble controllable on C(K,G) if and only if Lie(G) = C(K, g), where G = {�1B1,283

. . . , �mBm} is the set of control vector fields evaluated at the identity element I of284

G, and g is the Lie algebra of G.285

It was also shown in our previous work that the ensemble with a dispersion in the286

drift, i.e., the system287

d

dt
X(t,�,!) =

⇥
!⌦z + �u⌦y + �v⌦z

⇤
X(t,�,!), X(0,�,!) = I,288

where ! 2 Kd ⇢ R with Kd compact, is ensemble controllable on C(K ⇥Kd, SO(3))289

[35]. In the following, we illustrate the applicability of the polynomial approximation290

technique exploited in the proof of Lemma 3.1 to analyze ensemble systems on SO(3)291

with three parameter variations. This analysis constitutes the key element in the292

covering method to be developed in Section 4 for the controllability analysis of bilinear293

ensemble systems defined on compact, connected Lie groups.294

Proposition 3.2. An ensemble system of the form,295

d

dt
X(t,�) =

⇥
�1u1⌦x + �2u2⌦y + �3u3⌦z

⇤
X(t,�), X(0,�) = I,(3.3)296

297
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is ensemble controllable on C(K, SO(3)), where � = (�1,�2,�3) 2 K is the parameter298

vector varying on a compact subset K of the three-dimensional upper half space H
3 =299

{(�1,�3,�3) 2 R
3 : �i > 0 for all i = 1, . . . , 3}, I is the 3-by-3 identity matrix, and300

ui(t) are piecewise constant control inputs for all i = 1, 2, 3.301

Proof. By successive Lie brackets of the control vector fields �2⌦y and �3⌦z, we302

obtain303

ad2k+1
�2⌦y

(�3⌦z) = (�1)k�2k+1
2 �3⌦x,304

ad2l+1
�3⌦z

(�2k+1
2 �3⌦x) = (�1)l�2k+1

2 �
2l+1
3 ⌦x,305306

where k, l 2 N. Then, defining L(k,l) = �
2k+1
2 �

2l+1
3 and applying iterated Lie brackets307

of [�1⌦x,�2⌦y] and L(k,l)⌦x yields308

ad2s
[�1⌦x,�2⌦y ](L(k,l)⌦x) = (�1)s�2s

1 �
2(k+s)+1
2 �

2l+1
3 ⌦x309

= (�1)s�2s
1 �

2(k+s)
2 �

2l
3 (�2�3⌦x),310311

where s 2 N. Furthermore, let L(s,k,l)(�) = �
2s
1 �

2(k+s)
2 �

2l
3 and A = span{L(s,k,l) :312

s, k, l = 0, 1, . . . } ⇢ C(K,R), then we claim that A is a subalgebra of C(K,R) by313

checking that fg 2 A for any f, g 2 A. Now, pick any two points x = (x1, x2, x3)0314

and y = (y1, y2, y3)0 in K and assume f(x) = f(y) for all f 2 A, in particular,315

L(1,0,0)(x) = L(1,0,0)(y), L(0,1,0)(x) = L(0,1,0)(y), and L(0,0,1)(x) = L(0,0,1)(y) hold.316

This gives xi = yi for each i = 1, 2, 3, i.e., x = y. Therefore, A separates points in K317

[39] and hence A is dense in C(K,R) by Stone-Weierstrass Theorem [21]. Equivalently,318

for any f 2 C(K,R), we can uniformly approximate f(�)⌦x by iterated Lie brackets319

of the control vector fields in G = {�1⌦x,�2⌦y,�3⌦z}. A similar argument can be320

applied to show that, for any g, h 2 C(K,R), g(�)⌦y and h(�)⌦z can also be uniformly321

approximated. It follows that Lie(G) = C(K,R)⌦so(3) = C(K, so(3)), and hence the322

system in (3.3) is ensemble controllable on C(K, SO(3)) by Remark 2. ⇤323

4. Ensemble control of systems on compact Lie groups. In this section,324

we will carry out an extension of the ensemble controllability analysis developed in325

the previous section dedicated to the system on SO(3) to general systems defined on326

compact, connected Lie groups. To this end, we will introduce a covering method327

based on the decomposition of the state space Lie group into a collection of Lie328

subgroups, which generates this Lie group, and, correspondingly, decomposes the329

ensemble system defined on this Lie group into a collection of subsystems, each of330

which evolves on one of these Lie subgroups. This decomposition then enables the331

determination of controllability of the ensemble by controllability of each subsystem,332

since the state space Lie group is generated by the Lie subgroups defining the state333

space of the subsystems.334

Before the discussion of systems evolving on general semisimple Lie groups, this335

method will be best motivated and illuminated with the system defined on SO(n) first.336

To facilitate our exposition, we review some key properties of the Lie algebra so(n)337

that are relevant to the subsequent ensemble controllability analysis in the following338

section.339

4.1. Basics of the Lie algebra so(n). The Lie algebra so(n) is the vector space340

containing all n⇥ n real skew-symmetric matrices, which has dimension n(n� 1)/2.341

Let Eij 2 R
n⇥n denote the matrix whose ij

th entry is 1 and others are 0, then the342

8

This manuscript is for review purposes only.



matrix ⌦ij = Eij � Eji satisfies343

⌦ij =

(
�⌦ji, if i 6= j,

0, if i = j,
344

345

taking value 1 in the ij
th entry, -1 in the ji

th entry, and 0 elsewhere. Moreover, the346

set B = {⌦ij : 1  i < j  n} forms a basis of so(n), which is referred to as the347

standard basis of so(n).348

Lemma 4.1. The Lie bracket of ⌦ij and ⌦kl satisfies the relation [⌦ij ,⌦kl] =349

�jk⌦il + �il⌦jk + �jl⌦ki + �ik⌦lj, where � is the Kronecker delta function, i.e.,350

�mn =

(
1, if m = n,

0, if m 6= n.
351

352

Proof. Notice that EijEkl = �jkEil, so [Eij , Ekl] = �jkEil � �liEkj . Following the353

bilinearity of the Lie bracket, we get354

[⌦ij ,⌦kl] = [Eij � Eji, Ekl � Elk] = [Eij , Ekl] � [Eij , Elk] � [Eji, Ekl] + [Eji, Elk]355

= �jkEil � �liEkj � �jlEik + �kiElj � �ikEjl + �ljEki + �ilEjk � �kjEli356

= �jk⌦il + �il⌦jk + �jl⌦ki + �ik⌦lj .357358

⇤359

According to Lemma 4.1, for any ⌦ij ,⌦kl 2 B, [⌦ij ,⌦kl] 6= 0 if and only if i = l360

j = k, i = k or j = l.361

4.2. Bi-invariant metrics on SO(n). By Definition 2.2 in Section 2.2, a metric362

on C(K, SO(n)) is required to define the notion of ensemble controllability for systems363

evolving on SO(n). Moreover, because SO(n) is a Lie group, the discussion in Section364

2.3 implies that a metric on C(K, SO(n)) can be induced by an inner product on the365

Lie algebra so(n). In particular, we introduce an inner product h·, ·i : so(n)⇥so(n) !366

R such that the standard basis elements in B form an orthonormal basis for so(n),367

or equivalently, h⌦ij ,⌦kli = tr(⌦0
ij⌦kl)/2. Then, we extend this inner product to a368

left-invariant Riemannian metric on SO(n) by defining h⌦ijX,⌦klXi = tr(⌦0
ij⌦kl)/2369

for any X 2 SO(n). Notice that h·, ·i is invariant under the adjoint action of SO(n) on370

so(n), i.e., hXYX
�1

, XZX
�1i = hY, Zi for any X 2 SO(n) and Y, Z 2 so(n). Hence,371

this left-invariant Riemannian metric is also bi-invariant [41], which then induces372

a bi-invariant metric ⇢ on SO(n). Consequently, by the discussion in Section 2.3,373

the compact-open topology induces a bi-invariant metric d on C(K, SO(n)), which374

coincides with the topology of uniform convergence with respect to ⇢, i.e., d(f, g) =375

sup�2K ⇢(f(�), g(�)) for any f, g 2 C(K, SO(n)). In particular, for the case of SO(3)376

discussed in Section 3, the bi-invariant metric d is just obtained by defining the set377

{⌦x,⌦y,⌦z} to be an orthonormal basis of so(3).378

In the following sections, ensemble controllability will be analyzed under this379

bi-invariant metric d on C(K, SO(n)).380

4.3. The covering method for ensemble controllability analysis. In this381

section, we develop a covering method for examining ensemble controllability of bi-382

linear systems evolving on semisimple Lie groups. Together with the technique of383

polynomial approximation, we then establish an equivalence between ensemble and384

classical controllability for such bilinear ensemble systems. The existence and con-385

struction of this covering method are based on the Cartan decomposition of semisimple386
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G2

G1

G3

G4
SO(4)

<latexit sha1_base64="v7q1qrFPdlbgaPBBprQqNGcWMdw=">AAAB83icbVBNS8NAEN3Ur1q/qh69BItQLyWRgnorevFmRfsBTSib7bRdutmE3YlYQv+GFw+KePXPePPfuG1z0NYHA4/3ZpiZF8SCa3Scbyu3srq2vpHfLGxt7+zuFfcPmjpKFIMGi0Sk2gHVILiEBnIU0I4V0DAQ0ApG11O/9QhK80g+4DgGP6QDyfucUTSS5yE8YXp/OylXT7vFklNxZrCXiZuREslQ7xa/vF7EkhAkMkG17rhOjH5KFXImYFLwEg0xZSM6gI6hkoag/XR288Q+MUrP7kfKlER7pv6eSGmo9TgMTGdIcagXvan4n9dJsH/hp1zGCYJk80X9RNgY2dMA7B5XwFCMDaFMcXOrzYZUUYYmpoIJwV18eZk0zyputXJ5Vy3VrrI48uSIHJMycck5qZEbUicNwkhMnskrebMS68V6tz7mrTkrmzkkf2B9/gBWmJE+</latexit>

Fig. 1. The demonstration of the cover V = {G1, G2, G3, G4} of SO(4) constructed in Example
1. In particular, G1, G2, G3, and G4, illustrated by blue, purple, orange, and green shadows
bounding by the dashed lines with the corresponding colors, respectively, are Lie subgroups of SO(4)
isomorphic to SO(3).

Lie algebras in representation theory [23]. Specifically, given such a system, we apply387

the Cartan decomposition to the semisimple Lie algebra of the state-space Lie group,388

which gives rise to a cover of the Lie algebra consisting of Lie subalgebras isomorphic389

to so(3) or su(2). Correspondingly, the ensemble system also admits a decomposition390

into a family of ensemble subsystems with each defined on SO(3) or SU(2). In this391

way, the controllability analysis of the ensemble system is equivalently carried over to392

these ensemble subsystems. To showcase the main idea of the decomposition in the393

covering method, we use an example of the Lie group SO(4).394

Example 1 (A simple illustration of the covering method). In this example, we395

will construct a set of generators of SO(4) such that every generator is a Lie subgroup396

of SO(4) isomorphic to SO(3). We start our construction with decomposing the Lie al-397

gebra so(4) into a collection of Lie subalgebras isomorphic to so(3). This is equivalent398

to constructing a cover of the standard basis B = {⌦12,⌦13,⌦14,⌦23,⌦24,⌦34}. To399

this end, let U = {B1,B2,B3,B4}, where B1 = {⌦12,⌦13,⌦23}, B2 = {⌦12,⌦24,⌦14},400

B3 = {⌦13,⌦14,⌦34}, and B4 = {⌦23,⌦34,⌦24}, then it is clear that U forms a401

cover of B, because B = B1 [ B2 [ B3 [ B4. Moreover, let F = {Lie(B1),Lie(B2),402

Lie(B3),Lie(B4)}, then we have span(F ) = so(4), and hence F is a set of generators403

of so(4). Notice that each Lie(Bi), i = 1, . . . , 4, is isomorphic to so(3) so that its Lie404

group Gi is a Lie subgroup of SO(4) isomorphic to SO(3). In addition, because F405

generates so(4), V = {G1, G2, G3, G4} is a set of generators of SO(4) as desired. This406

cover of SO(4) is illustrated in Figure 1.407

The covering idea illustrated in Example 1 for SO(4) can be directly generalized408

to SO(n). This generalization immediately enables the adoption of the polynomial409

approximation based technique developed for systems on SO(3) in Section 3 to the410

ensemble controllability analysis of systems on SO(n) with n > 3. More importantly,411

the covering method paves the way for understanding and quantifying the equivalence412

between ensemble and classical controllability.413

Theorem 4.2 (The main result). Consider an ensemble of systems on SO(n),414

given by415

d

dt
X(t,�) =

h mX

k=1

�kuk(t) ⌦ikjk

i
X(t,�), X(0,�) = I,(4.1)416

417

where the parameter vector � = (�1, . . . ,�m)0 takes values on a compact subset K ⇢418

H
m, the state X(t, ·) 2 C(K, SO(n)), and the control inputs uk(t) 2 R are piecewise419

constant for all k = 1, . . . ,m. This system is ensemble controllable on C(K, SO(n))420

if and only if each individual system with respect to a fixed � 2 K in this ensemble is421
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controllable on SO(n).422

Proof. The necessity is obvious, and hence it remains to show the su�ciency. In423

particular, we divide the proof of su�ciency into three steps.424

(Step I): An ensemble of systems defined on SO(n) of the form,425

d

dt
X(t,�) =

h X

1i<jn

�ijuij(t)⌦ij

i
X(t,�), X(0,�) = I,(4.2)426

427

is ensemble controllable on C
�Q

1i<jn Kij , SO(n)
�
, where the parameter vector428

� = (�12, . . . ,�n�1,n) takes values in the product space
Q

1i<jn Kij with each Kij429

a compact subset of H, X(t, ·) 2 C
�Q

1i<jn Kij , SO(n)
�

is the state, and uij(t) 2 R430

are piecewise constant for all 1  i < j  n.431

For any ⌦ij 2 B and k1 2 {1, . . . , n}\{i, j}, the subset S1 = {⌦ij ,⌦ik1 ,⌦k1j} of432

B generates a Lie subalgebra of so(n) isomorphic to so(3). By Proposition 3.2, the433

controllable submanifold of the system obtained by setting u↵� = 0 for all ↵, � 2434

{1, . . . , n}\{i, j, k1} in the system (4.2), i.e.,435

d

dt
X(t,�) = [�ijuij(t)⌦ij + �ik1uik1(t)⌦ik1 + �k1juk1j(t)⌦k1j ]X(t,�),436

X(0,�) = I,437438

is a Lie subgroup of C(K12⇥ · · ·⇥Kn�1,n, SO(n)) isomorphic to C(K1
ij , SO(3)), where439

K
1
ij = Kij ⇥Kik1 ⇥Kk1j . Consequently, L1

ij = Lie{�ij⌦ij ,�ik1⌦ik1 ,�k1j⌦k1j} is iso-440

morphic to C(K1
ij , so(3)) by Remark 2. Notice that the cardinality of {1, . . . , n}\{i, j}441

is n�2, so there are n�2 distinct subsets of B (including S1), denoted by S1, . . . ,Sn�2,442

in the form of Sl = {⌦ij ,⌦ikl ,⌦klj} for some kl 2 {1, . . . , n}\{i, j}, and their inter-443

section only contains ⌦ij . Similar to L1
ij , Ll

ij = Lie{�ij⌦ij ,�ikl⌦ikl ,�klj⌦klj} is444

isomorphic to C(Kl
ij , so(3)) for each l = 1, . . . , n � 2, where K

l
ij = Kij ⇥ Kikl ⇥445

Kklj . As a result, for any f 2 C(K↵
ij ,R) and g 2 C(K�

ij ,R) with ↵ 6= �, we have446

f(�ij ,�ik↵ ,�k↵j)⌦ij 2 L↵
ij and (g(�ij ,�ik� ,�k�j)/�ik� )⌦ik� 2 L�

ij . Because of447

[[f(�ij ,�ik↵ ,�k↵j)⌦ij ,�ik�⌦ik� ], (g(�ij ,�ik� ,�k�j)/�ik� )⌦ik� ]448

= f(�ij ,�ik↵ ,�k↵j)g(�ij ,�ik� ,�k�j)⌦ij ,449450

the set of the coe�cients of ⌦ij in Lie([n�2
l=1 Ll

ij), denoted by Aij , is a subalgebra of451

C
�Q

1i<jn Kij ,R
�

generated by C(K1
ij ,R), . . . , C(Kn�2

ij ,R). Furthermore, let A452

denote the subalgebra of C
�Q

1i<jn Kij ,R
�

generated by Aij , 1  i < j  n, then453

Lie([1i<jn [n�2
l=1 Ll

ij) = A⌦so(n) holds. Because C(Kl
ij ,R) separates points in K

l
ij454

for each l = 1, . . . , n�2 and 1  i < j  n as shown in the proof of Proposition 3.2, A455

is able to separate points in
Q

1i<jn Kij . By Stone-Weierstrass theorem, A is dense456

in C
�Q

1i<jn Kij ,R
�
, and then so is A⌦ so(n) in C

�Q
1i<jn Kij ,R

�
⌦ so(n) =457

C
�Q

1i<jn Kij , so(n)
�
. Notice that A ⌦ so(n) ✓ Lie({�ij⌦ij : 1  i < j  n})458

holds by the construction of A, thus we conclude Lie({�ij⌦ij : 1  i < j  n}) =459

C
�Q

1i<jn Kij , so(n)
�
, which then implies ensemble controllability of the system460

in (4.2) on C
�Q

1i<jn Kij , SO(n)
�
.461

(Step II): Given the ensemble system in (4.1), there is an ensemble system in the462

form of (4.2) so that these two systems have the same controllable submanifold.463
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By the condition that each individual system in the ensemble system (4.1) is464

controllable on SO(n), any ⌦ij 2 B can be generated by iterated Lie brackets of the465

elements in F = {⌦i1j1 , . . . ,⌦imjm}. As a result, for each ⌦ij 62 F , there exists a466

positive monomial function ⌘ij : K ! H such that ⌘ij(�)⌦ij can be generated by467

successively Lie bracketing the elements in G = {�i1j1⌦i1j1 , . . . ,�imjm⌦imjm}. Now,468

consider the following ensemble system,469

d

dt
X(t,�) =

h X

⌦ij2F
�iju(t)⌦ij +

X

⌦ij 62F
⌘ij(�)uij(t)⌦ij

i
X,470

X(0,�) = I,(4.3)471472

its controllable submanifold has Lie algebra Lie(G [ G0), where G0 = {⌘ij(�)⌦ij : ⌦ij 62473

F}. Because ⌘ij(�)⌦ij 2 Lie(G) for each i, j = 1, . . . , n, Lie(G) = Lie(G [ G0) holds,474

which also implies Lie(G) = Lie(G [ G0). Since we have shown that Lie(G) is the475

Lie algebra of the controllable submanifold of the system in (4.1), the two ensemble476

systems (4.1) and (4.3) have the same controllable submanifold.477

(Step III): The system in (4.1) is ensemble controllable on C(K, SO(n)).478

In step II, we have shown that each ⌘ij(�) is a positive monomial function defined479

on the compact subset K of Hm, where we define ⌘ikjk(�) = �ikjk for k = 1, . . . ,m.480

Let Rij = ⌘ij(K) be the image of ⌘ij , then R =
Q

1i<jn Rij is a compact subset of481

H
n(n�1)/2 by the continuity of each ⌘ij and Tychono↵’s product theorem [40]. Then,482

the conclusion in Step I implies that the following ensemble system parameterized by483

⌘ = (⌘12, . . . , ⌘n�1,n) 2 R484

d

dt
X(t, ⌘) =

h X

1i<jn

⌘ijvij(t)⌦ij

i
X(t, ⌘), X(0, ⌘) = I(4.4)485

486

is ensemble controllable on C(R, so(n)).487

Now, consider ⌘ as a function of � from K to R given by (�i1j1 , . . . ,�imjm) 7!
(�i1j1 , . . . ,�imjm , . . . , ⌘n,n�1), then ⌘ is smooth and its di↵erential

d⌘ =


Im

⇤

�
,

is full rank, where Im is the m-by-m identity matrix. This implies that ⌘ is a smooth488

embedding, and hence ⌘(K) is a compact m-dimensional embedded submanifold of R489

[31]. By Tietze’s Extension Theorem [40], for any f 2 C(⌘(K), SO(n)), there exists490

g 2 C(R, SO(n)) such that f = g|⌘(K), which implies that the map from C(R, SO(n))491

to C(⌘(K), SO(n)) given by g 7! g|⌘(K) is surjective. Then, by Step II, ensemble492

controllability of the system in (4.4) on C(R, SO(n)) leads to ensemble controllability493

of the system in (4.1) on C(⌘(K), SO(n)). Moreover, since ⌘ is a di↵eomorphism494

between K and ⌘(K), the function from C(K, SO(n)) to C(⌘(K), SO(n)) given by495

f 7! f �⌘�1 is a Lie group isomorphism, which then concludes ensemble controllability496

of the system in (4.1) on C(K, SO(n)). ⇤497

In Step III above, the key observation leading to ensemble controllability of the498

system in (4.1) is the compactness of ⌘(K) ⇢ H
n(n�1)/2. Consequently, the proof still499

holds if the parameter space is di↵eomorphic to a compact submanifold of the upper500

half space as shown in the following corollary.501
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Corollary 4.3. The ensemble of systems defined on SO(n), given by502

d

dt
X(t,�) =

h mX

k=1

fk(�)uk(t) ⌦ikjk

i
X(t,�), X(0,�) = I,(4.5)503

504

is ensemble controllable on C(K, SO(n)) if and only if each individual system with505

respect to a fixed � 2 K in this ensemble is controllable on SO(n), where K is a506

compact smooth manifold, and f : K ! H
m defined by � 7! (f1(�), . . . , fm(�)) is a507

smooth embedding.508

Proof. The necessity is clear, and thus we only need to prove the su�ciency. By defin-509

ing ⌘i = fi(�) for each i = 1, . . . ,m, Theorem 4.2 implies that the system in (4.5) pa-510

rameterized by ⌘ = (⌘1, . . . , ⌘m)0 is ensemble controllable on C(f(K), SO(n)). In addi-511

tion, because f is a smooth embedding, the map from C(K, SO(n)) to C(f(K), SO(n))512

given by g 7! g � f
�1 is a Lie group isomorphism, and hence the system in (4.5) is513

ensemble controllable on C(K, SO(n)). ⇤514

Because Step I in the proof of Theorem 4.2 follows from ensemble controllability515

of systems on SO(3), this theorem, as well as Corollary 4.3, do not hold for systems516

defined on SO(2).517

Remark 3. An ensemble of bilinear systems defined on SO(2) is not ensemble518

controllable. Because so(2) is a one-dimensional real vector space with the only basis519

element ⌦12, any ensemble system on SO(2) in the form of (4.1) can be uniquely520

represented by521

d

dt
X(t,�) = �u(t)⌦12X(t,�) = �u(t)


0 �1
1 0

�
X(t,�), X(0,�) = I,(4.6)522

523

where � is the parameter taking values on a compact set K ⇢ H, X(t, ·) 2 C(K, SO(2))524

is the state, and u(t) 2 R is a piecewise constant control input. However, so(2) is525

nilpotent, which disables the generation of terms �
k⌦12 for k � 2 by iterated Lie526

brackets of the single control vector field �⌦12. As a result, Lie(�⌦12) only contains527

first order terms of �, and hence the system in (4.6) is ensemble uncontrollable on528

C(K, SO(2)).529

4.4. Ensemble controllability of systems on semisimple Lie groups. The530

equivalence between ensemble and classical controllability established in Theorem 5.4531

reduced the evaluation of controllability for infinite-dimensional ensemble systems532

to finite-dimensional single systems. This reduction made it possible to explicitly533

characterize the generically elusive ensemble controllability property using classical534

approaches for finite-dimensional control systems, i.e., the LARC for bilinear systems535

and the Kalman rank condition for linear systems. A natural question concomitant536

with this property for systems on SO(n) is what other classes of ensemble systems537

inherit such equivalence in controllability to their subsystems. In this section, we show538

that ensemble systems defined on semisimple Lie groups exhibit such an equivalence539

property.540

To elaborate this extension, we begin with our discussion on the system defined541

on SU(2), the special unitary group of 2 ⇥ 2 unitary matrices with determinant 1,542

which is also the most elementary semisimple Lie group. Notice that its Lie algebra543

su(2), containing all 2 ⇥ 2 skew-Hermitian traceless matrices, is isomorphic to so(3)544

by identifying the three basis elements of su(2),545

B1 =
1p
2


0 i

i 0

�
, B2 =

1p
2


0 �1
1 0

�
, and B3 =

1p
2


i 0
0 �i

�
,546

547
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with ⌦x, ⌦y and ⌦z, respectively, and B1, B2, and B3 are the Pauli matrices mul-548

tiplied by i/
p

2, where i is the imaginary unit. In particular, this is called the spin549

representation of su(2). Consequently, following the same proof as that of Proposition550

3.2, the system defined on SU(2),551

d

dt
X(t,�) =

h 3X

k=1

�kukBk

i
X(t,�)552

553

is ensemble controllable on C(K, SU(2)), where � = (�1,�2,�3) is the parameter554

vector taking values on a compact set K ⇢ H
3. This result forms the basis of inves-555

tigating ensemble controllability for systems evolving on semisimple Lie groups using556

the covering method. The prerequisite for this investigation is to cover semisimple557

Lie groups by Lie subgroups isomorphic to SU(2). Similar to Example 1, it su�ces558

to construct covers consisting of Lie subalgebras isomorphic to su(2).559

Given a semisimple Lie group G, its semisimple Lie algebra g admits a root space560

decomposition as g = h�
L

↵2R g↵, where h is the Cartan subalgebra, R is the set of561

nonzero roots, and g↵ is the space of root vectors for the root ↵ [23]. Then, for each562

root ↵ 2 R, we can construct a Lie subalgebra s↵ of g so that s↵ is isomorphic to su(2).563

To proceed, we first equip the Cartan subalgebra h an inner product h·, ·i, through564

which we define the notion of coroot of ↵ as H↵ = 2↵/h↵,↵i. Then, any element X↵ 2565

g↵ satisfies [H↵, X↵] = h↵, H↵iX↵ = 2X↵ by the definition of a root. Let Y↵ = �X̄↵,566

where X̄↵ denotes the complex conjugate of X↵, then we can show that Y↵ 2 g�↵,567

[H↵, Y↵] = �2Y↵, and [X↵, Y↵] = H↵. As a result, H↵, X↵, and Y↵ generate a Lie568

subalgebra of g isomorphic to su(2), denoted by s↵. However, H↵, X↵ and Y↵ do not569

give rise to the spin representation of s↵ as desired, i.e., H↵, X↵, and Y↵ do not satisfy570

the same Lie bracket relations as B1, B2 and B3. To construct the spin representation571

of s↵, we further define B↵
1 = iH↵/2, B↵

2 = i(X↵+Y↵)/2 and B
↵
3 = (Y↵�X↵)/2, which572

lead to the Lie bracket relations [B↵
1 , B

↵
2 ] = B

↵
3 , [B↵

2 , B
↵
3 ] = B

↵
1 , and [B↵

3 , B
↵
1 ] = B

↵
2 .573

Moreover, because the roots span the Cartan subalgebra h [23], we have constructed574

a cover of g as U = {s↵ : ↵ 2 R}, in which each s↵ = Lie(B↵) = Lie({B↵
1 , B

↵
2 , B

↵
3 }) is575

isomorphic to su(2) with the spin representation. As a result, the proof of Theorem576

4.2 for systems on SO(n) can be adopted to show ensemble controllability of systems577

evolving on semisimple Lie groups based on covering its Lie algebra by Lie subalgebras578

in the form of s↵ that are isomorphic to su(2) with the spin representation.579

Theorem 4.4. Given an ensemble of bilinear systems defined on a semisimple580

Lie group G of the form,581

d

dt
X(t,�) =

mX

k=1

h
�kuk(t)Bk

i
X(t,�), X(0,�) = I,(4.7)582

583

where � = (�1, . . . ,�m) is the parameter vector taking values on a compact subset584

K of Hm, X(t, ·) 2 C(K,G) is the state, uk(t) 2 R are piecewise constant control585

inputs, and I denotes the identity element of G; B1, . . . , Bm are elements in the Lie586

algebra g of G with the property that for any Bi, i = 1, . . . ,m, there exist some Bj and587

Bk such that the Lie subalgebra of g generated by {Bi, Bj , Bk} is isomorphic to the588

spin representation of su(2). Then, this system is ensemble controllable on C(K,G)589

if and only if each individual system with respect to a fixed � 2 K in this ensemble is590

controllable on G.591

Proof. The proof is constructive based on the construction described above and592

then follow the proof of Theorem 4.2. To be more specific, after obtaining the cover593
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U = {s↵ : ↵ 2 R} of g, we adopt the proof of Theorem 4.2 by replacing Sl =594

{⌦ij ,⌦ikl ,⌦klj} by B↵ = {B↵
1 , B

↵
2 , B

↵
3 }. ⇤595

Note that when the semisimple Lie algebra g associated with the system in (4.7)596

is over C, the field of complex numbers, the control inputs uk are also required to be597

complexed-valued. Correspondingly, the Lie subalgebra of g generated by {Bi, Bj , Bk}598

is the special linear Lie algebra sl(2,C), the vector space over C consisting of 2-by-2599

complex matrices with trace 0. This is because sl(2,C) is the complexification of600

su(2), that is, for any A 2 sl(n, 2) there exist A1, A2 2 su(2) such that A = A1 + iA2,601

[23].602

Remark 4. A bilinear ensemble system of the form,

d

dt
X(t,�) =

h mX

i=1

�i ui(t)Bi

i
X(t,�),

evolving on a Lie group G that is not semisimple can never be ensemble controllable.603

To see this, let g be the Lie algebra of G, then g has a nontrivial center z, whose604

elements commute with every element in g. Suppose Bi 2 z for some i = 1, . . . ,m,605

then [�iBi,�jBj ] = 0 for any j = 1, . . . ,m. Consequently, the Lie algebra generated606

by the control vector fields is a module of g over a space of functions independent of607

�i, and hence the system cannot be ensemble controllable (on a space of functions of608

�1, . . . , �m).609

5. Ensemble control of systems defined on non-compact Lie groups. In610

Section 4.3, by introducing the covering method, we established the equivalence be-611

tween ensemble and classical controllability for parameterized populations of bilinear612

systems evolving on compact and connected Lie groups. Fortunately, this equivalence613

also holds true for broader classes of bilinear systems, for example, for bilinear systems614

induced by Lie group actions on vector spaces. The finding sheds light on possible615

extension of the equivalence property to systems defined on non-compact Lie groups.616

In particular, we will show that the system evolving on the special Euclidean group617

SE(n), which contains the action of SO(n) on R
n, inherits this property. Moreover,618

it is also worth noting that the action of SO(n) on R
n is neither free nor transitive.619

In the following section, we briefly review some essential properties of the Lie group620

SE(n) and its Lie algebra se(n) as a prerequisite for carrying out the analysis of621

ensemble controllability for the system defined on SE(n).622

5.1. Basics of the SE(n) and se(n). Consider the Euclidean space R
n as a Lie

group under addition, then its semidirect product with SO(n), denoted by SE(n) =
R

n
o SO(n), is called the special Euclidean group. Therefore, every element in SE(n)

can be represented by a 2-tuple (x,X) with x 2 R
n and X 2 SO(n). Algebraically,

the group multiplication is given by (x,X)(y, Y ) = (x + Xy,XY ) for any x, y 2 R
n

and X,Y 2 SO(n), which also indicates that (0, I) is the identity element of SE(n).
Topologically, due to the non-compactness of R

n, SE(n) is also a non-compact Lie
group. In addition, SE(n) can be smoothly embedded into GL(n + 1,R), the general
linear group consisting of all (n + 1)-by-(n + 1) invertible matrices. This embedding
immediately yields a matrix representation for each (x,X) 2 SE(n) as

(x,X) =


X x

0 1

�
,

which also reveals that SE(n) contains SO(n) and R
n as Lie subgroups.623
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Geometrically, let �(t) = (x(t), X(t)) be a smooth curve in SE(n) with �(0) =624

(0, I), then its time derivative at t = 0, i.e., �̇(0) = (ẋ(0), Ẋ(0)), gives rise to an625

element in the Lie algebra se(n) by identifying se(n) with T(0,I)SE(n), the tangent626

space of SE(n) at the identity (0, I). Note that X(t) is a curve in SO(n) with X(0) = I,627

and hence we have Ẋ(0) 2 so(n). Therefore, every element (v,⌦) 2 se(n) also admits628

a matrix representation as629

(v,⌦) =


⌦ v

0 0

�
,630

631

where ⌦ 2 so(n) and v 2 R
n.632

Similar to so(n), se(n) is also a finite-dimensional vector space, and hence has a633

basis. Let {e1, . . . , en} denote the standard basis of Rn, and define R = {Rij 2 se(n) :634

Rij = (0,⌦ij), 1  i < j  n} and T = {Tk 2 se(n) : Tk = (ek, 0), 1  k  n}, then635

the set R[ T forms a basis of se(n). The following lemma then characterizes the Lie636

bracket relations among the basis elements of se(n).637

Lemma 5.1. The Lie brackets among elements in the basis of se(n) satisfy that638

[Rij , Rkl] = �jkRil+�ilRjk+�jlRki+�ikRlj, [Rij , Tk] = �jkTi��ikTj, and [Tk, Tl] = 0639

for all 1  i, j, k, l  n, where � is the Kronecker delta function.640

Proof. The proof follows from direction computations of Lie brackets by using the641

matrix representations of Rij , Rkl, Tk, and Tl. ⇤642

Notice that Lie brackets among the elements in R = {Rij : 1  i < j  n} follow643

the same relation as those elements in B = {⌦ij : 1  i < j  n} as shown in Lemma644

4.1. This indicates that the Lie algebra se(n) contains so(n) as a Lie subalgebra.645

Together with the inclusion of SO(n) in SE(n) as a Lie subgroup, a system defined646

on SE(n) also contains a system on SO(n) as a subsystem. These relations will help647

facilitate the controllability analysis of the system on SE(n).648

5.2. A decomposition method for controllability analysis of systems on649

SE(n). In this section, we focus on the controllability analysis of a single bilinear650

system defined on SE(n), which builds the foundation towards examining control-651

lability of an ensemble of such systems detailed in the next section. This analysis652

also illuminates the framework for analyzing controllability of systems induced by653

Lie group actions on vector spaces. Controllability of systems induced by Lie group654

actions has been extensively studied [7, 6, 26], however, these previous works were655

largely restricted to consider systems induced by free or transitive Lie group actions.656

Unfortunately, the action of SE(n) on R
n is neither free nor transitive, which disables657

the use of the previously developed conditions to examine controllability of systems658

on SE(n). Here, we leverage the semidirect product structure of SE(n) to decompose659

a system defined on this Lie group into two components, the rotational (SO(n)) and660

translational (Rn) components, so that controllability of SE(n) can be analyzed by661

individually examining that of each component. This approach works for systems on662

SE(n) because the semidirect product structure is independent of the freeness and663

transitivity of the group action. It is also potentially applicable to systems induced664

by general Lie group actions.665

For systems on SE(n), we are particularly interested in those governed by the666
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vector fields in R [ T of the form,667

d

dt


X x

0 1

�
=

 
m1X

s=1

us(t)


⌦isjs 0

0 0

�
+

m2X

l=1

vl(t)


0 ekl

0 0

�!
X x

0 1

�
,(5.1)668

(x(0), X(0)) = (0, I),669670

where ⌦isjs 2 B is a basis element of so(n), ekl is the kl-th standard basis vector of671

R
n, and us(t), vl(t) 2 R are piecewise constant control functions for all s = 1, . . . ,m1672

and l = 1, . . . ,m2. Because SE(n) contains SO(n) and R
n as Lie subgroups, the673

system in (5.1) can be decomposed into two subsystems on SO(n) and R
n, given by674

Ẋ(t) =
h m1X

s=1

us(t)⌦isjs

i
X(t), X(0) = I,(5.2)675

ẋ(t) =
h m1X

s=1

us(t)⌦isjs

i
x(t) +

m2X

l=1

vl(t)ekl , x(0) = 0,(5.3)676

677

representing the rotational and translational dynamics of the system, respectively.678

This decomposition enables a tractable way to understand controllability of the system679

in (5.1).680

Theorem 5.2. A system defined on SE(n) as in (5.1) is controllable if and only681

if its rotational component in (5.2) and translational component in (5.3) are simulta-682

neously controllable on SO(n) and R
n, respectively.683

Proof. (Necessity): Geometrically, SE(n) is trivially di↵eomorphic to R
n ⇥ SO(n)684

through the identity map (x,X) 7! (x,X). Therefore, if the system in (5.1) is con-685

trollable on SE(n), then the direct product of the controllable submanifolds of its686

subsystems in (5.3) and (5.2) must be R
n ⇥ SO(n), and hence, the systems in (5.2)687

and (5.3) are controllable on SO(n) and R
n, respectively.688

(Su�ciency): Given any XF 2 SO(n) and xF 2 R
n, it su�ces to show that there689

exist piecewise constant control inputs u1, . . . , um1 , v1, . . . , vm2 that simultaneously690

steer the systems in (5.2) from I to XF and (5.3) from 0 to xF .691

At first, we claim that m2 � 1 must hold if the system in (5.3) is controllable on692

R
n. Otherwise, the system reduces to693

ẋ(t) =
h m1X

s=1

us(t)⌦isjs

i
x(t),(5.4)694

695

which describes the dynamics of the system in (5.2) on SO(n) acting on R
n. However,696

the homogeneous spaces of the Lie group action of SO(n) on R
n are spheres centered697

at the origin [31]. Consequently, the controllable submanifold of the system in (5.4)698

must be contained in a sphere, which contradicts the controllability of the system on699

R
n.700

Now, let S
n�1
kxF k denote the sphere centered at the origin with radius kxF k, where701

k · k denotes the Euclidean norm on R
n, and V be the subspace of Rn spanned by702

ek1 , . . . , ekm2
, then V \ S

n�1
kxF k 6= ? holds. Pick a point z 2 V \ S

n�1
kxF k, because SO(n)703

acts on S
n�1
kxF k transitively [31], there exists A 2 SO(n) such that xF = Az.704

In the following, we will develop a control strategy to simultaneously steer the705

system in (5.2) from I to XF and the system in (5.3) from 0 to xF in three steps. First,706

because the system in (5.2) is controllable on SO(n), the control inputs u1, . . . , um1 can707
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be appropriately designed to steer the system from I to A
�1

XF , and simultaneously,708

the system in (5.3) stays at the origin by setting v1 = · · · = vm2 = 0. Then, we709

set u1 = · · · = um1 = 0 and apply v1, . . . , vm2 to steer the system in (5.3) from the710

origin to z. In this step, the rotational component in (5.2) stays at A
�1

XF . At last,711

u1, . . . , um2 can be turned on again to steer the system in (5.2) from A
�1

XF to XF .712

Since xF = Az, the translational component in (5.3) will be simultaneously steered713

to xF from z, which also completes the proof. ⇤714

The proof of Theorem 5.2 indeed provides a systematic control design procedure715

to simultaneously steer the systems in (5.2) and (5.3) between desired states, which716

concludes controllability of the system in (5.1). Alternatively, the proof can also be717

carried out algebraically by computing the Lie algebras generated by the control vector718

fields of these systems. Furthermore, notice that the translational component in (5.3)719

also involves the rotational dynamics through the SO(n) action on R
n, therefore, it is720

possible to completely determine controllability of the system in (5.1) on SE(n) solely721

by its translational component in (5.3) on R
n.722

Corollary 5.3. A system on SE(n) as in (5.1) is controllable if and only if723

its translational component in (5.3) is controllable on R
n and remains controllable724

on S
n�1 if x(0) 2 S

n�1 and vl = 0 for all l = 1, . . . ,m2, where S
n�1 denotes the725

(n� 1)-dimensional unit sphere centered at the origin.726

Proof. We have shown in the proof of Theorem 5.2 that if v1 = · · · = vm2 = 0,727

then the rotational component in (5.3) reduces to a system induced by the action of728

SO(n) on R
n. The conclusion then follows from the fact that this Lie group action is729

transitive on S
n�1 [31]. ⇤730

The above analyses for a single system defined on SE(n) o↵er the basics for us to731

move on to the ensemble case in the next section.732

5.3. Ensemble controllability of systems on SE(n). In this section, we will733

investigate controllability of an ensemble of bilinear systems defined on SE(n). In734

particular, we focus on the ensemble of the form,735

d

dt


X(t,�) x(t,�)

0 1

�
=

m1X

s=1

us(t)


�s⌦isjs 0

0 0

� 
X(t,�) x(t,�)

0 1

�
736

+
m2X

l=1

vl(t)


0 ekl

0 0

� 
X(t,�) x(t,�)

0 1

�
, X(0,�) = I, x(0,�) = 0,(5.5)737

738

where � = (�1, . . . ,�m1) is the parameter vector varying on a compact set K ⇢ H
m1 ,739

⌦isjs 2 B is a standard basis element of so(n) for each s = 1, . . . ,m1, and ekl is740

the kl-th standard basis vector of R
n for each l = 1, . . . ,m2. Analogous to the741

case of a single bilinear system defined on SE(n) discussed in the previous section,742

the ensemble system in (5.5) also admits a decomposition into its rotational and743

translational components as follows,744

d

dt
X(t,�) =

h m1X

s=1

�sus(t)⌦isjs

i
X(t,�), X(0,�) = I,(5.6)745

d

dt
x(t,�) =

h m1X

s=1

�sus(t)⌦isjs

i
x(t,�) +

m2X

l=1

vl(t)ekl , x(0,�) = 0,(5.7)746

747

which in turn leads to a characterization of ensemble controllability of the system in748

(5.5) in terms of ensemble controllability of its rotational and translational compo-749
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nents in (5.6) and (5.7), respectively.750

Theorem 5.4. An ensemble of systems as in (5.5) is ensemble controllable on751

C(K, SE(n)) if and only if its rotational component in (5.6) and translational compo-752

nent in (5.7) are ensemble controllable on C(K, SO(n)) and C(K,R
n), respectively.753

Proof. The proof is based on the development of a control strategy that simultaneously754

steers the ensemble systems in (5.6) and (5.7) between the respective desired states,755

which follows the same proof as for Theorem 5.2. Alternatively, we can also adopt756

the covering method by acting the cover U = {Ll
ij : l = 1, . . . , n � 2, 1  i < j  n}757

of C(K, so(n)) constructed in Theorem 4.2 on R
n. Consequently, U [ {ek1 , . . . , ekm2

}758

forms a cover of C(K,R
n), treated as the Lie algebra of the Lie group C(K,R

n).759

Then, the rest of the proof follows that of Theorem 4.2. ⇤760

In Theorem 4.2, we proved the remarkable result that an ensemble system on761

C(K, SO(n)) is ensemble controllable if and only if each individual system in this762

ensemble is controllable on SO(n). By using the decomposition in (5.6) and (5.7),763

this equivalence between ensemble controllability and classical controllability can be764

extended to ensemble systems defined on C(K, SE(n)).765

Corollary 5.5. The system in (5.5) is ensemble controllable on C(K, SE(n)) if766

and only if each individual system in this ensemble is controllable on SE(n).767

Proof. To facilitate the proof, we define the notations F1 = {⌦i1j1 , . . . ,⌦im1 jm1
},768

F2 = {⌦i1j1x, . . . ,⌦im1 jm1
x, ek1 , . . . , ekm2

}, G1 = {�1⌦i1j1 , . . . ,�m1⌦im1 jm1
}, and769

G2 = {�1⌦i1j1x, . . . ,�m1⌦im1 jm1
x, ek1 , . . . , ekm2

}.770

The necessity is obvious, so it remains to prove the su�ciency. Assume that771

each system with a fixed � 2 K in the ensemble (5.5) is controllable on SE(n),772

then by Theorem 5.2, any individual system in the ensemble (5.6) or (5.7) is also773

controllable on SO(n) or R
n, respectively. Hence, the ensemble system in (5.6) is774

ensemble controllable on C(K, SO(n)) by Theorem 4.2. Then, Theorem 5.4 implies775

that it su�ces to prove ensemble controllability of the system in (5.7) on C(K,R
n) =776

C(K,R)⌦R
n, which is equivalent to showing f(�)ek 2 Lie(G2) for any standard basis777

element ek 2 R
n and f 2 C(K,R) by Remark 2.778

Because each individual system in the ensemble (5.7) is controllable on R
n, there779

exists ⌦ij 2 F1 and el 2 F2 such that [⌦ijx, el] = ek. Furthermore, ensemble con-780

trollability of the system in (5.6) guarantees f(�)⌦ij 2 Lie(G1), which then gives781

[f(�)⌦ijx, el] = f(�)ek, i.e., f(�)ek 2 Lie(G2). Therefore, the ensemble system in782

(5.7) is ensemble controllable on C(K,R
n). ⇤783

As a consequence of Theorem 5.4 and Corollary 5.5, the equivalence between784

ensemble controllability and classical controllability also holds for the translational785

component of the ensemble system as in (5.7). This in turn gives rise to a char-786

acterization of ensemble controllability of systems on C(K, SE(n)) solely by their787

translational components.788

Corollary 5.6. The system in (5.5) is ensemble controllable on C(K, SE(n)) if789

and only if its translational component in (5.7) is ensemble controllable on C(K,R
n),790

and remains ensemble controllable on C(K, S
n�1) if x(0, ·) 2 C(K, S

n�1) and vl = 0791

for all l = 1, . . . ,m2.792

Proof. The proof directly follows from Theorem 5.4 and Corollaries 5.3 and 5.5. ⇤793

Notice that the proof of Corollary 5.5 relies on ensemble controllability of systems794

evolving on C(K, SO(n)). Because all the results regarding ensemble controllability795

of systems on C(K, SO(n)) established in Section 4.3 concerned the cases of n � 3,796
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they do not apply to systems defined on C(K, SE(2)).797

Remark 5. An ensemble of systems on SE(2) in the form of (5.5) admits a798

decomposition,799

d

dt
X(t,�) = �u(t)


0 �1
1 0

�
X(t,�), X(0,�) = I,(5.8)800

d

dt
x(t,�) = �u(t)


0 �1
1 0

�
x(t,�) +


1
0

�
v(t), x(0,�) = 0,(5.9)801

802

where X(t, ·) 2 C(K, SO(2)) and x(t, ·) 2 C(K,R
2) for each t � 0, and � 2 K ⇢ H803

with K compact. According to Remark 3, the rotational component in (5.8) is not804

ensemble controllable on C(K, SO(2)), or, equivalently, the translational component805

in (5.9) is not ensemble controllable on C(K, S
1) for v(t) = 0 and x(0, ·) 2 C(K, S

1).806

This implies uncontrollability of this ensemble on C(K, SE(2)) by Theorem 5.4. How-807

ever, this does not hinder controllability of the translational component in (5.9) on808

C(K,R
2). In particular, let u(t) = 1 be a constant control input, then the ensemble809

system in (5.8) becomes a linear ensemble system with linear parameter variation,810

studied in our previous work [36]. Because the system matrix A(�) = �


0 �1
1 0

�
811

has disjoint spectra i.e., the images of the two eigenvalue functions, �1(�) = i� and812

�1(�) = �i�, are disjoint, this ensemble system representing the translational com-813

ponent is ensemble controllable [36].814

Remark 6. In our previous work on linear ensemble systems, the equivalence815

between ensemble controllability and classical controllability requires disjoint spectrum816

among the system matrices of individual systems [39]. However, for bilinear ensemble817

systems, the equivalence revealed by utilizing the covering method holds naturally due818

to their algebraic structure. This finding also indicates that bilinear ensemble systems819

are easier to be ensemble controllable than linear ensemble systems, which is owing to820

the nonlinearity in bilinear systems.821

6. Conclusion. In this paper, we propose a unified framework for analyzing en-822

semble controllability of bilinear ensemble systems defined on semisimple Lie groups.823

Our main contribution is to develop the covering method that leverages the covering824

of the state-space Lie group of an ensemble system by its Lie subgroups to enable the825

controllability analysis of an ensemble through its ensemble subsystems. Exploiting826

this method, we establish the equivalence between ensemble and classical controlla-827

bility. This nontrivial property not only reduces the analysis of infinite-dimensional828

ensemble systems to finite-dimensional single systems, but also empowers the utiliza-829

tion of controllability conditions developed for classical bilinear systems for examining830

ensemble controllability for bilinear ensemble systems, for example, the LARC and831

the symmetric group-theoretic controllability conditions in terms of permutation or-832

bits developed in our recent works [54, 53]. Moreover, this equivalence property holds833

for bilinear ensembles in which the individual systems are defined on non-compact834

Lie groups, in particular those induced by Lie group actions on vector spaces. This835

work broadens our understanding of ensemble control systems and opens the door for836

systematic investigation of fundamental properties of nonlinear ensemble systems.837
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