
Knowledge and Information Systems (2021) 63:2405–2430
https://doi.org/10.1007/s10115-021-01594-0

REGULAR PAPER

OpenWGL: open-world graph learning for unseen class node
classification

Man Wu1 · Shirui Pan2 · Xingquan Zhu1

Received: 21 January 2021 / Revised: 28 June 2021 / Accepted: 3 July 2021 /
Published online: 6 August 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Graph learning, such as node classification, is typically carried out in a closed-world setting.
A number of nodes are labeled, and the learning goal is to correctly classify remaining
(unlabeled) nodes into classes, represented by the labeled nodes. In reality, due to limited
labeling capability or dynamic evolving nature of networks, some nodes in the networks
may not belong to any existing/seen classes and therefore cannot be correctly classified
by closed-world learning algorithms. In this paper, we propose a new open-world graph
learning paradigm, where the learning goal is to correctly classify nodes belonging to labeled
classes into correct categories and also classify nodes not belonging to labeled classes to an
unseen class. Open-world graph learning has three major challenges: (1) Graphs do not
have features to represent nodes for learning; (2) unseen class nodes do not have labels and
may exist in an arbitrary form different from labeled classes; and (3) graph learning should
differentiate whether a node belongs to an existing/seen class or an unseen class. To tackle the
challenges, we propose an uncertain node representation learning principle to use multiple
versions of node feature representation to test a classifier’s response on a node, through
which we can differentiate whether a node belongs to the unseen class. Technical wise, we
propose constrained variational graph autoencoder, using label loss and class uncertainty loss
constraints, to ensure that node representation learning is sensitive to the unseen class. As a
result, node embedding features are denoted by distributions, instead of deterministic feature
vectors. In order to test the certainty of a node belonging to seen classes, a sampling process
is proposed to generate multiple versions of feature vectors to represent each node, using
automatic thresholding to reject nodes not belonging to seen classes as unseen class nodes.
Experiments, using graph convolutional networks and graph attention networks on four real-

B Shirui Pan
shirui.pan@monash.edu

B Xingquan Zhu
xzhu3@fau.edu

Man Wu
mwu2019@fau.edu

1 Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca
Raton, FL 33431, USA

2 Department of Data Science and AI, Faculty of IT, Monash University, Clayton, Melbourne VIC 3800,
Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-021-01594-0&domain=pdf
http://orcid.org/0000-0003-0794-527X

2406 M. Wu et al.

world networks, demonstrate the algorithm performance. Case studies and ablation analysis
also show the advantage of the uncertain representation learning and automatic threshold
selection for open-world graph learning.

Keywords Graph neural network · Uncertain node representation learning · Open-world
learning · Node classification

1 Introduction

Networks/graphs are convenient tools to model interactions and interdependencies between
large-scale data. Graph learning, such as node classification1, attempts to categorize nodes of
graphs into several groups. Such learning tasks are fundamental, but challenging, and have
received continuous attention in the research field. Many research efforts have been made
to develop reliable and efficient algorithms for different types of node classification tasks.
However, existing methods mainly carry out the learning in a “closed-world” setting, where
classes in the test set must be consistent to the classes used in the training set. In other words,
nodes in the test data must belong to classes already seen in the training set. As a result, when
a new/unseen class node appears in the test set, classifiers cannot detect the new/unseen class
and will erroneously classify the node to seen/learned classes in the training data.

In reality, data collection and labeling may be continuously evolving. New trends emerge
constantly and a model that cannot detect these new/unseen trends can hardly work well in
a dynamic environment. This problem/phenomenon is referred to as the open-world clas-
sification or open classification problem [1]. The new “open-world” learning (OWL) [2–4]
paradigm is to not only recognize objects belonging to the classes already seen/learned before,
but also detect new class samples which are previously unseen.

Several approaches, such as one-class SVM [5], can be adjusted to address open-world
learning by treating all seen classes as the positive class, but they cannot differentiate instances
in seen classes and often have poor performance to find unseen class, because no negative
data are used. Alternatively, a similar problem called covariate shift [6] has also been studied
in social media text classification, where covariate shift means that training data are not fully
representative of the test data. To address the problem, a center-based similarity (CBS) space
learning method [6] firstly computes a center for each class and converts a document to a
vector of similarities to the center. The transformed data are then used to build a binary
classifier for each class.

To date, open-world learning has already attracted many interests from natural language
processing (NLP) [1,2] and computer vision fields [7–9]. In NLP, Shu et al. [1] proposed the
solution to open-world learning by setting thresholds before the sigmoid function to reject
data from the unseen class. In computer vision, Scheirer et al. [7] studied the problem of
recognizing unseen images that are not in the training data by reducing the half-space of a
binary SVM classifier with a positive region. However, to the best of our knowledge, the
open-world classification problem has not been previously investigated in graph structure
data and graph learning tasks.

Given a graph consisting of seen class and unseen class nodes, the objective of open-world
graph learning is to build a classifier to classify nodes belonging to seen classes into correct
categories and also detect nodes not belonging to any seen class as unseen class. An example
of open-world learning for graph node classification is illustrated in Fig. 1.

1 Note that node classification in this article refers to single-label classification.

123

OpenWGL: open-world graph learning for unseen class… 2407

Fig. 1 An example of open-world learning for network node classification. Nodes are either labeled or unla-
beled. Given a graph with some labeled nodes and unlabeled nodes (left panel), open-world graph learning
aims to learn a classifier to classify unlabeled nodes belonging to seen classes into its own class and also detects
unlabeled nodes not belonging to any seen class as unseen class nodes (denoted by green-colored nodes in the
right panel)

Currently, existing solutions to open-world learning are mainly focused on documents
or images and cannot be directly applied to graph structured data and graph learning tasks
because they cannot model graph structural information, which is the core of node classifi-
cation.

The challenge of graph learning is that graphs have node content and structure information
where nodes are connected with edges representing their relations. Furthermore, existing
solutions to node classification task are built on the closed-world assumption, in which the
classes appeared in the testing data must have appeared in training. For example, the basic
idea of graph convolutional networks (GCNs) is to develop a convolutional layer to exploit the
graph structure information and use a classification loss function to guide the classification
task. However, they directly use softmax as the final output layer, which does not have the
rejection capability to unseen class nodes because the prediction probability of each class
is normalized across all training/seen classes. In addition, in representation learning level,
most existing graph learning methods employ feature engineering or deep learning to extract
feature vectors. However, these models can only generate deterministic mappings to capture
latent features of nodes. A major limitation of them is their inability to represent uncertainty
caused by incomplete or finite available data.

In this paper, we propose to study open-world learning for graph data. Considering the
complicated graph data structure and the node classification task, we summarize the main
challenges as follows:

– Challenge 1 How to design an end-to-end framework for open-world graph learning in
graphs where the unseen class has no labeled samples, and may exist in an arbitrary form
different from seen classes. Existing graph neural networks (GNNs) are typical built
based on closed-world assumption and cannot detect unseen class.

– Challenge 2 How can we model the uncertainty of node representations and promote
robustness in graphs. Many existing GNN-based approaches only generate deterministic
mappings to capture latent features of nodes.

To overcome the above challenges,we propose a novel open-world graph leaning paradigm
(OpenWGL) for the node classification task. ForChallenge 1, we employ two loss constraints
(a label loss and a class uncertainty loss) to ensure that the node representation learning is
sensitive to unseen class and assist in our model to differentiate whether a node belongs to

123

2408 M. Wu et al.

Fig. 2 A visualization of classification probability on seen (blue) and unseen (orange) class test instances for
Cora dataset. The x-axis denotes the index of test instances (first 500 instances belong to seen classes and
the last 100 instances belong to unseen class). The y-axis denotes the maximum probability output of each
instance through the softmax classifier. a denotes the classification probabilities using only label loss, and b
denotes the classification probabilities combining both label loss and class uncertainty loss

an existing/seen class or the unseen class. We visualize a testing dataset in our experiment
in Fig. 2, which can illustrate the effectiveness of our method. In Fig. 2a, we only use the
label loss (the cross-entropy loss), which has a good performance on existing/seen class
nodes, but unseen class nodes cannot be differentiated and will be classified to seen classes
randomly. In Fig. 2b, we introduce a class uncertainty loss constraint, which can reduce the
probability of unseen class nodes being classified as the seen class, and therefore help detect
unseen class nodes without reducing the classification performance for nodes in seen classes.
For Challenge 2, instead of learning a deterministic node feature vector, we utilize a graph
variational autoencoder module to learn a latent distribution to represent each node. During
the classification phase, a novel sampling process is used to generate multiple versions of
feature vectors to test the certainty of a node belonging to seen classes, and automatically
determine a threshold to reject nodes not belonging to seen classes as unseen class nodes.

Our contributions can be summarized as follows:

– We formulate a new open-world learning problem for graph data and present a novel
deep learning model OpenWGL as a solution.

– We propose an uncertain node representation learning approach, by using label loss and
class uncertainty loss to constrain variational graph autoencoder to learn node represen-
tation sensitive to unseen class.

– We propose to use sampling process to test the certainty of a node belonging to seen
classes, and automatically determine a threshold to reject nodes not belonging to seen
classes as unseen class nodes.

– Experiments on benchmark graph datasets demonstrate that our approach outperforms
the baseline methods.

2 Related work

This work is closely related to open-world learning, emerging class and outlier detection,
and graph neural networks, which are briefly reviewed in the following.

123

OpenWGL: open-world graph learning for unseen class… 2409

2.1 Open-world learning

Open-world learning aims to recognize the classes the learner has seen/learned before and
also detect a new class it has never seen before. There are some early explorations of open-
world learning. Scholkopf et al. [5] employ the one-class SVM as the classifier, which shows
poor performance since no negative data is used. Fei and Liu [6] propose a center-based
similarity (CBS) space learning method, which first computes a center for each class and
converts each document to a vector of similarities to the center. The transformed data are
then used to build a binary classifier for each class. Fei et al. [3] then extend their work by
adding the capability of incrementally or cumulatively learning new classes.

Recently, open-world learning has been studied in natural language processing [1,2] and
computer vision (where it is called open-set recognition) [7–9]. In NLP, Shu et al. [1] propose
the deep learning solution to open-world learning by setting thresholds before the sigmoid
function to reject unseen classes. Xu et al. [2] propose a new open-world learning model
based on meta-learning, which allows new classes to be added or deleted with no need for
model re-training. In computer vision, Scheirer et al. [7] study the problem of recognizing
unseen images that are not in the training data by reducing the half-space of a binary SVM
classifier with a positive region. In [8] and [9], Scheirer et al. utilize the probability threshold
to detect new classes, while their models are weak because of lacking prior knowledge.

Most existing open-world learning approaches are primarily focused on NLP and CV
domains and cannotmodel graph structural data. In our research [10], we proposed to advance
the open-world learning principle to graph data and designed a graph learning framework to
classify network nodes in an open-world setting.

2.2 Emerging class and outlier detection

Our research is also related to emerging/new class detection in supervised learning, such as
stream data mining [11,12] and multi-instance learning [13], and outlier detection [14].

In supervised learning, instances are assumed to belong to at least one of the predefined
classes, and a classifier is trained to learn discriminative patterns to separate samples into
known classes. In reality, all data patterns may not be known when the data are collected, or
new classes may emerge over time. When a class is unknown or unavailable at the time of
training a classifier, in the test stage, an ideal classifier is expected to be able to detect the
emerging/new class [15]. A common solution of detecting new class samples is to use a deci-
sion threshold to give a confidence score [16–18], including multilayer neural network [19]
to increase the threshold, and samples with low confidence below threshold are recognized
as the new class. Unfortunately, as we show in Fig. 2, simply increasing the threshold will
make existing class samples being misclassified.

Outlier detection, on the other hand, aims to detect data instances which abnormally
deviate from the underlying data [20]. Akoglu et al.[21] provide a comprehensive overview of
graph-based techniques for anomaly, event, and fraud detection, as well as their use for post-
analysis and sense-making in explaining the detected abnormalities. Some distance-based
outlier detection methods such as one-class SVM have been proposed, in which the normal
data domain is obtained by finding a hyper-sphere enclosing the normal data samples [5,22].
For all methods, there is a trade-off between the number of true outliers and false outliers
(samples being detected as outliers but come from the same distribution as the training
data)[15]. A recent proposed method called StrOUD utilizes transduction and statistical tests

123

2410 M. Wu et al.

to measure the fitness of cluster structures[23]. A recent method [14] proposes to detect
outliers from data stream, but new class detection by outliers is not addressed.

In summary, our research not only advances the emerging (new) class detection to net-
worked data settings, but also proposes a new way of automatically determining threshold
for open-world learning.

2.3 Graph neural networks

Graph neural networks (GNNs), introduced in [24] and [25] as a generalization of recursive
neural networks to directly deal with a more general class of graphs, e.g., cyclic, directed and
undirected graphs, are a powerful tool for machine learning on graphs. GNNs have attracted
attention all around the world, which are designed to use deep learning architectures on
graph-structured data [26–28]. Many solutions are proposed to generalize well-established
neural network models that work on regular grid structure to deal with graphs with arbitrary
structures [29–31].

Among these methods, the most classic model is graph convolutional network (GCN),
which is a deep convolutional learning paradigm for graph-structured data integrating local
node features and graph topology structure in convolutional layers [32]. GraphSAGE [33] is a
variant of GCNwhich designs different aggregationmethods for feature extraction. GAT [34]
improves GCN by leveraging attention mechanism to aggregate features from the neighbors
of a node with discrimination. Although GCNs have shown great performance in graph-
structured data for semi-supervised learning tasks such as node classification, the variational
graph autoencoder (VGAE) [35] extends it to unsupervised scenarios. Specifically, VGAE
integrates GCN into the variational encoder framework [36] by using a graph convolutional
encoder and a simple inner product decoder.

For existingGCN-based graph learningmodels, they are built on the closed-world assump-
tion, in which the classes appeared in the test data must have shown in training. In this paper,
We employ two loss constrains to ensure that the node representation learning is sensitive
to unseen class and assist in our model differentiating whether a node may belong to an
existing/seen class or an unseen class.

To the best of our knowledge, the open-world learning problem has not been previously
investigated in graph structure data and graph learning tasks.We are the first to study the open-
world graph learning and propose an novel uncertain node representation learning approach,
based on a variant of GCN (i.e., variational graph autoencoder networks) to differentiate
whether a node belongs to an existing (seen) class or an unseen class.

3 Problem definition and overall framework

This section defines the problem to be addressed in our paper and then presents our overall
framework for the problem.

3.1 Problem statement

Node classification on graphs In this paper, we focus on node classification on graphs. A
graph is represented asG = (V , E, X , Y), whereV = {vi }i=1,...,N is a vertex set representing
nodes in a graph, and ei, j = (vi , v j) ∈ E is an edge indicating the relationship between two
nodes. The topological structure of a graph G can be represented by an adjacency matrix

123

OpenWGL: open-world graph learning for unseen class… 2411

Fig. 3 The overall architecture of the proposed open-world graph learning (OpenWGL)model for unseen class
node classification. The input consists of a graph with labeled and unlabeled nodes. The learning objective of
OpenWGL, defined by Eq. (12), is constrained by 1© label loss (LL) defined by Eq. (13), 2© class uncertainty
loss (LC) defined by Eq. (14), and 3© the KL divergence loss and network reconstruction loss (LS) defined
by Eq. (11). As a result, OpenWGL can learn uncertain node representation sensitive to the class labels and
unseen class. More specifically, OpenWGL first uses uncertain node representation learning to generate a
latent distribution of each node, which consists of a graph encoder model and a graph decoder model. After
that, a sampling process is employed to the latent distribution to learn solutions to an objective function which
combines the three loss constraints (structure loss, label loss, and class uncertainty loss). More details are
given in Sect. 4

A, where Ai, j = 1 if (vi , v j) ∈ E ; otherwise, Ai, j = 0. xi ∈ X indicates content features
associated with each node vi . Y ∈ R

N×C is a label matrix of G, where N is the number of
nodes in G and C is the number of node categories (classes) already known/seen. If a node
vi ∈ V is associated with label l , Y l

(i) = 1; otherwise, Y l
(i) = 0.

Open-world graph learning Given a graph G = (V , E, X , Y), X = Xtrain
⋃

Xtest , where
Xtrain denotes training data (labeled nodes) and Xtest denotes testing nodes (unlabeled
nodes). Assume Xtest = S

⋃
U , where S are the set of nodes belonging to seen classes

already appeared in Xtrain and U are the set of nodes not belonging to any seen class (i.e.,
unseen class nodes). Open-World Learning on Graphs aims to learn a (C+1)-class classifier
model, f (Xtest) �→ Y , (Y ∈ {1, · · · ,C, rejection}) to classify each test node S to one of the
training/seen classes in Y and rejectU to indicate that it does not belong to any training/seen
class (i.e., it belongs to the unseen class).

3.2 Overall framework

In order to learn a classifier for open-world graph learning, we propose an uncertain node
representation learning approach called constrained variational graph autoencoder network to
classify each seen node to its accurate category and reject the unseen nodes. Our framework
for open-world graph learning, as shown in Fig. 3, mainly consists of the following two
components:

– Node uncertainty representation learning Most GCN models generate deterministic
mappings to capture latent features of nodes. A major limitation of these models is their
inability to represent uncertainty caused by incomplete or finite available data. In order
to learn a better representation of each node, we employ a variational graph autoencoder
network to obtain a latent distribution of each node,which enables to represent uncertainty
and promote robustness.

123

2412 M. Wu et al.

Fig. 4 The classification and rejection process (assuming seen class set has four classes). For nodes in the
testing set, node uncertainty representation learning generates M different versions of feature vectors for
each node by a sampling process. The M different representations are fed into a softmax layer to obtain M
probability outputs Si . The probabilities of each class are averaged to obtain a vector si,a , and the largest
average is denoted by max(si,a). Finally, Eq. (15) is used to decide whether a node belongs to the seen or
unseen classes

– Open-world classifier learning In order to classify seen class nodes to their own groups
and detect unseen class nodes, we introduce two constraints, label loss and class uncer-
tainty loss, to differentiate whether a node belongs to an existing class or an unseen
class.

Open-world classification and rejection To perform inference during the testing phase (i.e.,
perform classification or rejection of an example), we propose a novel sampling process to
generate multiple versions of feature vectors to test the certainty of a node belonging to seen
classes and automatically determine a threshold to reject nodes not belonging to seen classes
as unseen nodes. Our inference framework is given in Fig. 4 with detailed discussion given
in Sect. 4.2.

4 Methodology

4.1 Node uncertainty representation learning

In order to encode latent feature information of each node and obtain an effective represen-
tation of uncertainty, we employ variational graph autoencoder network (VGAE) to generate
a latent distribution based on extracted node features. This allows our method to leverage
uncertainty for robust representation learning.
Graph encodermodelGiven a graphG = (X , A), in order to represent both node content X
and graph structure A in a unified framework, our approach firstly utilizes two-layer GNNs to
map the feature matrix. Several classical GNNs, such as GCN [32] and GAT [34], are tested
as the backbone of the two-layer GNNs. Given the input feature matrix X and adjacency
matrix A, the first GCN layer generates a lower-dimensional feature matrix, which is defined

123

OpenWGL: open-world graph learning for unseen class… 2413

as follows:
Z (1) = GNN(X , A). (1)

For the second-layer GNN model, instead of generating a deterministic representation,
we assume that the output Z is continuous and follows a multivariate Gaussian distribution.
Hence, we follow an inference model proposed by [35]:

q(Z |X , A) =
N∏

i=1

q(zi |X , A), (2)

q(zi |X , A) = N (zi |μi , diag(σ
2
i)). (3)

Here,μ = GNNμ(X , A) is thematrix ofmean vectorsμi andσ is the standard variancematrix
of the distribution, logσ = GNNσ (X , A). Then, we can calculate Z using a parameterization
trick:

Z = μ + σ · ζ, ζ ∼ N (0, I), (4)

where 0 is a vector of zeros and I is the identity matrix. By making use of the latent variable
Z , our model is able to capture complex noisy patterns in the data.

For each layer of GNNs, the calculation process is as follows:
(1) Graph convolutional networks The lth GCN layer inputs a feature matrix Zl ∈ R

c×d(l)

and outputs a higher-order feature matrix Zl+1 ∈ R
c×d(l+1) , which can be written as a non-

linear function:
Z0 = X,

Zl+1 = σ(D− 1
2AD− 1

2ZlWl),
(5)

where the degree matrix Di j = ∑
j Ai j is a diagonal matrix, Wl ∈ R

d(l)×d(l+1) is the trans-
formation matrix for the lth layer and σ(·) is a nonlinear activation function, which is acted
by ReLU in our experiments.
(2) Graph attention networks The lth GAT layer with single head inputs a feature matrix
Zl ∈ R

c×d(l) and apply a shared linear transformation, parametrized by a weight matrix
Wl ∈ R

d(l+1)×d(l) , to each node. Then, a shared attention mechanism is leveraged to compute
attention coefficients of the pairs of connected nodes:

eli j = al(WlZl
i ,W

lZl
j)

= LeakyRelu(al [WlZl
i ||WlZl

j]T),
(6)

where al(·, ·) : Rd(l+1) × R
d(l+1) → R is a single-layer feed-forward neural network which

is parametrized by a weight vector al ∈ R
2d(l+1) , and applying the LeakyRelu nonlinearity

(with negative input slope α = 0.2). Then, attention coefficients are normalized across all
choices of j using the softmax function:

αl
i j = so f tmax j (ei j) = exp(eli j)

∑
k∈Ni

exp(elik)
, (7)

whereNi is the set containing node i and neighbors of node i . Once obtained, the normalized
attention coefficients are used to compute a linear combination of the features corresponding
to them, to serve as the final output features for each node:

Z0 = X,

Zl+1
i = σ(

∑

j∈Ni

αl
i jW

lZl
j),

(8)

123

2414 M. Wu et al.

where σ(·) is a nonlinear activation function, which is acted by exponential linear unit (ELU)
[37] in our experiments. In particular, GAT applies the multi-head attention mechanism,
which learns the embedding via Eq. (8) multiple times and concatenates the embedding into
a new representation.
Graph decoder model After we get the latent variable Z , we use a decoder model to recon-
struct the graph structure A to better learn the relationship between two nodes. Here, the
graph decoder model is defined by a generative model [35]:

p(A|Z) =
N∏

i=1

N∏

j=1

p(Ai, j |zi , z j), (9)

p(Ai j = 1|zi , z j) = σ(zTi z j), (10)

where Ai j are the elements of A and σ(·) denotes the logistic sigmoid function.
Optimization To better learn class discriminative node representations, we optimize the
variational graph autoencoder module via two losses as follows:

LS = Eq(Z |X ,A)[log p(A|Z)] − K L[q(Z |X , A)||p(Z)], (11)

where the first term is the reconstruction loss between the input adjacent matrix and the
reconstructed adjacent matrix. The second term K L[q(Z |X , A)||p(Z)] is the Kullback–
Leibler divergence between q(Z |X , A) and p(Z), here p(Z) = N (0, I).

4.2 Open-world classifier learning

After the variational graph autoencoder network, we obtain the uncertainty embeddings
for each node through Eq. (4), which consists of two parts: uncertainty embeddings
for labeled/training nodes Z labeled and uncertainty embeddings for unlabeled/test nodes
Zunlabeled. To better learn an accurate classifier for classifying both seen and unseen nodes in
testing data, our proposed model consists of a cooperative module, a label loss as well as a
class uncertainty loss working together to differentiate whether a node belongs to an existing
class or an unseen class. The overall objective function is as follows:

LOpenWGL = γ1LL + γ2LC + LS . (12)

The γ1, γ2 are the balance parameters. The LS is the loss function of the variational graph
autoencoder network mentioned above. The LL and LC represent the label loss and the class
uncertainty loss, respectively. The details are introduced as follows.
Label loss The label loss LL is to minimize the cross-entropy loss for the labeled data:

LL(fs(Z labeled), Y) = − 1

Nl

Nl∑

i=1

C∑

c=1

yi,clog(ŷi,c). (13)

In the above equation, fs(·) denotes a full-connected layer with softmax activation function,
where the full-connected layer is a linear transformation, transforming Zunlabeled into prob-
abilities that sum to one. Nl is the number of labeled nodes. C denotes the number of seen
classes, and yi,c denotes the ground truth of the i th node in the labeled data and ŷi,c is the
classification prediction score for the i th labeled node vi in the c class, respectively.
Class uncertainty loss Since we do not have the class information in the test data and there
exist a considerable number of unseen nodes, we need to find a way to differentiate the seen
class and unseen class. Unlike the label loss LL , which can utilize the abundant training data

123

OpenWGL: open-world graph learning for unseen class… 2415

Fig. 5 A visualization of determining the threshold using a validation set (only contains seen class instances).
aDetermining the threshold using validation set. bApplying determined threshold to the test set (contain both
seen class and unseen class instances)

and have a good performance on the seen class by the cross-entropy loss, the class uncertainty
loss is proposed to balance the classification output for each node and have superior effects
on the unseen nodes. In our paper, an entropy loss is placed as the class uncertainty loss
and our goal is to maximize this entropy loss to make the normalized output of each node
balanced. The formula is as follows:

LC (fs(Zunlabeled)) = 1

Nu

Nu∑

i=1

C∑

c=1

ŷi,clog(ŷi,c), (14)

where Nu is the number of unlabeled nodes. ŷi,c is the classification prediction score for the
i th unlabeled node vi in the c class. Note that we do not put a negative sign in front of the
formula as usual because we need to maximize the entropy loss. In addition, we will not use
all the unlabeled data to maximize the entropy loss. We first sort all the unlabeled data output
probability values (choosing the maximum probability for each node) after the softmax layer
and then discard the largest 10% (nodes with large probability values are easily classified
into seen classes since their output is discriminative) and the smallest 10% nodes (nodes
with small probability values means that the node’s output is balanced over each seen class
which can be easily detected as the unseen class). Finally, the remaining nodes are utilized
to maximize their entropy.

The training for label loss and class uncertainty loss acts like an adversarial process. On
the one hand, we want the label loss to influence the classifier to make the output of each node
to be more discriminative and classify each seen node into correct classes via minimizing
Eq. (13). On the other hand, we would like that the class uncertainty loss can make the
output of each node to be more balanced to assist the detection of unseen class through the
maximization of the entropy loss.

LL , LC , and LS are jointly optimized via objective function defined in Eq. (12), and all
parameters are optimized using the standard backpropagation algorithms.

4.3 Open-world classification and rejection

After performing the node uncertainty representation learning, we obtain a distribution (i.e.,
the Gaussian distribution) of the node embeddings. Therefore,M different versions of feature
vectors (z1i , . . . , z

M
i) are generated for each node vi from this distribution via Eq. (4), where

123

2416 M. Wu et al.

this process is called a reparametrization trick. Then, the M different representations are fed
into the softmax layer to turn them into probabilities over C classes, respectively. (Each zmi
can obtain an output vector smi ∈ R

1×C .)
After this process, theM outputs are concatenated to obtain a samplingmatrix Si ∈ R

M×C .
In Si , each column denotes M different probabilities of a specific class and we average these
probabilities for each class to obtain a vector si,a ∈ R

1×C . For the vector si,a withC different
probabilities, we choose the largest one max(si,a). To recognize whether each node vi is the
seen or unseen classes for testing data, we have:

ŷ =
{

Rejection, if maxc∈C p(c|xi) ≤ t
argmaxc∈C p(c|xi), otherwise,

(15)

where p(c|xi) is obtained from the softmax layer output of fs(·). If none of existing seen
classes probability p(c|xi) value is above the threshold t , we reject xi as a sample from
the unseen class; otherwise, its predicted class is the one with the highest probability. The
prediction process of each testing sample is illustrated in Fig. 4.

4.3.1 Automatic rejection threshold selection

In open-world graph learning, a key problem is how to determine of the threshold t in
Eq. (15) which can be used to reject a node from seen classes. In our paper, we propose
a selection approach to automatically determine a threshold to reject nodes not belonging
to seen classes. Specifically, we use a validation set Xval

train , which is separated from the
training set Xtrain for threshold selection. For nodes in the validation set, we perform the
node uncertainty representation learning and conduct the same sampling process and choose
the largest posterior probability. Then, we average these chosen largest probabilities of all
the nodes and obtain avg_seen. Because unseen class instances are assumed not appearing
in the training set (including the validation set), we choose 10% nodes with the largest class
distribution entropy, defined in Eq. (16), as the “expected unseen class nodes” (�Xval

train),
and their average posterior probability is denoted by avg_E_unseen.

H(xi) = −
∑

c∈C
p(c|xi) log p(c|xi). (16)

The final threshold is calculated by averaging the probabilities as follows:

t = avg_seen + avg_E_unseen

2
. (17)

Figure 5a shows an example of the determining process in the validation set. We use this
determined threshold to classify seen and unseen nodes in the test set in Fig. 5b, and the
result shows that the threshold is a good distinction between seen and unseen classes.

As a result of the above design, the node embedding features are denoted by distributions,
instead of deterministic feature vectors. By using a sampling process to generate multiple
versions of feature vectors, we are able to test the confidence of a node belonging to seen
classes, and automatically determine a threshold to reject nodes not belonging to seen classes
as unseen class nodes.

4.4 Algorithm description

Our algorithm is illustrated in Algorithm 1. Given a graph G = (V , E, X , Y), our goal
is to obtain the node representations and classify the seen nodes and detect the unseen

123

OpenWGL: open-world graph learning for unseen class… 2417

nodes, respectively. Firstly, we employ a variational graph autoencoder network to model the
uncertainty of each node (Steps 2–10). Here, the output Z is a distribution and we optimize
the network through the KL loss and the reconstruction loss (Step 12). Then, we propose
two loss constraints LL and LC to make our model capable of classifying seen and unseen
classes (Step 13 and 14). Finally, by jointly considering the label loss, class uncertainty loss
and the VGAE loss (the KL divergence loss and network reconstruction loss), our model can
better differentiate whether a node belongs to a seen class or an unseen class and capture the
uncertainty representations for open-world graph learning.

Algorithm 1: OpenWGL: Open-World Graph Learning
Date: G = (V , E, X , Y): a Graph with links and features; X = Xtrain

⋃
Xtest , Xtest = S

⋃
U : S are the

seen classes appeared in Xtrain and U are the unseen classes; C : the number of seen classes.
Result: f (Xtest) �→ Y , Y ∈ {1, . . . ,C, rejection}.
1: while not convergence do
2: // Graph Encoder Model
3: For the first layer:
4: Z (1) ← GNN (X , A)

5: For the second layer:
6: μ ← GNNμ(Z (1), A)

7: logσ ← GNNσ (Z (1), A)

8: Z ← μ + σ · ζ, ζ ∼ N (0, I)
9: // Graph Decoder Model
10: p(Ai j = 1|zi , z j) ← σ(zTi z j)
11: // Compute Loss
12: LS ← Obtain the variational graph autoencoder loss using Eq. (11)
13: LL ← Obtain the label loss using Eq. (13)
14: LC ← Obtain the class uncertainty loss using Eq. (14)
15: Back-propagate loss gradient using Eq. (12)

16: [W (1),W (2)
μ ,W (2)

σ , fs (·)]← Update weights
17: if early stopping condition satisfied then
18: Terminate
19: For each test node x ∈ Xtest :
20: f (x) ← classify x using Eq. (15).
21: return f (Xtest)

xx

4.5 Time complexity analysis

Given a graph G = (V , E, X , Y) with N nodes (vertices), the proposed open-world graph
learning (OpenWGL) consists of two parts: graph encoder model and graph decoder model.

For GCN andGAT, the time complexity is asymptotically bounded by the number of edges
of the network [29], i.e., O(|E |). This is mainly because that both methods rely on message
passing between each node and its neighbors to learn node representation. Ei denotes edges
incident to node vi ; for all nodes in the network, the total number of message passing is∑N

i=1 |Ei | = 2 × |E | = O(|E |). Because OpenWGL replies on graph encoder module, the
time complexity of the graph encoder model is O(|E |). The time complexity of the process
of reconstructing the original graph isO(dN 2), where d is the dimension of the latent space
of matrix Z .

123

2418 M. Wu et al.

Table 1 Statistics of the benchmark datasets

Dataset # of Nodes # of Edges # of Features # of Labels

Cora 2708 5429 1433 7

Citeseer 3312 4732 3703 6

DBLP 60,744 52,890 1587 4

PubMed 19,717 44,338 500 3

Table 2 Statistics of the number of nodes and number of classes of the benchmark data

Dataset Class
Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Cora 351 217 418 818 426 298 180

Citeseer 596 668 701 249 508 590

DBLP 13,586 23,770 18,292 5096

PubMed 4103 7739 7875

In order to test whether a node belongs to unseen class or not, OpenWGL needs to sample
uncertain node embedding M times. Supposing the graph decoder model is sampled M
times, the time complexity of the graph decoder model is O(dMN 2). As a result, the time
complexity of OpenWGL is asymptotically bounded by O(|E | + dMN 2).

For sparse networks, the number of edges m is far less than the number of node pairs N 2,
and then, the complex of OpenWGL is quadratic to the number of nodesO(|E |+dMN 2) =
O(dMN 2) = O(N 2). For generic networks, the number of edges is less than the square of
the number of nodes (the complete graph), i.e.,|E | ≤ N 2, so we have O(|E | + dMN 2) =
O(N 2 + dMN 2) = O((dM + 1)N 2) = O(N 2). In summary, the complexity of OpenWGL
is O(N 2), which is mainly attributed to the graph encoder and decoder steps.

5 Experiments

5.1 Experimental setup

Benchmark datasetsWe employ four widely used citation network datasets (Cora, Citeseer,
DBLP, PubMed) for node classification[38,39]. The details of the experimental datasets are
reported in Table 1.
Test settings and evaluation metrics For each dataset, we hold out some classes as the
unseen class for testing and the remaining classes as the seen classes. In Table 2, we report
the statistics of the benchmark data, with respect to the number of nodes and number of
classes. In the experiments, when the number of unseen classes is set as |U | = 1, |U | = 2,
and |U | = 3, for Cora, Citeseer, and DBLP dataset, we select the last class, the last two
classes, and the last three classes as the unseen class and the remaining classes as the seen
classes of each dataset, respectively. For PubMed dataset (with one unseen class |U | = 1),
we select the first class as the unseen class and the remaining classes as the seen classes. We
randomly sample 70% of nodes for training, 10% for validation and 20% for testing. Note
that the nodes of unseen class only appear in the testing set. We use the validation set to
determine the threshold for rejecting the unseen class. Like the traditional semi-supervised

123

OpenWGL: open-world graph learning for unseen class… 2419

node classification, for each dataset, we feed the whole graph into our model. We vary the
number of unseen classes to verify the performance of our model at different unseen class
proportion. We use the Macro F1 score and Accuracy for evaluation [1].
Baselines We employ following methods as baselines.

– GCN [32]:GCN is a deep convolutional network for graph-structured data. GCNemploys
a convolution layer to exploit the graph structure information and uses a classification
loss function to guide the classification task. In GCN, it directly uses softmax as the final
output layer. GCN does not have the rejection capability to the unseen class.

– GCN_Sigmod: In GCN_Sigmod, we use multiple 1-vs-rest of sigmoids rather than soft-
max as the final output layer of the GCN model, which also does not have the rejection
capability to the unseen class.

– GCN_Sigmod_Thre: Based on GCN_Sigmod, we use the default probability threshold
of ti = 0.5 for classification of each class i , which means if all predicted probabilities are
less than the threshold 0.5, we will reject it as the unseen class. Otherwise, its predicted
class is the one with the highest probability.

– MLP_DOC: DOC[1] is the state-of-the-art open-world classification method for text
classification. We use a two-layer perceptron to obtain the node representation.

– GCN_DOC: We utilize the rich node relationships and combine the GCN with DOC
to compare with our model. In DOC, it uses multiple 1-vs-rest of sigmoids rather than
softmax as the final output layer and defines an automatic threshold setting mechanism.

Proposed method In order to validate the performance of the proposed OpenWGL learning
algorithm, we implement OpenWGL using two types of graph neural networks, including
graph convolutional network (GCN) and graph attention network (GAT).

• OpenWGL_GCN OpenWGL_GCN employs a two-layer GCN as the graph encoder
model to aggregate node features.

• OpenWGL_GAT OpenWGL_GAT employs a two-layer GAT as the graph encoder
model to aggregate node features.

All deep learning algorithms are implemented using Tensorflow [40,41] and are trained
with Adam optimizer. We follow the evaluation protocol in open-world learning [1,2], evalu-
ate all approaches through grid search on the hyperparameter space, and report the best results
of each approach. We feed the whole graph into our model when training. For all baseline
methods, we use the same set of parameter configurations unless otherwise specified. For
each deep approach, we use a fixed learning rate 1e−3. For each method, the GCNs contain
two hidden layers (L = 2) with structure as 32 − 16. The balance parameters γ1 and γ2 are
set to 1 and 0.8, respectively. The dropout rate for each GCN layer is set to 0.3. M is set
to 100. In addition, we choose two layers for OpenWGL_GAT, where the first GAT layer
contains 32 hidden units and the second layer contains 16 hidden units.

5.2 Open-world graph learning classification results

Tables 3, 4, 5, and 6 list theMacro F1 score andAccuracy of different methods on open-world
node classification task. From the results, we have following observations:

(1) The GCN and GCN_Sigmoid obtain the worst performance among these baselines in all
datasets since they do not have the rejection capability to the unseen class. Therefore, all
the unseen nodes will be misclassified and their performance becomes worse when the
number of unseen nodes increases.

123

2420 M. Wu et al.

Table 3 Experimental results on Cora with different numbers of unseen classes |U |
Methods |U | = 1 |U | = 3

Accuracy Macro F1 Accuracy Macro F1

GCN 0.726 0.683 0.345 0.463

GCN_Sigmod 0.728 0.681 0.338 0.463

GCN_Sigmod_Thre 0.782 0.786 0.593 0.664

MLP_DOC 0.455 0.452 0.670 0.493

GCN_DOC 0.753 0.769 0.729 0.735

OpenWGL_GCN 0.833 0.835 0.775 0.752

OpenWGL_GAT 0.843 0.845 0.818 0.786

Table 4 Experimental results on Citeseer with different numbers of unseen classes |U |
Methods |U | = 1 |U | = 3

Accuracy Macro F1 Accuracy Macro F1

GCN 0.445 0.477 0.263 0.320

GCN_Sigmod 0.443 0.472 0.258 0.318

GCN_Sigmod_Thre 0.670 0.609 0.683 0.621

MLP_DOC 0.455 0.433 0.745 0.564

GCN_DOC 0.687 0.613 0.758 0.679

OpenWGL_GCN 0.700 0.654 0.766 0.698

OpenWGL_GAT 0.702 0.658 0.767 0.700

Table 5 Experimental results on DBLP with different numbers of unseen classes |U |
Methods |U | = 1 |U | = 2

Accuracy Macro F1 Accuracy Macro F1

GCN 0.662 0.562 0.285 0.323

GCN_Sigmod 0.662 0.562 0.290 0.323

GCN_Sigmod_Thre 0.657 0.650 0.282 0.326

MLP_DOC 0.643 0.630 0.480 0.477

GCN_DOC 0.657 0.658 0.503 0.506

OpenWGL_GCN 0.688 0.689 0.653 0.642

OpenWGL_GAT 0.689 0.690 0.657 0.645

(2) GCN_Sigmoid_Thre andGCN_DOChavebetter performances thanGCNandGCN_Sigmoid,
which shows that the threshold can improve the performance of detecting the unseen
nodes. In addition, when the number of unseen nodes increases, GCN_Sigmoid_Thre
and GCN_DOC become more competitive.

(3) GCN_DOC has better performance than GCN_Sigmoid_Thre in most cases, confirming
that the threshold is not a fixed value and it varies with different datasets and the ratio of
unseen class. DOC’s automatic threshold setting mechanism can effectively improve the
classification results of unseen class.

123

OpenWGL: open-world graph learning for unseen class… 2421

Table 6 Experimental results on
PubMed with different numbers
of unseen classes |U |

Methods |U | = 1
Accuracy Macro F1

GCN 0.480 0.429

GCN_Sigmod 0.483 0.427

GCN_Sigmod_Thre 0.513 0.498

MLP_DOC 0.586 0.595

GCN_DOC 0.631 0.640

OpenWGL_GCN 0.753 0.757

OpenWGL_GAT 0.780 0.781

Note that we only consider one class as unseen class since the PubMed
has three classes

Table 7 TheMacro F1 score andAccuracy on three datasets for closed-world settings (without unseen classes)

Dataset (|U | = 0) GCN OpenWGL_GCN OpenWGL_GAT

Cora Accuracy 0.863 0.854 0.854

Macro F1 0.848 0.829 0.837

Citeseer Accuracy 0.774 0.779 0.765

Macro F1 0.752 0.745 0.742

DBLP Accuracy 0.806 0.809 0.812

Macro F1 0.754 0.751 0.753

PubMed Accuracy 0.867 0.863 0.869

Macro F1 0.861 0.856 0.861

(4) Theproposedopen-world graph learningmodel (OpenWGL_GCNandOpenWGL_GAT)
consistently outperforms all baselines on three datasets with different numbers of unseen
classes. It demonstrates that the proposed constrained graph variational encoder network
can better differentiate whether a node belongs to a seen class or an unseen class and cap-
ture the uncertainty representation of each node by jointly considering the label loss, class
uncertainty loss, and the node uncertainty representation learning as a unified learning
framework. In addition, the proposed OpenWGL_GAT outperforms OpenWGL_GCN,
which shows that assigning different weights to nodes of a same neighborhood can be
more beneficial for node representation learning.

(5) We also report closed-world learning setting results (without unseen class) in Table 7. The
results show that when networks do not have unseen class, OpenWGL (OpenWGL_GCN
andOpenWGL_GAT) has comparable performance as GCN, confirming its effectiveness
and generalization for node classification. Overall, as the number of unseen classes
increases, the performance of all methods, including our proposedmethods, will decrease
on Cora, DBLP, and PubMed but increase on the Citeseer dataset. This is mainly because
that as more nodes are being assigned as unseen class nodes, the network will have less
label information, resulting in deterioration in performance. On the other hand, as more
classes being treated as unseen class (e.g., from |U|=1 to |U|=3), the whole network will
have less number of classes, resulting in a slightly higher random prediction accuracy
(e.g., random prediction accuracy on a binary classification task is 50%, which is higher
than 33.3%, the random prediction accuracy on a three class classification task). This

123

2422 M. Wu et al.

Table 8 The Macro F1 score and
Accuracy between OpenWGL
variants on Cora

Methods |U | = 1 |U | = 3
Accuracy Macro F1 Accuracy Macro F1

OpenWGL¬C 0.782 0.787 0.700 0.665

OpenWGL¬V 0.824 0.829 0.785 0.705

OpenWGL 0.833 0.835 0.775 0.752

possibly leads to the performance increase on the Citeseer dataset. Meanwhile, as the
number of unseen classes increases, using thresholds to detect unseen class nodes has
clear benefits. However, in the absence of unseen classes, the performance of our method
may be lower than rival methods, as shown in Table 7.

5.3 Ablation analysis of OpenWGL components

Because OpenWGL contains two key constraints, in this subsection, we compare variants of
OpenWGL with respect to the following aspects to demonstrate: (1) the effect of the class
uncertainty loss and (2) the impact of the VGAE module (KL loss and reconstruction loss).
Note that we adopt GCN-based module in OpenWGL.

The following OpenWGL variants are designed for comparison.

– OpenWGL¬C : A variant of OpenWGL with only the class uncertainty loss being
removed.

– OpenWGL¬V : A variant of OpenWGL with the KL loss and reconstruction loss being
removed.

Tables 8, 9, and 10 report the ablation study results.

5.3.1 The effect of the class uncertainty loss

In order to show the superiority of the class uncertainty loss, we design a variant model
OpenWGL¬C . Asmentioned before, the class uncertainty loss is a constraint on the unlabeled
nodes. The ablation study results show that the performances of the node classification task on
both datasets are improvedwhen the class uncertainty loss is used, indicating its effectiveness
of detecting unseen nodes.

5.3.2 The impact of the VGAEmodule (KL loss and reconstruction loss)

In order to verify the impact of the VGAE module which can model the uncertainty node
representations, we compare OpenWGLmodel and OpenWGL¬V . From the results, we can
easily observe the OpenWGL model performs significantly better than OpenWGL¬V . This
confirms that the usage of KL loss can model the uncertainty to better capture the latent
representation of each node, and reconstruction loss can preserve node relationships which
will assist in the node representation.

5.4 Parameter analysis

Impact of the feature dimensions of node output embeddings Z As mentioned in Method
section, the output of node embeddings is represented as Z . OpenWGL uses two-layer GCNs

123

OpenWGL: open-world graph learning for unseen class… 2423

Table 9 The Macro F1 score and
Accuracy between OpenWGL
variants on Citeseer

Methods |U | = 1 |U | = 3
Accuracy Macro F1 Accuracy Macro F1

OpenWGL¬C 0.676 0.645 0.759 0.692

OpenWGL¬V 0.691 0.648 0.760 0.683

OpenWGL 0.700 0.654 0.766 0.698

Table 10 The Macro F1 score
and Accuracy between
OpenWGL variants on DBLP

Methods |U | = 1 |U | = 2
Accuracy Macro F1 Accuracy Macro F1

OpenWGL¬C 0.675 0.672 0.650 0.631

OpenWGL¬V 0.687 0.671 0.651 0.635

OpenWGL 0.688 0.689 0.653 0.642

4 8 16 32 64

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Feature Dimension

A
cc

ur
ac

y

Cora
 Citeseer
DBLP

(a) Accuracy

4 8 16 32 64

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Feature Dimension

M
ac

ro
 F

1

Cora
 Citeseer
DBLP

(b) Macro F1

Fig. 6 Impact of feature dimensions of node output embeddings for the Accuracy andMacro F1 score on three
datasets

with structure as 32 − 16, and feature dimensions d of node output embeddings is 16. We
vary d from 4 to 64 and report the results on three datasets, respectively, in Fig. 6. On Citeseer
and DBLP datasets, as d increases from 4 to 64, the performance grows gradually to reach
a plateau. The performance of Cora dataset is stable with d increasing from 4 to 32 and has
a slight decrease at 64. When d further increases to 128, the accuracy of target domain is
improved on both tasks. After that, both the Macro_F1 score and Accuracy remain steady
and no obvious difference is observed with different d . Therefore, only slight differences can
be observed with different d values. The increase of d , from 4 to 64, does not necessarily
result in performance improvements. The results show that with sufficient feature dimensions
(d ≥ 16), OpenWGL is stable with the increasing number of feature dimensions.

5.5 Case study

5.5.1 Visualization of the OpenWGL sampling results

In order to verify the effectiveness of the sampling process of ourmodel, we randomly choose
two testing nodes from Cora dataset for seen and unseen classes (we choose one class as
unseen, i.e., |U | = 1), respectively. After performing the node uncertainty representation

123

2424 M. Wu et al.

Fig. 7 A case study of the OpenWGL sampling results with two randomly selected nodes from seen classes
and unseen class on Cora, respectively. Each row denotes one node, “True” denotes the class to which the
node genuinely belongs, and “False” means that the node does not belong to this class. a two nodes randomly
selected from seen classes, and b two nodes randomly selected from unseen class. The x-axis denotes the
probability output of each node through the softmax classifier, and the y-axis denotes the frequency appearing
in each class

learning, we obtain a distribution of the node embeddings. Then, we generate 100 different
versions of feature vectors for each node from this distribution and feed them into the softmax
layer to turn them into probabilities over six classes, respectively. Therefore, after this process,
for each node we obtain a 6 × 100 sampling matrix. In the sampling matrix, each column
denotes 100 different probabilities of a specific class. We visualize the sampling matrices of
these four nodes through histogram charts with seen and unseen classes in Fig. 7a and b. In
Fig. 7, each row represents one node and in each row, there are six subfigures indicating the
100 different probabilities of each class, respectively. From Fig. 7, we can observe that the
sampling process has superior performance in differentiating the seen classes and the unseen
class, and it is very helpful for determining the threshold. For example, as shown in the first
row in Fig. 7a, only in class 2, most of the 100 different probabilities are distributed on far
right side of the histogram (i.e., large probability), while all the other classes (0,1,3,4,5) are
distributed on the far left side (i.e., small probability). Thus, through the softmax layer, we
can classify this node to class 2 and the ground truth is also class 2. However, if we just use a
deterministic feature vector instead of this sampling method, this node may not be classified
to class 2, since class 2 also has cases with small probability values. Similarly, for the unseen
nodes as shown in Fig. 7b, in each seen class, most of the probability values are concentrated
on the left side of the histogram (i.e., small probability), so we can easily detect them and

123

OpenWGL: open-world graph learning for unseen class… 2425

Fig. 8 A case study of the OpenWGL sampling results using statistics of all nodes of each seen class and the
unseen class on Cora, respectively. Each row denotes all nodes of each seen class, “True” denotes the class
to which the node belongs, and “False” means that the node does not belong to this class. a Statistics of all
nodes of each seen class, and b statistics of all nodes of unseen class. The x-axis denotes the probability output
of each node through the softmax classifier, and the y-axis denotes the frequency of all nodes of per class
appearing in different classes

classify them into unseen class. However, if we only obtain one probability output and do
not have the sampling process, the unseen node might be misclassified randomly.

In order to show the average results of all nodes, Fig. 8 reports the sampling results using
statistics of all nodes in each of the seen classes and unseen class on Cora, respectively.
The difference between Figs. 7 and 8 is that the latter is obtained using the average of all
nodes, whereas Fig. 7 is based on results from two randomly selected nodes. The results
show that seen class nodes and unseen class nodes share different patterns. For seen class
nodes, its average probability with respect to its genuine class is flat, with high probability
values toward the 1.0 side, and its average probability values with respect to other classes
have high probabilities toward the 0.0 side. For unseen class nodes, its average probability
values to all classes have high probabilities toward the 0.0 side, perfectly explaining that the
node does not belong to these classes.

123

2426 M. Wu et al.

Fig. 9 The confusion matrix of
OpenWGL on Cora. “−1”
denotes the unseen class and
“0,1,2,3,4,5” are seen classes.
The (i, j) value of the matrix
shows that the percentage value
of the i th class is classified to the
j th category

5.5.2 The confusion matrix

In order to verify the effectiveness of OpenWGL in differentiating seen class nodes versus
unseen class nodes, Fig. 9 reports the confusion matrix of OpenWGL on Cora network,
where “−1” denotes unseen class. The results show that OpenWGL correctly identifies 87%
of unseen class nodes and also remains a high accuracy in classifying seen class nodes.

6 Discussion

Graph learning in an open-world setting is a significant challenge, because it involves feature
learning, prediction loss, and classification confidence. In the proposed design, we combine
multiple loss terms as objective function to learn embedding features to represent node for
classification. This novel learning task has many interesting topics for future study.

In order to decide whether a node belongs to the unseen class, we use a thresholding
approach, in Eq. (15), to reject a node from seen classes, if its posterior probability p(c|xi) is
less than a threshold t . Although the threshold value t is automatically determined byEq. (17),
it is solely based on the posterior probability values p(c|xi), c ∈ C . Alternatively, because
rejecting xi as seen class or not is a binary decision, one can design a binary classification
task, by using features to learn whether instance xi belongs to seen classes or not [2].

In this paper, we address the open-world graph learning in a static network setting, where
nodes and edges do not change. In many applications, networks are continuously evolving
with new nodes/edges [42], and node content may also change. Carrying out open-world
graph learning in a dynamic network setting is another significant challenge. This is mainly
because changes in node/edge distributions may impact on the unseen class detection, and
some seen class nodes may also be misclassified as unseen class if they are undergoing an
evolving or concept drifting [43]. Finding good representation for nodes in dynamic networks,
with capability to differentiate nodes in seen vs. unseen classes, is another topic for future
study.

Currently, our method aims to attribute all unknown classes to an unseen class (a single
class), and it cannot distinguish each unknown class. In the future, we will study to better dis-

123

OpenWGL: open-world graph learning for unseen class… 2427

tinguish different unknown classes through post-processing and other unsupervisedmethods,
such as clustering.

In addition, we use two GNN variants (i.e., GAT and GCN) as graph encoder model and
compare them empirically. Admittedly, there are other alternatives instead of GCN and GAT.
However, in this paper, our goal is not to propose a novel graph representation learningmodel,
but rather to focus on a new open-world graph learning paradigm, where the learning goal is
to not only classify nodes belonging to seen classes into correct groups, but also classify nodes
not belonging to existing classes to an unseen class. We also observe that OpenWGL_GAT
outperforms OpenWGL_GCN, which shows that new variant GNN method can be more
beneficial for node representation learning and can improve the performance of the model.
We will try to apply some new GNN models, such as GIN [44], GIL [45], APPNP [46], and
FiLMConv [47], for the open-world graph learning task in the future.

7 Conclusions

Traditional graph learning tasks are based on the closed-world setting, where unlabeled nodes
(i.e., test set) should have the same class space as the labeled nodes (i.e., training set). The
learning goal is to classify nodes into classes already known. In the paper, we advocated
an open-world graph learning paradigm which not only classifies nodes belonging to seen
classes into correct groups, but also classifies nodes not belonging to existing classes to an
unseen class. To achieve the goal, we proposed an open-world graph learning (OpenWGL)
framework with two major components: (1) node uncertainty representation learning and
(2) open-world classifier learning. The former uses label loss and class uncertainty loss to
guide graph variational autoencoder to learn node embedding as distributions, and the latter
automatically learns a threshold to detect unseen class nodes. The former learns a distribution
for each node embedding via a graph variational autoencoder to capture the uncertainty, and
the latterminimizes the label loss and class uncertainty loss simultaneously to distinguish seen
and unseen class nodes, using automatically determined threshold. The threshold to reject
the unseen class is further automatically determined in our framework. Experiments showed
that when unseen class presents in test data, OpenWGL significantly outperforms baselines
in classifying both seen and unseen class nodes. When networks do not have unseen class
nodes (only contain nodes from seen classes), OpenWGL has a comparable performance to
the baseline.

Acknowledgements This research was supported by the U.S. National Science Foundation (NSF) through
Grant Nos. IIS-1763452, CNS-1828181, and IIS-2027339.

References

1. Shu L, Xu H, Liu B (2017) “Doc: Deep open classification of text documents,” arXiv preprint
arXiv:1709.08716

2. Xu H, Liu B, Shu L, Yu P (2019) “Open-world learning and application to product classification,” In:
Proceedings of WWW conference, pp. 3413–3419

3. Fei G, Wang S, Liu B (2016) “Learning cumulatively to become more knowledgeable,” In: Proceedings
of KDD, pp. 1565–1574

4. Chen Z, Liu B (2018) Lifelong machine learning. Synth Lect Artif Intel Mach Learn 12(3):1–207
5. Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (2001) Estimating the support of a

high-dimensional distribution. Neural Comput 13(7):1443–1471

123

http://arxiv.org/abs/1709.08716

2428 M. Wu et al.

6. Fei G, Liu B (2015) “Social media text classification under negative covariate shift,” In: Proceedings of
EMNLP, pp. 2347–2356

7. Scheirer WJ, de Rezende Rocha A, Sapkota A, Boult TE (2012) Toward open set recognition. IEEE Trans
Pattern Anal Mach Intell 35(7):1757–1772

8. Scheirer WJ, Jain LP, Boult TE (2014) Probability models for open set recognition. IEEE Trans Pattern
Anal Mach Intell 36(11):2317–2324

9. Jain LP, Scheirer WJ, Boult TE (2014) “Multi-class open set recognition using probability of inclusion,”
In: ECCV. Springer, pp. 393–409

10. Wu M, Pan S, Zhu X (2020) “Openwgl: Open-world graph learning,” In: Proceeginds of IEEE ICDM
conference

11. Gao Y, Chandra S, Li Y, Kan L, Thuraisingham B (2020) Saccos: A semi-supervised framework for
emerging class detection and concept drift adaption over data streams. Knowl Data Eng IEEE Trans

12. Cai X-QC, Zhao P, Ting K-M, Mu X, Jiang Y (2019) “Nearest neighbor ensembles: An effective method
for difficult problems in streaming classification with emerging new classes,” In: ICDM

13. Wei X-S, Ye H-JY, Wu X, Wu J, Shen C, Zhou Z-H (2021) Multiple instance learning with emerging
novel class. IEEE Trans Knowledge Data Eng 33(5):2109–2120

14. NaG,KimDK,YuH (2019) “Dilof: Effective andmemory efficient local outlier detection in data streams,”
In: Proceedings of KDD

15. ParkCH, ShimH (2007) “On detecting an emerging class,” In: IEEE International Conference onGranular
Computing (GRC 2007). IEEE, pp. 265–265

16. Zadrozny B, Elkan C (2002) “Transforming classifier scores into accurate multiclass probability esti-
mates,” In: Proceedings of SIGKDD

17. Li M, Sethi IK (2006) Confidence-based classifier design. Pattern Recogn 39(7):1230–1240
18. ProedrouK,Nouretdinov I, VovkV,GammermanA (2002) “Transductive confidencemachines for pattern

recognition,” In: European conference on machine learning. Springer, pp. 381–390
19. Soares-Filho W, Seixas J, Caloba LP (2002) “Enlarging neural class detection capacity in passive

sonar systems,” In: 2002 IEEE international symposium on circuits and systems. Proceedings (Cat. No.
02CH37353), vol. 3. IEEE, pp. III–III

20. Knorr EM, Ng RT (1999) Finding intensional knowledge of distance-based outliers. Vldb 99:211–222
21. Akoglu L, Tong H, Koutra D (2015) Graph based anomaly detection and description: a survey. Data

Mining Knowl Discovery 29(3):626–688
22. Spinosa EJ, CarvalhoA (2005) Support vector machines for novel class detection in bioinformatics. Genet

Mol Res 4(3):608–15
23. BarbaráD,Domeniconi C, Rogers JP (2006) “Detecting outliers using transduction and statistical testing,”

In: Proceedings of KDD, pp. 55–64
24. Gori M, Monfardini G, Scarselli F (2005) “A new model for learning in graph domains,” In: IJCNN,

vol. 2. IEEE, pp. 729–734
25. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2008) The graph neural network model.

IEEE Trans Neural Netw 20(1):61–80
26. Wu M, Pan S, Zhou C, Chang X, Zhu X (2020) “Unsupervised domain adaptive graph convolutional

networks,” In: WWW ’20: the web conference, April 20-24, 2020, pp. 1457–1467
27. Wu M, Pan S, Zhu X, Zhou C, Pan L (2019) “Domain-adversarial graph neural networks for text classi-

fication,” In: IEEE international conference on data mining, ICDM, pp. 648–657
28. Zhu S, Zhou L, Pan S, Zhou C, Yan G, Wang B (2020) “GSSNN: Graph smoothing splines neural

networks,” In: AAAI, pp. 7007–7014
29. WuZ, PanS,ChenF, LongG,ZhangC,YuPS (2020) “A comprehensive survey on graph neural networks,”

TNNLS
30. Pan S, Hu R, Fung S-f, Long G, Jiang J, Zhang C (2020) Learning graph embedding with adversarial

training methods. IEEE Trans Cybern 50(6): 2475–2487
31. Wu M, Pan S, Du L, Tsang IW, Zhu X, Du B (2019) “Long-short distance aggregation networks for

positive unlabeled graph learning,” In: Proceedings of CIKM, pp. 2157–2160
32. Kipf TN, Welling M (2016) “Semi-supervised classification with graph convolutional networks,” arXiv

preprint arXiv:1609.02907
33. HamiltonW, Ying Z, Leskovec J (2017) “Inductive representation learning on large graphs,” In: Advances

in neural information processing systems, pp. 1024–1034
34. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) “Graph attention networks,”

arXiv preprint arXiv:1710.10903
35. Kipf TN, Welling M (2016) “Variational graph auto-encoders,” arXiv preprint arXiv:1611.07308
36. Kingma DP, Welling M (2013) “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114

123

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1312.6114

OpenWGL: open-world graph learning for unseen class… 2429

37. Clevert D, Unterthiner T, Hochreiter S (2015) “Fast and accurate deep network learning by exponential
linear units (elus),” arXiv preprint arXiv:1511.07289

38. Yang C, Liu Z, Zhao D, Sun M, Chang EY (2015) “Network representation learning with rich text
information.” In: Proceedings of IJCAI, pp. 2111–2117

39. Pan S, Wu J, Zhu X, Zhang C, Wang Y (2016) “Tri-party deep network representation,” In: Proceedings
of IJCAI, pp. 1895–1901

40. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin
M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M,
Levenberg J,ManéD,MongaR,Moore S,MurrayD, Olah C, SchusterM, Shlens J, Steiner B, Sutskever I,
Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O,Warden P,WattenbergM.WickeM,
Yu Y, Zheng X (2015) “TensorFlow: Large-scale machine learning on heterogeneous systems,” software
available from tensorflow.org. [Online]. Available: http://tensorflow.org/

41. Hu J, Qian S, FangQ,WangY, ZhaoQ, ZhangH,XuC (2021) “Efficient graph deep learning in tensorflow
with tf_geometric,” CoRR, vol. arXiv:abs/2101.11552

42. Chi L, Li B, Zhu X, Pan S, Chen L (2018) Hashing for adaptive real-time graph stream classification with
concept drifts. IEEE Trans Cybern 48(5):1591–1604

43. Zhang P, Gao BJ, Zhu X, Guo L (2011) “Enabling fast lazy learning for data streams,” In: Proceedings
of IEEE ICDM Conference, pp. 932–941

44. XuK,HuW,Leskovec J, JegelkaS (2019) “Howpowerful are graphneural networks?” In: 7th international
conference on learning representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019

45. Zhu S, Pan S, Zhou C, Wu J, Cao Y, Wang B (2020) “Graph geometry interaction learning,” Adv Neural
Inf Process Syst 33:7548–7558

46. Klicpera J, Bojchevski A, Günnemann S (2019) “Predict then propagate: Graph neural networks meet
personalized pagerank,” In: 7th International conference on learning representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019

47. Brockschmidt M (2020) “Gnn-film: Graph neural networks with feature-wise linear modulation,” In:
Proceedings of the 37th international conference on machine learning, ICML 2020, 13-18 July 2020,
virtual event, ser. Proceedings of machine learning research, vol. 119, pp. 1144–1152

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Man Wu is currently working toward a Ph.D. degree in Computer
Science at the Department of Electrical Engineering and Computer
Science, Florida Atlantic University. Her current research focuses on
machine learning, graph, and network analysis, with an emphasis on
understanding and modeling complicated relational structures, graphs,
and networks.

123

http://arxiv.org/abs/1511.07289
http://tensorflow.org/
http://arxiv.org/abs/abs/2101.11552

2430 M. Wu et al.

Shirui Pan received the Ph.D. in Computer Science from the Univer-
sity of Technology Sydney (UTS), Ultimo, NSW, Australia. He is cur-
rently a Senior Lecturer with the Faculty of Information Technology,
Monash University, Australia. His research interests include data min-
ing and machine learning. To date, Dr Pan has published over 100
research papers in top-tier journals and conferences, including the IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
IEEE Transactions on Knowledge and Data Engineering (TKDE), and
NeurIPS, KDD. He is recognized as one of the AI 2000 AAAI/IJCAI
Most Influential Scholars in Australia (2021).

Xingquan Zhu received the PhD degree in Computer Science from
Fudan University, Shanghai, China. He is Full Professor in the Depart-
ment of Electrical Engineering and Computer Science, Florida Atlantic
University. His research interests mainly include data analytics, machine
learning, and bioinformatics. Since 2000, he has published more than
270 refereed journal and conference papers in these areas, including
four Best Paper Awards (PAKDD-21, IRI-18, PAKDD-13, ICTAI-05)
and three Best Student Paper Awards (ICDM-20, ICKG-20, ICPR-12).
He is an Associate Editor of the IEEE Trans. on Knowledge and Data
Engineering (2008–2012, 2014–date), and an Associate Editor of the
ACM Trans. on Knowledge Discovery from Data (2017–date).

123

	OpenWGL: open-world graph learning for unseen class node classification
	Abstract
	1 Introduction
	2 Related work
	2.1 Open-world learning
	2.2 Emerging class and outlier detection
	2.3 Graph neural networks

	3 Problem definition and overall framework
	3.1 Problem statement
	3.2 Overall framework

	4 Methodology
	4.1 Node uncertainty representation learning
	4.2 Open-world classifier learning
	4.3 Open-world classification and rejection
	4.3.1 Automatic rejection threshold selection

	4.4 Algorithm description
	4.5 Time complexity analysis

	5 Experiments
	5.1 Experimental setup
	5.2 Open-world graph learning classification results
	5.3 Ablation analysis of OpenWGL components
	5.3.1 The effect of the class uncertainty loss
	5.3.2 The impact of the VGAE module (KL loss and reconstruction loss)

	5.4 Parameter analysis
	5.5 Case study
	5.5.1 Visualization of the OpenWGL sampling results
	5.5.2 The confusion matrix

	6 Discussion
	7 Conclusions
	Acknowledgements
	References

