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a b s t r a c t 
The chloro-bridged carbene-substituted dicopper salt [{(IPr)Cu} 2 (µ-Cl)][PF 6 ], 1 , IPr = [N,N ′ -bis(2,6- 
diisopropylphenyl)imidazolin-2- ylidene], was synthesized by the reaction of (IPr)CuCl with Tl[PF 6 ]. Reac- 
tion of 1 with the anion, [HOs 3 (CO) 11 ] − of the salt [PPN][HOs 3 (CO) 11 ], 2 yielded the Cu - Os heterometallic 
cluster complex, HOs 3 (CO) 11 [µ-Cu(IPr)], 3 , the first example of Cu - Os bimetallic cluster complex contain- 
ing a N-heterocyclic carbene ligand. Compounds 1 and 3 were characterized by IR, 1 H NMR and struc- 
turally by single-crystal X-ray diffraction analysis. Compound 3 contains a triosmium carbonyl cluster 
with a bridging Cu(IPr) group on one edge of the cluster and a terminally-coordinated hydrido ligand on 
one of the Cu-bridged osmium atoms. 

© 2021 Elsevier B.V. All rights reserved. 

1. Introduction 
The Group 11 elements, Cu, Ag and Au, widely referred to as 

the “coinage metals”, are well-known for their stability in their 
elemental forms and because of their monetary value, they have 
been used as forms of currency throughout the world [1] . In re- 
cent years, a variety of ligated forms of ions of these metals have 
been synthesized and shown to exhibit useful chemistry includ- 
ing catalytic transformations of organic compounds [2–6] . Cop- 
per has been one of the more chemically investigated members 
of this family of metals [ 3 , 4 ], and N-heterocyclic carbenes have 
been shown to be particularly effective ligands for ions of cop- 
per [7] . In the present study, we have prepared the new chloro- 
bridged dicopper complex [{(IPr)Cu} 2 (µ-Cl)][PF 6 ], 1 , IPr = N,N ′ - 
bis(2,6-diisopropylphenyl)imidazolin-2- ylidene from the reaction 
of (IPr)CuCl with Tl[PF 6 ] and investigated its structure and reac- 
tivity. 

Recently, there has been great interest in the potential of 
heterometallic materials to perform heterogeneous catalysis [8] . 
These materials frequently exhibit improved activity, selectivity 
and longevity compared to their homometallic components. Cop- 
per has been shown to be an effective modifier and cocatalyst for 
bimetallic catalysts [9] . It has been shown that bi- and polymetallic 
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cluster complexes can serve as excellent precursors to heterometal- 
lic catalysts and this has stimulated interest in the synthesis of 
heterometallic cluster complexes for this purpose [10] . 

Effort s have been made successfully to introduce carbene 
ligated-copper groupings into metal carbonyl cluster complexes 
[11] , but to date there are no examples of copper carbene com- 
plexes containing osmium. In the present work, we have inves- 
tigated the reaction of the new dicopper cation of 1 with the 
triosmium carbonyl anion [HOs 3 (CO) 11 ] − obtained via the salt 
[PPN][HOs 3 (CO) 11 ], 2 . This reaction has yielded the new bimetal- 
lic complex Os 3 (CO) 11 (H)[µ-Cu(IPr)], 3 , the first example of Cu - Os 
carbonyl cluster complex containing a N-heterocyclic carbene lig- 
and. Compounds 1 and 3 were both characterized by IR and 1 H 
NMR spectroscopy and structurally by single-crystal X-ray diffrac- 
tion analyses. 
2. Experimental data 
2.1. General data 

All reactions were performed under an atmosphere of nitro- 
gen by using standard Schlenk techniques. Reagent grade sol- 
vents were dried by the standard procedure and were freshly 
distilled under nitrogen prior to use. Infrared spectra were 
recorded on a Nicolet IS10 Midinfrared FT-IR spectrophotome- 
ter. 1 H NMR spectra were obtained by using a Varian Mercury 
300 spectrometer operating at 300 MHz. Mass spectrometric (MS) 
measurements performed by a direct-exposure probe by using 
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Scheme 1. A schematic for the synthesis of cation 1 . 
electron impact ionization (EI) or electrospray ionization (ESI) 
on a VG 70S instrument. Os 3 (CO) 12 and TlPF 6 were obtained 
from STREM and used without further purification. (IPr)CuCl, 
IPr = [N,N ′ -bis(2,6-diisopropylphenyl)imidazolin-2-ylidene] was 
purchased from Sigma Aldrich and was used without further pu- 
rification. [PPN][Os 3 (CO) 11 ( µ-H)], 2 , PPN = [Ph 3 PNPPh 3 ] + was pre- 
pared according to a previously reported procedure [12] . 

2.2. Preparation of the dicopper carbene complex, 
[{(IPr)Cu} 2 (µ-Cl)][PF 6 ], 1 

100.0 mg (0.205 mmol) of (IPr)CuCl was added to 5 mL of 
methylene chloride in a 100 mL three-neck flask under nitrogen. 
In an another 100 ml three-neck flask, 143 mg (0.41 mmol) of 
TlPF 6 was added to 5 mL of methanol and stirred until it was com- 
pletely dissolved. The methanol solution of Tl[PF 6 ] was then added 
dropwise into the methylene chloride solution of the (IPr)CuCl. 
After stirring for 30 min at room temperature, this mixture was 
passed through a frit containing a celite bed into a 100 ml three- 
neck flask. Then the solvent was removed in vacuo and compound 
[{(IPr)Cu} 2 (µ-Cl)][PF 6 ], 1 was isolated by solvent extraction and fil- 
tration by using methylene chloride solvent. After reducing the ex- 
tract and adding few drops of hexane, small white crystals of 1 
(71% yield) were obtained. Spectral data for 1 : 1 H NMR (CD 2 Cl 2 , 
δ): 7.53 (t, 4H, J = 7.8 Hz, para C H -(CH) 2 ), 7.30 (d, 8H, J = 7.8 Hz, 
meta CH-(C H ) 2 ), 7.20 (s, 4H, N(C H ) 2 ), 2.46 (sept, 8H, J = 6.9 Hz, 
C H -(CH 3 ) 2 ), 1.21 (d, 24H, J = 6.9 Hz, CH-(C H 3 ) 2 ), 1.12 (d, 24H, 
J = 6.9 Hz, CH-(C H 3 ) 2 ). Mass Spec. ESI + /MS m/z: 939, M + 

2.3. Preparation of Cu-Os 3 heterometallic cluster complex, 
HOs 3 (CO) 11 [µ-Cu(IPr)], 3 

In a 100 mL flask, 54.7 mg (0.039 mmol) of [PPN][HOs 3 (CO) 11 ], 
2 was added to 10 mL of methylene chloride under a slow purge 
of nitrogen. To this mixture was added 72.4 mg (0.067 mmol) of 1 . 
After stirring for 15 min at room temperature, the solvent was re- 
moved in vacuo. The product, HOs 3 (CO) 11 [µ-Cu(IPr)], 3 ( 10% yield) 
was then obtained in a pure form by a combination of extrac- 
tion using hexane, filtration and crystallization from pure hexane 
at -78 °C. Spectral data for 3 : IR spectra, νCO (cm −1 in hexane): 
210 6.1(w), 20 69.1(w), 2052.6(m), 2037.6(s), 2020.0(vs), 2002.6(w), 
1979.3(w), 1960.4(vw), 1955.3(vw). 1 H NMR (CD 2 Cl 2 , δ in ppm): 
7.45 (t, 2H, J = 7.5 Hz, para C H -(CH) 2 ), 7.33 (d, 4H, J = 7.5 Hz, 
meta CH-(C H ) 2 ), 7.18 (s, 2H, N(C H ) 2 ), 2.82 (sept, 4H, J = 6.3 Hz, 
C H -(CH 3 ) 2 ), 1.38 (d, 12H, J = 6.3 Hz, CH(C H 3 ) 2 ), 1.16 (d, 12H, 
J = 6.3 Hz, CH(C H 3 ) 2 ), -10.04 (s, 1H). Mass Spec. ESI/MS m/z: 1333, 
M + . 

2.4. Crystallographic analyses 
Single crystals of compounds 1 and 3 suitable for X-ray diffrac- 

tion analyses were obtained by slow evaporation of solvent from 
solutions at room temperature. Each data crystal was glued onto a 
glass fiber. X-ray diffraction intensity data for compound 1 was ob- 
tained by using a Bruker SMART APEX CCD-based diffractometer by 
using Mo K α radiation ( λ = 0.71073 Å). The raw data frames were 
integrated with the SAINT + program by using a narrow frame in- 
tegration algorithm [13] . Correction for Lorentz and polarization ef- 
fects were also applied with SAINT + . An empirical absorption cor- 
rection based on the multiple measurements of equivalent reflec- 
tions was applied by using the program SADABS were applied in 
each analysis [13] . X-ray intensity data for compound 3 was ob- 
tained by using a Bruker D8 QUEST diffractometer equipped with 
a PHOTON-100 CMOS area detector and an Incoatec microfocus 
source (Mo K α radiation, λ = 0.71073 Å). The data collection strat- 
egy consisted of three 180 ° ω-scans at different ϕ settings and one 
360 ° ϕ-scan, with a scan width per image of 0.5 °. The crystal-to- 
detector distance was 4.0 cm and each image was measured for 
5 s in shutterless mode. The average reflection redundancy was 
9.6. The raw area detector data frames were reduced, scaled and 
corrected for absorption effects using the SAINT [14] and SAD- 
ABS [15] programs. All structures were solved by a combination 
of direct methods and difference Fourier syntheses, and refined by 
full-matrix least squares refinement on F 2 by using the SHELXTL 
software package [16] . All non-hydrogen atoms were refined with 
anisotropic thermal parameters. All hydrogen atoms were placed 
in geometrically idealized positions and were included as standard 
riding atoms during the final least-squares refinements with C-H 
distances fixed at 0.96 Å. Compound 1 crystallized in the mono- 
clinic crystal system whereas compound 3 crystallized in the or- 
thorhombic crystal system. The space group P2 1 /c was uniquely 
identified for compound 1 based on systematic absences observed 
in the intensity data. The space group Cmcm was identified for 
compound 3 on the basis of the systematic absences observed in 
the intensity data. Crystal data, data collection parameters, and re- 
sults for the analyses for both compounds are listed in Table S1. 
3. Results and discussion 

The dicopper cation [{(IPR)Cu} 2 (µ-Cl)] + of the salt [{(IPr)Cu} 2 (µ- 
Cl)][PF 6 ], 1 , was obtained in 71% yield from the reaction of 
(IPr)CuCl with Tl[PF 6 ] in CH 2 Cl 2 solvent at room temperature in 
30 min, see Scheme 1 . A number of ligand-bridged bis(copper car- 
bene) complexes have been reported in recent years [17] , but very 
few of them contain bridging chloro ligands. Compound 1 was 
characterized by 1 H NMR spectroscopy and electrospray ionization 
(ESI + ) mass spectrometry and single-crystal X-ray diffraction anal- 
ysis. 

2 
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Fig. 1. ORTEP diagram of the molecular structure of [{(IPr)Cu} 2 (µ-Cl][PF 6 ], 1 showing 15% thermal ellipsoidal probabilities. Selected interatomic distances ( ̊A) and angles 
( o ) are as follows: Cu1-Cl1 = 2.1207 (15), Cu2-Cl1 = 2.1247 (15), Cu1-C1 = 1.874(4), Cu2-C28 = 1.876(5). C1-Cu1-Cl1 = 172.53(16), C28-Cu2-Cl1 = 171.52(15), Cu1-Cl1- 
Cu2 = 115.24(7). 

Scheme 2. A schematic of the synthesis and structure of the Cu - Os 3 cluster complex 3 . The CO ligands in 3 are represented only as lines from the Os atoms. 
An ORTEP diagram of the molecular structure of compound 1 is 

shown in Fig. 1 . 
This cation of 1 contains two Cu(IPr) groupings linked to each 

other via a nonlinear, bridging chloro ligand. The Cu - Cl bond 
distances are equal in length within experimental error, Cu1 - 
Cl1 = 2.120(15) Å, Cu2 - Cl1 = 2.124(15) Å, but are slightly longer 
than the Cu –Cl bond distance, 2.089 Å, in the precursor complex 
(IPr)CuCl in which the Cl ligand is bonded to only one Cu atom 
[18] . Each copper atom in 1 exhibits an almost linear coordination 
geometry, C1-Cu1-Cl1 = 172.53(16) and C28-Cu2-Cl1 = 171.52(15) o . 
The Cu1-Cl1-Cu2 angle is nonlinear, 115.2(7) o . The nonlinearity 
could be interpreted as bonding to a sp 3 -hybridized octet of elec- 
trons in Cl which is expanded due to steric repulsions between the 
bulky carbene ligands on the copper atoms. Floriani also found a 
nonlinear, bridging chloro ligand in the cationic dicopper complex 
[{Cu(Me 2 NCH 2 CH 2 NMe 2 )(CO)} 2 (µ-Cl)] + , Cu - Cl - Cu = 103.0(1) o 
[19] . On the other hand, Kunz found a linear bridging chloro ligand 
in the cationic dicopper(carbene) complex, [{Cu(bimcaMe)} 2 ( µ- 

Cl)] + , bimca = bis(imidazolin-2-ylidene)carbazolide, which con- 
tains a very bulky chelating bis(NHC) carbazolide pincer ligand on 
each copper atom [20] . Interestingly, for comparison, the Cu - S 
- Cu angle in the neutral molecule {(IPr ∗)Cu} 2 ( µ-S) is 120.15(9) o 
[21] . 

The reaction of the dinuclear copper cation 1 with the trios- 
mium cluster anion [Os 3 (CO) 11 ( µ-H)] −, 2 at room temperature 
yielded the heterometallic Cu - Os cluster complex HOs 3 (CO) 11 [µ- 
Cu(IPr)], 3 containing the IPr ligand in 10% yield, see Scheme 2 . 
Compound 3 was characterized structurally by using single-crystal 
X-ray diffraction analysis. 

An ORTEP diagram of the molecular structure of compound 3 is 
shown in Fig. 2 . 

Compound 3 consists of a triangular cluster of three osmium 
atoms with a bridging copper carbene ligand lying in the plane of 
the Os 3 triangle on one edge of the cluster. The compound crystal- 
lizes in the space group Cmcm with only ¼ of the molecule in the 
asymmetric crystal unit. Thus, the molecule is disordered about a 
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Fig. 2. ORTEP diagram of the molecular structure of the disordered molecule in the 
crystal of HOs 3 (CO) 11 [µ-Cu(IPr)], 3 at 10% ellipsoidal probability. C(13) - O(13) and 
C(13 i ) - O(13 i ) have only 50% occupancy at each site and are equally disordered 
with the one hydrido ligand in the complex. Selected interatomic distances ( ̊A) and 
angles ( o ) are as follows: Os1-Cu1 = Cu1-Os1 i = 2.6654(19), Os1-Os1 i = 2.9319(17), 
Os1-Os2 = 2.8858(10), Cu1-C1 = 1.915(17), C1-N1 = 1.361(14). 
crystallographic C 2 axis. Atoms Os(2), Cu(1) and C(1) lie on this 
axis. In addition, the three osmium atoms and the copper atom 
also lie on a crystallographic symmetry plane. In addition, there is 
a second crystallographic symmetry plane that lies perpendicular 
to the first symmetry plane. The CN 2 C 2 plane of the carbene lig- 
and lies in the second symmetry plane. The two symmetry planes 
intersect on the C 2 axis. Overall, the molecule contains C 2v crystal- 
lographic symmetry. One of the CO ligands, C(13) - O(13), that lies 
in the first symmetry plane is equally disordered between the two 
sites, C(13), O(13) and C(13) i , O(13) i , by virtue of the C 2 axis and 
the second symmetry plane, see Fig. 2 . This ligand has 50% occu- 
pancy in each of these two sites. This hydrido ligand was not ob- 
served directly in the crystallographic analysis. It is believed to be 
located proximate to the two carbon atoms sites, C(13) and C(13) i , 
of the disordered carbonyl ligand in the remaining 50% occupancy 
of these two positions. The bridging copper atom Cu(1) in 3 is 

bonded equally to the two osmium atoms Os(1) and Os(1) i , Os1- 
Cu1 = Os1 i -Cu1 = 2.6654(19) Å. The Os - Cu bond distances to 
the bridging Cu atom in the related triosmium - copper phosphine 
complex, H 3 Os 3 (CO) 10 [µ-Cu(PPh 3 )], were 2.695(5) Å and 2.726(5) Å 
[22] . The Cu-bridged Os1-Os1’ bond in this structure is elongated, 
Os1-Os1 i = 2.9319(17) Å, as compared to the unbridged Os - Os 
bonds Os1 - Os2 = Os2 - Os1’ = 2.8858(10) Å. For comparison, 
the Os - Os bond lengths in the parent compound Os 3 (CO) 12 are 
2.8771(27) Å [23] . The Cu - C distance to the carbene ligand in 3 , 
Cu1-C1 = 1.915(17) Å, is slightly longer than Cu - C bonds to the 
carbene ligands in the cation of 1 , 1.874(4) Å and 1.876(5) Å. This 
may be due to steric interactions between the carbene ligand and 
the carbonyl ligands on the osmium cluster. 

The hydrido ligand in 3 exhibits a resonance in the 1 H NMR 
spectrum at δ = -10.03. The resonance shift is consistent with its 
assignment as a terminally-coordinated ligand. For reference, the 
resonances of the terminally-coordinated and bridging hydrido lig- 
ands in Os 3 (CO) 11 H(µ-H), 4 occur at δ = -10.25 and δ = -19.96, 
respectively, see Scheme 3 [23] . It is interesting to compare the 
structure of 3 with the structure of 4 which contains a bridging hy- 
drido ligand in the location corresponding to the bridging Cu(IPr) 
grouping in 3 [24] . In 4 the terminally-coordinated hydrido ligand 
is positioned perpendicular to the plane of the Os 3 triangle. By 
comparison, our structural studies, see above, have indicated that 
the terminally-coordinated hydrido ligand in 3 lies in the plane of 
the Os 3 triangle proximate to the bridging Cu atom, Scheme 3 . 

The hydrido ligand and the bridging Cu(IPr) grouping in 3 each 
serve only as a 1-electron donor to the Os 3 cluster. Thus, the three 
osmium atoms in 3 contain a total of 48 valence electrons which 
is consistent with the observed triangular cluster having three Os 
- Os single bonds, as also found in 4 [24] . 

4. Conclusions 
In this work, we have reported the synthesis of the 

salt [{(IPr)Cu} 2 (µ-Cl][PF 6 ], 1 containing the dicopper cation 
[{(IPr)Cu} 2 (µ-Cl] + , obtained by using Tl[PF 6 ] to assist in the re- 
moval of one of the chloro ligands from one of two copper com- 
plexes, (IPr)CuCl, involved in the synthesis. The second equivalent 
of (IPr)CuCl then combines with the chloro-deficient one to form 
the dicopper cation having a bridging chloro ligand. The dicopper 
cation of 1 was found to react with the anion [Os 3 H(CO) 11 ] − of 2 
at room temperature to yield the heterometallic Cu - Os cluster 
complex, HOs 3 (CO) 11 [µ-Cu(IPr)], 3 which contains a IPr ligand on 
the copper atom that bridges a pair of osmium atoms in the trian- 
gular Os 3 cluster. The hydride ligand was not directly observed in 
the study, but it is believed to lie in the plane of the Os 3 triangular 
cluster in a terminal coordination site proximate to the Cu atom. 

Scheme 3. Line structures of 3 and 4 comparing the relative positions of the hydrido ligands. 
4 
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