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Abstract

Digital camera pixels measure image intensities by con-
verting incident light energy into an analog electrical cur-
rent, and then digitizing it into a fixed-width binary repre-
sentation. This direct measurement method, while concep-
tually simple, suffers from limited dynamic range and poor
performance under extreme illumination — electronic noise
dominates under low illumination, and pixel full-well ca-
pacity results in saturation under bright illumination. We
propose a novel intensity cue based on measuring inter-
photon timing, defined as the time delay between detec-
tion of successive photons. Based on the statistics of inter-
photon times measured by a time-resolved single-photon
sensor, we develop theory and algorithms for a scene
brightness estimator which works over extreme dynamic
range; we experimentally demonstrate imaging scenes with
a dynamic range of over ten million to one. The proposed
techniques, aided by the emergence of single-photon sen-
sors such as single-photon avalanche diodes (SPADs) with
picosecond timing resolution, will have implications for a
wide range of imaging applications: robotics, consumer
photography, astronomy, microscopy and biomedical imag-
ing.

1. Measuring Light from Darkness

Digital camera technology has witnessed a remarkable
revolution in terms of size, cost and image quality over
the past few years. Throughout this progress, however,
one fundamental characteristic of a camera sensor has not
changed: the way a camera pixel measures brightness. Con-
ventional image sensor pixels manufactured with comple-
mentary metal oxide semiconductor (CMOS) and charge-
coupled device (CCD) technology can be thought of as
light buckets (Fig. 1(a)), which measure scene brightness
in two steps: first, they collect hundreds or thousands of
photons and convert the energy into an analog electrical
signal (e.g. current or voltage), and then they digitize this
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analog quantity using high-resolution analog-to-digital con-
verters. Conceptually, there are two main drawbacks of this
image formation strategy. First, at extremely low brightness
levels, noise in the pixel electronics dominates resulting in
poor signal-to-noise-ratio (SNR). Second, since each pixel
bucket has a fixed maximum capacity, bright regions in the
scene cause the pixels to saturate and subsequent incident
photons do not get recorded.

In this paper, we explore a different approach for mea-
suring image intensities. Instead of estimating intensities
directly from the number of photons incident on a pixel, we
propose a novel intensity cue based on inter-photon timing,
defined as the time delay between detection of successive
photons. Intuitively, as the brightness increases, the time-of-
darkness between consecutive photon detections decreases.
By modeling the statistics of photon arrivals, we derive a
theoretical expressions that relates the average inter-photon
delay and the incident flux. The key observation is that
because photon arrivals are stochastic, the average inter-
photon time decreases asymptotically as the incident flux
increases. Using this novel temporal intensity cue, we de-
sign algorithms to estimate brightness from as few as one
photon timestamp per pixel to extremely high brightness,
beyond the saturation limit of conventional sensors.

How to Measure Inter-Photon Timing? The inter-photon
timing intensity cue and the resulting brightness estimators
can achieve extremely high dynamic range. A natural ques-
tion to ask then is: How does one measure the inter-photon
timing? Conventional CMOS sensor pixels do not have the
ability to measure time delays between individual photons
at the timing granularity needed for estimating intensities
with high precision. Fortunately, there is an emerging class
of sensors called single-photon avalanche diodes (SPADs)
[11, 7], that can not only detect individual photons, but also
precisely time-tag each captured photon with picosecond
resolution.

Emergence of Single-Photon Sensors: SPADs are natu-
rally suited for imaging in low illumination conditions, and
thus, are fast becoming the sensors of choice for applica-
tions that require extreme sensitivity to photons together
with fine-grained temporal information: single-photon 3D
time-of-flight imaging [52, 34, 46, 45, 33], transient imag-
ing [50, 49], non-line-of-sight imaging [35, 19], and flu-
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Figure 1: Passive imaging with an inter-photon single-photon avalanche diode (IP-SPAD): (a) A conventional image
sensor pixel estimates scene brightness using a well-filling mechanism; the well has a finite capacity and saturates for very
high brightness levels. (b) An IP-SPAD measures scene brightness from inter-photon timing measurements that follow
Poisson statistics. The higher the brightness, the smaller the inter-photon time, the faster the decay rate of the inter-photon
histogram. By capturing photon timing information with very high precision, this estimator can provide scene brightness

estimates well beyond the saturation limit of conventional

pixels. (c) A representative extreme dynamic range scene of a

tunnel with three different flux levels (low, moderate and high) shown for illustration. (d) Experimental results from our
hardware prototype comparing a conventional CMOS camera image and an image obtained from our IP-SPAD prototype.

orescence microscopy [43]. While these applications use
SPADs in active imaging setups in synchronization with an
illumination source such as a pulsed laser, recently these
sensors have been explored as passive, general-purpose
imaging devices for high-speed and high-dynamic range
photography [4, 25, 36]. In particular, it was shown that
SPADs can be used to measure incident flux while operating
as passive, free-running pixels (PF-SPAD imaging) [25].
The dynamic range of the resulting measurements, although
higher than conventional pixels (that rely on a finite-depth
well filling light detection method like CCD and CMOS
sensors), is inherently limited due to quantization stemming
from the discrete nature of photon counts.

Intensity from Inter-Photon Timing: Our key idea is that
it is possible to circumvent the limitations of counts-based
photon flux estimation by exploiting photon timing infor-
mation from a SPAD. The additional time-dimension is a
rich source of information that is inaccessible to conven-
tional photon count-based methods. We derive a scene
brightness estimator that relies on the decay time statis-
tics of the inter-photon times captured by a SPAD sensor
as shown in Fig. 1(b). We call our image sensing method
inter-photon SPAD (IP-SPAD) imaging. An IP-SPAD pixel
captures the decay time distribution which gets narrower

with increasing brightness. As shown in Fig. 1(d), the mea-
surements can be summarized in terms of the mean time-of-
darkness, which can then be used to estimate incident flux.

Unlike a photon-counting PF-SPAD pixel whose mea-
surements are inherently discrete, an IP-SPAD measures de-
cay times as floating point values, capturing information at
much finer granularity than integer-valued counts, thus en-
abling measurement of extremely high flux values. In prac-
tice, the dynamic range of an [P-SPAD is limited only by the
precision of the floating point representation used for mea-
suring the time-of-darkness between consecutive photons.
Coupled with the sensitivity of SPADs to individual pho-
tons and lower noise compared to conventional sensors, the
proposed approach, for the first time, achieves ultra high-
dynamic range. We experimentally demonstrate a dynamic
range of over ten million to one, simultaneously imaging ex-
tremely dark (pixels P; and P, inside the tunnel in Fig. 1(c))
as well as very bright scene regions (pixel P3 outside the
tunnel in Fig. 1(c)).

2. Related Work

High-Dynamic-Range Imaging: Conventional high-
dynamic-range (HDR) imaging techniques using CMOS
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image sensors use variable exposures to capture scenes with
extreme dynamic range. The most common method called
exposure bracketing [21, 22] captures multiple images with
different exposure times; shorter exposures reliably cap-
ture bright pixels in the scene avoiding saturation, while
longer exposures capture darker pixels while avoiding pho-
ton noise. Another technique involves use of neutral density
(ND) filters of varying densities resulting in a tradeoff be-
tween spatial resolution and dynamic range [40]. ND filters
reduce overall sensitivity to avoid saturation, at the cost of
making darker scene pixels noisier. In contrast, an [IP-SPAD
captures scene intensities in a different way by relying on
the non-linear reciprocal relationship between inter-photon
timing and scene brightness. This gives extreme dynamic
range in a single capture.

Passive Imaging with Photon-Counting Sensors: Previ-
ous work on passive imaging with photon counting sen-
sors relies on two sensor technologies—SPADs and quanta-
image sensors (QISs) [18]. A QIS has single-photon sen-
sitivity but much lower time resolution than a SPAD pixel.
On the other hand, QIS pixels can be designed with much
smaller pixel pitch compared to SPAD pixels, allowing spa-
tial averaging to further improve dynamic range while still
maintaining high spatial resolution [36]. SPAD-based high-
dynamic range schemes provide lower spatial resolution
than the QIS-based counterparts [16], although, recently,
megapixel SPAD arrays capable of passive photon count-
ing have also be developed [39]. Previous work [25] has
shown that passive free-running SPADs can potentially pro-
vide several orders of magnitude improved dynamic range
compared to conventional CMOS image sensor pixel. The
present work exploits the precise timing information, in ad-
dition to photon counts, measured by a free-running SPAD
sensor. An IP-SPAD can image scenes with even higher
dynamic range than the counts-based PF-SPAD method.

Methods Relying on Photon Timing: The idea of using
timing information to increase dynamic range has been ex-
plored before for conventional CMOS image sensor pix-
els. A saturated CMOS pixel’s output is simply a constant
and meaningless, but if the time taken to reach saturation
is also available [13], it provides information about scene
brightness, because a brighter scene point will reach satura-
tion more quickly (on average) than a dimmer scene point.
The idea of using photon timing information for HDR has
also been discussed before but the dynamic range improve-
ments were limited by the low timing resolution of the pix-
els [53, 31] at which point, the photon timing provides no
additional information over photon counts.

Methods Relying on Non-linear Sensor Response: Log-
arithmic image sensors include additional pixel electron-
ics that apply log-compression to capture a large dynamic
range. These pixels are difficult to calibrate and require ad-
ditional pixel electronics compared to conventional CMOS

image sensor pixels [27]. A modulo-camera [54] allows
a conventional CMOS pixel output to wrap around after
saturation. It requires additional in-pixel computation in-
volving an iterative algorithm that unwraps the modulo-
compression to reconstruct the high-dynamic-range scene.
In contrast, our timing-based HDR flux estimator is a
closed-form expression that can be computed using simple
arithmetic operations. Although our method also requires
additional in-pixel electronics to capture high-resolution
timing information, recent trends in SPAD technology in-
dicate that such arrays can be manufactured cheaply and at
scale using CMOS fabrication techniques [24, 23].

Active Imaging Methods: Photon timing information cap-
tured by a SPAD sensor has been exploited for various ac-
tive imaging applications like transient imaging [41], flu-
orescence lifetime microscopy [7], 3D imaging LiDAR
[30, 20] and non-line-of-sight imaging [29, 9]. Active meth-
ods capture photon timing information with respect to a syn-
chronized light source like a pulsed laser that illuminates the
scene. In contrast, we operate the SPAD asynchronously
and measure the time between successive photons in a pas-
sive imaging setting where the scene is only illuminated by
ambient light.

3. Image Formation with Inter-Photon Timing
3.1. Flux Estimator

Consider a single IP-SPAD pixel passively capturing
photons over a fixed exposure time 7' from a scene point'
with true photon flux of ® photons per second. After each
photon detection event, the IP-SPAD pixel goes blind for a
fixed duration 74 called the dead-time. During this dead-
time, the pixel is reset and the pixel’s time-to-digital con-
verter (TDC) circuit stores a picosecond resolution time-
stamp of the most recent photon detection time, and also
increments the total photon count. This process is repeated
until the end of the exposure time 7. Let N7 > 2 denote the
total number of photons detected by the IP-SPAD pixel dur-
ing its fixed exposure time, and let X; (1 < ¢ < Np) denote
the timestamp of the " photon detection. The measured
inter-photon times between successive photons is defined as
Y; = Xi+1 _Xi —Td (for 1<:1< NT — 1) Note thatYi’s
follow an exponential distribution. It is tempting to derive
a closed-from maximum likelihood photon flux estimator ®
for the true flux ® using the log-likelihood function of the

'We assume that there is no scene or camera motion so that the flux ®
stays constant over the exposure time 7'.
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Figure 2: Comparison of noise sources in different image sensor pixels: (a) Theoretical expressions for the three main
sources of noise affecting a conventional pixel, PF-SPAD pixel [25] and the proposed IP-SPAD pixel are summarized in this
table. Note that the [IP-SPAD’s sources of noise are similar to a PF-SPAD except for quantization noise. (b) The expressions
in (a) are plotted for the case of T' = 5ms, g = 100%, o, = 5e~, Pyak = 10 photons/second, 74 = 150 ns, A = 200 ps. The
conventional sensor’s saturation capacity is set at 34,000 e~ which matches the maximum possible SPAD counts of [7/7].

Observe that the IP-SPAD soft-saturation point is at a much higher flux level than the PF-SPAD.

measured inter-photon times Y;:

Nr—1
logl(qq)vylv s 7YNT—1) = log H q(I) 67‘1@Yi
i=1

Np—1
=—q® | > Y|+ (Nr—1)logg®, (1)
n=1

where 0< ¢ <1 is the quantum efficiency of the IP-SPAD
pixel. The maximum likelihood estimate ® of the true pho-
ton flux is computed by setting the derivative of Eq. (1) to
zero and solving for ®:

1 Np—1
¢ XNy —X1— (Np— D)1’

2

Although the above proof sketch captures the intuition of
our flux estimator, it leaves out two details. First, the total
number of photons N is itself a random variable. Second,
the times of capture of future photons are constrained by the
timestamps of preceding photon arrivals because we operate
in a finite exposure time 7'. The sequence of timestamps Y;
cannot be treated as independent and identically distributed.
The conditional distribution of the 7™ inter-photon time con-
ditioned on the previous inter-photon times is given by:

qPe 9%t 0<Y;, <T;
pYi|Y17-~~7Y7‘,—1(t) = e_quTi(S(t - Tl) Yi=T;
0 otherwise.

Here §(-) is the Dirac delta function. The T;’s model the
shrinking effective exposure times for subsequent photon
detections. 77 = T and for ¢ > 1, T; = max(0,T;—1 —

Y;—1 — 74). The log-likelihood function can now be written
as:

[T/74]
logl(q®;Y1,...,Y,) = log H Py |1, viq (F)
i1

Nt
= —¢®max | Y Vi, T—Nr7a | + Nrlogq®.
=1

As shown in Supplementary Note 1 this likelihood function
also leads to the flux estimator given in Eq. (2)

We make the following key observations about the IP-
SPAD flux estimator. First, note that the estimator is only
a function of the first and the last photon timestamps, the
exact times of capture of the intermediate photons do not
provide additional information.” This is because photon ar-
rivals follow Poisson statistics: the time until the next pho-
ton arrival from the end of the previous dead-time is inde-
pendent of all preceding photon arrivals. Secondly, we note
that the denominator in Eq. (2) is simply the total time the
IP-SPAD spends waiting for the next photon to be captured
while not in dead-time. Intuitively, if the photon flux were
extremely high, we will expect to see a photon immediately
after every dead-time duration ends, implying the denomi-
nator in Eq. (2) approaches zero, hence & — oc.

3.2. Sources of Noise

Although, theoretically, the IP-SPAD scene brightness
estimator in Eq. (2) can recover the entire range of inci-
dent photon flux levels, including very low and very high

2As we show later in our hardware implementation, in practice, it is
useful to capture intermediate photon timestamps as they allow us to cali-
brate for various pixel non-idealities.
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Figure 3: Advantage of using photon timing over photon
counts: (a) Photon counts are inherently discrete. At high
flux levels, even a small +1 change in photon counts corre-
sponds to a large flux uncertainty. (b) Inter-photon timing
is inherently continuous. This leads to smaller uncertainty
at high flux levels. The uncertainty depends on jitter and
floating point resolution of the timing electronics.

flux values, in practice, the accuracy is limited by various
sources of noise. To assess the performance of this estima-
tor, we use a signal-to-noise ratio (SNR) metric defined as
[51,25]:

,1)2
SNR(®) = 10log;, (E[(@ — &))2]> 3)
Note that the denominator in Eq. (3) is the mean-squared-
error of the estimator ®, and is equal to the sum of the
bias-squared terms and variances of the different sources
of noise. The dynamic range (DR) of the sensor is de-
fined as the range of brightness levels for which the SNR
stays above a minimum specified threshold. At extremely
low flux levels, the dynamic range is limited due to IP-
SPAD dark counts which causes spurious photon counts
even when no light is incident on the pixel. This intro-
duces a bias in ®. Since photon arrivals are fundamentally
stochastic (due to the quantum nature of light), the estima-
tor also suffers from Poisson noise which introduces a non-
zero variance term. Finally, at high enough flux levels, the
time discretization A used for recording timestamps with
the IP-SPAD pixel limits the maximum usable photon flux
at which the pixel can operate. Fig. 2(a) shows the theo-
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Figure 4: Effect of various IP-SPAD parameters on SNR:
We vary different parameters to see the effect on SNR. The
solid lines are theoretical SNR curves while each dot rep-
resents a SNR average from 10 Monte Carlo simulations.
Unless otherwise noted the parameters used are 7' = 1 ms,
7¢ = 100 ns, ¢ = 0.4, and A = 0. (a) As exposure time
increases, SNR increases at all brightness levels. (b) De-
creasing the dead-time increases the maximum achievable
SNR, but provides little benefit in low flux. (c) Coarser
time quantization causes SNR drop-off at high flux values.
(d) Our IP-SPAD flux estimator outperforms a counts-only
(PF-SPAD) flux estimator [25] at high flux levels.

retical expression for bias and variance introduced by shot
noise, quantization noise and dark noise in an IP-SPAD
pixel along with corresponding expressions for a conven-
tional image sensor pixel and a PF-SPAD pixel. Fig. 2(b)
shows example plots for these theoretical expressions. For
realistic values of A in the 100’s of picoseconds range, the
IP-SPAD pixel has a smaller quantization noise term that
allows reliable brightness estimation at much higher flux
levels than a PF-SPAD pixel. (See Supplementary Note 2).

Quantization Noise in PF-SPAD vs. IP-SPAD: Conven-
tional pixels are affected by quantization in low flux and
hard saturation (full-well capacity) limit in high flux. In
contrast, a PF-SPAD pixel that only uses photon counts is
affected by quantization noise at extremely high flux lev-
els due to soft-saturation [25]. This behavior is unique
to SPADs and is quite different from conventional sensors.
A counts-only PF-SPAD pixel can measure at most [T/r,]
photons where T is the exposure time and 74 is the dead-
time [25]. Due to a non-linear response curve, as shown
in Fig. 3(a), a small change of +1 count maps to a large
range of flux values. Due to the inherently discrete nature
of photon counts, even a small fluctuation (due to shot noise
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Figure 5: Simulated HDR scene captured with a PF-
SPAD (counts only) vs. IP-SPAD (inter-photon timing):
(a) Although a PF-SPAD can capture this extreme dynamic
range scene in a single 5ms exposure, extremely bright
pixels such as the bulb filament that are beyond the soft-
saturation limit appear noisy. (b) An IP-SPAD camera cap-
tures both dark and bright regions in a single exposure, in-
cluding fine details around the bright bulb filament. In both
cases, we set the SPAD pixel’s quantum efficiency to 0.4,
dead-time to 150 ns and an exposure time of 5 ms. The IP-
SPAD has a time resolution of A = 200 ps. (Original image
from HDRIHaven.com)

or jitter) can cause a large uncertainty in the estimated flux.

The proposed IP-SPAD flux estimator uses timing infor-
mation which is inherently continuous. Even at extremely
high flux levels, photon arrivals are random and due to small
random fluctuations, the time interval between the first and
last photon (X, — X1) is not exactly equal to T". Fig. 3(b)
shows the intuition for why fine-grained inter-photon mea-
surements at high flux levels can enable flux estimation with
a smaller uncertainty than counts alone. In practice, the im-
provement in dynamic range compared to a PF-SPAD de-
pends on the time resolution, which is limited by hardware
constraints like floating point precision of the TDC elec-
tronics and timing jitter of the SPAD pixel. Simulations in
Fig. 4 suggest that even with a 100 ps time resolution the
20-dB dynamic range improves by 2 orders of magnitude
over using counts alone.

Single-Pixel Simulations: We verify our theoretical SNR
expression using single-pixel Monte Carlo simulations of a
single IP-SPAD pixel. For a fixed set of parameters we run
10 simulations of an IP-SPAD at 100 different flux levels
ranging 10* — 106 photons per second. Fig. 4 shows the
effect of various pixel parameters on the SNR. The over-
all SNR can be increased by either increasing the exposure
time 7" or decreasing the dead-time 74; both enable the IP-
SPAD pixel to capture more total photons. The maximum

achievable SNR is theoretically equal to 10log;q (/).
The IP-SPAD SNR degrades at high flux levels due be-
cause photon timestamps cannot be captured with infinite
resolution. A larger floating point quantization bin size
A increases the uncertainty in photon timestamps. If the
time bin is large enough, there is no advantage in using the
timestamp-based brightness estimator and the performance
reverts to a counts-based flux estimator [4, 25].

4. Results
4.1. Simulation Results

Simulated RGB Image Comparisons: Fig. 5 shows a sim-
ulated HDR scene with extreme brightness variations be-
tween the dark text and bright bulb filament. We use a
5ms exposure time for this simulation. The PF-SPAD and
IP-SPAD both use pixels with ¢ = 0.4 and 7y = 150ns.
The PF-SPAD only captures photon counts whereas the IP-
SPAD captures counts and timestamps with a resolution of
A = 200ps. Notice that the extremely bright pixels on
the bulb filament appear noisy in the PF-SPAD image. This
degradation in SNR at high flux levels is due to its soft-
saturation phenomenon. The IP-SPAD, on the other hand,
captures the dark text and noise-free details in the bright
bulb filament in a single exposure. Please see supplement
for additional comparisons with a conventional camera.

4.2. Single-Pixel IP-SPAD Hardware Prototype

Our single-pixel IP-SPAD prototype is a modified ver-
sion of a fast-gated SPAD module [8]. Conventional dead-
time control circuits for a SPAD rely on digital timers that
have a coarse time-quantization limited by the digital clock
frequency and cannot be used for implementing an IP-
SPAD. We circumvent this limitation by using coaxial ca-
bles and low-jitter voltage comparators to generate “analog
delays” that enable precise control of the dead-time with jit-
ter limited to within a few ps. We used a 20 m long co-axial
cable to get a dead-time of 110 ns. The measured dead-time
jitter was ~ 200 ps. This is an improvement over previous
PF-SPAD implementations [25] that relied on a digital timer
circuit whose time resolution was limited to ~ 6 ns.

The IP-SPAD pixel is mounted on two translation stages
that raster scan the image plane of a variable focal length
lens. The exposure time per pixel position depends on
the translation speed along each scan-line. We capture
400x400 images with an exposure time of 5 ms per pixel
position. The total capture takes ~ 15 minutes. Pho-
ton timestamps are captured with a 1 ps time binning us-
ing a time-correlated single-photon counting (TCSPC) sys-
tem (PicoQuant HydraHarp400). A monochrome camera
(PointGrey Technologies GS3-U3-23S6M-C) placed next
to the SPAD captures conventional camera images for com-
parison. The setup is arranged carefully to obtain approxi-
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Figure 6: Experimental “Tunnel” scene: (a-b) Images from a conventional sensor with long and short exposure times.
Notice that both the speed limit sign and the toy figure cannot be captured simultaneously with a single exposure. Objects
outside the tunnel appear saturated even with the shortest exposure time possible with our CMOS camera. (c) A PF-SPAD
[25] only uses photon counts when estimating flux. Although it captures much higher dynamic range than the conventional
CMOS camera, the bright pixels near the halogen lamp appear saturated. (d) Our IP-SPAD single-pixel hardware prototype
captures both the dark and the extremely bright regions with a single exposure. Observe that the fine details within the

halogen lamp are visible.

mately the same field of view and photon flux per pixel for
both the IP-SPAD and CMOS camera pixels.

4.3. Hardware Experiment Results

HDR Imaging: Fig. 6 shows an experiment result using
our single-pixel raster-scanning hardware prototype. The
“Tunnel” scene contains dark objects like a speed limit sign
inside the tunnel and an extremely bright region outside
the tunnel from a halogen lamp. This scene has a dy-
namic range of over 107:1. The conventional CMOS cam-
era (Fig. 6(a-b)), requires multiple exposures to cover this
dynamic range. Even with the shortest possible exposure
time of 0.005 ms, the halogen lamp appears saturated. Our
IP-SPAD prototype captures details of both the dark regions
(text on the speed limit sign) simultaneously with the bright
pixels (outline of halogen lamp tube) in a single exposure.
Fig. 6(c) and (d) shows experimental comparison between a
PF-SPAD (counts-only) image [25] and the proposed IP-
SPAD image that uses photon timestamps. Observe that
in extremely high flux levels (in pixels around the halogen
lamp) the PF-SPAD flux estimator fails due to the inher-
ent quantization limitation of photon counts. The IP-SPAD
preserves details in these extremely bright regions, like the
shape of the halogen lamp tube and the metal cage on the
lamp.

Hardware Limitations: The IP-SPAD pixel does not exit
the dead-time duration instantaneously and in practice it
takes around 100 ps to transition into a fully-on state. Rep-
resentative histograms for four different locations in the ex-
periment tunnel scene are shown in Fig. 7. Observe that
at lower flux levels (pixels [P1] and [P2]) the inter-photon
histograms follow an exponential distribution as predicted
by the Poisson model for photon arrival statistics. How-
ever, at pixels with extremely high brightness levels (pixels
[P3] and [P4] on the halogen lamp), the histograms have
a rising edge denoting the transition phase when the pixel
turns on after the end of the previous dead-time. We also
found that in practice the dead-time is not constant and ex-
hibits a drift over time (especially at high flux values) due
to internal heating. Such non-idealities, if not accounted
for, can cause uncertainty in photon timestamp measure-
ments, and limit the usability of our flux estimator in the
high photon flux regime. Since we capture timestamps for
every photon detected in a fixed exposure time, it is possible
to correct these non-idealities in post-processing by estimat-
ing the true dead-time and rise-time from these inter-photon
timing histograms. See Supplementary Note 5 for details.

IP-SPAD Imaging with Low Photon Counts: The results
so far show that precise photon timestamps from an IP-
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Figure 7: Rise-time Non-ideality in Measured IP-SPAD
Histograms: We show four inter-photon histograms for
pixels in the experimental “Tunnel” scene. The histograms
of [P1] and [P2] have an ideal exponentially decaying
shape. However, at the brighter points, [P3] and [P4],
the inter-photon histograms deviate from an ideal exponen-
tial shape. This is because the IP-SPAD pixels requires
~ 100 ps rise time to re-activate after the end of the pre-
vious dead-time.

SPAD pixel enables imaging at extremely high photon flux
levels. We now show that it is also possible to leverage tim-
ing information when the IP-SPAD pixel captures very few
photons per pixel. We simulate the low photon count regime
by keeping the first few photons and discarding the remain-
ing photon timestamps for each pixel in the experimental
“Tunnel” scene. Fig. 8 shows IP-SPAD images captured
with as few as 1 and 10 photons per pixel and denoised us-
ing an off-the-shelf BM3D denoiser and a deep neural net-
work denoiser that uses a kernel prediction network (KPN)
architecture [38]. We can recover intensity images with just
one photon timestamp per pixel using real data captured by
our IP-SPAD hardware prototype. Quite remarkably, with
as few as 10 photons per pixel, image details such as facial
features and text on the fire truck are discernible. Please see
Supplementary Note 3 for details about the KPN denoiser
and Supplementary Note 6 for additional experimental re-
sults and comparisons with other denoising algorithms.

KPN Denoiser

1 photon

10 photons

(a) (b)

Figure 8: IP-SPAD Imaging in Low Photon Count
Regime: This figure shows IP-SPAD images captured with
very few photons and denoised with two different meth-
ods: (a) an off-the-shelf BM3D denoiser, and (b) a DNN
denoiser based on a kernel prediction network architecture.
Details like the text on the fire-truck are visible with as few
as 10 photons per pixel.

5. Future Outlook

The analysis and experimental proof-of-concept shown
in this paper were restricted to a single IP-SPAD pixel.
Recent advances in CMOS SPAD technology that rely on
3D stacking [23] can enable larger arrays of SPAD pixels
for passive imaging. This will introduce additional design
challenges and noise sources not discussed here. In Sup-
plementary Note 7 we show some pixel architectures for an
IP-SPAD array that could be implemented in the future.

Arrays of single-photon image sensor pixels are be-
ing increasingly used for 2D intensity imaging and 3D
depth sensing [52, 32, 37] in commercial and consumer
devices. When combined with recent advances in high-
time-resolution SPAD sensor hardware, the methods devel-
oped in this paper can enable extreme imaging applications
across various applications including consumer photogra-
phy, vision sensors for autonomous driving and robotics,
and biomedical optical imaging.
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