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Abstract—Noise and inconsistency commonly exist in real-
world information networks, due to the inherent error-prone
nature of human or user privacy concerns. To date, tremen-
dous efforts have been made to advance feature learning
from networks, including the most recent graph convolutional
networks (GCNs) or attention GCN, by integrating node con-
tent and topology structures. However, all existing methods
consider networks as error-free sources and treat feature con-
tent in each node as independent and equally important to
model node relations. Noisy node content, combined with sparse
features, provides essential challenges for existing methods to
be used in real-world noisy networks. In this article, we pro-
pose feature-based attention GCN (FA-GCN), a feature-attention
graph convolution learning framework, to handle networks with
noisy and sparse node content. To tackle noise and sparse con-
tent in each node, FA-GCN first employs a long short-term
memory (LSTM) network to learn dense representation for each
node feature. To model interactions between neighboring nodes,
a feature-attention mechanism is introduced to allow neighbor-
ing nodes to learn and vary feature importance, with respect to
their connections. By using a spectral-based graph convolution
aggregation process, each node is allowed to concentrate more
on the most determining neighborhood features aligned with the
corresponding learning task. Experiments and validations, w.r.t.
different noise levels, demonstrate that FA-GCN achieves better
performance than the state-of-the-art methods in both noise-free
and noisy network environments.
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I. INTRODUCTION

MANY real-world applications involve knowledge min-
ing and analysis of networks or graph-based data,

such as citation networks, social networks, telecommunication
networks, biological networks, etc., which are often collected
from noisy channels with erroneous/inconsistent labels or fea-
tures [1]. In order to carry out pattern mining from networks,
such as community detection [2], node classification [3], link
prediction [4], etc., network representation learning (or embed-
ding learning) [5] is commonly used to construct features to
represent nodes for learning.
To capture node relations, early network embedding learn-

ing mainly focuses on topology features [2], [6], where nodes
sharing similar topology structures are enforced to have close
feature representation. For example, two scholarly publica-
tions citing similar literature in a citation network would
be represented by similar feature vectors [7]. Likewise, two
users interacting with many common friends in a social
network would share similar features in the learned repre-
sentation space [8]. However, structure-based methods can
only model explicit node relations reflected by the network
edges, which is inadequate to capture implicit relationships
between nodes because of the sparse graph connections. For
example, two users in a social network do not have an
immediate link not because they are not friends in reality
but they might be unaware of each other’s existence online.
To mitigate this problem, studies propose to embed content
information associated with a network to enhance node struc-
tures modeling [9], [10]. Indeed, networks with rich textual
contents are ubiquitous in the real world, such as the cita-
tion network and Wikipedia network where nodes are usually
described by substantial texts. In general, content features are
able to reveal relationships between nodes aligned with the
network structures (e.g., two nodes with many shared content
features are highly likely to form a neighborhood) [11], [12],
but in a more fine-grained and interpretable fashion, for exam-
ple, the affinity between two linked nodes can be measured by
overlapping content features between each other, other than
just a single edge connecting the nodes.
In addition to the above adjacency matrix or random walk-

based network embedding learning, recently, the spectral-
based graph convolutional networks (GCNs) [13], [14] have
shown impressive performance to directly embed graphs with
rich content features by a semisupervised node classification
training. GCN relies on the assumption that a node tends to
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Fig. 1. Example of a document network with noisy content and noisy struc-
ture. In the example: 1) noisy content means erroneous feature values in some
nodes (e.g., doc3) and 2) noisy structure means erroneous links between some
pairs of nodes (e.g., <doc2, doc5> have erroneous links since they do not
share any common features). Both cases can be understood that node features
fail to characterize true structural relationships between nodes.

have the same label with its neighbors that is guaranteed by
the aggregated features from all neighborhood nodes, where
different features are typically treated as independent (e.g., iso-
lated) and equally important (e.g., noise free). However, such
a learning mechanism may be challenged by the following two
realities. First, in graphs (e.g., citation networks and Wikipedia
networks) where node contents are feature sequences, differ-
ent features are usually not isolated but correlate with each
other to reveal a complete semantic context [15], that is, the
meaning of a sentence is usually demonstrated not by every
single word but by the context of all words having depen-
dencies or correlations with each other. Second, while nodes
sharing connections are assumed to have dependencies in their
content features, not all features function equally to trigger the
interactions between nodes. For instance, although a research
publication may have rich text information, such as title and
abstract, many words are actually irrelevant (e.g., noises or
errors), which are not indicative of its citation relationships
with others.
Indeed, existing methods have made significant progress for

network embedding learning, but they all consider networks
as error-free sources and treat different features in each node
content as isolated and equally important while modeling node
relations. It is worth noting that a noisy network can be orig-
inated from noisy node content and/or noisy graph structure
as the example demonstrates in Fig. 1. Both the two types
of noise can be roughly understood that node content can-
not well explain the graph structure, and vice versa [16]. For
instance, in Fig. 1, doc1 and doc3 have a link because they
share common features X1 and X6. But because X1 and X6 are
noisy features in doc3, the link between doc1 and doc3 is actu-
ally a noisy link. In this article, we are interested to address
the impact of noisy node content to achieve improved graph
embedding learning. The ignorance of the impact of erroneous
content, combined with sparse node features, provides essen-
tial challenges for existing methods to handle real-world noisy
networks. In fact, a recent work has empirically validated var-
ious embedding approaches on sparse and noisy knowledge
graphs, and concluded that “embeddings are sensitive to sparse
and unreliable data” [17].
In summary, existing methods are sensitive and ineffective

to noise and sparse content mainly because of the following
challenges.

Fig. 2. Illustrative example of the proposed approach: Feature represen-
tation is used to explore feature correlation and learn a dense vector for
each node feature. Feature attention is used to differentiate feature interaction
between each node and its neighboring node features, allowing better feature
aggregation for noise resilient embedding learning.

1) Noise Propagation: When noise is imposed to the node
(e.g., incorrect words), it will force existing methods,
such as GCN or attention networks, to learn deterio-
rated weight values, corresponding to noisy features.
Such noise propagation directly deteriorates network
embedding performance as we will show in Section V.

2) Feature Dependency and Interaction: While existing
methods have taken node content into consideration,
they treat all features independently and equally for
embedding learning. In reality, features are dependent
and have different interactions with respect to neigh-
boring nodes, and thereby should be correlated and
differentiated for learning each node’s representation.

3) Sparsity and Dimensionality: Most networks are high
dimension with sparse node content (e.g., each node
only has about 1% features, compared to the entire fea-
ture space). Noise impact, in a high dimensionality and
sparse content setting, is a more profound challenge
because the underlying models are highly vulnerable to
errors.

To address aforementioned problems, we propose a novel
feature-based attention GCN (FA-GCN) model to perform
noise resilient learning for networks with sparse and noisy
node content. Fig. 2 shows an illustrative example of our
proposed approach. First, we represent each content feature as
a dense semantic vector, with feature correlation/dependency
being well preserved based on a bidirectional long short-term
memory (LSTM) network. In other words, the representation
learning for each content feature is dependent on the semantic
representations of other features of the node content. Since
such feature dependencies can be globally learned and shared
across all sparse node contents, we expect to learn more accu-
rate feature representations, compared with existing methods
that typically model the sparse features for each network node
independently and locally. Learning dependencies between
highly correlated features would also help mitigate the influ-
ence of noisy features for some individual nodes, because
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random noisy features are often not correlated with correct
features. Second, to minimize the impact of noisy content fea-
tures, we introduce an attention layer over the LSTM network
to determine the importance of various neighborhood fea-
tures for modeling pairwise node interactions, aligned with
the final node classification task. For example, when modeling
the interaction between doc3 and doc4 in Fig. 1, the feature-
level attention will emphasize more on common features (e.g.,
X4 and X10) than other irrelevant features such as the noisy
features X1 and X6 in doc3. Since noisy features in a node
will receive reduced attentions to minimize its impact, they
are less likely to propagate over the entire network disas-
trously, thereby resulting in a noise-resilient graph embedding
learning.
It is worth noting that our work is different from the graph

attention networks (GATs) [18], wherein features are mod-
eled as independent and the attention is calculated at the
node level. In comparison, we argue that features in a node
content could interact with each other to reveal richer and
more accurate node semantics, that is, the same word fea-
ture may have different meanings under different contexts, and
different word features may indicate the same meaning within
a similar context. Meanwhile, the node-level attention in GAT
assumes that all features in the node contents are contributing
equally to edge connections, whereas our feature-level atten-
tion enables differentiation of relevant features triggering node
interactions in a network. Specifically, our main contributions
are as follows.
1) We proposed to model node relations at feature level,

where each node interacts with different neighbors and
their interactions are attributed to the most influential
node features.

2) We proposed to model feature correlations for enhanced
node representation learning and classification, where
networks contain rich node contents or features, such
as word sequences.

3) We proposed a noise-resilient learning framework for
networks with sparse and noisy text features. It models
feature correlations by a bidirectional LSTM network
and meanwhile, conducts differentiable neighborhood
features aggregation by a higher attention layer over the
LSTM network.

The remainder of this article is organized as follows.
Section II discusses related work, followed by problem def-
inition and preliminaries related to the LSTM network and
spectral-based GCNs in Section III. The proposed algorithm
is described in Section IV, and experiments and comparisons
are reported in Section V. Finally, Section VI concludes this
article.

II. RELATED WORK

A. Graph Representation Learning

Graph representation learning [5], [19] aims to represent
each node of a target network as a low-dimensional vector,
such that various downstream analytic tasks can be bene-
fited. Early work in the area mainly focuses on shallow
neural models to preserve only the node structures [5]. To
capture high-order neighborhood relationships between nodes,

DeepWalk [8] performs a random walk process over the
entire graph to generate a collection of fixed-length node
sequences similar to the natural language sentences. It then
explores a widely used neural model Skip-Gram [20] to learn
node representations from these node sequences. However,
Node2vec [21] demonstrates that DeepWalk has not fully
preserved the connectivity patterns between nodes and thus,
proposes to combine the breadth-first sampling and depth-first
sampling in the random walk process, where the community
properties between nodes can be well preserved. LINE [22]
is proposed for large-scale network representation learning by
preserving the first- and second-order node relations, where
the first order is determined by the immediate links and
the second-order relation between two nodes is created by
their shared neighbors. However, in addition to the complex
graph structures that have encoded node relations, graphs
are usually associated with rich content information, such
as attributes and texts, which also revealed the affinities
between nodes [7], [23]. For examples, the relational topic
model (RTM) [7] is utilized to model both the documents
and link relationships, which assumes that documents with
links also have similar topic distributions and semantic repre-
sentations. TADW [9] leverages the rich texts to enhance the
structure-based representation learning based on an equivalent
matrix factorization method as the DeepWalk. TriDNR [10]
can integrate the node structure, content, and labels in a uni-
fied framework, which enforces the node representations to
be learned from simultaneously the network structure and text
content under the shared model parameters.

B. Graph Neural Networks

Because shallow models have limitations in learning
complex relational patterns between nodes [19], there is
an increasing number of efforts to explore graph neural
networks (GNNs), which take a graph as input and learn
node representations by a supervised training process [24].
Recently, inspired by the huge success of convolutional neural
networks on grid-like data such as images, a lot of tentative
works emerged that seek to adopt a similar convolutional
feature extraction process directly on the arbitrarily structured
data such as graphs [25], [26]. To date, GCNs [13] have
appeared to achieve the state-of-the-art performance in many
graph related analytic tasks, which can naturally learn node
representations from graph structures and contents. For
example, Schlichtkrull et al. [14] proposed the relational
GCN and applied them to two standard knowledge base
completion tasks of link prediction and entity classification.
Yao et al. [3] proposed the text GCN for text classification,
where the text graph is built based on the word co-occurrence
and document word relations. Yan et al. [27] proposed the
spatial–temporal GCN for skeleton-based action recognition.
It is formulated on top of a sequence of skeleton graphs,
where each node corresponds to a joint of the human body and
edges represent the connectivity between joints. In general,
while a node could connect with many others in a graph,
different neighbors may have different contributions when
generating the representation of this node. The GATs [18]
were proposed to solve this problem by using a self-attention
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strategy to assign large weights on important neighbors for
feature aggregations. However, since nodes that interact with
each other are usually resulted by fine-grained features [23],
node-level attention maybe insufficient to characterize node
relations. In comparison, in this article, we focus on the
feature-based attention mechanism, which is more flexible and
interpretable to model node relations since node interactions
can be triggered by varying important features. In addition,
we argue that modeling feature correlation is critical for the
text described graphs, which is generally ignored by most
existing GNN-based models.

C. Noise Resilient Graph Learning

Robust learning with noisy data is a classical yet challeng-
ing problem in the machine learning [28], [29] and related
fields [30], [31]. Data noise is defined as anything (e.g., fea-
ture/input noise and label noise) that obscures the relationship
between the features of an instance and classes [32], result-
ing in suboptimal models and prediction results. Recently, in
the graph domain, some efforts have been applied to promote
noise-resilient embedding learning [33] and graph application
tasks [34]. Qiu et al. [33] focused on addressing the noisy
or missing links in the graphs and proposed to recover them
from node structure similarities, that is, two nodes have some
common neighborhoods that tend to have a link. However, the
proposed method is under an unsupervised framework, which
cannot be generalized to the more popular supervised learning
and GNN architectures. Similar research along this direction
is to consider adversarial attacks that help to guide designing
robust graph learning mechanisms to tolerate the deliberate
node feature or structure attacks [35], [36]. Zügner et al. [37]
proposed to apply unnoticeable perturbations to poison either
target graph structure or node features, which can dramatically
worsen classification results of the target nodes. Zhu et al. [36]
proposed a robust GCN model to mitigate the adversarial
attacks. Their strategy is to adopt Gaussian distributions as
hidden representations of n nodes, which can automatically
absorb the effects of adversarial changes in the variances of
Gaussian distributions. However, these works mostly target at
designing sophisticated attacking mechanisms that cause exist-
ing graph embedding algorithms ineffective, or seek to design
resilient embedding techniques to combat adversarial attacks
applied on a single node or a handful of nodes of interest.
Although they are robust to specific attacks, they have many
constrains and are not ready to address random and large-scare
noises for achieving noise-resilient graph learning.
In comparison, we provide a more general noisy-resilient

learning framework that allows for large-scale random noisy
features in the node contents. We extend existing GNN models
and aim to achieve improved graph embedding results through
modeling node feature correlations and feature attentions in the
interactions between nodes.

III. PROBLEM DEFINITION AND PRELIMINARIES

A. Problem Definition and Motivation

A network is represented as G = (V,E,C), where V =
{vi}i=1,...,n is a set of unique nodes and E = {ei,j}i,j=1,...,n; i�=j

is a set of edges. Let A denote the n × n adjacency matrix
representation of edges with Ai,j = 1 if ei,j ∈ E and
Ai,j = 0 if ei,j /∈ E. Let D and I be the n × n degree matrix
and identity matrix, respectively, where Dii is calculated by
Dii = ∑

j Aij. For each node vi, we use cnti to denote its
content, which is a sequence of word features represented by
cnti = {wj}j=1,...,|cnti|. For all nodes in G, their contents form
the content corpus C = {cnti}i=1,...,n. We use |C| to denote
vocabulary (or the number of unique words) in the content
corpus. It is common that each node has very sparse content,
so |cnti| � |C|.

As discussed previously, a noisy network may be caused by
either noisy node content or noisy node structures. Both cases
can be catastrophically challenging the node relation modeling
and network embedding learning. In this article, we focus on
network embedding learning with noisy node content. We refer
to noise as erroneous node content, where the content of each
node cnti contains some errors (e.g., erroneous feature values
or words). In the sparse and noisy node content setting, our
goal is to learn good feature representation for each node in
the network for classification.
In order to tackle sparse and noisy node content, our motiva-

tion, as shown in Fig. 2, is to employ an optimization approach
to address the sparsity and errors: 1) learning a dense vector to
represent each content word (wj) and 2) using feature attention
to learn weight values for each word, based on the node–
node interaction, and then use feature attention to aggregate
neighboring nodes for noise resilient representation learning
for each node.
As shown in Fig. 2, node v1 has three neighbors (v3, v4, and

v5), each containing some content words. Our first learning
objective is to learn a dense feature vector for each word (wj).
Then, feature attention is used to learn weight values αij, which
quantify node v1’s feature-level interactions with respect to
neighbor vi on word wj. After that, feature aggregation is used
to aggregate all v1’s neighbors to learn a good feature represen-
tation for v1. It is worth noting that the learning of feature/word
representation and node representation is carried out simulta-
neously under a unified optimization goal, as we will detail
in (28).

B. Long Short-Term Memory

To learn vector representation for words, LSTM
networks [38] have achieved significant success [39],
[40], thanks to its recurrent learning capacity on sequential
data like text. In LSTM, features are not independently
modeled but can interact with each other through the memory
and state transmission mechanisms. When two reverse-order
LSTM networks are combined, each feature is allowed to
semantically correlate with any other feature within the same
sequence. Fig. 3 shows the interior structure of an LSTM
unit/cell [38], where ft, it, and ot are the forget, input, and
output gates, respectively. ht denotes the cell output at time
t, and ct is the global cell state that enables the sharing of
different cell outputs throughout the LSTM network. Features
are usually sequentially fed into the LSTM network, where
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Fig. 3. Structure of an LSTM unit/cell.

the parameters for a feature at time t are updated by

ft = σ
(
wxf xt + whf ht−1 + bf

)
(1)

it = σ(wxixt + whiht−1 + bi) (2)

gt = tanh
(
wxgxt + whght−1 + bg

)
(3)

ft = ftct−1 + itgt (4)

ot = σ(wxoxt + whoht−1 + bo) (5)

ht = ot tanh(ct) (6)

where wx∗ = {wxf ,wxi, xxg,wxo} and wh∗ = {whf ,whi,
xhg,who} are weight parameters for the corresponding gates,
and bf , bi, bg, and bo are their biases, respectively.

C. Graph Convolutional Networks

GCN is an efficient variant of the convolutional neu-
ral networks operating directly on graphs [13] by encoding
both graph structures and node features. Given a network
G = (V,E,X), which has n vertices and each node has do
dimension feature values (X ∈ R

n×do denotes the feature value
matrix), GCN intends to learn low-dimensional node represen-
tations though a convolutional learning process. In general,
with one convolutional layer, GCN is able to preserve the
first-order neighborhood relations between nodes, where each
node is represented as an l-dimension vector, and node feature
matrix X(1) ∈ R

n×l is computed by

X(1) = ρ
(
ÃX(0)W0

)
(7)

where Ã = D−(1/2)(I+A)D−(1/2) is the normalized symmetric
adjacency matrix, X(0) ∈ R

n×do is the initial input feature
matrix of X, and W0 ∈ R

do×l is a weight matrix for the first
convolutional layer. ρ is an activation function such as the
ReLU represented by ρ(x) = max(0, x). If it is necessary to
encode higher order (e.g., k-hop) neighborhood relationships,
one can easily stack multiple GCN layers, where the output
node features of the jth (0 ≤ j ≤ k) layer are computed by

X(j+1) = ρ
(
ÃX(j)Wj

)
(8)

where Wj ∈ R
do×do (or Wj ∈ R

do×l if it is the last layer) is
the weight matrix for the jth layer.

IV. PROPOSED APPROACH

For existing GCN-based methods, they model node features
as independent [e.g., using one-hot representation of content

features where each element in the feature matrix X indicates
whether a corresponding feature (e.g., word) appears or not],
making these methods sensitive to noise and sparse input.
In order to tackle high dimensional, sparse, noisy node con-

tent, we propose to represent each single node feature as a
dense semantic vector and various features can influence each
other by interactions of their semantic vectors during learning.
In addition, each feature will be assigned with an impor-
tance weight, which allows each node to aggregate important
neighborhood features for representation learning.
The proposed FA-GCN model for the above two purposes is

shown in Fig. 4. First, the feature representations are learned
by a bidirectional LSTM network, where feature correlations
can be preserved. Then, with an attention layer on the top, each
feature is weighted based on its importance to the final node
classification task. In this article, we investigate the effective-
ness of two types of feature attention mechanisms that either
consider a self-transformation process or introduce a context-
aware bilinear term. Finally, each node dynamically aggregates
weighted sum of neighborhood features to form its representa-
tion. The feature representations and node representations are
integrally learned and could enhance each other to optimize a
collective classification loss at the end of this framework.

A. Feature Representation Learning

Network node features contain rich semantics and they fre-
quently correlate with each other to trigger complex node con-
nections in a graph. For example, a word feature may have dif-
ferent semantics when correlating with different words under
different sentence contexts and these fine-grained semantics
could help differentiate the links of the corresponding node
with its different neighbors.
As shown in Fig. 4, we use a bidirectional LSTM network

to learn representation of each feature from the content cor-
pus C. Let the content features of node vm be represented
by cntm = {wj}j=1,...,|cntm|, and we initialize the representa-
tions (e.g., with dimension di) of these features in the input
layer with following a uniform range distribution. Assume the
input semantic vector for feature wj at time t is represented
by vecwj ∈ R

di , and it then undergoes a series of nonlinear
transformations in temporal order formulated by

−→
f t,wj = σ

(
Wf Xt + bf

)
(9)

−→
i t,wj = σ(WiXt + bi) (10)

−→g t,wj = tanh
(
WgXt + bg

)
(11)

−→c t,wj = −→
f t,wj

−→c t−1,wj−1 + −→
i t,wj

−→g t,wj (12)
−→o t,wj = σ(WoXt + bo) (13)
−→
h wj = −→o t,wj tanh

(−→c t,wj

)
(14)

and

W∗ = [wx∗,wh∗], Xt = [
vecwj , hwj−1

]
(15)

where wj−1 represents the feature at time (t−1). Then, we use
the elementwise sum to combine outputs of feature wj from
the two opposite LSTM layers to form its final semantic vector
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Fig. 4. Proposed FA-GCN model. Feature representations of nodes are dynamically learned by the LSTM network with attention mechanisms. Then, with the
spectral-based convolutional filter, each node could gather the most important content features from itself and its neighbors to form the node representation.
The feature and node representations are trained in a unified manner to optimize the collective classification objective by (28).

representation

hwj = −→
h wj ⊕

←−
h wj (16)

where
←−
h wj ∈ R

do represents the vector output of wj from the
opposite temporal order, which is calculated in a similar way
as (14).

B. Feature-Attention Mechanisms

Attention mechanisms have been widely used in many
sequence-based tasks, such as sentiment classification [40] and
machine translation [41], which are favorable designs allow-
ing models to learn alignments between different modalities,
that is, focusing on the most relevant neighborhood features
that are helpful to the node classification task. In this article,
we investigate two types of attention mechanisms both at the
feature level.
Attention 1: Let the semantic vectors of all features in node

content cntm be represented by Hm = [hw1 , hw2 , . . . , hw|cntm| ],
where Hm ∈ R

|cntm|×do and hwj=1,2,...,|cntm| is calculated
from (16). Inspired by a recent attention design that aims to
capture the most important / relevant words in a given sen-
tence for relation classification [42], we calculate a weight
vector αm = {αj}j=1,...,|cntm| for all features in Hm by

M = tanh(Hm) (17)

αm = softmax
(
MWT

a

)
(18)

where αm,j is the attention weight for feature hwj . M ∈
R

|cntm|×do is the nonlinear transformation of Hm, Wa ∈ R
do

is a trained parameter vector shared across all nodes, and WT
a

is the transpose.
Attention 2: However, the above way of obtaining attention

scores adopts a simple self-transformation without considering
the neighborhood relationships. Therefore, we propose to per-
form a context-aware attention calculation, which determines
the importance of neighborhood features by taking the corre-
sponding context node into consideration. In Fig. 3, assume all
neighbors (each node also aggregates information from itself)
of node vi are represented by a collection Ni = {vm}m=1,...,|Ni|
and they have a shared contextual semantic vector computed
by the elementwise sum of all individual feature vectors for

node content cnti

hcontexti =
|cnti|∑

j=1

Hi,j (19)

where Hi = [hw1 , hw2 , . . . , hw|cnti| ] are semantic vectors of all
features of node vi calculated based on (16). Then, the weight
score αj for each feature hwj ∈ Hm of the neighborhood node
vm is computed by using a bilinear term

αm,j = softmax
(
hwjWbh

T
contexti

)
(20)

where Wb ∈ R
do×do is a trained parameter matrix and hTcontexti

is a transpose.
By incorporating the attention weights, the final feature rep-

resentation Xm ∈ R
do for neighborhood node vm is formed by

a weighted sum of all corresponding individual features by

Xm =
|cntm|∑

j=1

αm,jHm,j. (21)

C. Node Representation Learning

The spectral-based convolutional filter [13] is chosen as a
key building component in our framework to gather features
dynamically learned by the LSTM network for node repre-
sentation learning, where each node aggregates features from
itself and all its first-order neighbors at each convolution layer.
In this article, we adopt a two-layer convolutional node rep-
resentation learning process, where the embedding X(1)

i ∈ R
dh

for each node vi in the first layer is computed by

X(1)
i =

∑

m∈Ni

W0Xm (22)

where W0 ∈ R
dh×do denotes the weight matrix and dh is

the dimension of node embeddings in the first layer. Assume
embeddings of all nodes output in the first layer are repre-
sented by X(1) = {X(1)

i }i=1,...,n, and then the node embeddings
in the second layer are computed by

O = ÃReLU
(
X(1)

)
W1 (23)

where Ã = D−(1/2)(I+A)D−(1/2) is the normalized symmetric
adjacency matrix with self-loops. W1 ∈ R

dh×l is the parameter
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Algorithm 1: FA-GCN for Noise Resilient Learning
Input : An information network: G = (V,E,C)

Output: The node embeddings: O ∈ R
n×l

Initialization: i = 0, training epochs I and labeled nodes YL

while i ≤ I do
for a vertex vm ∈ V do

Hm ← Learn the dense semantic vector for each
feature in cntm by Eq. (16);
Xm ← Learn original node feature representation by
Eq. (21).

end
O ∈ R

n×l ← Learn node embeddings by Eq. (23);
L ← Calculate classification loss by Eq. (28);[
W∗,Wb,W0,W1

] ← Update feature representation
learning weights W∗ in Eq. (15), attention weight Wb in
Eq. (20), and node embedding learning weights W0 & W1
in Eqs. (22) and (23);
i = i + 1.

end

matrix that transforms each node embedding to a l-length vec-
tor. Finally, the output node embeddings O ∈ R

n×l of the last
layer are subsequently through a softmax classifier to perform
a multiclass classification task by

Z = softmax(O) = exp(O)
∑

i exp(Oi)
. (24)

Let Y be the one-hot label indicator matrix of all nodes,
and the classification loss can be defined as the cross-entropy
error by

L = −
∑

d∈YL

l∑

f=1

Ydf ln Zdf (25)

where YL is the set of node indices that have labels.
The weight parameters for feature representation learn-

ing (e.g., wx∗ = {wxf ,wxi, xxg,wxo} and wh∗ =
{whf ,whi, xhg,who}) and node representation learning (e.g., W0
and W1) are trained collectively using the gradient descent
algorithm as in [3] and [13]. Since the feature representa-
tion learning of one node can be influenced by that of other
neighborhood nodes, both the LSTM network parameters and
GCN network parameters could vary dramatically without
regularization, which might leads to the overfitting and insta-
bility problems. To mitigate these issues, we add an L2-norm
regulation term on the loss function by

R{2}
f =

∑

wx∈wx∗
‖wx‖2F +

∑

wh∈wh∗
‖wh‖2F (26)

R{2}
n = ‖W0‖2F + ‖W1‖2F (27)

L = −
∑

d∈YL

l∑

f=1

Ydf ln Zdf + λ1R
{2}
f + λ2R

{2}
n (28)

where λ1 and λ2 are penalty terms to control the weight
magnitude of the regularization terms on feature and node
representation learning weight parameters, respectively. The
collective learning process of FA-GCN is summarized in
Algorithm 1.

TABLE I
BENCHMARK NETWORK CHARACTERISTICS

V. EXPERIMENTS

A. Benchmark Data

Three widely used benchmark datasets are chosen in our
experiments. Table I summarizes their network characteristics,
and their domain information is described as follows.
The Citeseer dataset contains 3312 literature from six cat-

egories and 4732 links among them. Each publication is
described by a text with average number of words of 32, where
the word features in each node content are not ordered in a
meaningful sequence (e.g., alphabetical order). There are 3703
unique words in the vocabulary.
The Cora dataset contains 2708 research papers from seven

machine learning directions, such as reinforcement learning
and genetic algorithms. Each paper corresponds to a category
label. There are 5214 citation relations among these papers.
Each paper is described by an abstract in the form of word
sequence. There are 14 694 unique words in the vocabulary
and the average number of words for each node is 90.
The DBLP dataset contains 10 310 publications from four

research areas in computer science, including database, data
mining, artificial intelligence, and computer vision. There are
52 890 edges in total and each publication is associated with
a title in the form of word sequence. There are 15 135 unique
words in the vocabulary and the average number of words for
each publication is 8.
The detailed statistic information is summarized in Table I.

We can observe that node contents in these networks are rather
sparse. As we discussed previously, feature sparsity combined
with feature noise would severely challenge most existing
methods and degrade their embedding learning performance.
In comparison, we propose to model feature correlations across
all node contents, which can help to learn enriched seman-
tics and mitigate the sparsity problems for some networks.
More importantly, the attention mechanisms introduced in the
proposed approach will help to identify important features for
node interactions, thus reducing the influence of irrelevant or
noisy features for improved embedding learning.
In the experiment, node contents on Cora and DBLP are

presented as sequential word features, and it is straightfor-
ward to consider the feature dependencies or correlations for
more accurate relationship modeling between nodes. In addi-
tion, to further evaluate the capacity of the proposed approach
to model feature correlation and feature attention in a more
general setting (e.g., sparse and noisy node content with disor-
dering the original feature sequence), we also use the Citeseer
dataset in which features are disordered, that is, features of all
nodes are sorted by the alphabetical order. As we adopt a bidi-
rectional LSTM network to learn the feature representations,
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each feature is able to reach and interact with others within
the same node content.

B. Baselines

We choose the following state-of-the-art comparative meth-
ods classified into three categories as follows.
Structure Only:
1) DeepWalk [8] preserves only the neighborhood relations

between nodes by the truncated random walk, and uses
the SkipGram model to learn the node embeddings.

2) Node2vec [21] adopts a more flexible neighborhood
sampling process than DeepWalk, that is, biased ran-
dom walk, to better capture the local structure (the
second-order node proximity) and the global structure
(the high-order node proximity).

Both Structure and Content Without Attention:
1) TriDNR [10] is a method that exploits network structure,

node content, and label information for node repre-
sentation learning. It is based on the assumption that
network structures and contents can enhance each other
to collectively determine the affinities between nodes.

2) GCN [13] is a state-of-the-art method that can effi-
ciently model node relations from network structures
and contents, where each node generates representa-
tion by adopting a spectral-based convolutional filter to
recursively aggregate information from all its neighbors.

3) FA-GCNcor is a variant of our proposed method that
models the feature correlations by a bidirectional LSTM
network and then learns node representations based on
the graph convolutional filter as GCN. The attention
mechanism is not incorporated in this model.

Both Structure and Content With Attention:
1) GAT [18] is a method built on the GCN model. It intro-

duces an attention mechanism at the node level, which
allows each node specifies different weights to different
nodes in a neighborhood.

2) FA-GCNself is a variant of our proposed method
that learns feature representation based on the
bidirectional LSTM network with introducing a
self-transformation attention mechanism (attention 1
described in Section IV-B). It then learns node repre-
sentations based on the graph convolutional filter.

3) FA-GCN is our proposed method that learns feature rep-
resentation based on the bidirectional LSTM network
and learns node representations based on the graph con-
volutional filter. The context-aware attention mechanism
(attention 2 proposed in Section IV-B) is adopted in this
method.

C. Experimental Settings

Node Classification: We first perform the supervised node
classification based on the learned node representations, which
is a widely used way to demonstrate the graph learning
performance [8], [10], [13]. This experiment is conducted on
the original networks, which allows us to compare different
baseline methods for learning real-world graphs with sparse
node contents (e.g., node features are very sparse in the three

original networks). p% labeled nodes are randomly selected
for training the model (e.g., classifier), which is then used
to predict labels for the rest of nodes. The remaining nodes
are split into two sets, where 10% (validation) for tuning the
parameters and 90% (test) for testing the model performance.
Similar to the literature [13], [18], we adopt Accuracy to mea-
sure the classification performance, where experiments are
repeated five times w.r.t different portions of training data
and the average performance and standard deviation are finally
reported.
Noise Intervention: We further test the performance of the

proposed models to handle artificial sparse and noisy content
networks against all baselines. Two different types of noise
interventions to the original node contents are examined.
1) Type-I Noise: We inject new words (not appeared in the

original node content) randomly sampled from the entire
corpus into each node content. The injection ratios (the
number of new words over the number of original words
in the node content) are ranging from 0.1 to 1.0.

2) Type-II Noise: We replace different ratios (e.g., between
0.05 and 0.5) of original words in the node content with
new words randomly sampled from the entire corpus.

It is necessary to mention that the Type-I noise intervention
will make each node content contain more irrelevant word fea-
tures, while the Type-II noise intervention will make each node
content become more erroneous and meanwhile, become more
sparser (e.g., the original correct content features are removed).
For both interventions, noise are introduced in a completely
random manner, and we only alter the noise level to vali-
date the algorithm performance. Since the contents for DBLP
network are already very sparse (e.g., seven words per node),
we only present the impacts of the Type-II noise intervention
w.r.t Citeseer and Cora datasets.
In addition to noisy node features, noisy node structures are

also harmful to most existing network embedding methods.
Therefore, as an extended experiment, we are interested to
investigate the performance of various methods when noisy
structures are presented in the networks, although none of the
baseline methods are designed to handle noise structures. We
define the structural noisy intervention as Type-III Noise.
3) Type-III Noise: We introduce random noisy links (not

appeared in the original network) into the network. The
ratios (the number of new links over the total number
of edges in the original network) of noisy links added
between nodes range from 0.1 to 1.0.

Parameter Setting: Extensive experiments are designed to
test the sensitivities of various parameters. We test the input
and output feature representation dimensions di and do in the
LSTM network between 20 and 200, and the training ratio p%
of the labeled nodes between 0.1 and 0.5. For comparison, in
this article, the default settings for di, do, and p% are 80, 80,
and 0.4, respectively. dh for Citeseer, Cora, and DBLP is set as
6, 7, and 4, respectively. Both the LSTM and GCN networks
use the dropout technique to reduce the effect of overfitting,
where dropout probabilities for LSTM and GCN are 0.2 and
0.3, respectively. The L2 norm regularization weight decay
parameters λ1 and λ2 are, respectively, set as 5e-4 and 5e-4
for DBLP, and 5e-3 and 5e-4 for other datasets. We use the
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TABLE II
NODE CLASSIFICATION RESULTS ON CITESEER (p% DENOTES PERCENTAGE OF LABELED NODES)

TABLE III
NODE CLASSIFICATION RESULTS ON CORA (p% DENOTES PERCENTAGE OF LABELED NODES)

TABLE IV
CLASSIFICATION RESULTS ON DBLP (p% DENOTES PERCENTAGE OF LABELED NODES)

Adam optimizer to train the model, where the learning rate
and training epoch are set as 2e-3 and 200, respectively.

D. Experimental Results

1) Node Classification Performance: We first compare dif-
ferent baseline methods for addressing original graphs with
sparse node features. The comparison w.r.t both sparse and
noisy features (e.g., noise intervention performance) will be
presented in the following part. Tables II–IV show the classi-
fication accuracy of all baselines on the three datasets, where
the top three best results are bold faced, italic formatted,
and underscored, respectively. From the results, we have the
following four main observations.
From Tables II and III, we can conclude that methods

incorporating both network structures and contents perform
generally better than methods preserving only structures. For
example, after modeling the text content of the Cora network,
the average performance of TriDNR improved 52.5% over
DeepWalk and 2.0% over Node2vec, respectively. The reason
is probably because of the fact that both Citeseer and Cora
are sparse networks, where structures fail to capture the holis-
tic relations between nodes. In such case, network contents
may can be leveraged to enhance node relationship modeling.
The above phenomenon can be strengthen by the results from

Table IV showing Node2vec performs significantly better than
TriDNR on DBLP, where the DBLP network has denser con-
nectivity but sparser content compared with Citeseer and Cora
networks. On the other hand, the shallow models, such as
DeepWalk, Node2vec, and TriDNR, suffer from the limita-
tions of modeling complex node relations [5], that is, they
all use random walk over the network to capture node rela-
tionships, but the random walk technique cannot differentiate
the affinities of node neighborhood relations of varying hops.
In comparison, other GCN-based methods (e.g., GCN, GAT,
and FA-GCNcor) can enforce a rigid neighborhood relations
modeling by the efficient spectral-based convolutional feature
aggregation process, where the learned node representations
can naturally and precisely preserve the network structures
and contents.
Based on the classification results over all three datasets, in

most cases FA-GCNcor outperforms GCN, that is, an improve-
ment of 1.7% w.r.t the Citeseer dataset. The superiority was
actually brought by a more reasonable way of modeling the
network content features in the proposed model. Existing
GCN-based methods typically take the static content fea-
tures as input, where features are treated as independent and
nodes linking each others are assumed to have dependen-
cies with their shared individual features. However, in many
situations, (e.g., especially for text-described networks) each
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Fig. 5. Performance comparisons w.r.t. different levels of Type-I noise. The x−axis denotes noise levels, that is, 0.1 means adding 10% of random noise to
each node (e.g., a node with ten words would be injected one random word as noisy node content). (a) Citeseer. (b) Cora. (c) DBLP.

feature (e.g., word) usually not only appears to represent a sin-
gle meaning but also has correlations with others to reveal a
complete and complex semantic. In comparison, the proposed
approach adopts a bidirectional LSTM network to effectively
model the feature correlations for more accurate node relations
modeling, especially when the node features are too sparse to
capture accurate relations between nodes. The performance
gain has demonstrated the benefits of the proposed model to
learn accurate feature semantics from sparse node features.
However, it is interesting to note that FA-GCN and its vari-
ants (FA-GCNcor and FA-GCNself) are generally inferior to
GCN and GAT when the percentages of labeled nodes are rel-
atively small (e.g., 10% and 15%). The possible reason is that
FA-GCN and its variants need to train an LSTM component;
thus, more labeled nodes are desired to train the parameters
and produce an optimal model. This point is supported by that
with the increased percentage of labeled nodes, FA-GCN starts
to show superior performance compared with GCN and GAT.
As can be seen from Tables II–IV, models (e.g., GAT,

FA-GCNself, and FA-GCN) with incorporating either node-
level attention mechanism or feature-level attention mecha-
nism perform generally better than the basic GCN model. For
example, on the Citeseer dataset, the average performance of
GAT improved 0.9% over GCN, and FA-GCNself and FA-GCN
improved 2.2% and 2.6%, respectively. In general, edges in
a graph could reveal complex relationships between nodes,
that is, in the citation network, a paper may cite many oth-
ers of various subject matters, and in the social network, a
user may connect many friends of different degrees of affini-
ties. GCN enforces each node to indiscriminately aggregate
information from all neighbors, which is inflexible and insuf-
ficient to model neighborhood relations between nodes. In
comparison, GAT and the proposed attention model allow each
node attends important neighborhood nodes or their features
for differentiable neighborhood features aggregation, which is
helpful to accurately model node relationships especially when
node features may be contaminated with noises.
For attention-based methods, we can observe from

Tables II and IV that FA-GCNself outperforms GAT in most
cases (e.g., the average performance improved 1.3% w.r.t
Citeseer dataset). The reason lies in that FA-GCNself adopts
a more fine-grained attention mechanism at the feature level,
against GAT at the node level. As we know, features in a node
content could be irrelevant or noises, where two node sharing

many identical features cannot guarantee they are highly sim-
ilar. For example, in the citation network, the abstract of a
publication has rich word features in which many are not dis-
tinguishing features (e.g., irrelevant or noisy features) to reveal
the accurate topics involved. The node-level attention assumes
that all features in each node content contribute equally, while
the feature-level attention in FA-GCNself is able to assign
higher weights to the most influential features for node inter-
actions, thus reducing the contribution of noisy features. In
addition, we can observe from all three result tables that FA-
GCN can achieve even better performance than FA-GCNself.
This is because that FA-GCN has considered the contex-
tual information while calculating each feature attention of
all neighboring nodes, which enables each node have more
capacity to select relevant features (from noisy node con-
tent) and meanwhile, learn accurate feature semantics (from
sparse node content) aligned with the final node classification.
The experimental results demonstrated effectiveness of the
proposed attention models for extracting significant features
for improved node interaction modeling.
2) Noise Intervention Performance: Fig. 5 reports the

performance of various GCN-based methods on all three
graphs w.r.t different ratios of Type-I noise. As can be seen,
with the increase of noise level, performances of all GCN-
based methods, such as GCN, GAT, and FA-GCNcor, tend to
decline to some degrees. The phenomenon is mainly caused
by the fact that in the spectral-based graph convolution learn-
ing process, nodes are forced to aggregate content features
from their respective neighbors while modeling node interac-
tions. Once node contents are floated with noisy features, the
content similarities between nodes would become less likely to
reflect accurate neighborhood relationships, thus blurring inter-
actions between nodes and causing performance degradation.
Nevertheless, from Fig. 5(a), we can observe the proposed
FA-GCN is less sensitive to noises. The reason is mainly
twofold: 1) feature dependencies across all node contents
have been captured in FA-GCN, which can help to allevi-
ate impacts of feature sparsity and noise for some individual
nodes and 2) the introduced feature-level attention models are
helpful to select important features from the noisy content,
which has guaranteed, to some extent, the accurate neigh-
borhood relations modeling. In addition, Fig. 5(b) and (c)
shows that FA-GCNself and FA-GCN both outperform other
baselines in most cases, which again demonstrated that the
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Fig. 6. Performance comparisons w.r.t. different levels of Type-II noise. The
x−axis denotes noise levels, that is, 0.1 means replacing 10% of words in
each node as noise (e.g., a node with ten words would have one word being
replaced with a random word). (a) Citeseer. (b) Cora.

feature-level attention is beneficial to promote the GCN-based
noise-resilient embedding learning.
Fig. 6 shows the impact of Type-II noise intervention.

We can observe that it has a significant impact on the
performance of all comparative methods, that is, with the
noise ratio increased from 0.1 to 0.5, the performance of
GCN decreased to 3.4% and 2.3% on Citeseer and Cora,
respectively. The reason is that the Type-II noise interven-
tion makes the node contents in the two studied networks
Citeseer and Cora more sparser combined with noises, which
severely deteriorates the node relations modeling for all com-
pared methods. Nevertheless, the proposed FA-GCN model
still performs better than other methods in most cases, which
again demonstrated the effectiveness of the proposed models
for sparse and noisy content network learning. The benefits of
FA-GCN come from capturing feature correlations and learn-
ing feature importance to address sparse and noisy content
features for improved embedding learning.
Interestingly, the results in Figs. 5 and 6 show that although

all methods suffer from performance loss due to noise impact,
none of the compared method becomes completely random,
even though a significant amount of noise (e.g., 100% for
Type-I noise and 50% for Type-II noise) are introduced to
the data. We believe that this is mainly attributed to the fact
that node relationships are largely constrained by the graph
topology, which is considered not noisy in this study. Although
node content are severely contaminated or missing, the model
performance would not deteriorate to be completely random,
due to the contribution of network topology used for learning.
Meanwhile, although node content are noisy, node labels still
provide useful information to support the learning. Evidently,
a recent study [43] also shows that GCN-based methods can
achieve rather good performance on graphs without using any
of the node content.
Fig. 7 shows the performance of various methods when

Type-III noise (noisy links) is introduced in the network.
Compared to Type-I noise [Fig. 5(a) and (b)], we can observe
from Fig. 7 that all methods degrade more significantly with
the increase of noise levels. This is because the GNNs-based
methods directly rely heavily on the topological structures to
perform node relation modeling. FA-GCN is mainly designed
to handle noisy features in the network, and it is lacking the
ability to handle noisy structures like other baselines. We leave

Fig. 7. Performance comparisons w.r.t. different levels of Type-III noise.
The x−axis denotes levels of noisy links, that is, 0.1 means adding 10% of
random noisy links to the network. (a) Citeseer. (b) Cora.

Fig. 8. Impact of the input feature vector dimension di. (a) Citeseer.
(b) DBLP.

Fig. 9. Impact of the output feature vector dimension do. (a) Citeseer.
(b) DBLP.

it as future work to further extend FA-GCN to be able to
address the Type-III noise.
3) Parameter Influence: They are three hyperparameters,

di, do, and dh, that are important in the feature and node
representation learning process. Extensive experiments are
designed to test their sensitivities on Citeseer and DBLP
datasets. di controls the dimension of the feature vector fed
into the LSTM network. Fig. 8 shows on both datasets the
performance changes in a limited range, which first increases
and then drops with the increase of di. If di is set too small,
the semantic representation ability of each word will be lim-
ited. In other words, smaller dimension may cause vector
representations for different words less expressive and indis-
tinguishable, thereby blurring the content discrepancy between
different nodes. On the contrary, if di is set too large, the
semantic information carried by each word would be overly
represented and highly distributed, making the LSTM model
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Fig. 10. Impact of the hidden node vector dimension dh. (a) Citeseer.
(b) DBLP.

ineffective to learn helpful information from the vector rep-
resentation of each word, and meantime, making the entire
training inefficient to optimize the high-dimensional model
parameters.
do indicates the dimension of the feature representation out-

put by the LSTM network. Analogical to di, if do is set too
small or too large, it would make node content representation
less expressive or make the GCN model ineffective to cap-
ture/aggregate highly distributed node content semantics in the
convolution learning of relationships among nodes. As can be
seen from Fig. 9, the performances first slightly increase and
then decrease within a very small range after the dimensions
are set as 60 and 100 for Citeseer and DBLP, respectively.
Fig. 10 shows the impact of parameter dh, which represents

the dimension of node representing out by the first convolu-
tional layer in FA-GCN. Previous studies [44] show that dh is
an important parameter, which could significantly impact the
GCN learning performance. We test impact of dh on Citeseer
between 6 and 60, and on DBLP between 4 and 13. The results
show it has a significant impact on the performance, where the
performance dramatically declines after 6 and 5 for Citeseer
and DBLP, respectively.

VI. CONCLUSION AND FUTURE WORK

In this article, we studied noise resilient learning for
networks with sparse and noisy node content. We argued
that sparse, noisy, and erroneous graph content are ubiqui-
tous. They present critical challenges to many graph learning
methods that rely on network content to constrain and mea-
sure node relationships. To tackle feature sparsity, we first
proposed to represent content features as dense vectors by
an LSTM network, which leverages feature semantic correla-
tion and dependency globally from all node contents to learn
dense vector for each feature. After that, we introduced a fea-
ture attention mechanism that allows each node to vary feature
weight values with respect to different neighbors, allowing our
method to minimize the noise impact and emphasize on consis-
tent features between connected nodes. As a result, each node
can gather the most important content features from itself and
its neighbors to learn its node representation. The effective-
ness of the proposed models has been validated on three sparse
content benchmark networks. The experiments on noise-free
and noisy networks, including Type-I and Type-II noise inter-
ventions by either injecting noise into the node content or

replacing correct content features with error ones, confirm
that the proposed method outperforms state-of-the-art meth-
ods, such as GCN and GAT. Our method is less sensitive to
erroneous graph contents, and is noise resilient for learning
node representation compared with existing methods.
In this work, we are mainly focused on networks contain-

ing noisy node features. However, networked data may suffer
from other types of noises, such as noisy links and even
hybrid noises combining noisy node features and noisy links,
which can severally challenge most existing network embed-
ding methods. Building on the foundation of the proposed
FA-GCN, future work is expected to design additional learn-
ing components (e.g., edge attention) that can minimize the
impact of noisy links.
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