1 Emerging technologies for monitoring plant health in vivo.

- 2 Jenna M. Roper¹, Jose F. Garcia¹, and Hideaki Tsutsui^{1,2}*
- 3 Department of Bioengineering and ²Department of Mechanical Engineering at University of California Riverside, Riverside,

4 92521

5 900 University Ave, Riverside, CA 92521

6

8

10

11

12

13

24

26

27

30

35

37

41

42

43

44

45

46

7 KEYWORDS in vivo, plant diagnostic, plant biosensors

ABSTRACT: In the coming decades, increasing agricultural productivity is all-important. As the global population is growing rapidly and putting increased demand on food supply, poor soil quality, drought, flooding, increasing temperatures, and novel plant diseases are negatively impacting yields worldwide. One method to increase yields is plant health monitoring and rapid detection of disease, nutrient deficiencies, or drought. Monitoring plant health will allow for precise application of agrichemicals, fertilizers, and water, in order to maximize yields. *In vivo* plant sensors are an emerging technology with the potential to increase agricultural productivity. In this mini-review, we discuss three major approaches of *in vivo* sensors for plant health monitoring, including genetic engineering, imaging and spectroscopy, and electrical.

15 1. Introduction

There is a critical demand for more sustainable agriculture 49 practices to increase crop yields to meet the demand for a 50 rapidly growing population. The UN estimated that by 2050 the 51 global population is expected to reach 9.8 billion people. 52 However, farmers are facing many obstacles, such as extreme 53 temperatures, soil degradation, and drought, that are expected 54 to worsen as the climate changes. Increased sustainable 55 agricultural practices are needed to ensure high yields that 56 utilize minimal inputs and are minimally destructive to the land. 57

Plant health monitoring is one such method to increase yields and decrease environmental impact. Using low-cost, in-field plant health monitoring, water level, soil quality, and presence 60 of pathogens and pests could be constantly monitored. 61 Expensive agrichemicals and water can be used in a directed 62 manner for optimal plant growth. Pathogen detection would 63 allow for immediate corrective action to prevent disease from 64 spreading. There are many agricultural practices and 65 technologies currently employed by farmers to maximize 66 yields, such as crop rotation to improve soil health, use of 67 genetically modified seeds, or monitoring plants for presence of 68 pathogens and pests by planting non-native plants, or sentinel 69 plants.² There are also many diagnostic technologies employed 70 to detect disease. However, current, laboratory-based 71 techniques for plant diagnostics are not adequate for point-of-72 use plant monitoring. There are several point-of-use $7\overline{3}$ technologies that have been developed, such as lateral flow 74 devices, or portable devices for in field use.3 However, these 75 types of devices require harvesting and processing plant tissue, 76 which is not conducive to continuous monitoring.

Nanotechnology in plants is an emerging field in the last 78 decade that has the potential to create more productive systems 79 of agriculture. The use of nanotechnology has been extensively 80

studied for applications in human health, medicine, pharmaceuticals, and wearable devices. Even implantable sensors for continuous monitoring in humans is possible. Nanotechnology has the potential to improve agriculture in several ways including formulation of nano-fertilizers and agrichemicals, novel delivery mechanisms for agrichemicals, nanosensors for disease detection, nano-devices for genetic modification, post-harvest crop management. For a thorough review of plant nanotechnology, refer to Giraldo et al. Here, we solely focus on emerging technologies for *in vivo* plant sensors for monitoring plant health.

2. Genetic Engineering Approach

2.1 Synthetic Biology

One class of in vivo plant sensors, phytosensors, were developed using synthetic biology. Liu and Stewart comprehensively reviewed the major applications of synthetic biology to plants, including phytosensors.⁶ Phytosensors are plants that report plant pathogens, toxins, or nutrients. Plants have an innate, inducible defense mechanism to protect against pathogens, toxins, and nutrient deficiencies. Phytosensors are created by fusing reporter genes, such as fluorescent proteins. to synthetic inducible plant defense promoters. By fusing reporter genes to plant stress promoters, plants sense plant pathogens at a molecular level and quickly have a visible-tothe-naked-eye read out. This allows for rapid detection, as there is often several days or weeks from the point of infection to presentation of visible symptoms. Since plants naturally sense biotic and abiotic changes and alter biochemical and gene expression patterns, phytosensors hold a lot of promise as a modular, easily modified biosensor. This type of sensor is feasible for on-the-ground, in-field detection, or could be used on a larger scale to monitor fields via satellite images with image detection software. There are several proof-of-concept

27

29

30

34

35

36

37

38

39

41

studies. Mazari et al. used elements from the promoter regions 43 of pathogen-inducible genes and genes responsive to plant 44 defense signal molecules such as salicylic acid, jasmonic acid, 45 and ethylene.⁷ They used Arabidopsis and tobacco as their 46 model hosts and transformed them with the pathogen-inducible $_{47}$ synthetic promoters fused with reporter gene, GUS. 48
Phytohormone treatment showed that the expression of GUS 49
was increased compared to the control (Fig. 1). Transformed 50 tobacco plants had an increased expression of GUS when 51 infected with Alfalfa Mosaic Virus, but not Tobacco Mosaic 52 Virus, demonstrating that different promoters could be used to 53 detect different targets. In another study, Fethe et al. 54 transformed 4 pathogen-inducible promoter elements fused to 54 orange fluorescent protein into Arabidopsis and tobacco.8 They 55 tested the robustness and predictability of the transgene by 56monitoring the transgenic tobacco throughout two field seasons. 57 They found 3 of 4 transgenic lines maintained expected 58 fluorescence signal. In particular, 1 line was specifically 59 induced by bacterial phytopathogens and showed an increase in 60 fluorescence only 48 hours post infection, much sooner than 61 visible symptoms. These studies demonstrate the feasibility of 62 phytosensors in live plants and in field settings. There are many 63innate plant responses that could be used in the design of 64 phytosensors, though the degree of specificity and sensitivity 65 would vary greatly among each promoter and element and 66 would require widespread studies.

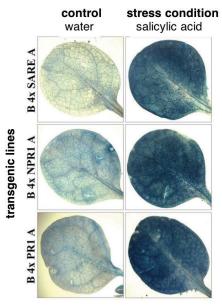


Figure 1. Histochemical analysis of GUS expression in 90 transgenic Tobacco after 24 hours. Reporter Expression is 91 higher in Tobacco leaves under stress condition (right) 92 compared to control (left). Adapted with permission from ref. 93 7. Copyright 2008, Multidisciplinary Digital Publishing 94 Institute.

3. Imaging and Spectroscopic Approaches

Another method of rapid diagnostics is through imaging and 99 spectroscopy. Molecular methods that use spectroscopy, such 90 as real-time PCR and ELISA are common methods for plant 90 disease diagnostics but are highly invasive. They will not by 90 covered in this mini-review. Imaging includes techniques such 90 as thermography, RGB imaging, fluorescent imaging, and 90

hyperspectral imaging. Spectroscopy techniques included in this mini-review are Raman spectroscopy, x-ray spectroscopy, and mass spectrometry.

3.1 Imaging

68

69

70

71

72

73

79

80

81

83

84

85

86

87

88

89

96

97

98

Thermography imaging detects heat emitted by objects; it's often used to survey large stretches of land at once. Changes in plant temperature can be attributed to a number of factors including pathogen response, such as closing stomata, or abiotic stress. While this method is ideal for monitoring large fields and is non-invasive, it is an indirect and non-specific detection method.

RGB imaging utilizes digital cameras to measure any changes in transmittance. Simple digital images and videos have been used for monitoring a diverse set of plants in field. It can be used for single plants, such as a smartphone sensor, or used with drones to monitor large fields. Notably, machine learning algorithms are being designed to detect patterns that indicate disease. A comprehensive review by Mahlein points out several uses of RGB imaging. ¹⁰ Since RGB imaging relates changes in color to changes in plant health, it is an indirect method and cannot always provide specific insight into factors effecting the plant. It will not be further discussed in this minireview.

Fluorescent imaging is similar to RGB imaging; however, it often includes a laser, in addition to a camera, in order for fluorescent excitation. The most common use of fluorescent imaging is chlorophyll fluorescence imaging, where the fluorescence of a leaf or plant is compared to surrounding plants or to a baseline value. Chlorophyll naturally fluoresces when excited by certain light. Several studies have utilized this occurrence by relating fluorescence to the activity of photosynthesis. Bolhàr-Nordenkamf and colleagues used chlorophyll fluorescence to determine the photosynthetic activity of leaves collected from areas with different ambient air pollution and different agrichemical treatments.¹¹ These different factors altered the chlorophyll fluorescence, indicating some interruption in photosynthetic activity. This study also outlined several possibilities for portable, in-field devices. Since chlorophyll is fluorescent under intense sunlight, a simple fluorimeter can be used to take measurements in field. Though this method is non-invasive, non-destructive, and easily adaptable to in-field use, it is non-specific and unable to diagnose specific abiotic or biotic stressors. Leaf fluorescence fluctuates often and in response to multiple biotic and abiotic factors. For a comprehensive review on chlorophyll fluorescence, refer to Mohammed et al. 12

Hyperspectral imaging is a technique that analyzes light across the electromagnetic spectrum to evaluate changes that are not always visible in RGB images. Though it can detect more nuanced changes than visual or fluorescence images, it can only be used to detect general changes in plant surfaces. With further studies, hyperspectral patterns can be attributed to specific conditions. For example, Zhang et al. analyzed hyperspectral features of yellow rust disease and after statistical analysis were able to differentiate yellow rust from nutritional deficiencies.¹³

In the following studies, polydiacetylene (PDA) polymer and DNA-functionalized single walled carbon nanotubes were incorporated into leaves before imaging. Both techniques were solely carried out in a lab setting, though both show promise of potential in-field applications that incorporate materials directly into live plant leaves for diagnostics. In order to measure the

30

34

35

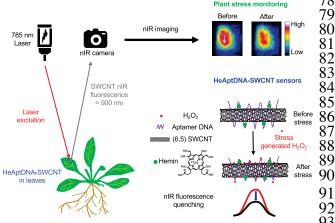
36

37

38

39

40


41 42

43

45

47

amount of water output from individual stomata. See et al. 48 developed a PDA based brush-on sensor with a hydrochromic 49 PDA system.¹⁴ Diacetylene monomers were brushed on the 50 abaxial side of the leaf and photopolymerized. Fluorescence 51 microscopy was used to detect change in moisture, as the 52 polymer undergoes blue to red transition in response to changes 53 in moisture coming from individual stomata. With fluorescence 54 microscopy, open stomata can be detected to see possible 55 environmental effects (temperature, wind or humidity) on 56 stomata activity. This is a small scale, lab-based application, but 57 has the potential to be used for in-field diagnostic methods. Wu 58 et al. developed a hydrogen peroxide sensor based on 50 functionalized single walled carbon nanotubes (SWCNTs) and 60 near infrared fluorescent imaging. 15 Hydrogen peroxide is 61 generated in response to plant stresses. In this study, the effect 62 of UV-B, high light, wounding, and pathogen-related stresses 63 were tested, in addition to direct application of hydrogen 64 peroxide. The SWCNTs were functionalized with the aptamer 65 sequence that binds to porphyrins and enabled specific binding 66 to hemin, allowing hydrogen peroxide to react with hydroxyl 67 radicals and results in fluorescence quenching in the near-68 infrared range (Fig. 2). In conditions of direct hydrogen 69 peroxide application and in stress conditions, florescent 70 emissions were reduced. This nanosensor is able to provide 71 early signs on stress and could be optimized for precision 72 agricultural practices and monitoring of plant health. SWCNTs 73 can be functionalized using varying methods for detection of a 74 wide-variety of analytes.16

77

78

Figure 2. *In vivo* monitoring of plant health by SWCNT $^{93}_{94}$ sensors for H_2O_2 . SWCNTs functionalized with a DNA aptamer 95 that binds to hemin (HeAptDNA-SWCNT) quench their nIR 96 fluorescence upon interaction with H_2O_2 generated by the onset 97 of plant stress. The spatial and temporal changes in nIR 98 fluorescence intensity in leaves embedded with HeAptDNA-99 SWCNT sensors are remotely recorded by a nIR camera to assess plant health status. Adapted with permission from ref. 15 Copyright 2020, American Chemical Society.

3.2 Spectroscopy

Raman spectroscopy detects vibrational frequencies of molecules; it can be used to determine the chemical footprint of a structure in order to identify molecules. Simply, a sample is illuminated with a monochromatic laser. The light interacts with the sample and the resulting shift in energy gives insight

into the molecules contained within a sample. Raman spectroscopy is nondestructive and biochemically safe for detection of molecules in highly complex samples.

Altangerel et al. developed a portable Raman spectroscopy instrument and used coleus lime as their model organism.¹⁷ Two photosynthetic pigments, anthocyanins and carotenoids, were the target molecules for the Raman study. Carotenoids are a first line of defense against reactive oxygen species (ROS) and anthocyanins, which block harmful irradiation, increase biosynthesis in response to several environmental factors. Four methods of abiotic stress were applied: light irradiation, cold, drought, and saline stress. Using both a Raman microscope and the portable Raman instrument, the relative concentration of carotenoids and anthocyanins, which are indicative of abiotic stress, were determined 2 days after light, cold, drought, and saline stress are applied. The concentration of carotenoids and anthocyanins indicated presence of stress in the plant before physical symptoms arose (Fig. 3). Both results were confirmed with chemical analytical extractions. The changes to these pigments over time showed Raman spectroscopy was a method to accurately measure these molecules and indicated there was a functional relationship between the molecules and response to excessive ROS during abiotic stress. The portable Raman instrument had limitations; it was unable to detect anthocyanins. However, further optimization could expand the capabilities. Gupta et al. developed a portable Raman leaf clip sensor that can distinguish between nitrogen-rich and nitrogendeficient plants.¹⁸ Raman has also been shown to detect pathogens and pests that live within host seeds⁹ and the presence of chemical pesticides.¹⁹

X-ray fluorescence (XRF) spectrometry is a non-destructive method used to determine the chemical composition of many sample types. In XRF an x-ray beam interacts with the sample and the fluorescent x-rays produced can be used to identify the elements in the sample. Montanha et al. used XRF along with an infrared gas analyzer to elucidate the uptake kinetics of aqueous Zn and Mn in soybean leaves and stems for 48 hours. The authors also monitored elemental distribution changes in plants exposed to x-rays in order to see the effect of localized x-ray exposure on live plant tissue. Typical XRF did not cause visible damage, dehydration, or elemental redistribution in live plants, though the long-term effects of low dose x-ray exposure have not been studied.

Mass spectrometry is a method used to determine the mass-to-charge ratio of ions; there are several different types depending on the sample to be analyzed. Ambient ion mass spectrometry allows for mass spectrometry analysis without typical sample manipulation, such as a high vacuum environment. Low temperature plasma can be used to ionize samples at ambient air. Low temperate plasma (LTP) is a relatively gentle method of ionizing. Martínez-Jarquín et al. demonstrate that LTP-mass spectroscopy is gentle enough to be used to analyze nicotine biosynthesis in live tobacco plants.²¹

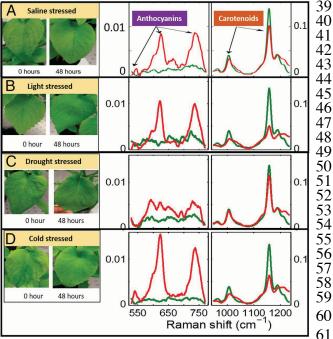


Figure 3. Raman chemical footprints for two compounds, anthocyanins and carotenoids in various stress conditions. Adapted with permission from ref. 17. Copyright 2017, National Academy of Sciences.

3.3 Combination Approaches

1

3

5

6

7

8

9

10

11

12

13

14

15

17

18

19

20

21

26

33

34

35

37

68 There is a recent influx of methods that combine two or more 69imaging or spectroscopy method for more accurate diagnostics $\frac{3}{70}$ and more sensitive detection.

A method by Crawford et al. allows for *in vivo* monitoring of $7\frac{1}{2}$ genomic targets by integrating plasmonic nanoprobes and three $7\overline{3}$ complimentary techniques to image and sense the probes: 74 surface-enhanced Raman scattering (SERS), fluorescence (XRF), and plasmonic-enhanced two-photon 76 luminescence (TPL). ²² This study used plasmonic-active silver- 77 coated gold nanostars functionalized with double stranded 78 DNA, which changes conformation in the presence of a specific 79biotarget.22 These probes were used to detect miR156, an 80 miRNA in Arabidopsis, but they could be used to sense a wide 81variety of biotargets. The probes were first used in Arabidopsis 82 using SERS tags to verify agreement among imaging $8\overline{3}$ modalities. Then, nanoprobes to detect miR156 were used. 84 Raman imaging only detects the probe when it binds to its 85target. TPL and XRF detect the probe regardless of interaction 86 with target. XRF signal was used to normalize the signal from 87Raman, allowing for quantification, an important aspect of 88 biosensing. Not only can this method be used to track changes $\tilde{89}$ over time of a given target but can be used for diagnostics of $\overline{q_0}$ plant pathogens. In other studies, thermal imaging and \tilde{q}_1 fluorescence imaging were complementary to each other in $9\overline{2}$ monitoring for plant stress.24 93

4. Electrical-Based Approaches

94 Lastly, there are many studies using an electrical components for in vivo plant monitoring. While this requires external equipment, the use of nanotechnology allows for devices that can be integrated into plants.

4.1 Microneedle Electrodes

A study by Jeon et al. looked at measuring salinity, an important factor in plant health and crop yield.²⁵ They developed a real-time monitoring system to detect salinity in a non-destructive manner through electrical conductivity inside the stems of tomato plants. They designed a self-contained unit, including a microneedle electrode and electrode pad, that can be inserted into the stem of a tomato plant for monitoring saline levels. This device was tested in greenhouse conditions and in field conditions. In field conditions, there was a decrease in signal noise and a decrease in electrical conductivity measurements, though the authors believe that decreased signal can be fixed by redesigning the electrical components to make it more practical for in field use. A similar methodology, employing a thermal microneedle probe, was used to measure xylem sap movement in tomato stems.²⁶ Daskalakis et al. used maize as a model system to develop a similar microneedle leaf sensor.²⁷ However, their device takes canopy temperature measurements that can be used for water stress measurements. It can be calibrated for any plant, soil type, and relative humidity. It is powered by solar and emits data wirelessly through antenna.

4.2 Organic Electrochemical Transistor-Based Sensors

62

63

64

65

66

67

An organic electrochemical transistor sensor (OECT) has been explored for use in biosensing. Simply, a conductive polymer film or channel is placed in direct contact with an electrolyte and electrodes. There are a source and drain electrode connected to the channel and a gate electrode that establishes electrical connection to the electrolyte. A common OECT sensor is made using the conductive polymer poly(3,4ethylenedioxythiophene) (PEDOT) doped with various side groups.

Coppede et al. developed a OECT sensor for continuous monitoring of plant health based on changes to solutes in sap.²⁸ This study used tomato as their model organism, as commercially grown tomato requires optimization of conditions throughout its cropping cycle and yield and quality is largely variable. Here, OECT sensors are integrated into plant stems using cotton fibers. These sensors are highly biocompatible and commonly integrated into textiles to detect sweat. Commercial cotton fiber was functionalized by soaking in the conductive polymer and letting dry in the oven. Functionalized cotton was inserted into tomato stem and cut so it protruded from each end of the stem. Thin metal wire was attached to either end of the cotton thread and a third thin wire was introduced as the gate electrode (Fig. 4). A time constant and resistance (based on voltage across sensor) were measured. These can be used to deduce the physiological state of the plant. This is an indirect measurement but can be used to transduce physiological state and be used to continuously monitor over a prolonged period. Recently, their group demonstrated the use of this sensor for drought detection in tomato plants. Using a bioristor sensor, drought stress was detected only 30 hours from withholding of water.²⁹ Diacci et al. also utilized OECT sensors to measure the glucose and sucrose levels in xylem sap of aspen trees.³⁰

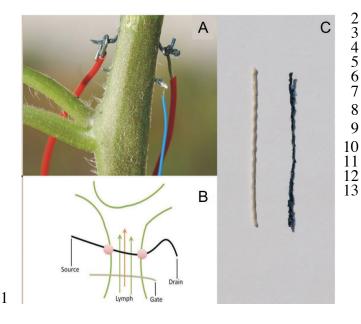


Figure 4. (A) Textile device inserted through the plant stem. (B) Electrical connections of device. Green: plant stems, Black: textile, Grey: electrode, Arrows: direction of flow. (C) untreated cotton (left) and treated cotton (right). Adapted with permission from ref. 28. Copyright 2017, Nature Publishing Group.

5 Conclusion

There are a diverse set of needs for better plant diagnostic technologies. The best technology for a given farmer will depend on the size of land they are farming, the specific needs of

Table 1. Overview of in vivo plant sensors

Ref. No.	Category	Method	Plant condition/disease of interest	Target	Range of detection or time to detection
7	Synthetic biology	Synthetic plant defense promoters fused to reporter genes and used to transform tomatoes	General plant stress	Plant defense hormones,	24-72 hours post infection
15	NIR fluorescent imaging and functionalized SWCNT	SWCNT functionalized to detect H ₂ O ₂	General plant stress	H ₂ O ₂	50 minutes post H_2O_2 addition, detection from $1 \mu M - 1 \text{ mM H2O2}$
26	Electronic	Microneedle sensor inserted into tomato stem	Plant response to light, humidity, and soil water content	Sap flow	In vivo sensor values were within 10% of values measured with control method
29	Electronic	OECT sensor inserted though tomato stem	Drought	Ion concentration (Na ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺)	Detect onset of drought within 30 hours of withholding of water
30	Electronic	OECT sensors inserted into xylem of Aspen trees	Photosynthesis	Sucrose and glucose	100 μm – 1 mM

17 18

141516

their crops, and the natural, social, and economical 33 environment they are in. Developing an array of sensors and 34 innovate technologies is important in meeting agricultural 35 demands of a larger population. Current technology for 36 measuring plant health or diagnosing disease is expensive, 37 invasive, and often requires sending samples to central facilities 38 for processing. Nanotechnology and advanced spectroscopy 39 techniques are emerging technologies for diagnosing plant 40 disease and detecting plant distress, all with the common goal of increasing yield in a sustainable way. Table 1 illustrates the diversity in sensor type and target. Current challenges of these technologies are implementing them in field settings. Many of these studies are proof-of-concept demonstrations and would 43 require further investigations to determine the efficacy in field. Factors important to consider for a successful *in vivo* sensor

include, but not limited to, accuracy, specificity, sensitivity, durability, cost, ease-of use, and environmental impacts. These sensors could allow for precision agriculture, where expensive resources are used in a directed manner and crop yield is maximized. Moreover, making these technologies affordable and accessible to large-scale and small-scale farmers alike is vital, as both are important in increasing production.

AUTHOR INFORMATION

Corresponding Author

Hideaki Tsutsui — Department of Mechanical Engineering, 1 2 3 4 University of California Riverside, Riverside, CA, 92521, USA; Email: htsutsui@engr.ucr.edu 5

Authors

Jenna M. Roper — Department of Bioengineering, University of California Riverside, Riverside, CA, 92521, USA; Email: jrope001@ucr.edu

Jose F. Garcia — Department of Bioengineering, University of California Riverside, Riverside, CA, 92521, USA; Email: jgarc346@ucr.edu

13

6

8

9 10

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

19 20

Note

The authors declare no competing financial interest.

Biographies

Jenna M. Roper completed her Bachelor's degree in 44 Bioengineering from the University of California, Riverside in 45 2017. In 2017, she began to pursue Ph.D. at the same institution 46under the guidance of Dr. Hideaki Tsutsui. Her research interests 47 include polydiacetylene-based biosensors for plant disease 48 detection. 49

Jose F. Garcia is an undergraduate student in the Bourns College of Engineering at the University of California, Riverside. He will graduate with a B.S. in Bioengineering in 2022. Garcia has a strong interest in the field of biotechnology and biosensor development.

Hideaki Tsutsui is an Associate Professor of the Department of Mechanical Engineering at the University of California, Riverside. He is also a participating faculty member of the Department of Bioengineering and the UCR Stem Cell Center. He received a B.E. from the University of Tokyo (2001), a M.S. from the University of California, San Diego (2003), and a Ph.D. from the University of California, Los Angeles (2009), all in Mechanical Engineering. He then conducted postdoctoral research during 2009-2011 at the Center for Cell Control and the Mechanical and Aerospace Engineering Department at UCLA. His current research interests include low-cost medical and agricultural biosensors, and macroand micro-fluidic tools for cell-based biomanufacturing. He is a recipient of a Grand Challenges Explorations Phase I Award from the Bill & Melinda Gates Foundation (2012) and a Faculty Early Career Development Program (CAREER) Award from National Science Foundation (2017). He was named the 2018 Class of Influential Researchers by Industrial & Engineering Chemistry Research. He serves on the editorial board of SLAS Technology.

ACKNOWLEDGMENT

60 This work was funded by the National Science Foundation, grant number 1654010.

62 REFERENCES

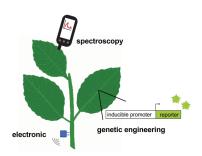
32

- 1 1. Tilman, D.; Balzer, C.; Hill, J.; Befort, B. 51
- L., Global food demand and the sustainable 52
- intensification of agriculture. Proc. Natl. Acad. 53
- 4 *Sci. U.S.A.* **2011,** *108* (50), 20260-20264.
- 5 2.

54

59

70


- T.; Bell, N. L.; Kean, J. M.; Barratt, B. I.; Boyd-56
- Wilson, K.; Teulon, D. A., The value of sentinel 57
- plants for risk assessment and surveillance to 58
- 9 support biosecurity. NeoBiota 2019, 48, 1.
- Li, Z.; Yu, T.; Paul, R.; Fan, J.; Yang, Y.; 60 10 3.
- Wei, Q., Agricultural nanodiagnostics for plant 61 11
- 12 diseases: recent advances and challenges. 62
- Nanoscale Adv. 2020, 2 (8), 3083-3094. 13 63
- Bobrowski, T.; Schuhmann, W., Long-64 14 4.
- term implantable glucose biosensors. Curr. Opin. 65 15
- *Electrochem.* **2018,** *10*, 112-119.
- 5. Giraldo, J. P.; Wu, H.; Newkirk, G. M.; 67 17
- Kruss, S., Nanobiotechnology approaches for 68 18
- 19 engineering smart plant sensors. Nat. 69
- Nanotechnol. 2019, 14 (6), 541-553. 20
- Liu, W.; Stewart Jr, C. N., Plant synthetic 71 21 6.
- 22 biology. Trends Plant Sci. 2015, 20 (5), 309-317. 72
- Mazarei, M.; Teplova, I.; Hajimorad, M.73 23 7.
- R.; Stewart, C. N., Pathogen phytosensing: plants 74
- to report plant pathogens. Sensors 2008, 8 (4),75 25
- 26 2628-2641. 76
- Fethe, M. H.; Liu, W.; Burris, J. N.; 77 27 8.
- 28 Millwood, R. J.; Mazarei, M.; Rudis, M. R.; 78
- Yeaman, D. G.; Dubosquielle, M.; Stewart Jr, C. 79
- N., The performance of pathogenic bacterial 80
- phytosensing transgenic tobacco in the field. Plant 81
- Biotechnol. J. 2014, 12 (6), 755-764.
- 9. Farber, C.; Mahnke, M.; Sanchez, L.; 33
- Kurouski, D., Advanced spectroscopic techniques 83 34
- for plant disease diagnostics. A review. TrAC, 84
- 36 Trends in Anal. Chem. 2019, 118, 43-49.
- Mahlein, A. K., Plant Disease Detection by ⁸⁶ 37 10.
- Imaging Sensors Parallels and Specific Demands 87 38
- for Precision Agriculture and Plant Phenotyping. 88
- 40 Plant Dis. **2016**, 100 (2), 241-251.
- $Bolhar-Nordenkampf, H.; Long, S.; Baker, \\ ^{90}$ 41 11.
- 42 N.; Oquist, G.; Schreiber, U.; Lechner, E.,
- Chlorophyll fluorescence as a probe of the 92 43
- photosynthetic competence of leaves in the field: 93
- a review of current instrumentation. Funct. Ecol. 94 45
- **1989**, 497-514. 46
- R.; 96 47 12. Mohammed, G. H.; Colombo,
- Middleton, E. M.; Rascher, U.; van der Tol, C.; 97
- Nedbal, L.; Goulas, Y.; Pérez-Priego, O.; Damm, 98
- A.; Meroni, M., Remote sensing of solar-induced 99 50

- chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 2019, *231*, 111177.
- 13. Zhang, J.; Pu, R.; Huang, W.; Yuan, L.; Mansfield, S.; McNeill, M. R.; Aalders, L. 55 Luo, J.; Wang, J., Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Field Crops Res. **2012,** *134*, 165-174.
 - 14. Seo, M.; Park, D.-H.; Lee, C. W.; Jaworski, J.; Kim, J.-M., Fluorometric measurement of individual stomata activity and transpiration via a "brush-on", water-responsive polymer. Sci. Rep. **2016**, 6 (1), 1-10.
 - Wu, H.; Nißler, R.; Morris, V.; Herrmann, N.; Hu, P.; Jeon, S.-J.; Kruss, S.; Giraldo, J. P., Monitoring Plant Health with Near-Infrared Fluorescent H2O2 Nanosensors. Nano Lett. 2020, 20 (4), 2432-2442.
 - 16. Lew, T. T. S.; Park, M.; Cui, J.; Strano, M. S., Plant Nanobionic Sensors for Arsenic Detection. Adv. Mat. 2021, 33 (1), 2005683.
 - 17. Altangerel, N.; Ariunbold, G. O.; Gorman, C.; Alkahtani, M. H.; Borrego, E. J.; Bohlmeyer, D.; Hemmer, P.; Kolomiets, M. V.; Yuan, J. S.; Scully, M. O., In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (13), 3393-3396.
 - 18. Gupta, S.; Huang, C. H.; Singh, G. P.; Park, B. S.; Chua, N.-H.; Ram, R. J., Portable Raman leaf-clip sensor for rapid detection of plant stress. Sci. Rep. 2020, 10 (1), 1-10.
 - Pang, S.; Yang, T.; He, L., Review of 19. surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC, *Trends in Anal. Chem.* **2016,** *85*, 73-82.
 - 20. Montanha, G. S.; Rodrigues, E. S.; Marques, J. P. R.; de Almeida, E.; dos Reis, A. R.; de Carvalho, H. W. P., X-ray fluorescence spectroscopy (XRF) applied to plant science: challenges towards in vivo analysis of plants. Metallomics 2020, 12 (2), 183-192.
 - 21. Martínez-Jarquín, S.; Herrera-Ubaldo, H.; de Folter, S.; Winkler, R., In vivo monitoring of nicotine biosynthesis in tobacco leaves by lowtemperature plasma mass spectrometry. Talanta **2018,** 185, 324-327.
 - Crawford, B. M.; Strobbia, P.; Wang, H.-N.; Zentella, R.; Boyanov, M. I.; Pei, Z.-M.; Sun,

- 1 T.-P.; Ke
 2 nanoprob
 3 bioimagi
 4 Appl. Ma
 5 23. C
 6 Van Der
 7 plant po
 8 chloroph
 9 2007, 58
 10 24. W
 11 Phenotyp
 12 high-thro
 13 thermal i
 14 (1), 116.
 15 25. Je
 16 Rathod, 1
 17 conductiv
 - T.-P.; Kemner, K. M.; Vo-Dinh, T., Plasmonic 27 nanoprobes for in vivo multimodal sensing and 28
 - 3 bioimaging of microRNA within plants. ACS 29
 - 4 Appl. Mater. Interfaces **2019**, 11 (8), 7743-7754. 30
 - 5 23. Chaerle, L.; Leinonen, I.; Jones, H. G.; 31
 - 6 Van Der Straeten, D., Monitoring and screening 32
 - 7 plant populations with combined thermal and 33
 - 8 chlorophyll fluorescence imaging. J. Exp. Bot. 34
 - 9 **2007,** 58 (4), 773-784.
- 10 24. Wang, L.; Poque, S.; Valkonen, J. P.,36
- 11 Phenotyping viral infection in sweetpotato using a 37
- 12 high-throughput chlorophyll fluorescence and 38
- 13 thermal imaging platform. *Plant methods* **2019**, *15* 39
- 14 (1), 116. 40 15 25. Jeon, E.; Choi, S.; Yeo, K.-H.; Park, K. S.; 41
- 16 Rathod, M. L.; Lee, J., Development of electrical 42
- 7 conductivity measurement technology for key 43
- 18 plant physiological information using microneedle 44
- 19 sensor. J. Micromech. Microeng. **2017**, 27 (8),45
- 20 085009.
- 21 26. Baek, S.; Jeon, E.; Park, K. S.; Yeo, K.-H.; 47
- 22 Lee, J., Monitoring of water transportation in plant 48
- 23 stem with microneedle sap flow sensor. $J._{49}^{70}$
- 24 Microelectromech. Syst. **2018**, 27 (3), 440-447. 50
- 25 27. Daskalakis, S. N.; Goussetis, G.; $\frac{51}{52}$
- 26 Assimonis, S. D.; Tentzeris, M. M.; Georgiadis,

- A., A uW backscatter-morse-leaf sensor for low-power agricultural wireless sensor networks. *IEEE Sens. J.* **2018**, *18* (19), 7889-7898.
- 28. Coppedè, N.; Janni, M.; Bettelli, M.; Maida, C. L.; Gentile, F.; Villani, M.; Ruotolo, R.; Iannotta, S.; Marmiroli, N.; Marmiroli, M., An in vivo biosensing, biomimetic electrochemical transistor with applications in plant science and precision farming. *Sci. Rep.* **2017**, *7* (1), 1-9.
- 29. Janni, M.; Coppede, N.; Bettelli, M.; Briglia, N.; Petrozza, A.; Summerer, S.; Vurro, F.; Danzi, D.; Cellini, F.; Marmiroli, N., In Vivo Phenotyping for the Early Detection of Drought Stress in Tomato. *Plant Phenomics* **2019**, *2019*, 6168209.
- 30. Diacci, C.; Abedi, T.; Lee, J.; Gabrielsson, E. O.; Berggren, M.; Simon, D. T.; Niittylä, T.; Stavrinidou, E., Diurnal in Vivo Xylem Sap Glucose and Sucrose Monitoring Using Implantable Organic Electrochemical Transistor Sensors. *iScience* **2020**, 101966.

For Table of Contents Only

in vivo plant health monitoring