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The conventional notion of elastic, coherent atom-surface scattering originates from the scattering
particles acting as a quantum mechanical matter wave, which coherently interfere to produce distinct
Bragg peaks which persist at finite temperature. If we introduce inelastic scattering to this scenario,
the result is that the surface particles become displaced by the scattering atoms, resulting in emission
or absorption of phonons that shift the final energy and momentum of the scatterer. As the lowest
lying phonons are gapless excitations, the ability to measure these phonons is very difficult and
this difficulty is exacerbated by the roughly 1eV resolution found in high energy helium scattering
experiments. Even though the surface has, in effect, measured the presence of the scatterer which
decoheres the particle, we retain the diffraction spots which are referred to as coherent scattering.
How do we reconcile these disparate viewpoints? We propose a new experiment to more precisely
examine the question of coherence in atom-surface scattering. We begin with an initially coherent
superposition of helium particles with equal probabilities of interacting with the surface or not
interacting with the surface. The beams are directed so that after the scattering event, the atoms
are recombined so that we can observe the resulting interference pattern. The degree to which
phonons are excited in the lattice by the scattering process dictates the fringe contrast of the
interference pattern of the resulting beams. We use semiclassical techniques to simulate and test
the viability of this experiment, and show that for a wide range of conditions, despite the massive
change in the momentum perpendicular to the surface, we can still expect to have coherent (in the

superposition sense) scattering.

PACS numbers: 03.65.-w

I. INTRODUCTION

Helium scattering is a valuable non-destructive experi-
mental probe that has been useful for characterizing surface
structure [1-4], measuring surface phonons [5, 6], detecting
surface impurities [7], and elucidating surface chemical dy-
namics. Over the past decade, the field has been reinvig-
orated thanks to newer, higher energy helium sources that
have allowed observation of diffraction peaks [8] from both
insulator [9] (e.g., lithium fluoride) and metallic [10] (e.g.,
silver) surfaces. In the literature, the phrase coherent scat-
tering has been attached to this process and strides have
been made in understanding the different regimes of scat-
tering [11] and the specifics of the outgoing diffraction pat-
tern [12]. Seifert and colleagues [13] alluded to the notion
of a Feynman-style [14] “which-way” measurement process
caused by the scatterer-surface interaction, which we explore
in more detail here in a new Gedanken experiment to clarify
the notion of coherence (or loss thereof due to surface lattice
excitations) in atom-surface scattering.

The conventional notion of coherent atom-surface scat-
tering originates from experiments demonstrating nominally
“elastic” Bragg peaks. The scatterer, in truly elastic scatter-
ing, acts as a quantum mechanical matter wave; it is infinite
in spacial extent, and is coherent with itself (represented as
the wave function ¢ oc e?*7). The scatterer does not in fact
measure a single particle on the surface, but instead “expe-
riences” the translational symmetry and maintains its inner
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phase coherence as it diffracts from all the lattice sites col-
lectively and simultaneously. The outgoing waves construc-

tively interfere and scatter into new directions k—k+G

where the {G } are the reciprocal lattice vectors of the sur-

face. For a purely elastic process, the so-called crystal mo-
mentum is hence conserved as is the scatterer energy. More-
over, we still observe diffraction peaks when scattering off a
lattice at finite temperature. While the surface atoms are
at any instant displaced from their equilibrium positions (ef-
fectively eliminating the constructive interference condition
at any instant) the mean atomic positions are still at the
sites indexed by the crystal lattice. We thus still observe
diffraction spots, although they are diminished by either an
effective Debye-Waller term or other factor depending on the
scattering conditions [15, 16]. The description of scattering
remains coherent.

However, we must include the effect of inelastic scatter-
ing. The surface particles are displaced by the scattering
atom itself and may emit or absorb one or more quanta of
vibrational excitations (phonons) to the scatterer. This effect
occurs regardless of whether the lattice is at finite temper-
ature or not (although the ratio of emission and absorption
of phonons changes with temperature). Acoustic phonons
produced by this process are gapless excitations; hence, ex-
tremely long-wavelength phonons will contribute vanishingly
small shifts in energy and momentum, making it increasingly
difficult to actually observe their influence. These aspects
have been studied with great success in neutron-bulk scat-
tering [17], however the fundamentally different nature of
the atom-surface interaction (long ranged and gradual over
many sites vs short-ranged and impulsive) and the chal-
lenge of generating monoenergetic atomic beams may mask
this detection in atom-surface scattering. This difficulty is



exacerbated by the resolution limits of the helium scatter-
ing experiment; the highest energy phonon in lithium flu-
oride is approximately 80meV [18] while the energy spread
in high energy helium scattering experiments is on the or-
der of 10eV for a 1keV beam. The ability of the surface
to “measure” the particle’s presence via phonon excitation
acts to destroy quantum coherence, though we still observe
finite width diffraction spots which had been taken to im-
ply phase coherent scattering. In another work by Siefert
et al [19], the phrase “Young-type interference” was used
to denote the helium beam’s self-coherence throughout the
scattering process along the rows of adsorbed oxygen atoms
on a Mo(112) surface; however, the notion from a quantum
measurement perspective of Young interference is a result of
avoiding any emission or absorption of particles which would
act to characterize which path the particle had taken. How
can we reconcile these disparate perspectives?

We propose a new way of looking at the question of co-
herence in atom-surface scattering. Instead of a single beam
of helium particles, we are motivated by coherent atomic
interferometric measurements [20] and start with a beam-
splitter to create an initially coherent superposition with
equal probabilities of interacting with the surface or not in-
teracting with the surface. The atoms then propagate along
both paths simultaneously, both scattering and not scatter-
ing at the same time in the quantum mechanical sense, and
then are recombined. In the case where the scattering is per-
fectly elastic, the two beams will have wavelike interference
patterns with perfectly well-defined interference fringes. In
the case of perfectly inelastic scattering, the phonon gen-
eration acts to measure the particle; we have performed a
which-way measurement and we will observe no interference
pattern. For partial inelasticity, we will observe behavior be-
tween these two regimes; while there will be an interference
pattern, it will no longer have perfect contrast but instead
have weakened fringes atop a broad background which re-
veals the degree of scattering inelasticity. The experiment
we propose is analogous to placing a light source behind the
wall of the double slit experiment in order to test which slit
the electron emerged from. The degree of lattice excitation
in different scattering conditions is analogous to the strength
(and hence measurement capability) of the light source.

II. THE MEANING OF COHERENCE
A. Self-Coherence

To make this distinction and the notion of coherence more
explicit, let us consider the schematic of the scattering pro-
cess in the preceding experiments. If we treat the incident

beam as a plane wave of wavevector k= (I? , kzz>, the total

wavefunction representing a helium atom elastically scatter-
ing off of a crystal surface can be expressed as:

Y(x,y,2z) =exp (z[? "R+ ikzz)
+ZC@ exp (Z(K +G)-R— zkzc.z)
G

where R = (,y) and the {é } are the reciprocal lattice vec-

tors of the surface and k., is chosen to conserve energy and
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FIG. 1. Regimes of partially inelastic scattering. Subfigure a)
depicts wavevector scattering, while b) depicts wavepacket scat-
tering

momentum. This expresses the fact that at the surface the
beam is coherent with itself, and the resulting emitted wave
from each atom (in the Kirchhoff sense [21]) is a spherical
wave, and far from the surface we have the constructive in-
terference condition @ - G = 27n with n € Z ; i.e. crystal
momentum conservation. For elastic collisions, we further

have the energy conservation condition
- o N2
R = (F+3)

The conventional way of introducing inelastic scattering
is to simply examine the consequence of the generation or
absorption of a phonon (of momentum ¢ and frequency wg)
on the helium particle as the wave-vector goes from k to K.
In this case, for a surface phonon, the crystal momentum
conservation condition becomes

K=K +G+q
with energy conservation condition
- Ln2
k* = (k:’+G) + wg

Studies by Benedek [6] and others have demonstrated the
use of time-of-flight spectroscopy to measure surface phonon
modes as a method of characterizing surface structure.

However, the above treatment does not consider the full
quantum mechanical effect of including the lattice as part of
the dynamics. Moreover, the phrase “coherent scattering”
belies a notion of quantum mechanical coherence that can-
not be justified in the sense of the absence of measurement
capability of a system. Consider a hypothetical scattering
event as depicted in Fig. (1a). The helium atom scatters off
an initially ground state lattice where one single quantum
of one single phonon mode (regardless of ¢ or wz) becomes
excited with probability |cl|2. We may then write the total
wavefunction of the outgoing system as

[Woue) = colko)|@) + c1lkr)|1) (1)

Looking at the density matrix of the combined system yields
2 [ > 2 [ >
[Wous) (ous| = leol® |[Ro)IONBIGRol| + fexf* [1R)[1)(1](Fnl]

+coci [[Rol0) (1I(Rul| + cper 1K) 1) (01¢Fo



Using the orthogonality of wavevectors (ko|k1) = &(ko — k1)
and the orthogonality of the phonon modes (n|m) = &nm,
we may compute the purity n = Tr [pfed] [22], the quantity
frequently used in the literature on decoherence phenomena
in quantum mechanics to denote the coherence remaining in
the system. Performing this calculation, we obtain:

4 4
ni = lecol” + |ea

which yields an extremely rapid decrease in the coherence of
the final wavepacket; in essence, a small purity value gives
a sense of the magnitude of the off-diagonal elements of the
bath. The possibility of exciting more quanta of other modes
causes a further reduction in the purity; this is intuitive as
exciting a single phonon acts to “measure” that the helium
atom did in fact impact the surface. This is independent of
phonon frequency and wavevector; as acoustic excitations are
gapless excitations, there could indeed be many excitations
of practically zero frequency and zero momenta phonons.
Within this scheme, how can there possibly then be any “co-
herent” scattering if there are these types of inelastic excita-
tions destroying the coherence of the incident wavepacket?

While the idea of “measurement coherence” is lost, the
possibility of generating finite width diffraction peaks is res-
cued by the fact that the incoming helium atoms are not
strictly a plane wave but instead a coherent superposition of
energies and momenta; the helium atoms can be considered
a wavepacket in momentum space (and effectively in position
space as well). We might recall the requirement that X-ray
scattering has either a continua of energies or other condi-
tions that ease the 6(ko — k1) limit for coherent scattering
to take place; similarly, the finite spread in wavepacket en-
ergy actually acts to increase the coherence of the scattered
atomic beam. Consider Eq. (1) and replace the plane waves
states with a generic wavepacket (considered either, or both,
in momentum and position space) |x;), given by

x0) = Y a(k)|k)

E
so that the full post-scattering wavefunction becomes (as de-
picted in Fig. (1b)

[Wout) = colx0)[0) + c1lx1)[1) (2)

where the state |x1) captures all the distortion of the
wavepacket as a consequence of the scattering process. If
we again calculate the purity, we obtain

4 4 2 2 2
Ny = leol” + [e|” + 2]col™ [ex]™ [(xolx1) ™ = ni;

which will in general be much closer to unity. Moreover, in
the limit that |(xo|x1)|> — 1, we have 7y — 1. Looking
at the distortion in the wavepacket after phonon excitation
yields

(vobva) = S a* (Rp(E + ) (3)
k

-

where b(k) represents the final wavepacket momentum
spread. It is clear that if the momentum-space width of the
wavepacket is greater than the ¢ excitation, there may very
well be (although not necessarily need to be) a vanishingly
small decrease in the purity (and hence coherence) of the

outgoing wavepacket. The experiment by Bundaleski and
colleagues [10] used a beam with full width half max energy
resolution of 5eV for a 1keV beam; even if we include the
possibility of electronic excitations, if we assume the initial

-,

momentum distribution a(k) of the wavepacket is Gaussian
and a(k) = b(k — ), we obtain by integrating over Eq. (3) a
possible overlap as large as ~0.95.

Even if we consider a pure plane wave, we may still get
diffraction spots from inelastic scattering, though they will
be broadened. To cast the previous discussion in a more
physically intuitive picture, if the scatterer disturbs the lat-
tice to produce a phonon of wavelength A, the Kirchhoff sum
of emitted waves will produce an outgoing beam pattern with
elastic diffraction peaks corresponding to the static inter-
action, plus a contribution to each peak of a momentum

~ T to a phonon depending on the strength of the interac-
tion. Roncin and Debiossac [23] describe a complementary
picture to the decoherence scheme we have discussed; they
note that the scattering atom acts to measure the surface
atoms and induces decoherence either via position measure-
ment (local measurements of thermal motion that is the tra-
ditional source of the Debye-Waller factor in diffraction) as
well as momentum transfer (analogous to the surface par-
ticles undergoing emission with recoil). Toennies and co-
workers [24, 25] post-analyzed the scattered beam for specific
energy loss, recovering Bragg peak coherence and measuring
properties of surface phonons. However, when other modes
with random phases are included in this sum, the scattering
yields broadened diffraction peaks. If the width of the Bragg
peaks produced is substantially smaller than the momentum
precision of the measurement apparatus, this will be exper-
imentally indistinguishable from perfectly elastic scattering.
In this way Bragg peaks, already broadened by experimen-
tal factors like momentum dispersion in the incident beam,
may mask detection of phonon production by the effect of
the peak widths as outlined above.

B. Superposition Coherence
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FIG. 2. Recombined Scattered Beam Interference Pattern

Suppose that we instead took our starting beam of helium
particles and sent them through a beam-splitter, to obtain
a coherent superposition in both a “left” path that will un-
dergo the scattering process and a “right” path absent of
any coupling to the lattice degrees of freedom. The full ini-
tial wavefunction then becomes

L
V2

where we take for purposes of discussion the initial lattice
state to be the ground state. Now suppose that the left

|¢I> = |I_€'iL>sys + |EiR>sys:| | {®}>bath



wave will experience the same interaction process as in Eq.
(2), exciting one single phonon. The full final wavefunction
becomes

[Wp) = —= | co [krL)sys] {0} bath + c1 [K . )sys| {1} bath

1
V2
+ eiﬁ |EfR>sys| {(Z)})bath

where 7 is a relative path-dependent phase difference accu-
mulated between the two beams; this process is schematically
depicted in Fig. (2). Note again that this is completely in-
dependent on what the final lattice excitation was or what
its length and energy scale are. When a detector or some
other process measures the position of the scattered beam,
we again trace (average) out the lattice coordinate, using
the orthogonality of the phonon mode states. This yields
the probability distribution:

Pred (7, 7) = (M Trvatn [[VF) (Ve[ [7)
=1+ |co| cos [(EfL—EfR) -F} (4)

This provides a very clear picture; the degree to which the
lattice has been excited from the ground state by the scatter-
ing process (|cg|) directly determines the degree to which the
particle has been measured by the lattice, and reduces the
fringe contrast between the two outgoing quantum matter
waves. These notions can be extended to wavepackets and
their respective Fourier-transformed energy eigenstates. The
degree of energy loss, or stopping power, the helium parti-
cle has experienced is not directly related to |cg|; while high
stopping power implies small |¢g|, the converse is not true.
This formalism leads to an interpretation of the strength of
this measurement process, and can be extended to any num-
ber of quanta of any number of phonon modes, or any other
type of excitation. This is the actual notion of coherence
that we seek to understand in this work.

C. Vibrational Versus Electronic Excitation

This work focuses primarily on the possibility of studying
the measuring capabilities of phonon excitation in surfaces,
which directly maps to the study of scattering from insulat-
ing surfaces. The fraction of incoherent scattering events for
helium scattered off of lithium fluoride has been reported to
be less than 10% for 2keV incident kinetic energy [26]. How-
ever, we recall that “coherent” diffraction spots persist in
atom-surface grazing scattering off of metallic surfaces, de-
spite the possibility of gapless electronic excitation present
in the bulk. More surprisingly, the diffraction spots persist
despite an average energy loss; for instance, in He-Ag (110)
scattering, Bundaleski [10] reports diffraction spots despite
average scatterer energy losses of 1eV for scattering at 500eV,
well below the work function threshold; these peaks persist
despite blurring at higher energies [27]. Moreover, the en-
ergy loss scales superlinearly with incident helium energy.
The work by Rubiano [28] described the energy loss of the
helium atom by viewing it as a frictional loss as the atom
scraped against the electron selvage of the surface. A more
quantum mechanical description of the helium-surface elec-
tronic interaction can be seen via the hybridization potential

4

[29] from the helium atom’s occupied electron states and the
empty electronic states of the material (from, for instance,
the image charges of the helium atom). In the limit of slow
atoms, these surface interactions are adiabatic and do not
contribute to decoherence or energy transfer. At higher en-
ergies, there is the possibility of exciting both these states
as well as the gapped, empty surface state noted by Gold-
mann [30] which sits ~1.8eV above the Fermi level at the
surface Brillouin zone k, edge for Cu(110). One can use
time of flight postselection techniques (as outlined by Busch
et al [31]) to look at the helium atoms that have, or have not,
excited these surface states. Combining the information pro-
vided by classical rainbow diffraction with these energy loss
measurements can provide a picture of the surface-scattterer
interaction.

Relative to other neutral atomic species, helium is a rela-
tively difficult species to detect as it is light and inert. The
above thought experiment, naively stated, requires observ-
ing a standing wave pattern rather than projecting diffracted
beams onto a screen, and the corresponding fringe spacing
(for shallow incident angle 6) goes as hm6?/v/8mE which
gives sub-Angstrom distances for the parameters given here.
While designing the experiment to explicitly test the results
presented here is beyond the scope of this work, one possi-
bility for realizing this experimental setup could come via an
initial beam split using an initial scattering into low diffrac-
tion orders followed by recombination via a Mach-Zender in-
terferometer [32]. While for this work we have focused on the
regime used by recent helium scattering experiments, there
is nothing in the above formalism presented that precludes
these ideas from being applied to the previous generation
of scattering experiments; the purpose of using the regime
chosen here is to limit the possibilities of the types of in-
teractions to vibrational effect and allow the separation of
regimes afforded by the “slow” and “fast” momenta.

III. SYSTEM EVOLUTION
A. Semiclassical Models

Given the difficulty of exactly simulating quantum me-
chanics, it is necessary to employ approximations in order
to obtain meaningful predictions in systems with many de-
grees of freedoms. Semiclassical methods based on classical
mechanics are a natural choice as they can capture quantum
behavior while providing an intuitive picture of the system.
Moreover, incrementally adding additional quantum features
(for instance, different orders of expansions of the semiclas-
sical propagator [33]) to these approximations can provide
insight into which effects are indeed quantum mechanical
and which are artifacts of classical mechanics.

1. Thawed Gaussians

The thawed Gaussian approximation (TGA), introduced
by Heller [34], has been a remarkably successful semiclas-
sical approach to quantum dynamics [35]. Moreover, this
technique has been used in time-dependent studies of he-
lium scattering and was found to have superior convergence
properties relative to other semiclassical evolution techniques



[36]. The approach is to assume that the wavepacket is at
all times a Gaussian following a classical guiding central tra-
jectory that is in motion in a perpetual locally quadratic
potential. The wavefunction has the form

U({q}) = exp (i@ - G)TAG— @) + i, (7 - G) + i)

which undergoes evolution in the effective Hamiltonian

2
. Py,
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q=q:

This approximation is reasonable when the second derivative
is approximately constant for the width of the wavepacket, or
when the wavepacket experiences rapid “periodic-like” vari-
ations that get averaged out over its evolution (a sort of
rotating wave approximation). For the system derived here,
we have verified that the thawed Gaussian approximation
agrees well in the static case using a reduced-dimensional
model evolution of the split-operator FFT method (selecting
“special angles” so that the particle travels down furrows of
an effective one-dimensional potential [37]). We thus expect
that it will work well upon inclusion of phonon modes.

2. Sum of Gaussians Plane Wave Approach

Drolshagen and Heller [38] introduced a method to repre-
sent a plane wave as a superposition of Gaussian wavepackets
to model particle-surface scattering and replicate the rela-
tive strengths of diffraction peaks in atom-surface scattering
measured in experiments. This method captures a greater
degree of the wavelike nature of the incident scatterer atoms
at the expense of much more expensive computation. We ex-
tend this technique using thawed Gaussians for the full sys-
tem+bath configuration as a means to approach the “stan-
dard” way of representing the scattering process in terms
incoming and outgoing plane wave states. We write the ini-
tial state wavefunction as the superposition

N.N,

> UISAG) exp [iko - T, | (3)

NgNy

exp (ilgo . 77)

where we include NN, wavepackets within a single surface
unit cell at positions 75,,,, = 1’6—161 + ;—262 within the unit
cell defined by d; and d;. We can then evolve all the tra-
jectories together and look at the ground state overlap |co]
once again (integrated over the unit cell). It is necessary to
wrap trajectories that exit the unit cell back into the unit
cell by including the appropriate phase, as well as include
trajectories whose wavepacket extends into the unit cell of
integration.

B. Interaction Potential

We describe the non-relativistic surface scattering problem
by considering Schrodinger’s equation HU (7, §) = z w1th

the Hamiltonian

—2
in

V({&@}) + Vi (7 {@i})

where 7 refers to the helium particle’s coordinates and the
{q;} denote the surface atom coordinates. We looked at a
Cu surface cut at (110) as our model surface. Many different
models for the He-Cu interaction potential have been used;
for static interactions the corrugated Morse potential has
proven quite successful [3]. However, we are interested in
modeling the lattice dynamics (and hence the possibility of
true elasticity) through the scattering process and so must
go to a model that allows us to capture these features.

In order to incorporate the lattice motion and obtain rea-
sonable results compared with static cases, we described the
surface-scatterer potential as a pairwise sum of scaled dis-
tance exponential potentials, given by

V(FAGH =Y v ()

9

) = |5 S orole -l
L

where ¢ € (x,y,%). This choice of potential is motivated
by the directionality of corrugation as described by Dondi
[39]; other pairwise atom-surface scattering potentials have
been developed (for example, LiF scattering [40, 41]. We
used parameters found for F| = 240meV to be A = 6eV,
B = 214A7' and a, = 0.6, o, = 1.4, and a, = 1.6.
This matched existing empirical fits by Eichenauer [42] and
Salanon [43] which we verified by comparing potential con-
tours and their relative corrugation and steepness. Finally,
we found large overlap of the wavefunctions evolved in the
aforementioned potential versus the trial potential, demon-
strating good agreement within the thawed Gaussian approx-
imation.

In order to model the lattice-lattice interaction potential,
we treated the Cu(110) lattice as being a harmonic lattice of
spherically symmetric atoms with nearest neighbor interac-
tions with the coupling coefficient A\ =2.28 eV/A2. We use
the dynamical matrix approach by Maradudin [44] to gener-
ate the harmonic lattice potential, giving full periodicity in
the surface vectors @1 = a& and @y = a/ V2§ while includ-
ing the aperiodicity at the surface boundary. This sidesteps
dealing with the w = 0 frequency modes of the lattice and
allows us to discover which modes are most excited in the
scattering process.

IV. RESULTS
A. Single Wavepacket

We now examine one set of parameters for the simulation
of our thought experiment. We first consider a 100eV he-
lium particle with an energy spread of ~1eV incident upon a
Cu(110) surface with a polar angle of = w/64 ~ 2.812° and
an azimuthal angle of ¢ = 0 with respect to the d; surface
lattice vector. We evolve two separate scattering particle
wavepackets; the first wavepacket ¢y is sent “up” toward



the surface with wavevector k = (K , k_; to interact with
the lattice. The second wavepacket 1'p is sent “down” with
(E , —k_;) towards a mirror lattice that is held completely

static to prevent any interaction. The wavepackets are re-
combined, at which point we may take a snapshot of the
reduced total system density matrix to examine the interfer-
ence fringes. In order to ensure that there are no edge effects
in scattering off of the lattice we mirror the lattice points a
total of +3 times in each direction (in effect, manually insert-
ing the periodic boundary conditions we have established).
The lattice is furthermore chosen to be large enough so that
by the time the scattering event has finished the particles at
the back edge of the slab remain static. We further verified
the convergence of our results versus lattice size.

We evolve the semiclassical dynamics using both the forced
simple harmonic oscillator (FSHO) model (spiritually equiv-
alent to the frozen Gaussian method [45]) with a “plane
wave” scatterer, and the thawed Gaussian approximation
(treating the scatterer and lattice modes together as a
wavepacket) and look at the resulting dynamics for a 10x10x6
lattice. We plot the ground state overlap |cg| and purity
n = Tr[pZy] versus time in Fig. 3. As we discussed in
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FIG. 3. Lattice ground state overlap and purity versus time

during surface scattering for thawed Gaussian with (p?/2m) =
100eV, § = 2.8°, ¢ =0

section II, there is a dramatic difference between evolving
a single wavevector versus a wavepacket. Both the forced
harmonic oscillator and the thawed Gaussian approximation
result in rather small degrees of lattice excitation; the final
ground state overlap is slightly lower for the thawed Gaussian
case but would produce almost identical degrees of lattice ex-
citation. The thawed Gaussian approximation proves to be a
much better method for capturing the “self-coherence” of the
wavepacket as the state purity remains high and “wavelike”
throughout the scattering. Note that the diffraction experi-
ments by Schuller [9] and Bundaleski [10] were performed at
higher energies than these parameters; higher energy scat-
tering excites more phonons and hence have greater degrees
of coherence loss.

By looking at a slice in the xz-plane at the moment where
the outgoing Gaussian wavepackets recombine, we can see
the instantaneous interference pattern after tracing out the
bath. We can compare this to the case where both wavepack-
ets interact with completely stationary lattices where the lat-
tice atoms are pinned in place and no excitations are allowed
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to be generated. We note an ever so slight diminution of in-
terference fringes, shown in Fig. 4. The static+static case
yields perfect fringe contrast while the full+static superpo-
sition yields a fringe contrast of 0.90, in agreement with our
calculations for |ep| with these parameters. While there is
a phase shift between the two traces due to the change in
path length from the interaction with the surface, it does
not affect the fundamental result.
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FIG. 4. Slice of interference pattern of recombined wavepackets
at moment of maximal overlap, with z=0 at center of overlap

In a laboratory setting, the particles sent at the sur-
face are more properly treated as plane waves centered
around a given energy and momentum rather than a sin-
gle time-dependent wavepacket. We can take the energy-
space Fourier transform of the total system-bath wavefunc-
tion ¢(z, F) = feiEt'i,b(a:,t)dt, fixing our energy E to reflect
this picture. If we again slice along the xz-plane, as shown
in Fig. 5, we obtain a similar fringe contrast of 0.90 which
is consistent with our time-dependent result (i.e., the spread
in energy we chose for our thawed Gaussian wavepacket does
not drastically affect the result).
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FIG. 5. Slice of interference pattern of recombined energy-domain
transformed wavepackets, with z=0 at center of overlap



B. Phonon Excitations

We can also look at which lattice modes are excited for a
given set of scattering parameters. We can compute the ex-
pectation value of the phonon number operator (ri;) for each
lattice mode 4 from the density matrix of the combined scat-
terer+lattice wavefunction. Then, we sum all modes with
a given k (3N, modes) and look at the relative contribu-
tion of each & to the decoherence process, shown in Fig. 6.
While no particular single mode gets heavily excited by the
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FIG. 6. Individual lattice mode expectation (n;) for a) all wave
vectors b) kz =0

scattering process, it is possibly surprising that the highest
excitation occurs for the highest k, mode (i.e, short wave-
length excitations). This is perhaps more surprising when
we consider the classical force vs time that the scatterer ex-
periences, shown in Fig. 7 (note the similarity to the force
shown in the work by Roncin and Debiossac [23]); f,(t) = 0
. Zugarramurdi and Borisov [46] note that for typical exper-
imental fast atom diffraction conditions, there is very little
diffraction into reciprocal lattice vectors parallel to the beam
direction; this analysis shows very little inelastic scattering
in that direction as well.

If we consider the response of the surface atoms to the
scatterer as it skitters along the surface, we see that the scat-
terer experiences a series of “kicks” from each surface atom
with a broad repulsive background for the z-force, f,(t) and
a series of spikes for the x-force f,(t) that yield small net
x-momentum transfer. Suppose that at a given instant, the
scatterer interacts strongly with a particular lattice atom
centered at 7. As the scatterer “kicks” the lattice atom, that
lattice atom will then “compress the springs” connecting it to
its nearest neighbors atoms at 74 a/2% & av/2/49 + a\/2/42.
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FIG. 7. Force experienced by scatterer versus time

This causes waves to ripple outward in the £y directions of
the lattice creating phonons, while the k, momentum trans-
fer is negligible due to the rapid attraction/repulsive cycles
of the “kicks” off of the indivudal attoms in the lattice, par-
allel to the surface. Aigner et al [47] considered this aspect
using a Lindblad master equation formulation with a Monte
Carlo ensemble of trajectories to understand the system dy-
namics and decrease in self-coherence length and observed
that the potential parallel to the direction of motion became
effectively averaged out; Manson et al [16] described a sim-
ilar effect in that the “fast” motion would act as effectively
classical dynamics while the slower motion is more appropri-
ate to describe via quantum dynamics. This effect explains
the robustness of our potential model with respect to the
parameters we used.

If one looks at the energy distribution of the excited
phonon spectra, one can see that the majority the cre-
ated phonon quanta emerge from the lowest energy acoustic
modes. The energy deposited into the lattice for the param-
eters used above (~2.56meV, which is on the order of the
results given by Manson et al [16] for grazing angle colli-
sions) is far smaller than the energy spread in typical helium
scattering experiments; as mentioned earlier, the low-energy
phonon modes that are excited can be masked by the small
total energy change from the lattice nuclear stopping power.

C. Parameter Sweeps

We then swept across both parameters to test the robust-
ness of the interference coherence. We found very weak de-
pendence on the azimuthal angle (with |cg| varying between
0.86 and 0.91), and found similarly weak dependence from
sweeping the impact factor along the unit cell (|co| vary-
ing between 0.84 and 0.91). There is large variance as a
consequence of varying the energy; at 400eV (close to the
energy where electronic excitations become important), |cg|
approaches 0.54 while as the incident energy decreases the
ground state overlap increases. Decreasing the polar angle 6
while keeping energy fixed also strongly affects the fringe con-
trast; below 2.8° the fringe contrast approaches 1, however
the fringe contrast begins to sharply decrease to |co| = 0.59
for 6 = 5°. We might anticipate this as steeper angles in-



volve fewer, stronger, more localized impacts resulting in the
surface more precisely measuring the location of the parti-
cle and thus destroying the initially coherent superposition.
We can finally adjust the energy and angle together while
keeping the momentum perpendicular to the surface fixed
at 240meV; while below 8 = 2° the ground state overlap
reached a fixed asymptote of |¢o| = 0.96; above § = 4° the
ground state overlap decreases to |¢o| = 0.60 for § = 11.2°,
despite a paltry scatterer energy of 6.3eV.

We also altered the “physical” parameters of our thought
experiment to try to see how different systems might pro-
duce more or less decoherence. For realistic lattice constants
between a = 2.5A and a = 5A, we saw |co| range between
0.86 and 0.93; above a = 5.5A there was a greater depen-
dence; however, the potential as used here would require
further tuning for it to be reasonable. Changing the lat-
tice mass between 20-100 amu did not affect the ground
state overlap more than 5%; however, increasing the scat-
terer mass (keeping energy fixed at 100eV, hence increasing
momentum) produced an approximately linear decrease of
Aco| &~ 0.014amu~! between 2-40amu; this result was antic-
ipated from the previous discussion [48]. Finally, the results
we obtained were very robust to the interaction potential
steepness and range [ and A; there was negligible change
in changing § from 0.37A=! to 0.67A~! and from changing
A from 2eV to 12eV, implying that the exact details of the
potential were not particularly important.

D. Superposition Plane Wave

We can use the same fundamental approach for our treat-
ment of the plane wave as a sum of wavepackets: we can take
split the incident beam into an interacting component and
a noninteracting component to obtain the full initial wave-
function:

1 in non
|Wi) = 7 (1™ Ysys + 19" )sys) |0)batn (6)
where the second ket refers to the collective lattice state,
taken at ¢ = 0 to be in the ground state. We can then obtain
the fringe contrast after interaction by computing

J|[ o tanestianar el

where o({q}) denotes the ground state lattice wavefunction.
This wavefunction depicts a time-dependent plane wavefront
impinging the surface.

We used 20x20 wavepackets initially assembled in a grid
within one unit cell and included a grid of 3x3 neighboring
unit cells to avoid edge effects, and computed all quantities
by wrapping wavepackets (with the appropriate Bloch phase
contribution) within a unit cell and numerically integrating
over those single unit cells. We found a slightly reduced
value for the ground state overlap, |co| &~ 0.89 which agrees
well with the single wavepacket result and is close to the
average of the impact factor results. The time-dependent
interference pattern is shown in Fig. 8. There is some blur-
ring in both figures due to the rainbow effect (whose phase
contributions yield the Bragg diffraction peaks) but careful
examination reveals a slight diminution in the fringe contrast
when including the full lattice dynamics.

FIG. 8. Recombined interference pattern for plane wave from
sum of wavepackets scattered off of full lattice, figure coordinates
centered about recombination in z

Static
Full

FIG. 9. Slice through recombined interference pattern from Fig-
ure 8

Taking a slice through the interference pattern (i.e. look-
ing at preq (7, 7) from equation 4, taking 7= (xg, yo, z) for a
fixed xg, yo) as shown in Figure 9 reveals a fringe contrast in
the full scatterer+lattice of 0.89, consistent with the ground
state overlap |cg| calculated above. We note that there is
some reduction in contrast away from the central overlap re-
gion of the two beams for both the full and static lattice
cases due to the diffracted portions of the beams. The con-
sistency of these results with the single wavepacket results
(both the time- and energy-dependent versions) furthermore
indicates that the possibility of diffraction would not affect
our primary result.

V. CONCLUSION

The results of this work demonstrate that the existence of
diffraction peaks in atom-surface scattering is insufficient to
demonstrate whether or not the scattering event was elas-
tic or inelastic. While the existence of truly elastic neu-
tron scattering has been demonstrated in previous works,
the radically different nature of atomic scattering (which in-
volves long-range and long-lived interactions with collections
of atoms as opposed to the Dirac delta-like interactions char-
acterizing atomic-neutron scattering) has been studied here
to examine the possibility of long-wavelength phonon pro-
duction. Our alternate, interference-pattern based thought
experiment looks to the fundamental quantum notions of the



which-way measurement to determine whether these grazing

atom-surface scattering events are truly elastic and whether
the scattering process acts as a measurement.
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