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ABSTRACT

The increase in variable renewable generators (VRGs) in power systems has altered the dynamics from a historical experience. VRGs introduce
new sources of power oscillations, and the stabilizing response provided by synchronous generators (SGs, e.g., natural gas, coal, etc.), which
help avoid some power fluctuations, will lessen as VRGs replace SGs. These changes have led to the need for new methods and metrics to
quickly assess the likely oscillatory behavior for a particular network without performing computationally expensive simulations. This work
studies the impact of a critical dynamical parameter—the inertia value—on the rest of a power system’s oscillatory response to representative
VRG perturbations. We use a known localization metric in a novel way to quantify the number of nodes responding to a perturbation and
the magnitude of those responses. This metric allows us to relate the spread and severity of a system’s power oscillations with inertia. We find
that as inertia increases, the system response to node perturbations transitions from localized (only a few close nodes respond) to delocalized
(many nodes across the network respond). We introduce a heuristic computed from the network Laplacian to relate this oscillatory transition
to the network structure. We show that our heuristic accurately describes the spread of oscillations for a realistic power-system test case.
Using a heuristic to determine the likely oscillatory behavior of a system given a set of parameters has wide applicability in power systems,
and it could decrease the computational workload of planning and operation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065854

I. INTRODUCTION

New sources of dynamical instability can arise as more vari-
able renewable generators (VRGs) are used in power systems. Unlike
synchronous generators (SGs, e.g., coal, natural gas, nuclear), VRGs
connect to a power system via a power electronic device called an
inverter, which results in different dynamical interactions with the

Inertial support is a natural feature of power systems that involve
traditional generation sources. When power imbalances occur,
inertia is the first stabilizing response to help rebalance these sys-
tems. With the integration of renewable sources, many of which
do not provide inertial support, power systems are at risk of
imbalances that threaten system stability. Many of the proposed

solutions to this issue require techniques for determining the
quantity and placement of diverse sources of inertial support
in the system. As a step toward advancing this knowledge, we
study the dynamics of a realistic power-system test case, perturbed
by representative power disturbances, with heterogeneous inertia
values. In a comprehensive simulation study, we vary the inertia
value at different network locations and assess the patterns in the
spread of the perturbations. We relate our observations to the net-
work structure by defining a metric on the Laplacian matrix to
quantify and compare the participation of the individual nodes
in the global system dynamics. These results allow us to better
understand the sensitivity of the system dynamics to the inertia
value at different network locations, which is crucial information
for devising new techniques and technologies that help stabilize
low-inertia power systems.

system. Specifically, SGs provide inertial support—an automatic and
inherent SG response to changes in the power balance—which is a
critical stability mechanism that VRGs often lack. As inertial support
decreases, changes in the power balance become larger and faster,
which can overwhelm control devices and decrease the time avail-
able for operator intervention." These changes can lead to further
instabilities in the power system, such as cascading failures or the
loss of system synchronization.

To address these issues, a large body of work has emerged
to devise new inverters that provide inertial support,” develop
new techniques to optimize inertial support,” and formulate new
operational policies to ensure sufficient inertial support.® Much of
this previous work has focused on larger perturbations, such as
the loss of a node, but small perturbations, such as those due to
resource variations of VRGs, can be equally damaging.” VRG power
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fluctuations differ from those of SGs or loads™’—larger fluctua-
tions tend to be more likely, and inertia influences how far away
from the VRG these fluctuations can be observed." Specifically, it
has been shown that perturbations decay more quickly when there
is more inertia in the power system,''~"* but the effects of hetero-
geneous inertia, which have been shown to significantly alter the
spread of power perturbations,* are less understood. In general,
power perturbations on networks that are more tree-like and less
clustered tend to decay more quickly than in networks that are more
meshed,'>'® but the impact of where these sub-structures are located
in a network, and how this changes the spread of power fluctu-
ations, has not been considered. Finally, much of this prior work
has defined the spread of a perturbation by relating the response of
individual nodes and network distance. However, the relationship
between the collective response of a power system and the location
of the perturbed node in the network has practical applications and
is underexplored.

The goal of this work is to evaluate the impact of the size of
an inertia value at a particular network location on deviations of
a power system from its equilibrium. We focus on small oscilla-
tions that result from perturbations that are representative of VRG
power fluctuations.” Furthermore, the inertia in the power system
can change the magnitude and location of these small oscillations.
To study these effects, we perturb a node and analyze the impact of
different inertia values at that location. To understand the impact of
a network structure, we repeat this experiment at numerous loca-
tions across the network. We model two different perturbations:
a frequency impulse that represents a sudden and short duration
power loss (e.g., from a fault) and a stochastic perturbation that
is representative of the second-to-second power fluctuations of a
renewable resource.

Unlike other work that has focused on characterizing per-
turbation arrival times and distances,''~"” we instead focus on the
collective deviation of all nodes from their equilibrium states. To
achieve this, we measure the power-system response to these per-
turbations using the concept of localization. Specifically, we extend
an existing localization metric, the inverse participation ratio, the
IPR, in a novel way to quantify the transition from localized (involv-
ing only a few nodes) to delocalized (involving many nodes) system
responses and relate this transition to the perturbed node’s inertia
parameter. We then study the relationship between this transition
and the network location of the perturbed node by introducing a
new measure, the nodal mode angle (NMA), that captures the par-
ticipation of a node in the total system dynamics and compares
this among the nodes in the network. We compare this metric
across a set of small networks that differ by only one edge and
show that it effectively captures differences in the dynamics of
these networks. Finally, we illustrate the practical utility of this
metric by studying the two perturbation types for a large canon-
ical power-grid test case, showing that it can accurately describe
the differences in the delocalization transition at different network
locations.

Understanding the interplay between network structure and
power system inertia aids in the implementation of solutions
for power-system frequency control. The ability to quickly assess
the likely oscillatory behavior of a power system given a set of
parameters is useful and important, especially as sources of inertia

ARTICLE scitation.org/journal/cha

become more diverse and more coordination among power-system
stakeholders is required.

Il. NUMERICAL METHODS

We use the structure-preserving (SP) model to simulate the
dynamics of a power system.'” Our focus is on the impact of gener-
ator inertia on power oscillations, with the ultimate goal of helping
with the implementation and placement of control devices, and we
do not directly model VRG inverters; therefore, higher-order mod-
els that consider control devices and voltage dynamics are not nec-
essary here. Equations (1a)-(1c) define the dynamics of the nodes
in a power system as stated in the SP model, where 7 is the number
of nodes in the network, the collection of which we refer to as the
system,

MyAd, = —DgAwg + P+ Y Byisin(6 — 6), (1a)
i=1

b, = Aw,, (1b)

D,'S,' = — P,‘ + Z B,] sin(5,— — 6/) . (IC)

j=1

There are g=1,2,..., n, < n generator nodes, where Egs. (1a)
and (1b) define the circular motion of the rotors, while
load/intermediary node dynamics are defined by Eq. (1c). 6, is the
angle of rotation for the generator rotor, and §; is the voltage phase
angle of a node. It is common to designate one generator’s rotational
angle as the reference from which to measure all other generator
angles. Here, we assume that this is the first generator (i.e., 6; = 0).
When power production matches power consumption, y . , P; = 0,
the system reaches a steady state (i.e., without an external force, the
state variables do not change over time), and all generators have the
same angular frequency (60 or 50 Hz). Aw, is a generator’s angu-
lar frequency deviation as measured from the steady-state value (i.e.,
Awg = 0 means that the generator is rotating at the steady-state fre-
quency). Every node has a damping constant D;, which defines how
quickly oscillations at that node dissipate. The susceptance of an
edge that connects node i to node j is By, and physically, it describes
how easy it is for electric current to flow across the line. Finally, every
generator has an inertia constant M,, the parameter of interest in this
work, that describes the rotor’s resistance to change in its angular
frequency. Although VRG inverters implement inertia as a virtual
parameter via control mechanisms,'® modeling inertia as a physical
parameter in this manner is a valid assumption for power systems
today because it is still the dominant source of inertial support."

We perform our experiments on a representative power-system
test case: the 500-node network from Birchfield et al.,”’ constructed
such that it accurately reflects the transmission system located in
South Carolina, and parameter values from Xu et al.’' as defaults,
unless stated otherwise. Figure 1 depicts this network, where green
squares are generators, pink triangles are loads, and gray circles are
intermediary nodes.

We study the system response, determined by Egs. (1a)-(1¢), to
two realistic power perturbation types, adding a term to the equation
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FIG.1. The 500 node power system developed in Birchfield et al.,”’ which is used
here as a realistic test case. Load nodes are pink triangles, generators are green
squares, and intermediary nodes are gray circles. There are 90 generators and
200 loads.

of motion of the perturbed generator ga,

My, Adyg, = —Dy, Awyg, + P, + Y By,isin(0, — 8;) + u(t).

i=1

We set the magnitude of both perturbations such that other power
system instabilities—e.g., cascading failures or generator disconnec-
tions—are unlikely to occur. The first perturbation is an impulse
modeled by Eq. (2) and represents a sudden change in the power
output of gx (e.g., from a fault),

0 otherwise,
u(t) = 2
® 10, t=0.01. @

The magnitude of the impulse perturbation is <1% of the total
power generation/consumption of the power system, well within
the range that is considered to be small.”” The second perturbation
is stochastic, which models the second-to-second variation in the
power output of a VRG, specifically when the renewable resource is
wind. We use the model and parameters from Schmietendorf et al.*
to generate a representative time series for the stochastic perturba-
tion, shown in Fig. 2. The model and relevant parameters are shown
in Eq. (3), where ' (t) is Gaussian white noise with 4 = 0ando = 1,

u=u(0.5 — u) + BvV2u?, (3a)

B=—-B+T®. (3b)

The term +/2 reflects the strength of the randomness injected
into the power fluctuations, where we have chosen a value that cor-
responds with strong intermittency.” Additionally, the term —f in
Eq. (3b) is a damping term that impacts the variance of the variable
u and introduces a one second time correlation in the noise, which
has been shown to occur in wind power fluctuations.”

ARTICLE scitation.org/journal/cha

2 15l
g 15
g
o 10t
o
£
o
2 5
©
ey
o

ok ‘ ‘ ‘ ‘ ‘

0 10 20 30 40 50 60

Time (s)

FIG. 2. The stochastic perturbation time series generated by Egs. (3a) and (3b)
that we use in this work to model wind power fluctuations.

We perform a set of numerical experiments to evaluate the
dynamical implications of these two perturbations delivered to a
generator node with a specific inertia value. For a given simu-
lation, one generator is perturbed, and we denote this generator
by ga. In order to explore the effects of network structures, we
run simulations at each generator location defined in the power-
system test case. To aid with clarity, we define the set of simulations
associated with a particular generator location as a scenario. For
a given simulation in a scenario, we measure the (de)localization
of the system response (discussed further in Sec. IIT) due to each
of the perturbations. We repeat this simulation using different
inertia values for g, in the range of M,, € [0.01-20.0] with a
step of 0.01, where the minimum value is the floor of the default
inertia values and the maximum value was chosen to be double
the maximum inertia value typically observed in power systems.”’
Therefore, a scenario consists of a chosen ga and 4000 separate
simulations, 2000 for each perturbation type. We use the Julia pack-
ageDifferentialEquations. j1” tosimulate Egs. (1a)-(1c).
Specifically, we use the adaptive time-step KenCarp4 () solver
with an absolute tolerance of 1 x 107 for the impulse perturba-
tion and the fixed time-step TangXiaoSROCK2 () solver with
dt = 1 x 1072 for the stochastic perturbation.””

11l. QUANTIFYING SYSTEM (DE)LOCALIZATION

For each simulation described in Sec. I1, we quantify the impact
of a perturbation on the power system by measuring the deviations
of the state variables. Let

X(t):[A(L)],...,Awng,ez,...,e 81,...,8,,]

ng>
be the state vector of the system described by Egs. (1a)-(1c) at
time t. We define the system response to a power perturbation by
the normalized vector X = [(Aw,), (Aws), ..., (8,_1), (8,)], where
(.) denotes the root-mean square of the variable as measured from
its steady-state value over all time steps. Therefore, for example,

(Aw) = \/i Z?:o (Aw;(f) — Aw?)*. X captures the magnitude of
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state variable deviations over time and the time each state vari-
able spends away from its steady-state value. By normalizing x,
the deviations of the state variables are compared to that of the
perturbed node (which will generally have the largest entry in x).
Previous work™’ has found utility in the metric X, especially for small
perturbations where typical frequency control metrics such as the
maximum frequency deviation or the maximum rate of change of
frequency are incomplete descriptions of the collective impact of
such power fluctuations.’

We now discuss our metric for system (de)localization. The
inverse participation ratio (IPR), which quantifies the density of a
vector, was first introduced in Anderson” to quantify the density
of electron states on lattices of various materials. Since then, it has
been used increasingly in network-science applications. For exam-
ple, Pastor-Satorras and Castellano”** relate the (de)localization
of the primary eigenvector of the adjacency matrix with epidemic
spreading on a network. In related work, Torres-Sanchez et al.'®
show that increased randomness in the small-world network model
increases the IPR of the Fiedler vector, which indicates that small
perturbations are likely to remain more localized.

The IPR of a normalized vector z with # entries is defined by
Eq. (4),

IPR(z) = ) _Z. )
i=1

When z is totally localized (i.e., only one entry is non-zero),
IPR(z) = 1; when the vector is totally delocalized, all entries are
non-zero, have equal magnitude, and IPR(z) = 1/n. We define sys-
tem (de)localization using IPR(X). This differs from past work''~"*
that has used the IPR on network matrices or where localization was
quantified by arrival times and network distances (i.e., localization
was defined by the spread across the network). Here, IPR(X) quan-
tifies the number of state variables that fluctuate and the magnitude
of those fluctuations. This is effective for power-system applications
because it is indicative of the oscillatory behavior of the system (i.e.,
local or wide-spread fluctuations) without requiring any knowledge
of the network structure. Additionally, it has potential in other net-
work applications where spreading phenomena are important to
understand (e.g., brain networks).

As an example, Fig. 3(a) shows IPR(X) for both perturbation
types as a function of M,, where the node g, is identified by an
A in Fig. 1. The results illustrate some important and representa-
tive features in our experiments, beginning with a clear relation-
ship between system (de)localization and M,, . Specifically, as M,,
increases, the system response X transitions from mostly localized,
i.e., large values of IPR(X), to delocalized, indicated by small val-
ues of IPR(X). Furthermore, there are obvious peaks and valleys in
the plot, showing that at some inertia values, X is more localized
(peaks) or delocalized (valleys) as compared to nearby inertia val-
ues. In other words, the changes in IPR(X) correspond to switches
in which node(s) have a resonant response to the perturbed node.
Clearly, IPR(X) is sensitive to My, , especially when it is small.

As shown in Fig. 3(a), the system response to the impulse per-
turbation is always more localized than to the stochastic, given the
same inertia value. This is the case for every scenario, not just this

ARTICLE scitation.org/journal/cha
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FIG. 3. (a) System (de)localization as a function of M, for the scenario denoted
as Ain Fig. 1. The top pink trace and bottom green trace are IPR(X) due to an
impulse and stochastic perturbation, respectively. (b) Two scenarios, marked as
B and C in Fig. 1, with significantly different IPR(X).

example. This difference occurs because the frequency of the sys-
tem oscillations due to the stochastic perturbation is smaller than
for the impulse perturbation. A smaller frequency is usually asso-
ciated with a more delocalized system response.'® Furthermore,
the IPR(X) curve associated with the stochastic perturbation has
more peaks and valleys than the impulse. These additional peaks
are due to resonance phenomena induced by the frequency con-
tent of the stochastic perturbation that is absent from the impulse
perturbation.””*" The sensitivity of IPR(X) to the inertia value of the
perturbed generator clearly depends on the dynamics of the pertur-
bation, which highlights the importance of studying both of these
perturbation types.

We introduce a secondary metric on IPR(X) that accounts for
the changes in IPR(X) due to changes in Mg, . Consider Fig. 3(b),
which compares IPR(X) of two different scenarios, marked as B and
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C in Fig. 1, for the impulse perturbation. IPR(X) overlaps at sev-
eral values for both scenarios when M,, is small, but scenario B
has significantly more peaks and valleys. Physically speaking, this
means that there are more nodes that have significant and isolated
frequency responses to perturbations at ga for scenario B. As the
inertia value of the perturbed node increases, scenario C exhibits a
decrease in IPR(X) at a smaller inertia value than scenario B, but
IPR(X) of scenario B eventually becomes smaller around M,, > 5.
This means that at larger inertia values, more nodes deviate from
the synchronized frequency for perturbations at scenario B, and
those responses are smaller in magnitude as compared to those of
scenario C.

These differences in the (de)localization transition are also
important to capture. Our approach to this is to integrate IPR(X)
from M = 0.01 to M = 20 (double the largest default inertia value)
as shown in Eq. (5), which contextualizes the change in system
(de)localization in terms of the change in M,,. We refer to this
quantity as the (de)localization transition integral (DTI) throughout
the rest of this paper,

Mg, =20
DTI = f IPR(X). (5)

Mg, =.01

Whether or not a large or small DTT is beneficial or detri-
mental to system stability is dependent on the particular system
and its operating requirements. A larger DTI indicates that the sys-
tem response is typically localized for most values of M,,. This
has important possible applications, such as for system planning
of inertial support.” Nodes with larger DTI could be a source of
flexibility because their inertia value does not drastically change
the system response to perturbations (i.e., guaranteeing stability
is less dependent on that particular inertia value). Furthermore, a
localized system response could be beneficial if it is necessary to iso-
late the oscillating system. In this case, less of the network would
need to be disconnected in order to prevent a perturbation from
spreading further because there are fewer nodes involved. How-
ever, localized responses could also cause devices to go outside
their valid operating ranges, which presents a stability risk (e.g.,
causing cascading failures). To avoid this, these nodes may require
extra damping, via a power system stabilizer (PSS), because the
majority of the network nodes do not help absorb the perturba-
tion.

On the other hand, a smaller DTT suggests that g, is particu-
larly influential on the spread of power fluctuations because many
nodes tend to respond to perturbations at that location. The advan-
tage in this situation is that the power system’s stability benefits from
larger inertia values at this location because it helps prevent oscilla-
tions from spreading further through the system. The disadvantage
is that malfunctions and failures at this location could impact more
nodes, and this would have a larger impact on system stability (e.g.,
loss of synchronism or further outages). Therefore, we do not make
a priori assertions about which values of the DTT are better for sys-
tem stability. Alternatively, we seek to identify the dependence of
the DTI on the network structure. A better understanding of this
relationship can help with power system planning and operation,
such as the placement and sizing of inertia sources or power-system
stabilizers, especially as more VRGs are integrated.

ARTICLE scitation.org/journal/cha

IV. QUANTIFYING NODE SIMILARITIES VIA THE
NODAL MODE ANGLE

As discussed in Sec. 111, quantifying the dependence of system
(de)localization on the inertia value of a node has important possi-
ble applications. However, computing the DTI requires numerous
simulations, which is not desirable or feasible in many situations
(e.g., hourly planning for very large systems). To address this, we
develop a heuristic to relate the DTI with the network structure via
the eigenvalues and eigenvectors of the network Laplacian.

A number of studies exist that have shown the utility of mea-
sures constructed from the spectral characteristics of this matrix in
power system applications. Zhang et al.’"*' showed that the entries
of the Laplacian eigenvectors can be used to predict the maximum
response (i.e., largest frequency deviation) of nodes in a power sys-
tem due to stochastic fluctuations at a particular location. Similarly,
Torres-Sanchez et al.'® use a node’s linear response to perturbations,
defined as an average across its entries in the Laplacian eigenvectors,
to devise a control metric for power system stabilizers. Our metric
shares similarities with these studies, but rather than predict indi-
vidual node responses or arrival times, we focus on comparing the
metric among all of the nodes in the network to better understand
the role of network structures in the system dynamics.

The Laplacian matrix is defined as L = D — A, where D con-
tains the weighted degree of each node on the diagonal and A is the
weighted adjacency matrix. The Jacobian matrix associated with the
system of Egs. (1a)-(1c) takes the form of a Laplacian matrix.'* This
means that the eigenvalues and eigenvectors of the network Lapla-
cian are descriptors of independent patterns of motion of the system
dynamics. Therefore, for small perturbations from the steady state,
two nodes will have equivalent oscillations if they have equivalent
entries in every eigenvector. We use this observation to assess the
dynamical similarity of two nodes.

To quantify the above ideas, we introduce a metric we call the
nodal mode angle (NMA). The NMA is computed in the following
way. Define the sensitivity vector of a node i to be

v vio o
si:|:72)733--‘) nl)i]~ (6)
)\2 )"3 )‘n—l )‘n

In other words, v, is the ith entry of the kth eigenvector where
eigenvalues maintain the relationship A, <Xi; <--- <X, <A,
(excluding A; = 0). We define the NMA between nodes i and j by
Eq. (7),

S - Sj

T
IEURIE

where [|.]| is the L, norm. In other words, a;; is the angle between
the sensitivity vectors of node i and node j. We use the notation «;
to indicate the set of all a;; for node i.

We explore how o;; and IPR(X) change with network structures
for five small graphs: motifs that occur commonly in power net-
works. The star graph in Fig. 4(a), for instance, occurs 76 512 times
in the network of Fig. 1; the motifs in b, ¢, d, and e occur 776, 11 168,
658, and 516 times, respectively.

The graph topologies in Figs. 4(a) and 4(b) differ by one edge
and similarly for those in Figs. 4(c)-4(e). The heatmaps in the
second row indicate the value of the NMA for all pairs of nodes

o = cos™!

(7)
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FIG. 4. A set of five-node graphs: (a) is a star graph, (b) is a star graph with an additional edge, (c) is a chain graph, (d) is the chain graph with an extra edge connecting two
nodes on opposite sides of the middle node, and (e) is the chain graph with an extra edge connecting two nodes on the same side of the middle node. The associated NMAs
and IPR(X) are shown below each graph. For the heatmaps, pink indicates o; < 7/2, white indicates «j = /2, and green o > 7 /2. For the numerical simulations, we
assume all B; = 100, M; = 1.0, D; = 2.0, and P; = 0.0. Each point in the two bottom rows of plots indicates IPR(X) when perturbing the indicated node with either the
impulse or stochastic perturbations. Note the difference in the vertical scale of the scatterplots.

within a graph, where pink indicates o;; < /2 and green indi-
cates a;; > /2. Finally, we simulate the node dynamics defined
by Egs. (1a) and (1b) for an impulse and stochastic perturbation,
separately applied to each node in each graph. We then measure
IPR(X), as shown in the scatterplots in the two bottom rows of Fig.
4, where the horizontal axis indicates the perturbed node from the
associated graph. As discussed in Sec. I1I, heterogeneous parame-
ters have a significant influence on IPR(X). To isolate the effects of
network structures, we use homogeneous parameters for these small
networks, as listed in the caption of Fig. 4.

The NMAs of a network illustrate the tendency of nodes to
behave similarly in the total system dynamics, which influences the
spread of a perturbation. Consider the star graph of Fig. 4(a), which
is representative of numerous generators or loads that connect to a
power system at a common point. The NMAs of the pendant nodes
suggest that they are most likely to oscillate in anti-phase. On the
other hand, node 5 has a sensitivity vector that is nearly orthogo-
nal to that of the pendant nodes, suggesting that perturbations at
this location are likely to remain localized. This is confirmed by
the IPR(X) calculations for both perturbation types. Adding an edge
between two pendant nodes, as in Fig. 4(b), changes the NMAs and
the spread of frequency fluctuations for those nodes. However, the
change in IPR(X) is dependent on the perturbation type. For impulse
perturbations at nodes 3 and 4, the system response becomes more

delocalized with an edge addition. This is because the impulse per-
turbation causes nodes 1 and 2 to oscillate anti-phase with nodes 3
and 4, and the edge addition strengthened this trend, as indicated
by the NMA. On the other hand, stochastic perturbations at nodes
3 and 4 induce a more localized system response. This is because
nodes 3 and 4 are less likely to oscillate anti-phase with the edge
addition, according to the NMA, and therefore, the perturbation
decays more quickly between them. These two examples show that
the NMA can illuminate differences in network structures that are
influential on the spread of a perturbation through a power system,
even when the dynamics of the perturbation have different effects
on its spread.

Edge additions change the spread of perturbations in a power
system, and the location of the new edge is also important to con-
sider. In contrast to the star graph, Fig. 4(c) shows a chain graph
structure that occurs in power systems to connect geographically
distant locations together. Here, the NMA strongly depends on
whether two nodes are closer to one another than they are to node
3 (e.g., nodes 1 and 2 vs nodes 1 and 4). When a new edge is added
between nodes on opposite sides of the chain, as in Fig. 4(d), most
NMAs move closer to 77 /2, and IPR(X) increases for all nodes except
node 3. However, adding an edge between two nodes on the same
side of the chain, as in Fig. 4(¢), creates two clusters in the heatmap
of the NMA and perturbations at node 3 spread less. In other words,
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the location of the triangle has different effects on the NMA and
IPR(R).

These results illustrate that the NMA and IPR(X) are sensi-
tive to network structures, even when networks only differ by one
edge. It has been shown in other works that triangles typically
decrease the spread of power fluctuations.'° However, here, we show
that the local network structure around the triangle influences this
trend. For example, creating a triangle in the chain graph decreased
the spread of perturbations for the nodes connected by the new
edge, but adding a triangle to the star graph actually increased the
spread of impulse perturbations. Furthermore, these analyses pro-
vide evidence that the NMA and the spread of frequency oscillations
through a power system are related. In particular, when ¢; has many
entries near /2, perturbations at that node tend to remain localized,
but when «; has a larger variance, power fluctuations tend to spread
more. To further test these hypotheses, we next study how the distri-
bution of «; relates to system (de)localization for the 500-node test
case shown in Fig. 1.

V. THE NODAL MODE ANGLE AND THE
(DE)LOCALIZATION TRANSITION

To relate the impact of different inertia values and network
locations with the spread of power fluctuations, we now analyze
the relationship between the NMA and the Delocalization Tran-
sition Integral (DTI) introduced in Sec. III. Recall that the DTI
associates the inertia value of a perturbed node with the resulting
system (de)localization. Specifically, a larger DTI signifies that the
system response is more localized and less sensitive to Mg, , while a
smaller DTT indicates that the system response is more delocalized
and more sensitive to M,, . We use the NMA to corroborate those
assertions and understand how these differences in the DTI relate to
the different locations of gx and perturbation types.

As we illustrated in Sec. IV, the set of angles «; is associated
with the spread of perturbations that occur at node i. We test how
the distribution of ; relates to the DTI by computing the dispersion
index of a;: the variance divided by the mean, I(e;) = o (o) /(o).
This allows us to compare the variation of the NMA distributions
while also accounting for their means. In other words, I(e;) accounts
for the situation where o (;) = o (qj), but p(e;) # ().

Figure 5 shows the DTI for every scenario in the representa-
tive power-system test case of Fig. 1 as a function of I(w;). Pink
and green points indicate the impulse and stochastic perturbations,
respectively. Additionally, we computed a best fit curve for each per-
turbation type using the method of least squares, the equations of
which are shown near the curves. We chose to fit a power-law func-
tion because (Awy, ), which influences the value of the DTT the most,
has a 1/,/M,, relationship with inertia. The further that the fitted
curves are from this relationship, the more impactful the network
structure is on the value of the DTT.

These results show a clear dependence between the DTI and
I(a;). Nodes with larger values of I(w;) tend to induce a delo-
calized system response, while nodes with smaller I(e;) tend to
induce a more localized one. Furthermore, because the DTI also
describes the sensitivity of system (de)localization to the inertia
value of the perturbed node, larger values of I(x;) suggest that the
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FIG. 5. The (de)localization transition as a function of /(«;) for each VRG location
in the power-system test case shown in Fig. 1.

system dynamics are more sensitive to the inertia value at that
location.

Both perturbation types elicit a similar functional relationship
between the DTT and I(;). However, the impulse perturbation has
a larger margin of error in the fitted parameters. This could sug-
gest that the individual dynamics of the perturbed generator, which
are determined by its damping and inertia parameters and are not
captured by I(w;), have more of an impact on the spread of the
impulse perturbation. On the other hand, the collective dynam-
ics of the network nodes, which is determined by the network
structure and is weighted more heavily in the sensitivity vector
of a node, more strongly influence the spread of the stochastic
perturbation.

The relationship shown in Fig. 5 between the DTI and I(c;)
has important practical applications, particularly for stabilizing sys-
tem oscillations and addressing inertial support. For example, Copp
et al.”” showed that the effectiveness of energy storage devices in
damping oscillations that occur due to a perturbation is sensitive
to the location of the device with respect to the perturbed node. In
this case, I(e;) can provide important information on where to put a
damping device, and this assessment can be made without perform-
ing any numerical simulations. Specifically, damping devices will be
most effective at locations very near to the node when I(w;) is small
because the system response is most likely to be localized, regard-
less of the inertia value at that node. On the other hand, when I(c;)
is large, two damping devices could be necessary: one close to the
node to handle the localized dynamics that occur for smaller iner-
tia values and one farther away to address delocalized dynamics for
larger inertia values.

This study shows that the NMA effectively illustrates the com-
plex relationship between the system dynamics and inertia values,
perturbation dynamics, and network locations. Furthermore, we
showed that the dispersion index of the distribution of the NMA
for each g, location illuminates the relationship between all of these
factors, which could help in many different areas of power-system
planning and operation.
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VI. CONCLUSIONS

In this work, we studied the impact of a crucial dynamical
parameter, the inertia value, on the spread of power fluctuations in
a power system. Specifically, we analyzed a suite of numerical sim-
ulations of a power system’s response to perturbations at different
nodes in the network under different inertia conditions. We studied
system (de)localization, and its dependence on an inertia value, in a
novel way using the inverse participation ratio, showing that smaller
inertia values induce localized system dynamics and vice versa for
larger inertia values. We also found that the transition between the
localized and delocalized regimes reflects the sensitivity of system
(de)localization to that particular inertia value. We introduced a sec-
ond metric, the nodal mode angle (NMA), to relate these findings to
the network structure and the location of the perturbed node. We
studied a set of small networks that occur frequently in real power
systems and showed that the NMA is sensitive to differences in these
structures. Finally, we explored the relationship between the NMA
and system (de)localization. We discussed several ways this relation-
ship could be leveraged in power-system planning and operation,
especially as these relate to inertial support.

Future work will further investigate the relationship between
the NMA, network structure, and perturbation spreading. A mean-
ingful next step is to consider the effects of multiple (possibly
correlated) perturbations, as this will become more relevant with
increased penetration of renewable energy sources. Additionally,
applying our analyses with different inertia sources, such as grid-
forming VRG inverters,” could help further illuminate important
considerations for future planning of inertial support. A thorough
study of the relationship between the distribution of ¢; and net-
work properties (such as the number of short-cut edges, the degree
distribution, or the occurrence of different network motifs) could
lead to a better understanding of how different attributes of the o
distribution arise (e.g., multiple peaks). To further understand the
importance of network structures on the spread of power fluctua-
tions in power systems, it would be useful to assess the descriptive
differences between the NMA and distance-based measures such as
the resistance distance. Finally, the NMA has many possible appli-
cations in power systems research that warrant further investigation
such as the assessment of system vulnerability to cascading failures
or the evaluation of a new infrastructure.
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