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A B S T R A C T

Asynchronous programming models (APM) are gaining more and more traction, allowing applications to
expose the available concurrency to a runtime system tasked with coordinating the execution. While MPI
has long provided support for multi-threaded communication and non-blocking operations, it falls short of
adequately supporting APMs as correctly and efficiently handling MPI communication in different models is still
a challenge. We have previously proposed an extension to the MPI standard providing operation completion
notifications using callbacks, so-called MPI Continuations. This interface is flexible enough to accommodate a
wide range of different APMs.

In this paper, we present an extension to the previously described interface that allows for finer control
of the behavior of the MPI Continuations interface. We then present some of our first experiences in using
the interface in the context of different applications, including the NAS parallel benchmarks, the PaRSEC
task-based runtime system, and a load-balancing scheme within an adaptive mesh refinement solver called
ExaHyPE. We show that the interface, implemented inside Open MPI, enables low-latency, high-throughput
completion notifications that outperform solutions implemented in the application space.
1. Background and motivation

Asynchronous (task-based) programming models are gaining more
and more traction, promising to help users better utilize ubiquitous
multi- and many-core systems by exposing all available concurrency
to a runtime system. Applications are expressed in terms of work-
packages (tasks) with well-defined inputs and outputs, which guide
the runtime scheduler in determining the correct execution order of
tasks. A wide range of task-based programming models have been
developed, ranging from node-local approaches such as OpenMP [1]
and OmpSs [2] to distributed systems such as HPX [3], StarPU [4],
DASH [5], and PaRSEC [6]. All of them have in common that a set of
tasks is scheduled for execution onto a set of worker threads based on
constraints provided by the user, either in the form of dependencies or
dataflow expressions.

At the same time, MPI is still the dominant interface for inter-
process communication in parallel applications [7], providing blocking
nd non-blocking point-to-point and collective operations as well as
/O capabilities on top of elaborate datatype and process group ab-
tractions [8]. Recent years have seen significant improvements to the
ay MPI implementations handle communication by multiple threads
f execution in parallel [9,10].
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However, task-based programming models pose new challenges to
the way applications interact with MPI. While MPI provides non-
blocking communications that can be used to hide communication
latencies, it is left to the application layer to ensure that all necessary
communication operations are eventually initiated to avoid deadlocks,
that in-flight communication operations are eventually completed, and
that the interactions between communicating tasks are correctly han-
dled. Higher-level distributed tasking approaches such as PaRSEC or
HPX commonly track the state of active communication operations and
regularly test for completion before acting upon such a change in state.
With node-local programming models such as OpenMP, this tracking
of active communication operations is left to the application layer.
Unfortunately, the simple approach of test-yield cycles inside a task
does not provide optimal performance due to CPU cycles being wasted
on testing and (in the case of OpenMP) may not even be portable [11].

MPI is thus currently not well equipped to support users and de-
velopers of asynchronous programming models, which (among other
factors) has prompted some higher level runtimes to move away from
MPI towards more low-level, asynchronous APIs [12].

Different approaches have been proposed to mitigate this burden,
including Task-Aware MPI (TAMPI) [13] and a tight integration of fiber
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and tasking libraries with MPI implementations [14–16]. In a previous
paper, we have argued that such an integration, while seemingly attrac-
tive due to its ease-of-use, fosters the development of a non-portable
application eco-system [17]. In the same paper, we have proposed
an extension to the MPI interface, called MPI Continuations, that is
designed to loosely couple asynchronous programming models with
MPI. In the current paper, we update and extend the description of this
interface (Sections 2 and 3). We compare our approach to the MPI_T
interface, a general-purpose API using callbacks for event notification
that will be part of the upcoming MPI 4.0 standard (Section 4). We
will demonstrate the integration of continuations with the PaRSEC
runtime and with a adaptive load balancing scheme based on Intel TBB
(Section 5).

2. MPI continuations: API overview

Continuations are a concept for structuring the execution of dif-
ferent parts of an application’s code, dating back to research on Al-
gol60 [18,19]. They have recently been proposed to the C++ standard
in the form of std::future::then to coordinate asynchronous activ-
ities [20]. Continuations consist of a body (the code to execute) and a
context (some state passed to the body) on which to operate.

A similar mechanism for MPI can be devised that allows a callback
o be attached to an MPI request, which will be invoked once the
peration represented by the request has completed. This establishes
notification scheme to be used by applications to timely react to the

ompletion of operations, e.g., to wake up a blocked thread or release
he dependencies of a detached task, all while relieving applications of
anaging MPI request objects themselves.

We propose a set of functions to set up continuations for active
PI operations, which may be invoked by application threads during

alls to communication-related MPI functions or by an implementation-
nternal progress thread (if available) once all relevant operations are
ound to have completed. The body of a continuation may call any
PI library function and thus start new MPI operations in response to

he completion of previous ones, e.g., in order to re-post a completed
eceive.

The MPI Continuations API consists of two parts. First, continuation
requests are used to aggregate and progress continuations. Second,
continuations are attached to active MPI operations and registered with
continuation requests for tracking.

2.1. Continuation requests

Continuation requests (CR) are a form of persistent requests that are
created through a call to MPIX_Continue_init and released eventu-
ally using MPI_Request_free. A CR tracks a set of active continua-
ions that are registered with it. The set grows upon registration of a
ew continuation and shrinks once a continuation has been executed.
call to MPI_Test on a CR returns flag == 1 if no active continu-

tions are registered. Conversely, a call to MPI_Wait blocks until all
egistered continuations have completed. Further details are discussed
n Section 3.

Continuation requests serve two main purposes. First, they aggre-
ate continuations attached to active operations and enable testing
nd waiting for their completion. Second, by calling MPI_Test on
CR, applications can progress outstanding operations and continu-

tions if no MPI-internal progress mechanism exists to process them
synchronously. See Section 3.4 for a discussion on issues related to
rogress.

The info argument to MPIX_Continue_init may be used to con-
rol certain aspects of the continuations. A list of proposed keys will be
iscussed in Section 3.5.
2

t

/* The continuation callback function definition */
typedef void (MPIX_Continue_cb_function)(

MPI_Status *statuses,
void *cb_data);

/* Create a continuation request using the
provided info controls */

int MPIX_Continue_init(
MPI_Request *cont_req ,
MPI_Info info);

/* Attach a continuation to an active operation represen -
* ted by op_request. Upon completion of the operation ,
* the callback cb will be invoked and passed status and
* cb_data as arguments. The status object will be set
* before the continuation is invoked. If the operation
* has completed already the continuation will not
* be attached or invoked, flag will be set to 1, and
* the status will be set before return. */

int MPIX_Continue(
MPI_Request *op_request ,
int *flag,
MPIX_Continue_cb_function *cb,
void *cb_data,
MPI_Status *status,
MPI_Request cont_req);

/* Similar to the above except that the continuation
* is invoked once all op_requests have completed. */

int MPIX_Continueall(
int count,
MPI_Request op_requests[],
int *flag,
MPIX_Continue_cb_function *cb,
void *cb_data,
MPI_Status statuses[],
MPI_Request cont_req);

Listing 1: MPI Continuation interface.

.2. Registration of continuations

A continuation is attached to one or several active operations
nd registered with the continuation request for tracking. A call to
MPIX_Continue attaches a continuation to a single operation re-
quest while the use of MPIX_Continueall sets up the continuation
to be invoked once all operations represented by the provided re-
quests have completed. As shown in Listing 1, the continuation is
represented through a callback function with the signature of
MPIX_Continue_cb_function (provided as function pointer cb) and
a context (cb_data). Together with the pointer value provided for the
status or statuses argument, the cb_data will be passed to cb upon
nvocation.

Upon return, all provided non-persistent requests are set to
PI_REQUEST_NULL, effectively releasing them back to MPI.1 No copy
f the requests should be used to cancel or test/wait for the completion
f the associated operations. Consequently, only one continuation may
e attached to an operation request. In contrast, persistent requests may
till be canceled, tested, and waited for.

Similar to MPI_Test, flag shall be set to 1 if all operations are
lready complete. In that case, the continuation callback shall not be
nvoked by MPI, leaving it to the application to handle immediate
ompletion (see Section 3.1). Otherwise, flag is set to zero.

Unless MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE is pro-
ided, the status object(s) will be set before the continuation is invoked
or before returning from MPIX_Continue[all] in case all operations

1 This has been a deliberate design decision. Otherwise, the release of a
equest object inside the continuation or the MPI library would have to be
ynchronized with operations on it outside of the continuation. We thus avoid
his source of errors.
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bool poll_mpi(MPI_Request *cont_req) {
int flag; /* result stored in flag ignored here */
MPI_Test(&flag, cont_req, MPI_STATUS_IGNORE);
return false; /* we should be called again */

}
void continue_cb(MPI_Status *status, void *task) {

/* release the task’s dependencies */
nanos6_decrease_task_event_counter(task, 1);

}
void solve(int NT, int num_fields ,

field_t *fields[num_fields]) {
/* create continuation request */
MPI_Request cont_req;
MPIX_Continue_init(&cont_req , MPI_INFO_NULL);
/* register polling service */
nanos6_register_polling_service(

"MPI ", &poll_mpi , &cont_req);

for (int timestep = 0; timestep < NT; timestep++) {
for (int i = 0; i < num_fields; ++i) {

#pragma oss task depend(out: fields[i])
{

/* unpack recv buffer, compute and pack
* send buffer */

integrate_halo(fields[i]);
solve(fields[i]);
save_boundary(fields[i]);

/* start send and recv */
MPI_Request reqs[2];
MPI_Isend(fields[i]->sendbuf, ..., &reqs[0]);
MPI_Irecv(fields[i]->recvbuf, ..., &reqs[1]);

/* detach task if requests are active */
void* task = nanos6_get_current_event_counter()↪

;
nanos6_increase_current_task_event_counter(

task, 1);
/* attach continuation */
int flag;
MPIX_Continueall(

2, reqs, &flag, &continue_cb , task,
MPI_STATUSES_IGNORE , cont_req);

if (flag)
nanos6_decrease_task_event_counter(task, 1);

} } }
/* wait for all tasks to complete and tear down */
#pragma oss taskwait
nanos6_unregister_polling_service(

"MPI ", &poll_mpi , NULL);
MPI_Request_free(&cont_req);

}

isting 2: Simplified example using MPI Continuations in an iterative
olver. Tasks are created for each field per timestep. Communication
s initiated and tasks are detached. As soon as the communication
ompletes, the task’s dependencies are released and the field’s next
teration may be scheduled.

ave completed already). The status objects should be allocated by the
pplication in a memory location that remains valid until the callback
as been invoked, e.g., on the stack of a blocked thread or fiber or in
emory allocated on the heap that is released inside the continuation

allback.

.3. Usage in a simple example

The example provided in Listing 2 uses MPI Continuations to release
etached tasks in an OmpSs-2 [21] application once communication
perations have completed. Looping over all fields of a local domain
n each timestep, one task is created per field, which carries an output
ependency on its field object (Line 21). Inside each task, the received
oundary data from the previous timestep is incorporated and a solver
s applied to the field (potentially with nested tasks) before the local
oundary is packed for sending (Lines 25–27).
3

a

Both the send and receive operations are initiated and a continu-
tion is attached using MPIX_Continueall (Lines 30–44). OmpSs-2
ffers direct access to API functions of the underlying nanos6 run-
ime. In this case, the event counter for the current task is retrieved,
ncreased, and passed as the context of the continuation. If all opera-
ion completed immediately, the event counter is decremented again.2
therwise, the task will run to completion but its dependencies will not
e released before the event counter is decremented in the continuation
allback continue_cb (Lines 6–9).

In order to ensure that all continuations are eventually completed,
polling service is registered with the OmpSs-2 runtime (Line 16). This
olling service is regularly invoked by the runtime and – in the function
oll_mpi in Lines 1–5 – calls MPI_Test on the continuation request.3
his will invoke all available continuations and eventually cause all
asks of the next timestep to become available for execution once the
espective send and receive operations of the previous timestep have
ompleted.

With only approximately 15 lines of code (including setup and
ear-down), it is possible to integrate MPI communication with a task-
arallel application to fully overlap communication and computation.
f adopted into the MPI standard, this approach is fully portable and
llows an application to focus on application-level concerns while
eaving MPI-level concerns such as request management to MPI. By
aking the interaction between non-blocking MPI operations and the

ask scheduler explicit, this approach ensures that both MPI and the
ask programming system support all required operations (with the
xception of strong progress guarantees, as discussed in Section 3.4).
oreover, we believe that integrating such an interface into MPI en-

bles more efficient implementations as it allows direct access to the
equest structure instead of handling opaque request objects.

. MPI continuations: Details

A scheme similar to the one proposed here could be implemented
utside of the MPI library with an interface similar to TAMPI. However,
main advantage of the integration with MPI is that the continuations

an be invoked as soon as any thread calls into MPI and determines the
ssociated operations to be complete. In more complex applications,
his allows for the invocation of continuations set up by one part
f the application during an MPI call issued in another part of the
pplication, potentially reducing the time-to-release of blocked tasks
nd thus preventing thread starvation.

.1. Restrictions

As stated earlier, continuations may be executed by application
hreads while executing communication functions in MPI. Exceptions
re MPIX_Continue[all], which may be called from within a critical
egion protected by a mutex it would then attempt to acquire again
nside the continuation. Listing 3 provides an example where the call
o MPIX_Continue happens in a critical region guarded by a mutex,
hich is necessary to prevent signals from being lost due to the un-
lock callback being executed on another thread before the thread
xecuting block started waiting in pthread_cond_wait.

While not prohibited, the use of blocking operations inside contin-
ations should be avoided as it may cause a call to a nonblocking MPI
rocedure to block on an unrelated operation. No other continuation
ay be invoked in MPI calls made from within a continuation to avoid

tack overflows due to deep nesting of continuation calls.

2 The event counter has to be incremented first as the OmpSs-2 specification
andates that ‘‘the user is responsible for not fulfilling events that the target

ask has still not bound’’. [21, §4.4].
3 Note that OpenMP does not currently provide such an interface, which

equires the user to create a progress task or spawn a progress thread that yield

fter testing.
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void block(thread_state_t *ts, MPI_Request *req) {
int flag;
pthread_mutex_lock(&ts->mtx);
MPIX_Continue(&req, &flag, &unblock, ts, ↪

MPI_STATUS_IGNORE , cont_req);
if (!flag) pthread_cond_wait(&ts->cond, &ts->mtx);
pthread_mutex_unlock(&ts->mtx);

}
int unblock(MPI_Status *status, void *data) {

thread_state_t *ts = (thread_state_t *)data;
pthread_mutex_lock(&ts->mtx);
pthread_cond_signal(&ts->cond);
pthread_mutex_unlock(&ts->mtx);

}

isting 3: Code to block and unblock a POSIX thread. The
hread_state_t structure contains a thread-specific mutex and condi-
ional variable. Locking the mutex in unblock is necessary to prevent
ignals from getting lost.

Fig. 1. State diagram of continuation requests.

By default, continuations may not be invoked from within signal
andlers inside the MPI implementation as that would restrict the appli-
ation to using only async-signal-safe operations. MPI implementation
elying on signals to interact with the network hardware should defer
he execution to the next invocation of an MPI procedure by any of the
pplication threads or hand over to a progress thread. However, the
pplication may signal that a callback is async-signal safe, as discussed
n Section 3.5.

.2. State transitions

Unlike existing request types in MPI, continuation requests (CR) do
ot represent a single operation but a set of operations. Extending the
emantics of persistent requests [22], Fig. 1 depicts the state diagram of
Rs. That state may change with every new registration or completion
f a continuation. A newly Initialized or otherwise Inactive CR becomes
ctive Referenced when a continuation is registered. It remains Active
eferenced if additional continuations are registered. Upon completion
f continuations, they are deregistered from the CR. The CR becomes
ctive Idle upon the deregistration of the last active continuation. An
ctive Idle CR may become either Active Referenced again if a new
ontinuation is registered or Complete if a Completion function such as
PI_Test is called on it. It is possible to call MPI_Request_free on
n active CR, in which case the CR cannot be used to register additional
ontinuations and will be released as soon as all previously registered
ontinuations have completed.

A continuation may be attached to a CR itself and registered with
separate CR, allowing applications to build complex patterns of

otifications. The new continuation will then be executed once all
ontinuations registered with the first CR have completed.

.3. Thread-safety requirements

Multiple threads may safely register continuations with the same
ontinuation request in parallel but only one thread may test or wait
4

or its completion at any given time. This allows for continuations to e
e registered concurrently without requiring mutual exclusion at the
pplication level.

.4. Progress requirements

The availability of continuations is only one piece of the puzzle to
eliably and portably integrate MPI with task-based applications. The
ssue of progress in MPI is long-standing and while some implemen-
ations provide internal mechanisms for progressing communication
e.g., progress threads) this is not behavior users can rely on in all
ircumstances. Thus, applications are still required to call into MPI to
rogress outstanding communication operations and – with the help of
he proposed interface – invoke available continuation callbacks. This
roposal does not change the status quo in that regard.

It is thus left to the application layer to make sure that commu-
ication is progressing. This can be achieved by regularly testing the
ontinuation request, which could be done either through a recurring
ask, a polling service registered with the task runtime system (as
hown for OmpSs-2 in Listing 2), or by relying on a progress thread
nside MPI. The interface presented here is flexible enough to allow for
ts use in a wide range of circumstances and it defers to the application
ayer to choose the right strategy based on the available capabilities.

.5. Controlling behavior through the info object

The MPIX_Continue_init function takes an info object that may
e used to control certain aspects of the continuation request and the
egistered callbacks, respectively. We propose the following info keys
or controlling continuation request behavior, which have proven useful
uring our experiments:

pi_continue_poll_only Continuations registered with a CR cre-
ated with this key set to true will only be executed once the
CR is tested for completion, e.g., using MPI_Test. This may
be useful for ‘‘heavy’’ callbacks or callbacks that may block
the executing thread in order to not disturb the execution of
other parts of the application, e.g., by blocking threads used by
another library. This info key provides control over the point at
which callbacks are executed. The default is false.

pi_continue_enqueue_complete If this info key is set, then a call
to MPIX_Continue[all] will always return flag = 0 even if
the operation has completed immediately. The continuation will
then be enqueued for later execution. This option may be useful
for applications expecting large numbers of incoming messages
with only limited time for handling them, instead choosing to
defer their reception to a later point. Without this key, the caller
would have to have a mechanism for deferring the handling of
completed operations itself. The default is false.

pi_continue_max_poll This key sets the maximum number of
continuations that should be invoked once the continuation
request is tested. This may be useful in cases where limited time
should be spent on processing continuations at once, e.g., an
application-level communication thread responsible for han-
dling both incoming and outgoing messages. The application
may then choose to limit the number of continuations to be
handled at once in order to guarantee progress on outgoing mes-
sages as well. The default is -1, meaning unlimited. Setting both
mpi_continue_max_poll = 0 and mpi_continue_poll_only
= true is erroneous as it would cause no continuation registered
with this continuation request to ever be executed.

In addition to the info keys described above, we also propose two
nfo keys controlling the context in which the implementation may

xecute the registered continuations:
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void completion_cb(MPI_Status *status, void *data) {
int is_cancelled;
MPI_Test_cancelled(status, &is_cancelled);
if (is_cancelled) {

return;
}
/* perform regular actions of the callback otherwise */
...

}

Listing 4: Callback checking for cancellation of the request it is
attached to.

mpi_continue_thread This key may be set to one of the following
two values: application and any. The application value
indicates that continuations may only be executed by threads
controlled by the application, i.e., any application thread that
calls into MPI. This is the default. The value any indicates
that continuations may be executed by any thread, including
MPI-internal progress threads if available. Some applications
may rely on thread-local data being initialized outside of the
continuations callback or use callbacks that are not thread-safe,
in which case the use of any would lead to correctness issues.
This key has no effect on implementations that do not use a
dedicated progress thread.

pi_continue_async_signal_safe If this Boolean value is set to
true, the application provides a hint to the implementation that
the continuations are async-signal safe and thus may be invoked
from within a signal handler. This limits the capabilities of the
callback, excluding calls back into the MPI library and other
unsafe operations. The default is false.

The list of info keys discussed above reflects the different dimen-
ions in which applications may want to control the behavior of the
ontinuations interface. The info mechanism in MPI provides an ideal
echanism for controlling these different aspects, allowing users to

dapt its behavior to their needs.

.6. Request cancellation

MPI provides the ability to cancel outstanding MPI operations using
he MPI_Cancel procedure. While cancellation of send operations has
een deprecated, it is still possible (and at times useful) to cancel
equests representing receive operations, e.g., to clean-up pre-posted
eceive operations at the end of an application run. Thus, applications
eed to be able to cope with canceled requests in continuation call-
acks. This can be achieved by allocating and passing status objects in
alls to MPI_Continue[all] and check for cancellation in the callback
unction, as demonstrated in Listing 4. This alleviates the need for
xplicit callbacks notifying about the cancellation of requests.

. Comparison with the MPI_T interface

The MPI_T API will provide an interface for callback-based event
otification in the upcoming version 4 of the MPI standard [23]. This
nterface is meant for performance analysis tools to be notified about
vents on arbitrary MPI objects, e.g., communicators or window. It
ould thus be possible to track the completion of operations using
vents on the respective communicators. However, this would require
he application (or some library) to keep a mapping between requests
nd the asynchronous activity related to them, which would be tedious
nd error-prone.

Since the interface is not limited to coarse-grain MPI objects such
s windows and communicators, this interface could also be utilized
o register completion events on individual requests. However, this
pproach has several caveats that will be discussed below.
5

.1. Overhead

In order to register a callback with individual operation requests
sing MPI_T events, the user has to use three distinct function calls.
n a first step, an event handle is allocated for the specific request
bject using MPI_T_EVENT_HANDLE_ALLOC. This binds a certain event
chosen from a set of events provided by the MPI implementation) to
he request object and provides an event handle. In a second step,

callback is registered with that event-registration object by calling
PI_T_EVENT_REGISTER_CALLBACK. Eventually, the event handle has
o be released using MPI_T_EVENT_HANDLE_FREE. For non-persistent
equests, this has to be done during every completion callback to avoid
emory leaks caused by dangling event handles.

Altogether, these three API calls are likely to incur a significant
verhead for the registration of callbacks. Unfortunately, the authors do
ot yet have access to a working implementation of the MPI_T callback
nterface to test this hypothesis, which remains as future work.

.2. Reliability

In its current form, the MPI_T interface poses two major correctness
hallenges for it to be used for callback-based completion notification.
irst, the current definition allows implementations to drop events
f it finds that too many events have occurred. While this may be
cceptable for performance analysis (e.g., in the context of profiling
ools) it is highly problematic for applications whose correctness relies
n callbacks being delivered for each operation request. Even though
t is possible to be notified about the number of dropped events, the
nformation on the particular completion will be lost.

Second, an inherent race condition exists in this interface since an
peration may have completed between the time it was issued and
he time the event callback has been registered. It is unclear if the
mplementation would still be required to deliver the event to the
pplication. At the same time, the restrictions on immediate execution
f continuations laid out in Section 3.1 would have to be obeyed.

.3. Portability and usability

Currently, the MPI_T interface does not provide any predefined
vents, making it impossible to rely on certain events for correctness.
hile in the future the MPI standard may choose to mandate support

or events for operation request completion, its detection would still be
otentially tedious due to the weak binding using string comparisons.
n contrast, the interface proposed in this work provides a well-defined
nterface that applications can rely on.

However, mandating the existence of a specific event on requests
ith rather restrictive semantics seems to run counter to the spirit of

he MPI_T interface, which is to provide freedom to implementors to
efine events and their specific semantics.

Moreover, the MPI_T interface does not provide the full capabilities
f the continuations interface proposed in this work. For example, in
ontrast to MPIX_Continueall it is not possible to register callbacks
or groups of requests. Moreover, the MPI_T interface does not provide
way to explicitly progress outstanding events and test or wait for out-

tanding registered callbacks, which our proposal accomplishes through
ontinuation requests.

Last but not least, the MPI_T interface includes a hierarchy of safety
evels for callbacks, which comprises MPI_T_CB_REQUIRE_NONE (no
estrictions on the set of MPI functions that may be called inside
he callback), MPI_T_CB_REQUIRE_MPI_RESTRICTED (set of allowed
PI functions restricted to MPI_T), MPI_T_CB_REQUIRE_THREAD_SAFE

like the previous level and the callback must be thread-safe), and
PI_T_CB_REQUIRE_ASYNC_SIGNAL_SAFE (the callback must be
sync-signal safe). This hierarchy, while useful for tools using the MPI_T
nterface, does not provide sufficient control for applications. Most
mportantly, this hierarchy does not allow for the definition of callbacks
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Table 1
Software configuration.

Software Version Configuration/Remarks

Open MPI git-0dc2325 --with-ucx=...
UCX 1.9.0 --enable-mt
GCC 10.2.0 site installation
OmpSs-2 2020.11.1 built as Clang plugin
Clang git-523fd9d03f includes fix for issue found in dependency handling
TAMPI git-c3bd734 default
that are thread-safe and may invoke arbitrary MPI functions, which
may be crucial for massively multi-threaded task-based applications
employing this interface for task management purposes. In contrast, the
interface proposed in this paper allows for fine-grain control of these
two (orthogonal) aspects through info key–value pairs, as described in
Section 3.5.

Overall, we believe that while the MPI_T interface uses a similar
mechanism for the notification of arbitrary events, it is not suitable
for the purpose of efficient operation completion notification as it only
offers a subset of features the interface proposed here provides.

5. Evaluation

We will evaluate the use of continuations using the NPB BT-MZ
benchmark (extended from earlier measurements presented in [17]),
through an integration in PaRSEC, and an integration with a dy-
namic load-balancing scheme in ExaHyPE, an adaptive mesh refine-
ment (AMR) package built on top of MPI and Intel Threading Building
Blocks (TBB) [24].

All measurements were conducted on a Hewlett Packard Enterprise
(HPE) Apollo system called Hawk, which is installed at the Center for
High Performance Computing Stuttgart (HLRS) in Stuttgart, Germany.4
The system is comprised of dual-socket nodes equipped with 128 GB
of RAM and AMD EPYC 7742 CPUs with a nominal frequency of
2.25 GHz. The nodes are connected through a enhanced 9D torus using
the Mellanox InfiniBand HDR200 interconnect. The configurations of
the used software are listed in Table 1.

All data points represent the mean of at least five repetitions, with
the standard deviation plotted as error bars in the graph.

5.1. Implementation

We have implemented a proof-of-concept (PoC) of continuations
within Open MPI.5 We have provided micro-benchmarks as part of
the initial paper [17] and refer interested readers to it for details.
Since then, we have added support for the info keys described in
Section 3.5, which should only have a marginal impact on the overhead
of continuation registration and execution. However, the integration
into the MPI library has proven useful due to the direct access to the
request object structures as we otherwise would have to build structures
around the opaque request handles, potentially incurring additional
overhead for their management.

5.2. NPB BT-MZ

In this section, we demonstrate the use of MPI Continuations in the
context of the NAS Parallel Benchmark application BT-MZ, a multi-zone
block tri-diagonal solver for the unsteady, compressible Navier Stokes
equations on a three-dimensional mesh with two-dimensional domain
decomposition [26]. Zones of different sizes are distributed across
processes using a static load-balancing scheme, with the difference in

4 Detail can be found at https://www.hlrs.de/systems/hpe-apollo-hawk/.
ast accessed February 11, 2021.

5 The PoC implementation is available at https://github.com/devreal/
mpi/tree/mpi-continue-master. Last accessed February 11, 2021.
6

h

Table 2
Problem sizes in the NPB BT-MZ benchmark [25].

Class Zones Iterations Grid size (𝑥 × 𝑦 × 𝑧) Memory

D 32 × 32 250 1632 × 1216 × 34 12.8 GB
E 64 × 64 250 4224 × 3456 × 92 250 GB

zone sizes being up to 20× between the smallest and largest zones [27].
In each timestep and for each local zone, five computational steps are
involved: forming the right-hand side, solving block-diagonal systems
in each dimension x, y, and z, and updating the solution. We use
two representative problem sizes – classes D and E – for which the
input configurations are listed in Table 2. The reference implemen-
tation in Fortran uses OpenMP work-sharing constructs to parallelize
nested loops during the updates to all local zones before collecting
and exchanging all boundary data with neighboring ranks at the end
of each timestep. OpenMP parallelization is done over the outermost
loop, which in most cases is the smallest dimension z, with the notable
exception of the solution in the z dimension itself.

We have ported the Fortran reference implementation to C++ and
implemented two variations using task-based concurrency.6 The first
variation uses tasks to overlap the computation of zones within a
timestep in a fork-join approach in between boundary updates, re-
placing OpenMP parallel loops with task-generating loops, with their
execution coordinated using dependencies. This already allows for
exploiting fine-grain concurrency within a single timestep.

The second variant extends this to also perform the boundary
exchange inside tasks, including the necessary MPI communication,
effectively minimizing the coupling between zones to the contact point
dependencies. This variant requires some support from the tasking
library to properly handle communicating tasks. We use TAMPI in com-
bination with OmpSs-2 as well as detached tasks in OpenMP available
from Clang in its current developer repository. We have attempted to
use taskyield within OpenMP tasks using the Clang implementation,
which resulted in deadlocks due to the restricted semantics of task-yield
in OpenMP [11]. The implementation using detached tasks spawns
a progress thread that tests the continuation request before calling
usleep to yield the processor.

Given the limited concurrency in the OpenMP work-sharing loops,
we present results achieved using 2, 4, or 8 processes per nodes
(PPN; 64, 32, and 16 threads per process, respectively). All codes have
been compiled with the flags -O2 -march=znver2 -mcmodel=medium
using the Clang compiler. Process binding has been achieved using
Open MPI’s --map-by node:PE=$numthreads --bind-to core ar-
guments to mpirun.

Class D. Fig. 2 depicts the results for class D using 2, 4, and 8 processes
per node, as well as the best runtime from each of the configurations.
Most notably, the OmpSs-2 variant using TAMPI yield significantly
higher runtimes than the OpenMP variants, an effect that was repro-
duced multiple times for this problem size. It is, however, notable that
the OmpSs-2 variant using continuations yields lower runtimes than the
variant using TAMPI, esp. for small values of PPN. Similarly, the data

6 The different variants of NPB BT-MZ discussed here are available at
ttps://github.com/devreal/npb3.3.

https://www.hlrs.de/systems/hpe-apollo-hawk/
https://github.com/devreal/ompi/tree/mpi-continue-master
https://github.com/devreal/ompi/tree/mpi-continue-master
https://github.com/devreal/npb3.3
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Fig. 2. NPB BT-MZ class D benchmark results.
Fig. 3. NPB BT-MZ class E benchmark results.
hows that using continuations with OpenMP tasks yields better results
or low PPN, esp. at the upper end of the process range (Fig. 2(a)).
or larger PPN the OpenMP variant using a task-based fork-join model
chieves the same performance for higher PPN as the continuation-
ased variant with smaller PPN. It should be noted, however, that at
he upper end of the process range with PPN = 8, each process only
eceives two zones on average, diminishing the benefit of overlapping
omputations of multiple zones, esp. if the two zones share a boundary.

lass E. Fig. 3 shows the results for runs using class E, i.e., with
× more and larger zones than class D (Table 2). Similar to class
, the scaling of the OmpSs-2 variant using TAMPI is inhibited for
PN = 2, in contrast to the other task-based variants. This suggests
hat the handling of requests inside TAMPI and the required inter-
hread synchronization harms performance especially for high numbers
f threads. However, this time for higher PPN the scaling is significantly
etter with TAMPI, at times slightly outperforming the OmpSs-2 variant
sing continuations (e.g., 32 and 64 nodes with PPN = 8). The OpenMP
ariant using continuations again outperforms the fork-join variant for
PN = 2 and is mostly on par for other configurations.

Two factors may contribute to this observation. First, with higher
PN, even with only 64 nodes there are merely eight zones per rank
n average, with the static load balancing scheme potentially assigning
nly one or two zones to some of the ranks, diminishing the potential
or overlapping computation and communication. Second, higher PPN
7

lso reduce the ability of MPI to offload communication to the network
interface card and requiring more communication to be performed
using node-local memory copies, requiring more work by the compute
threads.

These two factors may explain the fact that the OpenMP variant
using continuations performs best with small PPN values. This in turn
suggests, that the interface proposed in this paper can help improve the
performance of task-based applications using MPI within tasks as lower
PPN values may reduce the surface-to-volume ratio in some application
and provide for low-overhead communication management even with
higher numbers of threads.

5.3. PaRSEC

The PaRSEC tasking runtime [6] provides an integrated task ex-
ecution and communication environment, which tracks ownerships
and moves data between nodes. Originally proposed as a runtime for
DPLASMA (a library of linear algebra algorithms and successor of
ScaLAPACK) [28,29], PaRSEC has evolved into a generalized runtime
with different frontends for applications that can be expressed as
directed acyclic graphs. At its core is a scheduler using POSIX threads
to execute tasks and a global dependency tracking and communication
system. Communication itself is performed by a dedicated communica-
tion thread, allowing MPI to be used with MPI_THREAD_FUNNELED to
avoid potential thread-synchronization overheads.

The communication thread thus handles both outgoing and incom-

ing communication. In its latest incarnation (on which this work is
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Fig. 4. The PaRSEC communication pattern for activating a dependency: an active
message (AM) is sent to trigger the activation at the remote rank, which then sends
an AM to request the data that flows along the dependency. With the two-sided
MPI communication backend, the data communication itself involves an (internal) AM
(marked with ∗) to trigger the receive matching the send. The data communication
happens without blocking the communication thread.

based), the interface has been redesigned to resemble a one-sided
communication API providing put, get, and active-message capa-
bilities, independent of the underlying communication backend. In
particular, the MPI backend emulates one-sided communication using
two-sided send/recv by exchanging internal active messages (AM) that
start a receive (put) or send (get) at the remote side before issuing
the corresponding local operation. On top of that, AMs are used to
send activation messages for dependencies that have been resolved by
completing a task. The communication pattern involved in activating
a dependency and transferring the data using an emulated put is
depicted in Fig. 4.

In the reference implementation, a small number of persistent re-
ceives are posted for each registered AM tag. In a tight loop, the com-
munication thread sends outgoing messages and processes incoming
messages.

Incoming activation messages require the communication thread to
release dependent tasks and potentially trigger new communication
operations to retrieve data required as input to the activated tasks. This
may require significant work on the part of the communication thread,
in which time no other active message can be processed.

As depicted in Fig. 5, the communication thread manages a fixed
size array of requests that are passed to MPI_Testsome to test for
completion of communication operations, including send and receives
posted for AMs and data messages. This set of active requests is kept
small deliberately to mitigate the overhead of request checking in
MPI_Testsome and the subsequent reorganizing required once re-
quests have completed. This set is accompanied by a list of pending
requests that are posted send and receive operations and are eventually
moved into the set of active requests once any active data message has
completed.

While keeping the set of active requests small ensures efficient
testing, it may lead to delays in completion detection: while a recently
posted operation may have already completed, it may not be recognized
as such until its request is moved into the set of active requests.

The communication thread also limits the number of concurrent
outgoing data messages in order to prioritize the limited bandwidth on
a first-come–first-serve basis (message prioritization based on urgency
is done at higher levels inside PaRSEC). This simple throttling mecha-
nism prevents heavy contention and ensures that messages can be sent
with a large fraction of the available bandwidth instead of hundreds of
messages being transferred with a small share of the bandwidth, which
would delay all messages.

5.3.1. Implementation using continuations
The use of continuations in the context of the PaRSEC communi-

cation engine promised to provide faster reaction times to incoming
active messages and completed transfers, by executing the action asso-
ciated with an active message or completed communication. We thus
register continuations for all requests, essentially eliminating the set
of pending requests and the use of MPI_Testsome. Any time the MPI
implementation finds operations to complete, the attached continuation
8

Fig. 5. Request management in the PaRSEC communication thread.

Fig. 6. Speedup of the QR factorization in DPLASMA using continuations over
PaRSEC’s reference implementation with different per-node matrix and tile sizes.

would be enqueued for execution. By default, continuations for any of
the operations would be eligible for immediate execution.

However, especially the activation AM callbacks may be expensive,
as they may in turn trigger new communication operations. Moreover,
the communication thread has to potentially handle a large number of
active messages in bursts, effectively prolonging the time until the it
is able to handle outgoing messages again. Such bursts lead to poor
performance as outgoing activations will be delayed, starving ranks
depending on them.

We thus created different continuation requests for different classes
of operations (incoming active messages as well as incoming and
outgoing data messages) and – on the one used for AMs – set the
info key mpi_continue_poll_only discussed in Section 3.5 to true
in order to restrict the execution of incoming active messages to the
point when the communication thread calls MPI_Test on the respective
continuation request. An exception are AMs used to emulate the one-
sided communication described above, which are known to be of short
duration since they only encompass posting a non-blocking send or
receive. We also set mpi_continue_enqueue_complete to true for
all AMs to enqueue continuations even if the receive is complete
immediately, preventing the communication thread from having to
process large number of incoming AMs in burst situations.

Similarly, we are restricting the execution of continuations of in-
coming data messages, as they may incur work in the scheduler (re-
leasing tasks) or additional communication (forwarding messages in
hierarchical collective communication operations). However, the com-
pletion of an outgoing data message is typically a short operation
and can thus be executed immediately, freeing up a slot for the next
outgoing data message.

5.3.2. QR factorization
The weak-scaling benchmark results for the QR factorization are

depicted in Fig. 6, using matrix sizes of 15 k2 and 20 k2 elements per
node and a tile size of 192. We found that the usage of continuations
is most effective on smaller matrix sizes and relatively small tile sizes
as that requires a fast exchange of both activations and data as worker
thread starvation may occur otherwise. Here, we observe more than
12% speedup on 16 nodes (N = 20 k2) and 10% speedup on 36 nodes
(N = 15 k2), while for larger numbers of nodes the effect diminishes.
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Fig. 7. Offloading a task in ExaHyPE.

or larger tile sizes, we have observed neither a positive nor negative
mpact on the performance, suggesting that these configurations are
ess sensitive to latency and thus do not benefit from faster responses.

It is left as future work to further explore the use of continuations
n other use-cases of PaRSEC and to analyze PaRSEC’s communication
equirement at higher node counts.

.4. ExaHyPE

The ExaHyPE project has recently proposed a novel approach for
oad-balancing task-based adaptive mesh refinement (AMR) applica-
ions by offloading tasks from ranks with high loads to ranks with lower
oads [24]. Load balancing decision are made based on instrumenting
PI waiting times in at runtime. They serve as input to a diffusive load

alancing scheme in which purely local offloading decisions are made
o mitigate the impact of overloaded processes, leading to improved
oad balance. The project uses Intel Threading Building Blocks (TBB)
o manage shared memory parallelism on top of MPI for distributed
emory parallelism. Due to its domain decomposition of the underlying

pace-tree created by tri-partitioning, ExaHyPE exhibits severe load
mbalances at configuration other than 28 or 731 ranks.

Tasks are being offloaded by processes identified as critical ranks
o other processes based on the amount of time waited for a kick-off
essage to start the next iteration. The decision on whether and where

o offload a task is made at the time the task is discovered by the main
hread during the traversal of the grid. If local threads are idle, tasks
ill be scheduled for local execution, i.e., they are not subject to being

ent to another process. If, on the other hand, all local threads are
usy and some additional tasks are available locally, the task will be
ent to another rank, whose load was determined to be lower than the
ocal load. Fig. 7 depicts the flow of an offloaded task. Offloading a
ask consists in sending a short message containing the task metadata
e.g., timestep size and a timestamp) followed by a second message
ontaining the task’s input data, which are sent in two distinct messages
s packing them into one would incur significant overhead.

A small number of pre-posted persistent receives for metadata are
sed to identify incoming tasks. Once such a receive completes, a
eceive for the task input data is initiated and upon completion the
ask is enqueued for execution by any of the worker threads. As soon
s a worker thread has completed the execution of an offloaded task,
t initiates sending back the results, which consists of three messages.
t the offloading source, the non-blocking receives are posted in the
allback signaling the completion of the send requests, which is useful
or keeping the number of active requests low.

While it would be possible for the main thread to post the receives
or the task results immediately after sending the task input data, we
ound that the extra time spent on posting the three receive operations
nduces significant overhead for the main thread (which is on the
ritical path) and thus slows down the overall execution.
9

Table 3
Lines of code required for submitting and progressing requests in ExaHyPE with and
without MPI Continuations.

Operation Reference Continuations 𝛥

Submitting requests 55 36 −19
Progressing requests 133 17 −116

In case the offloading target cannot return the result for the task
in time, a so-called emergency is triggered and the number of tasks
offloaded to that rank is reduced. If multiple emergencies occur, the
rank will not receive any tasks for a number of timesteps and the
algorithm tries to shift the load to other ranks.

All communication happens using non-blocking send and receive
operations, which are managed by a central offloading manager that
nvokes a callback upon detecting their completion, essentially im-
lementing a form of continuations in the application space. Since
ffloading a task involves multiple messages in both directions, it is
ecessary to manage groups of requests whose combined completion
riggers the invocation of a single callback. The offloading manager
hus uses multiple parallel data structures to manage the mapping
etween MPI requests and callbacks.

Worker threads will poll the offloading manager for completed
ommunication operations, passing a subset of the active requests to
PI_Testsome (similar to PaRSEC). However, it is not clear what
onstitutes an optimal number of requests to pass to the test function.
n the one hand, too little requests might cause some tasks that were
ffloaded to slow ranks and complete too late to block the detection
f tasks returned from fast ranks, thus leading to unnecessarily large
umbers of emergencies. On the other hand, a large number of requests
ight incur significant overhead inside MPI_Testsome during the lin-

ar walk through the request array to check all request for completion.
n order to ensure fast detection of completed tasks, the reference
mplementation opted for eagerly testing as many requests as possible
hile trying to avoid repeated reallocation of the request array.

Overall, this scheme is a natural fit for MPI Continuations.

.4.1. Implementation using continuations
In our implementation using MPI Continuations, we were able to

eplace much of the complexity of managing groups of requests with
single call to MPIX_Continueall, reducing the amount of code

ecessary to implement the registration of callbacks with groups of
equests, as shown in Table 3. An even more significant reduction in
ode can be found in the progression of registered requests. Where
he reference implementation has to assemble a continuous array of
equests to pass to MPI_Testsome and handle the returned array of
ndices, the use of continuations only requires invoking MPI_Test on
he continuation request. In addition to the reduction in lines of code,
e also removed the data structures that were dedicated to managing

he required mapping between requests, groups, callbacks, and callback
rguments in the application space (not shown in Table 3). Overall, the
se of the continuations interface has reduced the overall complexity
f a part of code that is central to the load balancing scheme described
bove.

Since requests do not have to managed in the application space,
e have implemented a scheme that shifts the callback registration

or task send requests to worker threads, allowing the use of a single
ontinuation for send and receive requests. This scheme has not yielded
ny improvements in the reference implementation, presumably due to
he larger number of simultaneously active requests to be handled by
he offloading manager.



Parallel Computing 106 (2021) 102793J. Schuchart et al.
Fig. 8. Number of offloaded tasks over 1000 iterations. Each line represents a
single offloading source. Using continuations results in higher numbers of tasks being
offloaded and a shift in the critical rank.

5.4.2. Results
In our benchmark, we use ExaHyPE’s ADER-DG implementation to

solve the compressible Navier Stokes equations for the simulation of
clouds [30]. For small problem sizes, we have not observed significant
differences between the reference implementation and the implemen-
tation using continuations. However, Fig. 8 shows the number of tasks
offloaded over a run of 1000 timesteps on a grid of 813 points on
24 ranks with 32 threads each. Fig. 8(a) shows that in the reference
implementation, only one rank is offloading tasks as that rank remains
on the critical path, reaching a peak at approximately 6500 tasks. In
contrast, Fig. 8(b) shows that when using continuations, the same rank
is able to offload just short of 9000 tasks (+35%), at which point other
ranks are detected as being critical by the algorithm, causing them to
offload tasks as well.

Fig. 9 shows the corresponding wait times for each iteration. A
positive wait time indicates that the rank is waiting for one or more
other ranks (and thus could become an offloading target) while a
negative wait time is used to indicate that the corresponding rank
is being waited on (and thus should offload tasks). In the reference
implementation (Fig. 9(a)), the rank on the critical path is being waited
on for approximately 1.45 s for the majority of timesteps. With continu-
ations, on the other hand, the wait time for the critical rank in the first
550 iterations is at 1.3 s, which constitutes a 10% speedup (Fig. 9(b)).
However, as other ranks are detected as critical, a disturbance occurs
because the offloading targets that have so far only processed tasks
of the initial critical rank are now served tasks from other ranks as
well, rendering them unable to process tasks in a timely manner. The
algorithm is able to identify this condition and adjust the number of
10
Fig. 9. Wait times per timestep over 1000 iterations on 48 ranks. Ranks with positive
times wait for other ranks to complete the timestep. Ranks with negative wait times
are being waited on. Using continuations yields lower runtimes on the critical path
(lower half) until other ranks start offloading tasks, leading to disturbances.

tasks offloaded to recover from the overload. Due to the diffusive nature
of the algorithm, many more iterations will be required to achieve a
stable state. However, it is only through the use of continuations that
enough tasks can be offloaded in this scenario to trigger the change in
the critical rank.

6. Related work

Multiple efforts have been made in the past to improve specific
aspects of the interaction between multi-threaded programming models
and MPI [31–33].

Extended generalized requests have been proposed to encapsu-
late operations within requests and allow the MPI implementation
to progress them through a callback [34]. Similar to the interface
proposed here, extended generalized requests employs inversion of con-
trol (IoC) [35]: application-level code is called by the MPI library in
inversion of the usual call relation. However, these requests are still
polling-based and cannot be used for completion notification.

IoC is also used in the upcoming MPI_T events interface, allowing
applications and tools to be notified through callbacks about events
from within the MPI library [23]. However, the availability of events
is implementation-specific and callbacks can only be registered for
event types, as opposed to specific operations. The MPI_T interface has
been used to structure the interaction between MPI and task-based
programming models, still requiring the mapping between MPI requests
and task-information in the application layer [36].

Continuations are not a new concept in the context of low-level
communication libraries: UCX uses callback notification functions when
initiating non-blocking operations [37]. In contrast, other interfaces
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such as libfabric [38], Portals [39], and uGNI [40] rely on completion
queues from which notifications are popped. While this would be a
viable concept in MPI as well, we believe that continuations provide
greater flexibility at the application level. Other low-level communi-
cation abstractions such as LCI [41] provide lightweight completion
notification by setting variables directly accessible by the application.

Another alternative would be a system similar to scheduler activa-
ions in OS kernels [42], where MPI would signal to some application-
evel entity that the current thread or fiber would block inside a call.
his has been proposed for the OpenShmem standard [43]. However,

ts use is limited to tasking models that have strong rescheduling
uarantees and would not work with OpenMP detached tasks.
Hardware-triggered operations are being used to react to events in the

network with low latency and to offload computation to the network
interface card [44–46]. However, in-network computing is focused on
operations on the data stream and likely cannot be utilized to execute
arbitrary code in user-space, e.g., call into tasking libraries. Exploring
the boundaries of integrating these systems with the interface proposed
here remains as future work.

The integration of tasking and fiber libraries into MPI has been
proposed as a replacement for POSIX thread support to enable the use
of blocking MPI calls inside tasks and fibers [15]. We have discussed
this in detail in [17]. Other proposals provide runtime-specific wrapper
libraries around MPI, transforming blocking MPI calls to non-blocking
calls and testing for completion before releasing a fiber or task [13,16,
47]. These proposals fall short of providing a portable interface that
can be used with arbitrary asynchronous programming models.

A proposal for completion callbacks for MPI request objects has
been discussed in the context of the MPI Forum over a decade ago and
rejected due to its broad focus [48]. In contrast, the proposal outlined
here avoids some of the pitfalls such as callback contention, ownership
of requests, and unclear progress semantics.

A proposal made concurrently to ours has been made in the form of
MPI_Detach [49]. While similar in its goals and its general interface
(registering completion callbacks for one or more requests), it differs
in subtle but important ways. Most importantly, the API does not
provide immediate completion and uses a general progress procedure
to process outstanding completion callbacks without the testing and
waiting capability provided by continuation requests. However, the
existence of a concurrent proposal underscores the need for MPI to
provide an interface for its integration with task-based programming
models.

The interface proposed here is especially well-suited for coupling
MPI with node-local asynchronous programming models such as Open-
MP [1], OmpSs-2 [21], and Intel TBB [50] or in combination with co-
operatively scheduled fiber libraries such as Argobots [51] or Qthreads
[52] to ease the MPI communication management burden users are
facing.

7. Conclusions

In order to tackle the challenges of asynchronous activities com-
municating through MPI, we have proposed an extension to the MPI
standard that allows users to register continuations with active op-
erations that will be invoked once the MPI library determines the
operations to be complete. In this paper, we have extended this in-
terface with fine-grained controls meant to steer the behavior of the
MPI implementation to accommodate the needs of applications by using
the info key mechanism of MPI. Moreover, we have discussed early
experiences in using this interface in combination with four different
task-based runtime systems, namely OpenMP detached tasks, OmpSs-2,
Intel TBB, and the PaRSEC custom scheduler.

The overhead of our proof-of-concept implementation is sufficiently
low to not impact existing applications and its use shows similar or
improved performance over existing approaches. Overall, MPI con-
tinuations may provide a powerful tool for reducing the latency in
11
thread-parallel message passing applications while reducing the pro-
grammer’s burden on writing and maintaining complex software for
managing MPI requests in the application space.

The interface has been designed with higher-level abstractions such
as C++ futures for MPI in mind but it remains as future work to pro-
vide an actual implementation on top of MPI Continuations. However,
we are confident that our design will be useful in the design of an
asynchronous C++ MPI interface.
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