
51

NTP-Miner: Nonoverlapping Three-Way Sequential

Pattern Mining

YOUXI WU, School of Artificial Intelligence, Hebei University of Technology and Hebei Key Laboratory

of Big Data Computing

LANFANG LUO, School of Artificial Intelligence, Hebei University of Technology

YAN LI, School of Economics and Management, Hebei University of Technology

LEI GUO, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University

of Technology

PHILIPPE FOURNIER-VIGER, School of Humanities and Social Sciences, Harbin Institute of

Technology (Shenzhen)

XINGQUAN ZHU, Department of Computer & Electrical Engineering and Computer Science, Florida

Atlantic University

XINDONG WU, Key Laboratory of Knowledge Engineering with Big Data (Hefei University of

Technology), Ministry of Education and Mininglamp Academy of Sciences, Mininglamp Technology

Nonoverlapping sequential pattern mining is an important type of sequential pattern mining (SPM) with

gap constraints, which not only can reveal interesting patterns to users but also can effectively reduce the

search space using the Apriori (anti-monotonicity) property. However, the existing algorithms do not focus

on attributes of interest to users, meaning that existing methods may discover many frequent patterns that

are redundant. To solve this problem, this article proposes a task called nonoverlapping three-way sequential

pattern (NTP) mining, where attributes are categorized according to three levels of interest: strong, medium,

and weak interest. NTP mining can effectively avoid mining redundant patterns since the NTPs are com-

posed of strong and medium interest items. Moreover, NTPs can avoid serious deviations (the occurrence is

significantly different from its pattern) since gap constraints cannot match with strong interest patterns. To

This work was partly supported by National Natural Science Foundation of China (61976240, 52077056, 917446209), Na-

tional Key Research and Development Program of China (2016YFB1000901), National Science Foundation under grant Nos.

IIS-1763452 & CNS-1828181, Natural Science Foundation of Hebei Province, China (Nos. F2020202013, E2020202033), and

Graduate Student Innovation Program of Hebei Province (CXZZSS2020030).

Authors’ addresses: Y. Wu, School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China and

Hebei Key Laboratory of Big Data Computing, Tianjin 300401, China; email: wuc567@163.com; L. Luo, School of Arti-

ficial Intelligence, Hebei University of Technology, Tianjin, 300401, China; email: luofangluo68@163.com; Y. Li (corre-

sponding author), School of Economics and Management, Hebei University of Technology, Tianjin 300401, China; email:

lywuc@163.com; L. Guo, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University

of Technology, Tianjin 300401, China; email: guoshengrui@163.com; P. Fournier-Viger, College of Computer Science and

Software Engineering, Shenzhen University, Shenzhen, 518060, China; email: philfv@szu.edu.cn; X. Zhu, Department of

Computer & Electrical Engineering and Computer Science, Florida Atlantic University, FL 33431; email: xzhu3@fau.edu;

X. Wu, Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology), Ministry of Educa-

tion, Hefei 230009, China, and Mininglamp Academy of Sciences, Mininglamp Technology, Beijing 100084, China; email:

xwu@hfut.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1556-4681/2021/10-ART51 $15.00

https://doi.org/10.1145/3480245

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3480245

51:2 Y. Wu et al.

mine NTPs, an effective algorithm is put forward, called NTP-Miner, which applies two main steps: support

(frequency occurrence) calculation and candidate pattern generation. To calculate the support of an NTP,

depth-first and backtracking strategies are adopted, which do not require creating a whole Nettree structure,

meaning that many redundant nodes and parent–child relationships do not need to be created. Hence, time

and space efficiency is improved. To generate candidate patterns while reducing their number, NTP-Miner

employs a pattern join strategy and only mines patterns of strong and medium interest. Experimental results

on stock market and protein datasets show that NTP-Miner not only is more efficient than other competitive

approaches but can also help users find more valuable patterns. More importantly, NTP mining has achieved

better performance than other competitive methods in clustering tasks. Algorithms and data are available at:

https://github.com/wuc567/Pattern-Mining/tree/master/NTP-Miner.

CCS Concepts: • Theory of computation→Design and analysis of algorithms; • Computing method-

ologies→ Knowledge representation and reasoning;

Additional Key Words and Phrases: Sequential pattern mining, frequent pattern, three-way decisions, gap

constraint, Apriori property

ACM Reference format:

Youxi Wu, Lanfang Luo, Yan Li, Lei Guo, Philippe Fournier-Viger, Xingquan Zhu, and Xindong Wu. 2021.

NTP-Miner: Nonoverlapping Three-Way Sequential Pattern Mining. ACM Trans. Knowl. Discov. Data. 16, 3,

Article 51 (October 2021), 21 pages.

https://doi.org/10.1145/3480245

1 INTRODUCTION

Data mining aims at extracting meaningful information from large amounts of data [1]. Sequen-
tial pattern mining (SPM) is a key process in data mining [2, 3]. The goal is to find subse-
quences (or patterns) that appear in at least minsup sequences of characters (symbols), where
minsup is a user-defined parameter [4, 5]. SPM has been applied in various fields such as to an-
alyze biological information [6, 7] and event logs [8], for knowledge point recommendation [9],
behavioural informatics [10, 11], and feature selection [12]. To give more flexibility to the user
in terms of specifying constraints on patterns to be found, two types of wildcards have been
proposed. The “?” wildcard [13] indicates a match with a single character, while “*” denotes a
match with multiple characters. For example, “a?b” can match with “acb”, “adb” and “aeb”, while
“a*c” can match “ac”, “adbfc” and “afbdbc”. In recent years, a more flexible wildcard called gap
constraint [7] has been developed. A pattern with gap constraints can be represented as p =
p1[a1,b1]p2 . . .pm−1[am−1,bm−1]pm [14], and [15], where aj and bj are the minimum and maxi-
mum number of wildcard between characters pj and pj+1, respectively. For example, the pattern
a[0, 2]c is of the form p = p1[a1,b1]p2 and represents three wildcard patterns, (ac),(a?c), and (a??c).
A pattern p = p1[a1,b1]p2 . . .pm−1[am−1,bm−1]pm is called a pattern with periodic gap constraints
in the case where a1 = a2 = · · · = am−1 = x and b1 = b2 = · · · = bm−1 = y, and can be abbreviated
as p = p1p2 . . .pm with gap = [x, y] [16–18]. This problem formulation is clearer for the user, and
has been widely used in many applications, such as for user purchasing behaviour analysis [11],
biological sequence analysis [19], feature extraction [20], and text keyword extraction [21].

However, the current form of SPM with gap constraints does not focus on attributes of interest
to users, which gives rise to two problems: (i) Gap constraints can cause serious deviations or
even distortions of the original pattern. For example, in stock data, users are mostly interested in
volatile patterns. Therefore, volatile characters cannot be matched by gap constraints. (ii) Since
all characters can form patterns, this not only leads to a large number of patterns being mined,
but also takes a long time. More importantly, users are not interested in certain patterns. Inspired
by three-way decisions [22–24] and the concept of tri-pattern mining [6], this article explores

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

https://github.com/wuc567/Pattern-Mining/tree/master/NTP-Miner
https://doi.org/10.1145/3480245

NTP-Miner: Nonoverlapping Three-Way Sequential Pattern Mining 51:3

Fig. 1. The red and yellow lines indicate three nonoverlapping occurrences of p = p1p2p3p4 = EFhE, which

can be written as <1, 2, 3, 4>, <6, 8, 9, 10> and <12, 15, 17, 18>. There is a serious deviation between the

yellow line and the two red ones.

nonoverlapping three-way sequential pattern (NTP) mining. Two illustrative examples are
presented below.

Example 1. Consider the time series shown in Figure 1 where a behavioural attribute “tem-
perature” is measured over 19 time steps. After transforming the time series into charac-
ters representing trends, the character sequence s1 = s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15s16s17s18 =
EFhECECFhEAEhCFAhE is obtained. Thus, the set of all characters Σ is {A, C, E, F, h}. Suppose we
have a pattern p = p1p2p3p4 = EFhE with gap = [a, b] = [0, 2], the set of strong character is Γ = {h},
the set of medium characters is Λ = {E, F}, and that of weak characters is Ω = {A, C}.

In Figure 1, the first red line represents the occurrence of p at time steps <1, 2, 3, 4>, for which
the trend is the same as that of p, and there is no gap in the occurrence. The second red line in-
dicates the occurrence <6, 8, 9, 10>, for which the trend is close to that of p, and there is a weak
character “C” between positions 6 and 8. The yellow line indicates the occurrence <12, 15, 17, 18>,
for which the trend is different from that of p, since there is a strong character “h” between posi-
tions 12 and 15, which leads to a different overall trend.

Example 2. Extending Example 1, a second sequence = s1s2s3s4s5s6s7s8s9s10 = AAFEAhAAEA
is added to have a sequence database SDB = {s1, s2}. If the minimum support threshold is set to
minsup = 4, there are 12 frequent patterns {A, E, F, h, AA, AE, Eh, FE, Fh, hE, AAA, FhE} appearing
in at least 4 sequences of SDB, but only 7 frequent NTPs {E, F, h, Eh, Fh, hE, FhE}. Since users are
primarily interested in patterns with larger fluctuations, some patterns that are composed of weak
characters are ignored, as these have smaller fluctuations, such as “AA” and “AAA”.

To effectively mine patterns that users are interested in, all characters are divided into three
levels of interest: strong, medium, and weak. The NTP mining can be applied in many cases.

(i) In some cases, the characters of the datasets are divided into three categories by domain
experts. For example, biologists divide the amino acids into essential, conditional essential,
and nonconditional essential amino acids. Thus, the essential amino acids are strong charac-
ters, conditional essential amino acids are medium characters, and nonconditional essential
amino acids are weak characters [6].

(ii) This mining method can be applied in some specific applications, such as rare pattern min-
ing [25]. In rare pattern mining, the character distributions are different. Some characters
are frequent, while others are not. Obviously, rare patterns are not made of the frequent

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

51:4 Y. Wu et al.

characters, which therefore can be seen as weak characters. The infrequent characters can
be seen as strong characters, and the other characters are medium characters.

(iii) In some applications, the users have some priori knowledge. Thus, the interesting characters
are strong characters, while the disinteresting characters are weak ones, and the rest are
medium ones. For example, in the stock market, the larger fluctuations correspond to strong
characters, while the smaller fluctuations correspond to weak ones, and the rest correspond
to medium characters.

In the above applications, the NTPmining task can reduce the number of redundant patterns since
the NTPs are composed of strong andmedium interest characters. More importantly, the NTPs can
avoid serious deviations since the gap constraints cannot match with strong interest characters.
The main contributions of this study are as follows:

(1) To avoid mining redundant and noise patterns, the article addresses the NTP mining to
discover NTPs, in which all characters are partitioned into three interest levels: strong,
medium, and weak. The patterns are composed of strong and medium characters. The gaps
are matched with medium and weak characters.

(2) An effective algorithm called NTP-Miner is proposed, which has two key steps: calculat-
ing the support (occurrence frequency) of patterns and generating candidate patterns. NTP-
Miner employs the depth-first and backtracking strategies to find all nonoverlapping oc-
currences without creating a whole Nettree and applies a pattern join strategy to reduce
the number of candidate patterns. Hence, the time and space complexities are effectively
reduced.

(3) An experimental evaluation verifies that NTP-Miner not only outperforms the competitive
algorithms, but can also reveal meaningful patterns to users.

The rest of this manuscript is organized as follows. Section 2 introduces related work, and Sec-
tion 3 defines the problem. Section 4 proposes the NTP-Miner algorithm, which employs depth-
first and backtracking strategies to calculate NTP support, and applies a pattern join strategy to
generate candidate patterns. Section 5 evaluates the efficiency and performance of NTP-Miner, and
Section 6 concludes this article.

2 RELATEDWORK

SPM has been applied in many fields such as industry [26], and the original task has been ex-
tended inmanyways such as for occupancymining [27], negative SPM [28], closed SPM [29], top-k
SPM [30], progressive mining [31], co-location pattern mining [32], SPMwith gap constraints [19]
and high-utility SPM [33–36]. High-utility SPM takes certain aspects into account such as the
profit [37–39] or weight of items (characters) [40–42] to evaluate the interests of users and meet
their needs.
In recent years, several other studies have been done to find patterns that are interesting to

users. For example, Shen et al. [43] employed a utility occupancy function to identify meaningful
patterns, but the efficiency of this approach is low. Gan et al. [1] later proposed a more efficient
algorithm. But a drawback of these methods is that a utility value must be assigned to each item,
which is difficult to do accurately without prior knowledge. An unsuitable value for the utility
will lead to serious deviations and even to miss important patterns. To solve this problem, Tan
et al. [44] proposed SPM with weak-wildcard gaps. In this method, the set of all characters was
partitioned into strong and weak characters, and weak-wildcard gaps can only match with weak
characters. The drawback of this approach is that weak characters can be used to form patterns,
even though weak characters are usually uninteresting to users. Inspired by three-way decisions
[22, 45], tri-partition alphabets SPM was proposed [6], which partitions the set of characters into

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

NTP-Miner: Nonoverlapping Three-Way Sequential Pattern Mining 51:5

three sets: strong, medium, and weak characters. In this approach, a pattern can only contain
strong or medium characters, and gap constraints can only be medium or weak characters.
Both weak-wildcard gap SPM [44] and tri-partition alphabets SPM [6] are special cases of SPM

with gap constraints, which can be further divided into three cases: no-condition [16], the one-off
condition [46–48] and the nonoverlapping condition [49, 50]. In the case of no-condition, the same
sequence characters can be reused in any positions. Although it is easy to calculate the support in
this case, the support (or the support ratio) does not satisfy the Apriori (anti-monotonicity) prop-
erty. Thus, it is necessary to expand the search space to find all patterns [44]. Under the one-off
condition, the same sequence characters cannot be reused in any positions. SPM with gap con-
straints under the one-off condition has been used to extract keywords [21]. However, calculating
the support of a pattern is an NP-hard problem, meaning that the support cannot be calculated
exactly. Therefore, algorithms for the one-off SPM task are approximate [21]. Under the nonover-
lapping condition, the same sequence characters can be reused in different positions, but cannot
be reused in the same positions. Although the nonoverlapping condition is more complicated than
the other two cases in terms of calculating the support [50], it can be calculated in polynomial time,
and nonoverlapping SPM satisfies the Apriori property [7]. More importantly, it is easier to find
meaningful patterns in nonoverlapping SPM than the case of no-condition or the one-off condition.
Inspired by previous work [6, 7], this article explores NTP mining. Although both tri-partition

alphabets SPM [6] and NTP mining aim at discovering patterns with tri-partition alphabets, there
are several differences between these approaches. The former calculates the support of a pattern
under no-condition and adds unmatchable characters at the end of a sequence to satisfy the Apri-
ori property [6]. Therefore, it is an approximate mining method. Differently, the scheme proposed
in this article calculates the support under the nonoverlapping condition and does not need to add
characters to discover all feasible patterns. On the basis of nonoverlapping SPM [7], this article
divides the characters into three types: strong, medium, and weak. Only strong and medium char-
acters can form patterns, to ensure that they are valuable to users. More importantly, this method
reduces the number of candidate patterns and increases the mining speed. It is worth noting that
when the strong and weak character sets are empty, the problem is transformed into nonoverlap-
ping SPM [7], and hence nonoverlapping SPM can be seen as a special case of NTP mining. To im-
prove the mining speed, the proposed approach employs depth-first and backtracking strategies to
calculate the support, and does not need to create a whole Nettree structure unlike prior work [7].

3 PROBLEM DEFINITION

The problem studied in this article is based on the following definitions.

Definition 1 (Sequence). A sequence with length n can be described as s = s1s2 . . . si . . . sn , where
si ∈ Σ(1 ≤ i ≤ n). The set of all characters Σ is partitioned into three subsets: the set of strong
characters Γ, the set of medium characters Λ, and that of weak characters Ω. The sets Γ, Λ, and Ω
are called tri-character sets.

Definition 2 (Three-way Pattern with Periodic tri-wildcard Gap Constraints). A three-way
pattern (tri-pattern) with periodic tri-wildcard gap constraints can be expressed as p =
p1[a,b]p2 . . .pj [a,b] . . . [a,b]pm (1 < j ≤ m-1 , 0 ≤ a ≤ b), and can also be abbreviated as p =
p1p2 . . .pm with tri-wildcard gap constraints gap = [a, b], where pj ∈ (Γ∪Λ) and a and b represent
the minimum and maximum tri-wildcards, respectively.

Definition 3 (Occurrence). Given a sequence s = s1s2 . . . si . . . sn , and a tri-pattern p = p1p2 . . .pm
with tri-wildcard gap = [a, b], a list of positions L = < l1, l2, . . . lj , . . . , lm > is an occurrence of
pattern p in sequence s, if and only if 0 ≤ l1 < l2 < . . . lj < ... < lm ≤ n, a ≤ lj+1 − lj − 1 ≤ b,
where slj = pj (1 ≤ j ≤ m-1), slj < sx < slj+1 (1 ≤ j ≤ m-1), and sx ∈ (Λ ∪ Ω).

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

51:6 Y. Wu et al.

Fig. 2. All occurrences of tri-pattern p = FghF with tri-wildcard gap = [1, 4] in sequence s.

Example 3. Consider a sequence s = s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15s16s17s18s19s20s21s22 =
FhggFAgghEFFEggAAAEhAF, |s| = 22, Σ = {F, h, g, A, E}, Γ = {h}, Λ = {E, F, g}, Ω = {A} and a
tri-pattern p = p1p2p3p4= FghF with a tri-wildcard gap constraints gap = [1, 4]. The four matching
occurrences of pattern p in sequence s are shown in Figure 2.

From Figure 2, there are four occurrences of tri-pattern p in sequence s: <5, 7, 9, 11>, <5, 7, 9,
12>, <11, 15, 20, 22>, and <12, 15, 20, 22>. Although <1, 4, 9, 11> satisfies the gap constraints, it
is not an occurrence of p, since there is a strong character “h” between positions 1 and 4.

Definition 4 (Nonoverlapping Occurrence Set and Support). Given two occurrences L = { l1, l2, . . . ,
lj , . . . , lm } and L

′ = {l ′1, l ′2, . . . l ′j , . . . , l ′m }, L and L’ are two nonoverlapping occurrences, if and only

if for any j(1≤ j ≤ m), lj � l ′j . If any two occurrences in a set are nonoverlapping occurrences, then

the set is a nonoverlapping occurrence set. The nonoverlapping support of p in s is the size of the
maximum nonoverlapping occurrence set, represented by sup(p, s).

In Example 3, <5, 7, 9, 11> and <5, 7, 9, 12> are two overlapping occurrences of p, since char-
acters s5, s7, and s9 are reused by p1,p2, and p3, respectively. Although s11 is used twice in occur-
rences <5, 7, 9, 11 > and <11, 15, 20, 22>, these are two nonoverlapping occurrences, since s11 is
used by p4 in the former, and by p1 in the latter. Thus, the nonoverlapping occurrence set of p is
<5, 7, 9, 11>, <11, 15, 20, 22>, and its support is sup(p, s) = 2.

Definition 5 (Support for Sequence Database). A sequence database with N sequences can be
described as SDB = {s1, s2, . . . , sN }. The support of a tri-pattern p in SDB (sup(p, SDB)) is the sum
of the support of p in each sequence, that is sup(p, SDB) =

∑N
k=1 sup(p, sk), where 1 ≤ k ≤ N.

Definition 6 (NTP and NTP Mining). If the support of a tri-pattern p in SDB is no less than a user-
specified minimum support threshold minsup, p is frequent NTP. The purpose of the proposed
method is to discover all frequent NTPs in an SDB, given the tri-wildcard gap constraints, Γ, Λ, Ω,
and minsup.

When Γ and Ω are empty and Λ = Σ, NTP mining becomes nonoverlapping SPM [7]. Hence,
nonoverlapping SPM can be seen as a special case of NTP mining.

Example 4. Suppose we have the tri-character sets Γ = {h}, Λ = {E, F, g}, and Ω = {A}, the tri-
wildcard gap = [1, 4], minsup = 3, and SDB = {s1 = s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15s16s17s18s19s20
s21s22 = FhggFAgghEFFEggAAAEhAF, s2 = s1s2s3s4s5s6s7s8 = FAgFghAF}. The support of tri-
pattern p = p1p2p3p4 = FghF in sequence s1 is sup(p, s1) = 2. Similarly, sup(p, s2) = 1. Therefore,
sup(p, SDB) = sup(p, s1) + sup(p, s2) = 2 + 1 = 3. Hence, p is an NTP in SDB, since sup(p, SDB) ≥
minsup = 3. Although sup(“A”, SDB) = 7 is greater thanminsup = 3, the character “A” is not an NTP,
since it is a weak character. The set of all NTPs in SDB are {F, h, g, E, Fg, hF, gh, gg, Fgh, gghF,
FghF}.

4 PROPOSED ALGORITHM

There are two major steps in NTP mining: calculating the support of patterns and generating
candidate patterns. Section 4.1 proposes an effective algorithm for calculating the support, called

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

NTP-Miner: Nonoverlapping Three-Way Sequential Pattern Mining 51:7

simplifiedNettree for tri-patternwith tri-wildcard gAP constraints (Sim-NAP). Section 4.2 presents
a candidate pattern generation strategy based on pattern join. Section 4.3 proposes the NTP-Miner
algorithm for NTP mining, and analyzes the space and time complexities of NTP-Miner from a
theoretical perspective.

4.1 Sim-NAP Algorithm

TheNettree structure is an extended treewithmultiple roots andmultiple parents [51]. Some nodes
may have the same node ID on different levels. The notation nij refers to node i at the jth level. A

path from a root to a leaf is called a full path. Although all occurrences of a pattern p in a sequence
s can be represented as a Nettree, it is difficult to determine which character in sequence s can be
reused in the nonoverlapping condition. However, it is easy to solve this problem using a Nettree,
since any node can be used at most once in this structure. Although the NETGAP algorithm can
find all nonoverlapping occurrences by creating a whole Nettree, it fails to handle tri-patterns with
tri-wildcard gap constraints. More importantly, NETGAP is inefficient, since it needs to create a
whole Nettree, and find and prune invalid nodes only after obtaining an occurrence.

To efficiently calculate the support of an NTP, we propose the Sim-NAP algorithm, which adopts
the depth-first search and backtracking strategies to find all nonoverlapping occurrences without
creating the whole Nettree. The main steps are as follows:

Step 1: For each si (1 ≤ i ≤ n), check whether or not si is the same as p1. If si = p1, then root
ni1 is created at the first level and Sim-NAP selects root ni1 as the current node.

Step 2: Suppose that the current node is ntj (1 ≤ j ≤ m-1). Sim-NAP finds the child node of ntj
by the depth-first and backtracking strategies. For each sk (t+a+1 ≤ k ≤ t+b+1), Sim-NAP
determines whether sk is the same as pj+1. If sk = pj+1, there are two cases:
Case 1: There is a strong character between st and sk . In this case, Sim-NAP backtracks to

the parent node of ntj as the current node.

Case 2: There is no strong character between st and sk . If the (j+1)-th level does not have
node nkj+1, Sim-NAP creates node nkj+1, establishes the parent–child relationship between

nodesntj andn
k
j+1, and selects noden

k
j+1 as the current node. Otherwise, it will find another

child node of ntj .

Step 3: Sim-NAP repeats Step 2 until j = m or j = 0. If j = m, then the path from ni1 to ntj is
a nonoverlapping occurrence, and Sim-NAP returns to Step 1 to find another root. If j = 0,
then Sim-NAP returns to Step 1 to find another root.

Step 4: Sim-NAP repeats Step 1 until all characters in the sequence have been processed.

Example 5 illustrates the principle of Sim-NAP.

Example 5. Suppose we have a sequence s = s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15s16s17s18s19s20s21s22
= FhggFAgghEFFEggAAAEhAF and the tri-patterns p = FghF with tri-wildcard gap constraints,
and the tri-character sets are Γ = {h}, Λ = {E,F,g}, and Ω = {A}. The simplified Nettree of the tri-
pattern p in sequence s is shown in Figure 3.

Since s1 = p1, Sim-NAP creates n11, and then finds the child of n11. Although s3 = p2 = “g”, there
is s2 = “h”, meaning that there is a strong character between s1 and s3. Thus, Sim-NAP backtracks
to the parent node of n11. In this case, we know that j = 0, and Sim-NAP finds another root. Since

s5 = p1, Sim-NAP createsn51, and then finds the child ofn
5
1. Since s7 = p2 = “g” and there is no strong

character between s5 and s7, Sim-NAP creates n72. In the same way, Sim-NAP creates n93 and n114 .

After creating n114 , Sim-NAP finds a full path <n51,n
7
2,n

9
3,n

11
4 > whose corresponding occurrence is

<5, 7, 9, 11>. After Step 3, Sim-NAP returns to Step 1 and finds another root n111 , and then finds the

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

51:8 Y. Wu et al.

Fig. 3. Simplified Nettree of the tri-patterns p = FghF with tri-wildcard gap constraints gap = [1, 4] in se-

quence s. Nodes n111 and n114 have the same ID 11 at the first and fourth levels, respectively. <5, 7, 9, 11> and

<11, 15, 20, 22> are two nonoverlapping occurrences, since the corresponding full paths <n51,n
7
2,n

9
3,n

11
4 > and

<n111 ,n
15
2 ,n

20
3 ,n

22
4 > do not share a common node.

ALGORITHM 1: Sim-NAP
Input: sequence s, tri-pattern p with tri-wildcard gap = [a, b], tri-character sets Γ, Λ and Ω
Output: sup(p, s)

1: for i = 1 to n do
2: if si = p1 then

3: Create root ni1;
4: j←1 and t←i;
5: while 0 < j < m do
6: Iteratively find the child node of ntj according to the tri-wildcard gap = [a, b], tri-character sets, and use

depth-first and backtracking strategies, i.e. node nk
j+1 and j←j+1;

7: end while
8: if j = m then
9: sup(p, s)++;
10: end if
11: end if
12: end for
13: return sup(p, s);

child of n111 , which is n142 . With tri-wildcard gap constraint gap = [1, 4], n142 does not have a child.

Thus, Sim-NAP backtracks to the parent of n142 , which is n111 . Sim-NAP then finds another child of

n111 , which is n152 . Finally, Sim-NAP finds another full path <n111 ,n
15
2 ,n

20
3 ,n

22
4 >whose corresponding

occurrence is <11, 15, 20, 22>. The simplified Nettree produced by Sim-NAP is shown in Figure 3.
The Nettree in Figure 3 can be seen as a forest, since each node has only one parent. Compared

with NETGAP, Sim-NAP is more efficient. The reasons are two aspects. First, NETGAP has to
create a whole Nettree, in which a node may have many parents. Sim-NAP creates a forest, in
which a node has only one parent. Thus, Sim-NAP does not need to create redundant parent–
child relationships. Second, NETGAP has to find and prune invalid nodes, while Sim-NAP does
not. Hence, Sim-NAP effectively reduces the space and time complexities.
The Sim-NAP algorithm is shown in Algorithm 1.
The space and time complexities of Sim-NAP are both O (m × n). The reasons are as follows. A

Nettree hasm levels, the number of nodes in each level does not exceed n, and each node has only
one parent. The space complexity of Sim-NAP is O (m × n), since each node can be visited only
once. Hence, the time complexity of Sim-NAP is also O (m × n).

4.2 Generation of Candidate Patterns

In the proposed NTP-Miner algorithm, pattern generation is done as follows.

Definition 7 (Prefix and Suffix Patterns). For a pattern p = p1p2 . . .pm−1pm , the prefix of p is
prefix(p) = p1p2 . . .pm−1, while the suffix of p is suffix(p) = p2 . . .pm−1pm .

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

NTP-Miner: Nonoverlapping Three-Way Sequential Pattern Mining 51:9

Definition 8 (Pattern Join). For a pattern r and some characters α and β (α , β ∈ (Γ ∪Λ)) patterns
p = αr and q = rβ are super-patterns of r. A new super-pattern t can be generated by pattern join,
i.e., t = p ⊕ q = αrβ , since suffix(p) = prefix(q) = r.

Theorem 1. NTP satisfies the Apriori property. In other words, if a pattern is not an NTP, its super-
patterns are also not NTPs.

Proof. The prefix and suffix patterns of pattern p are q and r, respectively. If the nonoverlap-
ping occurrence set of p in sequence s is L, the nonoverlapping occurrence sets of q and r in
sequence s are L1 and L2, respectively, where L ⊆ L1 and L ⊆ L2. Hence, if q or r is not a frequent
NTP, then p is not a frequent NTP. Obviously, the above cases are still valid in a sequence database.
Therefore, NTP satisfies the Apriori property.

In this article, we employ a pattern join strategy to generate candidate patterns, an approach
that can effectively reduce the number of candidate patterns. Example 6 shows that the pattern
join strategy outperforms the depth-first and breadth-first strategies.

Example 6. Consider that the sequence s2 = s1s2s3s4s5s6s7s8 = FAgFghAF is added to Example 5
to obtain a sequence database SDB = {s1, s2}, and that we aim at finding all frequent NTPs for a
minimum support threshold minsup = 3.

The depth-first and breadth-first strategies are used to generate candidate patterns, respectively.
There are four frequent NTPs of length 2 {Fg, gg, gh, hF}. Since |Γ | + |Λ| = 4, 4 × 4 = 16 candidate
patterns are generated. But if the pattern join strategy is used, only six candidate patterns are
generated: {Fgg, Fgh, ggg, ggh, ghF, hFg}. This example shows that the pattern join strategy can
generate much less candidate patterns than the depth-first and breadth-first strategies.

4.3 NTP-Miner Algorithm

This subsection describes the proposed NTP-Miner algorithm and presents an analysis of its space
and time complexities. The NTP-Miner algorithm is applied in the following six steps:

Step 1: Generate a candidate pattern set cand containing patterns of length m+1, using the
frequent pattern set fre[m].

Step 2: Calculate the support of pattern p in cand.
Step 3: If pattern p is frequent, then store it in the frequent pattern set fre[m+1].
Step 4: Repeat Steps 2 and 3 until all patterns in cand have been checked.
Step 5: All patterns remaining in fre[m+1] are NTPs, and are stored in fre.
Step 6: Repeat the above steps until the candidate pattern set cand is empty.

The NTP-Miner algorithm is shown in Algorithm 2.

Theorem 2. The space complexity of the NTP-Miner algorithm is O (M × (L + n)), where M, n,

and L are the length of the longest pattern, the length of the longest sequence in the database, and the

number of candidate patterns, respectively.

Proof. The memory usage of NTP-Miner algorithm consists of two parts: the space for candi-
date patterns and the space for calculating the support of frequent patterns. It is easy to see that the
space complexity of the first part isO (M ×L), and the space complexity of the Sim-NAP algorithm
is O (M × n). Hence, the space complexity of NTP-Miner is O (M × (L + n)).

Theorem 3. The time complexity of NTP-Miner is O (L ×M × n).

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

51:10 Y. Wu et al.

ALGORITHM 2: NTP-Miner: Mine all NTPs
Input: sequence database SDB, minsup, tri-wildcard gap = [a, b], tri-character sets Γ, Λ and Ω
Output: NTP set.

1: Scan the sequence database SDB once, calculate the support of each event item, and store frequent NTPs with length
1 in fre[1];

2: len←1;
3: cand←PatternJoin(fre[1]);
4: while cand�null do
5: for each p in cand do
6: support←Sim-NAP(SDB, p);
7: if support≥minsup then
8: fre[len+1]←fre[len+1]∪p;
9: end if
10: end for
11: cand←PatternJoin(fre[len+1]);
12: len←len+1;
13: end while
14: return fre;

Proof. The time complexity of generating all frequent patterns is O (L × loдL). The time com-
plexity of the Sim-NAP algorithm used to calculate a pattern’s support is O (M × n). Hence, the
time complexity of the NTP-Miner algorithm is O ((M × n + loдL) × L) = O (L ×M × n).

5 EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the experimental evaluation of the proposed NTP-Miner algorithm. Sec-
tions 5.1 and 5.2 first describes the benchmark datasets and the data preprocessing approach.
Section 5.3 presents the baseline methods. Section 5.4 compares the mining performance of NTP-
Miner with other algorithms. Section 5.5 reports the mining capability of tri-wildcard gap con-
straints. Section 5.6 compares and analyzes the performance of NTPs. Section 5.7 compares the
mining performance under the no-condition and the nonoverlapping condition. Section 5.8 shows
the case study.
All experiments are conducted on a computer with AMD A10-7300 Radeon R6, 10 Compute

Cores 4C+6G 1.90 GHz processor, 4 GB memory, and the Windows operating system. All the algo-
rithms are developed using the Visual Studio C++ 6.0 environment and can be downloaded from
https://github.com/wuc567/Pattern-Mining/tree/master/NTP-Miner.

5.1 Benchmark Datasets

Table 1 summarizes characteristics of the benchmark datasets used in this article. Two types of
datasets are selected: for character sequences, we use protein sequence datasets, while for time
series, we use daily closing prices from the stock market.

5.2 Data Preprocessing

Since protein data is used as character sequence datasets and daily closing stock prices as time
series datasets, two different data preprocessing methods are used:
(1) Protein data
Amino acids are the basic units of proteins. Biologists divide amino acids into essential, con-

ditional essential and nonconditional essential amino acids in the context of human biology. In
this article, the essential amino acids are strong characters, conditional essential amino acids are
medium characters, and nonconditional essential amino acids are weak characters [6]. Hence,
Γ = {H, I, L, K, M, F, T, W, V}, Λ = {R, C, Q, G, P, S, Y, N}, and Ω = {A, D, E, U, O, X}.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

https://github.com/wuc567/Pattern-Mining/tree/master/NTP-Miner

NTP-Miner: Nonoverlapping Three-Way Sequential Pattern Mining 51:11

Table 1. Benchmark Datasets

Dataset Type From Number of sequences Total length

SDB11 protein ASTRAL95_1_161 507 91,875
SDB2 protein ASTRAL95_1_161 338 62,985
SDB3 protein ASTRAL95_1_161 169 32,503
SDB4 protein ASTRAL95_1_171 590 109,424
SDB5 protein ASTRAL95_1_171 400 73,425
SDB6 protein ASTRAL95_1_171 200 37,327
SP2 stock S&P 500 1 2,516
DJI stock Dow30 1 2,516
IXIC stock Nasdaq 1 2,516
HSI stock Hang Seng Index 1 2,516
SSEC3 stock SZSE composite index 1 2,431
SZI stock Shanghai composite index 1 2,431
CAR4 sensor Car 8 4,608

WORMS eigenworm Worms 10 8,990

(2) Stock data
We first convert the time series t = {ti | i = 1, . . . , k+ 1} into the character sequence s. The main

steps are as follows:

Step 1: The fluctuation between time i and i+1 is calculated using дi = (ti+1 − ti)/ti , where
1 ≤ i ≤ k+1.

Step 2: дi is standardized.
Step 3: We regard 0%–40% of дi as the weak interval, and convert it to the set of weak charac-

ters Ω = {A, B, C, D, a, b, c, d}. The ranges −10% to 0% and 0% –10% of дi are converted to
the characters “a” and “A”, respectively, while the ranges 10%–20%, 20%–30%, and 30%–40%
of дi are converted to the characters “B”, “C”, and “D”, respectively. Similarly, the medium
interval is defined as 40%–70%, and is converted to the set of medium characters Λ = {E, F,
G, e, f, g}. The strong interval is defined as 70%–100%, and is converted to the set of strong
character Γ = {H, I, J, h, i, j}.

5.3 Baseline Methods

To verify the performance of the proposed NTP-Miner algorithm, three state-of-the-art algorithms
are selected: TPM [6], NOSEP [7], and GSgrow [49]. Several versions of these approaches are also
compared to evaluate the efficiency of the proposed algorithm: NTP-ntg, NTP-ntp, NTP-c, NTP-bf,
NTP-df, NOSEP-a, and GSgrow-a. A brief introduction to these algorithms is given below.
(1) NOSEP [7]: It mines frequent patterns under the nonoverlapping condition.
(2) TPM [6]: It mines tri-patterns for the case of no-condition.
(3) NTP-ntp: It mines frequent patterns with the tri-wildcard gap constraints.
(4) NTP-ntg: To analyze the influence of the gap constraints and the tri-wildcard gap constraints,

the NTP-ntg algorithm mines tri-patterns with traditional gap constraints.

1SDB1-6 is taken from reference [7].
2The SP500, Dow30, Nasdaq and HSI stock datasets can be downloaded from https://finance.yahoo.com/.
3The SSEC and SZI stock datasets can be downloaded from https://money.163.com/.
4The CAR and WORMS datasets can be downloaded from http://www.timeseriesclassification.com/index.php.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

https://finance.yahoo.com/
https://money.163.com/
http://www.timeseriesclassification.com/index.php

51:12 Y. Wu et al.

Fig. 4. Comparison of running time.

Fig. 5. Comparison of number of frequent NTPs.

(5) NTP-c: To verify the performance of Sim-NAP, the NTP-c algorithm uses the NAP algorithm
to calculate the support. The NAP creates the whole Nettree of a tri-pattern and employs depth-
first and backtracking strategies to find nonoverlapping occurrences within the Nettree.
(6) NTP-bf and NTP-df: To evaluate the efficiency of the pattern join strategy, NTP-bf and NTP-

df use breadth-first and depth-first strategies to generate candidate patterns, respectively.
(7) NOSEP-a and GSgrow-a: To validate the performance of NTP-Miner, NOSEP-a and GSgrow-

a consider the tri-pattern and the tri-wildcard gap constraints. NOSEP-a employs the NETGAP [7]
algorithm to calculate the support of the pattern, while GSgrow-a uses the INSgrow [49] algorithm.

5.4 Efficiency

To verify the mining performance, we conduct experiments on six protein databases, SDB1 to
SDB6. The parameter metrics are gap = [0, 3] and minsup = 50, and five competitive algorithms
are selected: NTP-c, NTP-bf, NTP-df, GSgrow-a, and NOSEP-a. The evaluation metrics include
running time, number of frequent patterns and number of candidate patterns, which are shown in
Figures 4–6, respectively. The more the mined frequent patterns are and the shorter the running
time is, the better the efficiency of the algorithm is. The less the candidate patterns are, the fewer
the support calculations are and the shorter the running time is.
The following observations can be made from the following results:

(1) NTP-Miner outperforms NTP-c and NOSEP-a. Figures 5 and 6 show that NTP-Miner, NTP-c
and NOSEP-a find the same number of frequent NTPs with the same number of candidate

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

NTP-Miner: Nonoverlapping Three-Way Sequential Pattern Mining 51:13

Fig. 6. Comparison of number of candidate patterns.

patterns, while NTP-Miner runs faster than both NTP-c and NOSEP-a. For example, for
SDB5, NTP-Miner, NTP-c, and NOSEP-a mine 1,070 frequent NTPs according to Figure 5,
and the candidate patterns are 10,889 in Figure 6. However, the time cost for NTP-Miner is
66.53 s, while for NTP-c and NOSEP-a it is 479.89 and 913.30 in Figure 4, respectively. The
same results are found for the other datasets. The reasons for this are as follows: (i) Since
Sim-NAP can find the same number of occurrences as NAP and NETGAP. NTP-Miner, NTP-
c and NOSEP-a employ Sim-NAP, NAP and NETGAP, repectively, to calculate the support.
Therefore, the three algorithms mine the same number of frequent NTPs. (ii) NTP-Miner,
NTP-c and NOSEP-a apply the same candidate pattern reduction strategy, and therefore ob-
tain the same number of candidate patterns. (iii) Since NETGAP needs to create a whole
Nettree, and finds and prunes invalid nodes only after finding an occurrence. Meanwhile,
the time complexity of NETGAP is O(m × n × W × W), where m, n, and W are the pat-
tern length, sequence length, and width of gap b−a+1, respectively [7]. The NAP creates a
whole Nettree and employs depth-first and backtracking strategies to find nonoverlapping
occurrences within the Nettree. Since the Nettree has only m levels, each level has at most
n nodes, and each node has at most W parents, it is easy to show that the space and time
complexities of NAP are both O(m × n ×W). However, the space and time complexities of
Sim-NAP is O(m × n). Thus, Sim-NAP is more effective than NAP, and NAP is more effective
than NETGAP. Therefore, Sim-NAP is more effective than both NAP and NETGAP. Hence,
NTP-Miner outperforms both NTP-c and NOSEP-a.

(2) NTP-Miner outperforms NTP-bf and NTP-df. Figure 5 shows that the NTP-bf, NTP-df and
NTP-Miner algorithms mine the same number of frequent NTPs, while NTP-Miner is faster
than NTP-bf and NTP-df in Figure 4. The explanation for this is as follows. Firstly, all three
algorithms use the Sim-NAP algorithm to calculate the support, but they use different strate-
gies to generate candidate patterns. As shown in the analysis in Section 4.2, the pattern
join strategy outperforms the breadth-first and depth-first strategies. NTP-Miner, NTP-bf,
and NTP-df use pattern join, breadth-first and depth-first strategies, respectively, to gen-
erate candidate patterns, meaning that NTP-Miner calculates fewer candidate patterns than
NTP-bf and NTP-df. For example, for SDB1, NTP-Miner calculates 15,599 candidate patterns,
while NTP-bf and NTP-df calculate 24,905. Hence, NTP-Miner outperforms both NTP-bf and
NTP-df.

(3) The performance of NTP-Miner is better than that of GSgrow-a. From Figure 5, we can
see that NTP-Miner mines more frequent NTPs than GSgrow-a, while Figure 4 shows that

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

51:14 Y. Wu et al.

Fig. 7. Comparison of the number of patterns found using traditional and tri-wildcard gap constraints.

Fig. 8. Comparison of running time for traditional and tri-wildcard gap constraints.

NTP-Miner has shorter running time than GSgrow-a. For example, it takes 202.56 s for NTP-
Miner to mine 1,890 frequent NTPs from SDB4, whereas it takes 574.61 s for GSgrow-a to
mine 1,884. Therefore, NTP-Miner outperforms GSgrow-a.

In summary, NTP-Miner has better performance than all comparable algorithms.

5.5 Performance of Tri-Wildcard Gap Constraints

To illustrate the performance of the tri-wildcard gap constraints, NTP-ntg is applied to mine the
tri-patterns with traditional gap constraints. We carry out the experiments on six stock datasets
(SP, DJI, IXIC, HSI, SSEC, and SZI). The parameter metrics are gap = [0, 5] and minsup = 20. The
evaluation metrics include the number of frequent patterns and running time, which are shown in
Figures 7 and 8, respectively. To further illustrate the difference, we also select partial time series
segments of SP dataset. The comparison of the occurrences of p = jIiJ with traditional and tri-
wildcard gap constraints is shown in Figure 9. The closer the volatility trends of all occurrence are,
the more accurate the mining patterns are.
NTP-Miner outperforms NTP-ntg, since it finds fewer patterns and takes less time. For example,

Figures 7 and 8 show that it takes NTP-Miner 0.06 s to mine 53 patterns from SP, while it takes
NTP-ntg 0.27 s to mine 213. The reason for this is that the tri-wildcard gap constraints match only
medium or weak characters, while gap constraints match all characters. As demonstrated in the
analysis in Example 1, some occurrences are illegal under the tri-wildcard gap constraints, but legal

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

NTP-Miner: Nonoverlapping Three-Way Sequential Pattern Mining 51:15

(a) Occurrences with traditional gap constraints (b) Occurrences with tri-wildcard gap constraints

Fig. 9. Comparison of occurrences of p = jIiJ in SP.

Fig. 10. Comparison of number of patterns on time series.

under the traditional gap constraints. Consequently, fewer occurrences are found for a tri-pattern
with tri-wildcard gap constraints than with traditional gap constraints. Figure 9 also illustrates
this phenomenon, and we can see that the fluctuation in the yellow section is inconsistent with
those in the red sections, producing pattern occurrences that are inconsistent with the fluctuation
trends of the pattern. Hence, NTP-Miner can find more accurate patterns than NTP-ntg.

5.6 NTP Performance

To demonstrate the performance of the tri-pattern, NTP-ntp is used to mine frequent patterns
with tri-wildcard gap constraints. We conduct experiments on six stock datasets (SP, DJI, IXIC,
HSI, SSEC, and SZI). The parameter metrics are gap = [0, 5] and minsup = 20. We use the number
of patterns and the wordcloud map [52] indicators to measure the performance of the tri-pattern.
Figures 10 and 11 show the number of patterns and the wordcloud map. The larger the proportion
of strong and medium characters in the wordcloud map, the better the algorithm meets the user’s
needs.
NTP-Miner outperforms NTP-ntp, since it finds fewer patterns. For example, Figure 10 shows

that NTP-ntp mines 169 patterns from SP, while NTP-Miner mines 53. This is because NTP-Miner
focuses on finding patterns that are composed of strong ormedium characters, while NTP-ntp finds
patterns composed of all characters. From Figure 11(a) , it can be seen that many of the patterns are
composed of weak characters, such as “A”, “B”, “CC”, “BC”, and “bC”, which are valueless patterns,
since “A”, “a”, “B”, “b”, “C”, “c”, “D”, and “d” are weak characters that represent weak fluctuations.
Figure 11(b) shows that all of the patterns found are composed of strong or medium characters,

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

51:16 Y. Wu et al.

(a) Wordcloud map of NTP-ntp (b) Wordcloud map of NTP-Miner

Fig. 11. Comparison of wordcloud maps on SP dataset.

Fig. 12. Comparison of number of tri-patterns on time series.

and are of value to the user, since in practical applications, users are more interested in larger
fluctuations. Hence, NTP-Miner can meet the user’s needs more easily than NTP-ntp.

5.7 Performance for Nonoverlapping Condition

To compare the mining performance between no-condition and the nonoverlapping condition, we
select six time series, SP, DJI, IXIC, HSI, SSEC, and SZI. The parameter metrics are gap = [0, 5] and
minsup = 20 under nonoverlapping condition. Under no-condition, we adjust theminimum support
threshold minsup so that the number of frequent tri-patterns mined under the two conditions
are very close. We use the number of frequent patterns and running time to evaluate the mining
performance between no-condition and the nonoverlapping condition. Figures 12 and 13 show
the number of frequent patterns and running time, respectively. The more the mined frequent
patterns are and the shorter the running time is, the better the efficiency of the algorithm is. Table 2
illustrates the different tri-patterns found under no-condition and the nonoverlapping condition.
The larger the proportion of strong characters in the patterns is, the better the algorithm meets
the user’s needs.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

NTP-Miner: Nonoverlapping Three-Way Sequential Pattern Mining 51:17

Fig. 13. Comparison of running time on time series.

Table 2. Comparison of Different Tri-Patterns Found under

No-Condition and Nonoverlapping Condition

Dataset Algorithm Frequent tri-patterns

SP TPM FG Ff Fg Gf eF gG
NTP-Miner HI IH Ii Jj ee gI hH iJ ij

DJI TPM EF FF JE fG
NTP-Miner HF Hj IJ Ie Ii Ij JI ij

IXIC TPM GE Ge Gf HG gF
NTP-Miner Hh II If Ij

HSI TPM Ef Fe GE Gg ef jF
NTP-Miner HH II Jj hI iI jI

SSEC TPM Eg Ei Ie eE ef gI gg
NTP-Miner IH hi ih ii FFF

SZI TPM EI Ef FE Fg GF Ig ef fF gg
NTP-Miner Hi IF IH Ii JI Ji iH

NTP-Miner outperforms TPM, since the number of frequent tri-patterns mined under the two
conditions are very similar in Figure 12, and NTP-Miner runs faster than TPM in Figure 13. For
example, it can be seen from Figure 12 that for HSI, NTP-Miner, and TPM mine 47 and 48 tri-
patterns, respectively. However, the time cost for NTP-Miner is 0.06 s, as compared with 0.22 s for
TPM in Figure 13. Similar results can be found on the other datasets. This is because NTP-Miner
calculates the support under the nonoverlapping condition, and does not need to add characters
to discover all feasible patterns, while TPM calculates the support of a pattern under no-condition,
and adds unmatchable characters to the end of the sequence to meet the Apriori property [7]. In
addition, we can see from Table 2 that the bold characters are strong characters, and the remainder
aremedium characters. Table 2 shows that under the nonoverlapping condition, the tri-patterns are
mostly composed of strong characters with a large fluctuation trend, while under no-condition, the
tri-patterns are mostly composed of medium characters. Users are more interested in tri-patterns
with a large fluctuation trend, meaning that the mining performance under the nonoverlapping
condition is better than no-condition. Hence, NTP-Miner not only runs faster than TPM, but can
also mine patterns that are more valuable.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

51:18 Y. Wu et al.

Table 3. Comparison of the Clustering Performance

Algorithm NMI h

MNOSEP 0.54 0.45
Car MTPM 0.65 0.52

MNTP-Miner 0.74 0.66

MNOSEP 0.61 0.50
Worms MTPM 0.65 0.55

MNTP-Miner 0.80 0.71

5.8 Case Study

To further demonstrate the utility of the proposed NTP-Miner algorithm, we carry out a clustering
experiment on Car and Worms datasets. For each dataset, we process it as follows:

(1) MNOSEP is used tomine themaximal frequent patterns under the nonoverlapping condition.
(2) MTPM is adopted to mine the maximal tri-patterns under no-conditon.
(3) MNTP-Miner is employed to mine the maximal NTPs.
(4) The maximal frequent patterns, tri-patterns, under no-condition NTPs and their supports

are recorded, respectively.
(5) The k-means [53] method is applied to cluster the mining data, respectively.
(6) To evaluate the clustering performance, we select two criteria: Normalized Mutual Infor-

mation (NMI) [54] and Homogeneity (h) [55], which can be calculated by Equations (1)
and (2), respectively. NMI and h reflect the similarity between the clustering results and the
actual values. The greater the NMI and h are, the more similar the clustering results are to
the actual values.

NMI (X ,Y) =

∑ |X |
i=1

∑ |Y |
j=1 P (i, j)loд(

P (i, j)
P (i)P (j))√∑ |X |

i=1 P (i)loдP (i)
∑ |Y |

j=1 P (j)loдP (j)
, (1)

h(X ,Y) = 1 −
−∑ |X |i=1

∑ |Y |
j=1 P (i, j)loдP (i |j)

−∑ |X |i=1 P (i)loдP (i)
. (2)

The experiments are conducted on gap = [0, 3]. The results are shown in Table 3.
As shown in Table 3, NTPs can improve the clustering performance. For example, NMI and h

of the NOSEP clustering result are 0.54 and 0.45 on Car, respectively, those of TPM are 0.65 and
0.52, respectively, while those of NTP-Miner are 0.74 and 0.66, respectively. Both evaluationmetrics
show that NTP-Miner can improve the clustering performance. The reasons are as follows. NOSEP
does not consider the attributes that users are interested in, which gives rise to a large number
of redundant patterns being mined. Since TPM considers the attributes that users are interested
in, the clustering performance of TPM is better than that of NOSEP. As found in the analysis of
Section 5.7, the patterns mined by NTP-Miner are more valuable than those mined by TPM. Hence,
the clustering performance of NTP-Miner is better than TPM. Hence, NTP mining provides better
feature extraction capability for clustering.

6 CONCLUSION

To mine patterns that users are interested in more accurately, the NTP mining is studied, which
partitions all characters into three interest levels: strong, medium, and weak. The patterns are

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

NTP-Miner: Nonoverlapping Three-Way Sequential Pattern Mining 51:19

composed of strong and medium characters. The gaps are matched with medium and weak char-
acters. Therefore, NTP mining can avoid mining redundant patterns and the NTPs can avoid seri-
ous deviations. To effectively mine NTPs, the NTP-Miner algorithm is proposed, which involves
two major steps: calculating the support of each pattern, and generating candidate patterns. In
the first stage, we propose the Sim-NAP algorithm, which uses the depth-first search and back-
tracking strategies to find all nonoverlapping occurrences without creating a whole Nettree. Since
NTP mining satisfies the Apriori property, a pattern join strategy is applied to generate candidate
patterns. NTP-Miner has lower space and time complexities than the state-of-the-art algorithms.
Experimental results on stock market and protein datasets validate that NTP-Miner not only is
more efficient than other competitive approaches, but can also help users find more valuable pat-
terns. More importantly, NTP mining has achieved better performance in clustering tasks.

REFERENCES

[1] Wensheng Gan, J. C.-W. Lin, P. Fournier-Viger, H.-C. Chao, and P. S. Yu. 2020. Huopm: High-utility occupancy pattern

mining. IEEE Transaction on Cybernetics 50, 3 (2020), 1195–1208.

[2] Wensheng Gan, J. C.-W. Lin, P. Fournier-Viger, H. C. Chao, and P. S. Yu. 2019. A survey of parallel sequential pattern

mining. ACM Transactions on Knowledge Discovery from Data 13, 3 (2019), 1–34.

[3] Tingting Wang, L. Duan, G. Dong, and Z. Bao. 2020. Efficient mining of outlying sequence patterns for analyzing

outlierness of sequence data. ACM Transaction on Knowledge Discovery from Data 14, 5 (2020), 1–26.

[4] Philippe Fournier-Viger, J. C-W. Lin, T. Truong-Chi, and R. Nkambou. 2019. A survey of high utility itemset mining.

High-Utility Pattern Mining. Studies in Big Data 51, 1 (2019), 1–45.

[5] Philippe Fournier-Viger, P. Yang, R. U. Kiran, S. Ventura, and J. M. Luna. 2021. Mining local periodic patterns in a

discrete sequence. Information Sciences 544 (2021), 519–548.

[6] Fan Min, Z.-H. Zhang, W.-J. Zhai, and R.-P. Shen. 2020. Frequent pattern discovery with tri-partition alphabets. Infor-

mation Sciences 507 (2020), 715–732.

[7] Youxi Wu, Y. Tong, X. Zhu, and X. Wu. 2018. Nosep: Nonoverlapping sequence pattern mining with gap constraints.

IEEE Trans. Cybern. 48, 10 (2018), 2809–2822.

[8] Philippe Fournier-Viger, J. Li, J. C.-W. Lin, T. T. Chi, and R. U. Kiran. 2020. Mining cost-effective patterns in event logs.

Knowledge-Based Systems 191 (2020), 105241.

[9] Zhaoyu Shou, Y. Wang, Y. Wen, and H. Zhang. 2020. Knowledge point recommendation algorithm based on enhanced

correction factor and weighted sequential pattern mining. International Journal of Performability Engineering 16, 4

(2020), 549–559.

[10] Xiangjun Dong, P. Qiu, J. Lu, L. Cao, and T. Xu. 2019. Mining top-k useful negative sequential patterns via learning.

IEEE Transactions on Neural Networks and Learning Systems 30, 9 (2019), 2764–2778.

[11] Johannes D. Smedt, G. Deeva, and J. D. Weerdt. 2020. Mining behavioral sequence constraints for classification. IEEE

Transactions on Knowledge and Data Engineering 32, 6 (2020), 1130–1142.

[12] Kui Yu,W. Ding, D. A. Simovici, H.Wang, J. Pei, and X.Wu. 2015. Classificationwith streaming features: An emerging-

pattern mining approach. ACM Transaction on Knowledge Discovery from Data 9, 4 (2015), 1–31.

[13] Udi Manber and R. Baeza-Yates. 1991. An algorithm for string matching with a sequence of don’t cares. Information

Processing Letters 37, 3 (1919), 133–136.

[14] Chao Gao, L. Duan, G. Dong, H. Zhang, H. Yang, and C. Tang. 2016. Mining top-k distinguishing sequential patterns

with flexible gap constraints. In Proceedings of the International Conference on Web-Age Information Management,

Springer International Publishing. 82–94.

[15] Xindong Wu, J. Qiang, and F. Xie. 2014. Pattern matching with flexible wildcards. Journal of Computer Science and

Technology 29, 5 (2014), 740–750.

[16] Youxi Wu, L. Wang, J. Ren, W. Ding, and X. Wu. 2014. Mining sequential patterns with periodic wildcard gaps. Applied

Intelligence 41, 1 (2014), 99–116.

[17] Youxi Wu, M. Geng, Y. Li, L. Guo, Z. Li, P. Fournier-Viger, X. Zhu, and X. Wu. 2021. HANP-Miner: High average utility

nonoverlapping sequential pattern mining. Knowledge-Based Systems. 229 (2021), 107361.

[18] Youxi Wu, X. Liu, W. Yan, L. Guo, and X. Wu. 2021. Efficient solving algorithm for strict pattern matching under

nonoverlapping condition. Journal of Software. DOI:10.13328/j.cnki.jos.006054
[19] Youxi Wu, C. Zhu, Y. Li, L. Guo, and X. Wu. 2020. Netncsp: Nonoverlapping closed sequential pattern mining.

Knowledge-Based Systems 196 (2020), 105812.

[20] Chun Li, Q. Yang, J. Wang, and M. Li. 2012. Efficient mining of gap-constrained subsequences and its various applica-

tions. ACM Transaction on Knowledge Discovery from Data 6, 1 (2012), 1–39.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

https://doi.org/10.13328/j.cnki.jos.006054

51:20 Y. Wu et al.

[21] Fei Xie, X.Wu, and X. Zhu. 2017. Efficient sequential pattern mining with wildcards for keyphrase extraction. Knowledge-

Based Systems 115 (2017), 27–39.

[22] Yiyu Yao. 2010. Three-way decisions with probabilistic rough sets. Information Sciences 180, 3 (2010), 341–353.

[23] Jianming Zhan, J. Ye,W. Ding, and P. Liu. 2021. A novel three-way decisionmodel based on utility theory in incomplete

fuzzy decision systems. IEEE Transactions on Fuzzy Systems.

[24] Shuhui Cheng, Y. Wu, Y. Li, F. Yao, and F. Min. 2021. TWD-SFNN: Three-way decisions with a single hidden layer

feedforward neural network. Information Sciences 579 (2021), 15–32.

[25] Zhongyu Zhou and D. Pi. 2019. Mining method of minimal rare pattern oriented to satellite telemetry data stream.

Chinese Journal of Computers Journal of Software, 1351–1366. DOI:10.13328/j.cnki.jos.006054
[26] Unil Yun, G. Lee, and E. Yoon. 2019. Advanced approach of sliding window based erasable pattern mining with list

structure of industrial fields. Information Sciences 494 (2019), 37–59.

[27] Lei Zhang, P. Luo, L. Tang, E. Chen, Q. Liu, M. Wang, and H. Xiong. 2015. Occupancy-based frequent pattern mining*.

ACM Transaction on Knowledge Discovery from Data 10, 2 (2015), 1–33.

[28] Xiangjun Dong, Y. Gong, and L. Cao. 2020. E-rnsp: An efficient method for mining repetition negative sequential

patterns. IEEE Transactions on Cybernetics 50, 5 (2020), 2084–2096.

[29] Tin Truong, H. Duong, B. Le, and P. Fournier-Viger. 2019. Fmaxclohusm: An efficient algorithm for mining frequent

closed and maximal high utility sequences. Engineering Applications of Artificial Intelligence 85 (2019), 1–20.

[30] Youxi Wu, Y. Wang, Y. Li, X. Zhu, and X. Wu. 2021. Top-k self-adaptive contrast sequential pattern mining. IEEE

Transactions on Cybernetics. 1–15. DOI:10.1109/TCYB.2021.3082114
[31] Jaysawal B. Prasad and J.-W. Huang. 2018. Psp-ams: Progressive mining of sequential patterns across multiple streams.

ACM Transaction on Knowledge Discovery from Data 13, 1 (2018), 1–23.

[32] Lizhen Wang, X. Bao, and L. Zhou. 2018. Redundancy reduction for prevalent co-location patterns. IEEE Transactions

on Knowledge and Data Engineering 30, 1 (2018), 142–155.

[33] Philippe Fournier-Viger, Y. Zhang, J. C.-W. Lin, D.-T. Dinh, and H. B. Le. 2020. Mining correlated high-utility itemsets

using various measures. Logic Journal of the IGPL 28, 1 (2020), 19–32.

[34] Wei Song, Y. Liu, and J. Li. 2013. Mining high utility itemsets by dynamically pruning the tree structure. Applied

Intelligence 40, 1 (2013), 29–43.

[35] YouxiWu, L.Wang, J. Ren,W. Ding, and X.Wu. 2014 . Mining sequential patterns with periodic wildcard gaps.Applied

Intelligence 41, 1 (2014), 99–116.

[36] Wei Song, B. Jiang, and Y. Qiao. 2018. Mining multi-relational high utility itemsets from star schemas. Intelligent Data

Analysis 22, 1 (2018), 143–165.

[37] Jerry C.-W. Lin, T. Li, M. Pirouz, J. Zhang, and P. Fournier-Viger. 2019. High average-utility sequential pattern mining

based on uncertain databases. Knowledge and Information Systems 62, 3 (2019), 1199–1228.

[38] S. Vincent, Tseng, Bai-En, C. W. Shie, P. S. Wu, and Yu. 2013. Efficient algorithms for mining high utility itemsets from

transactional databases. IEEE Transactions on Knowledge and Data Engineering 25, 8 (2013), 1772–1786.

[39] Tin Truong, H. Duong, B. Le, and P. Fournier-Viger. 2019. Efficient vertical mining of high average-utility itemsets

based on novel upper-bounds. IEEE Transactions on Knowledge and Data Engineering 31, 2 (2019), 301–314.

[40] C. F. M. M. Rahman, K. S. Ahmed, and Leung. 2018. Mining weighted frequent sequences in uncertain databases.

Information Sciences 479 (2018), 76–100.

[41] Hyoju Nam, U. Yun, E. Yoon, and J. C-W. Lin. 2020. Efficient approach for incremental weighted erasable pattern

mining with list structure. Expert Systems with Applications 143, 4 (2020), 113087.

[42] Unil Yun and K. H. Ryu. 2013. Efficient mining of maximal correlated weight frequent patterns. Intelligent Data Anal-

ysis 17, 5 (2013), 917–939.

[43] Bilong Shen, Z.Wen, Y. Zhao, D. Zhou, andW. Zheng. 2016. OCEAN: Fast discovery of high utility occupancy itemsets.

In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining. 354–365

[44] Chao-Dong Tan, F. Min, M. Wang, H. R. Zhang, and Z. H. Zhang. 2016. Discovering patterns with weak-wildcard gaps.

IEEE Access 4 (2016), 4922–4932.

[45] Yu Fang, C. Gao, and Y. Yao. 2020. Granularity-driven sequential three-way decisions: A cost-sensitive approach to

classification. Information Sciences 507, 1 (2020), 644–664.

[46] Huiting Liu, Z. Liu, H. Huang, and X. Wu. 2018. Sequential pattern matching with general gaps and one-off condition.

Journal of Software 2 (2018), 363–382.

[47] Youxi Wu, R. Lei, Y. Li, L. Guo, and X. Wu. 2021. Haop-miner: Self-adaptive high-average utility one-off sequential

pattern mining. Expert Systems with Applications 184 (2021), 115449.

[48] Youxi Wu, X. Wang, Y. Li, L. Guo, Z. Li, J. Zhang, and X. Wu. 2021. OWSP-Miner: Self-adaptive one-off weak-gap

strong pattern mining. ACM Transactions on Management Information Systems. DOI:10.1145/3476247
[49] Bolin Ding, D. Lo, J. Han, and S. C. Khoo. 2009. Efficient mining of closed repetitive gapped subsequences from a

sequence database. In Proceedings of the International Conference on Data Engineering. 1024–1035.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

https://doi.org/10.13328/j.cnki.jos.006054
10.1109/TCYB.2021.3082114
https://doi.org/10.1145/3476247

NTP-Miner: Nonoverlapping Three-Way Sequential Pattern Mining 51:21

[50] Qiaoshuo Shi, J. Shan, W. Yan, Y. Wu, and X. Wu. 2020. Netnpg: Nonoverlapping pattern matching with general gap

constraints. Appl Intell 50, 6 (2020), 1832–1845.

[51] YouxiWu, C. Shen, H. Jiang, and X.Wu. 2016. Strict pattern matching under non-overlapping condition. Science China

Information Sciences 60, 1 (2016), 5–20.

[52] Florian Heimerl, S. Lohmann, S. Lange, and T. Ertl. 2014. Word cloud explorer: Text analytics based on word clouds.

In Proceedings of the Hawaii International Conference on System Sciences. 1833–1842.

[53] Marco Capo, A. Perez, and J. A. Antonio. Lozano. 2020. An efficient split-merge re-start for the k-means algorithm.

IEEE Transactions on Knowledge and Data Engineering. DOI:10.1109/TKDE.2020.3002926
[54] Leon Danon, A. Díaz-Guilera, J. Duch, and A. Arenas. 2005. Comparing community structure identification. Journal

of Statistical Mechanics Theory and Experimen 2005, 09 (2005), P09008–P09008.

[55] Andrew Rosenberg and J. Hirschberg. 2007. V-measure: A. Conditional entropy-based external cluster evaluation

measure. In Proceedings of the Empirical Methods in Natural Language Processing and Computational Natural Language

Learning. 410–420.

Received Februray 2021; revised June 2021; accepted August 2021

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 51. Publication date: October 2021.

10.1109/TKDE.2020.3002926

