
E.T.: Re-Thinking Self-Attention for
Transformer Models on GPUs

Shiyang Chen1,+, Shaoyi Huang2,+, Santosh Pandey1, Bingbing Li2, Guang R. Gao3, Long Zheng3,
Caiwen Ding2 and Hang Liu1
+These authors contributed equally.

1Stevens Institute of Technology
2University of Connecticut
3University of Delaware

ABSTRACT

Transformer-based deep learning models have become a ubiquitous

vehicle to drive a variety of Natural Language Processing (NLP)

related tasks beyond their accuracy ceiling. However, these models

also suffer from two pronounced challenges, that is, gigantic model

size and prolonged turnaround time. To this end, we introduce E.T.

that rE-thinks self-attention computation for Transformer models

on GPUs with the following contributions: First, we introduce a

novel self-attention architecture, which encompasses two tailored

self-attention operators with corresponding sequence length-aware

optimizations, and operation reordering optimizations. Second, we

present an attention-aware pruning design which judiciously uses

various pruning algorithms to reduce more computations hence

achieves significantly shorter turnaround time. For the pruning

algorithms, we not only revamp the existing pruning algorithms,

but also tailor new ones for transformer models. Taken together,

we evaluate E.T. across a variety of benchmarks for Transformer,

BERTBASE and DistilBERT, where E.T. presents superior perfor-

mance over the mainstream projects, including the popular Nvidia

Enterprise solutions, i.e., TensorRT and FasterTransformer.

ACM Reference Format:

Shiyang Chen1,+, Shaoyi Huang2,+, Santosh Pandey1, Bingbing Li2, Guang R.
Gao3, Long Zheng3, Caiwen Ding2 and Hang Liu1. 2021. E.T.: Re-Thinking

Self-Attention for Transformer Models on GPUs. In The International Con-

ference for High Performance Computing, Networking, Storage and Analysis

(SC ’21), November 14–19, 2021, St. Louis, MO, USA. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3458817.3476138

1 INTRODUCTION

Transformer-based models have become a ubiquitous vehicle to

drive a variety of NLP-related tasks beyond their accuracy ceil-

ings, such as machine translation [28], text summarization [63],

speech recognition [13], and question-answer systems [50]. Re-

cently, transformer models have also achieved impressive perfor-

mance for computer-vision related tasks [22], e.g., iGPT [6] and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SC ’21, November 14–19, 2021, St. Louis, MO, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3476138

LayerNorm

Linear transformation

LayerNorm

Activation

MatMul

Scale

Masking

Input

Self-attention

Linear transformation

MatMul

Q K V
Linear transformation

SoftMax

Linear transformation

(a) Encoder workflow (b) Self-attention workflow

E.T.
(37.1 μs,
~1.3M
entries)

E.T.
(27.7 μs,
~650K
entries)

23.6 μs,
~1.9M entries

10.4 μs
~196K entries

16.8 μs
~196K entries

9 μs
~98K entries

21.5 μs
~590K entries

TensorRT
(82.4 μs,

~5M
entries)

TensorRT
(81.3 μs
2.98M
entries)

Figure 1: The architecture of a four-head encoder. The time con-

sumption is measured on WikiText-2 dataset [30], where the input

sequence has 128 tokens. Our pruning ratio is 80%.

ViT [14] obtain similar performance as the state-of-the-art CNN-

based networks. This phenomenon demonstrates the enormous

potential of Transformer-based models. Given the success of atten-

tion, a variety of attention mechanisms have surged [28]. Among

them, self-attention [9], which relates various tokens in a single

sequence to derive a sequence representation, stands out. Finally,

Transformer [51] makes a breakthrough to, as opposed to relying

upon recurrent neural network (RNN), base the model entirely on

a multi-head self-attention mechanism.

Despite that Transformer-based models have made remarkable

triumphs, their gigantic model size is a widely recognized roadblock

that concerns real-world applications. Figure 1 depicts the archi-

tecture of one encoder, which is the building block in Transformer

models. Briefly, one encoder takes as input the word embeddings of

a sequence. These embeddings pass through the self-attentionmech-

anism to produce an attention matrix. This matrix is fed through

layer normalization, linear transformation, and activation to derive

the output. Various Transformer model variants often stack a col-

lection of encoders and decoders together. Note, the architecture

of the decoder is similar to encoder [51], and more details about

the attention mechanism are discussed in Section 2.1. As shown

in Figure 1, one encoder can easily reach millions of entries with

multiple heads. When it goes to the extreme, e.g., GPT-3 [3], the

size of the model can soar up to 175 billion parameters.

Such a largemodel size, together with the “modular system imple-

mentation concept”, often leads to the prolonged turnaround time

for transformer-based models. Particularly, “modular system imple-

mentation” separates a program into independent modules such

that each module fulfills necessary but one aspect of the function-

ality in order to reduce software development efforts. For instance,

1

SC ’21, November 14–19, 2021, St. Louis, MO, USA Shiyang Chen et al.

a vast majority of Transformer-based libraries [1, 17, 21, 42, 44, 53]

simply dissect a Transformer encoder into a collection of basic ma-

trix operations, such as dense matrix multiplication, sampled dense

matrix multiplication, and matrix-scalar multiplication. Afterwards,

they resort to existing CUDA libraries (e.g., cuBLAS [33] and CUT-

LASS [35]) to implement various transformer models. However,

this design leads to two performance issues: (i) One often has to

transfer the output matrix from one operator to another in the GPU

global memory; (ii) Switching between operators introduces on-

and off- chip data movement because the lifetime of an on-chip

variable cannot go across kernels. Although the state-of-the-art

optimizations, such as vertical and horizontal kernel fusion from

TensorRT [40], can mitigate the overhead of issue (i), issue (ii) un-

fortunately remains. The root cause lies in the fact that TensorRT

cannot change how each operator is implemented.

This phenomenon provokes us to ask a question: Can we intro-

duce some transformer-specific primitives that can perform

variousmatrix computations in a single operator hence largely

alleviate the overheads caused by issues (i) and (ii)? The mo-

tivation is as follows: despite that a single encoder of TensorRT is

already very fast, i.e., ∼160 𝜇𝑠 , real-world applications are still in

pursuit of faster encoders. Evidence piles up: transformer models

are often used for time-critical applications, such as self-driving [46]

and real-time translation [28], where shorter turnaround time is

always preferred.

To achieve this goal, we redesign the self-attention architecture

with new operators, as well as introduce interesting attention-aware

and tensor core friendly pruning designs. As shown in Figure 1,

E.T. can reduce the computation time of a single encoder by 2.5×,
as well as reduce the model size by 80% on the WikiText-2 dataset.

Particularly, E.T. makes the following contributions:

First, we introduce a novel self-attention architecture, which

encompasses two tailored self-attention operators with correspond-

ing sequence length-aware optimizations, and operation reordering

optimizations. Particularly, (i) our on-the-fly attention operator

resolves the data dependency across five operators in self-attention,

i.e., the yellow boxes in Figure 1(b), and performs these five opera-

tions in one operator with the help of shared memory and registers,

hence avoids expensive global memory accesses for the interme-

diate results. This is fundamentally different from kernel fusion

optimizations in TensorRT [40]. (ii) We study the self-attention

architecture and find the opportunity of combining the linear trans-

formation for matrix V and the final linear transformation operator

in Figure 1(b). The newly combined operator lowers the required

pruning ratio and can be pre-computed to potentially avoid compu-

tations. (iii) Our sequence length aware optimization explores the

corner case performance issues for our on-the-fly attention operator

and unveils that performing fewer computations on-the-fly would

yield more benefits when sequence length is relatively long. (iv)

Finally, we identify that using pure FP16 of the tensor core would

experience overflow problems during self-attention computation.

Correspondingly, we reorder the scaling operator to achieve pure

FP16-based self-attention computation which is more efficient than

the mixed precision-based counterpart. As shown in Figure 1, our

novel self-attention computation gains a speedup of 2.9× over the

existing TensorRT implementation.

Second, we propose an attention-aware and tensor core friendly

pruning design which judiciously uses various pruning algorithms

to reduce more computations hence achieving significantly shorter

turnaround time. Despite that pruning is a well-known strategy

to reduce the mounting size of Transformer-based models, it is

concerned that either irregular pruning [23] (i.e., pruning weights

of arbitrary locations) will prevent the usage of tensor core or block-

based weight pruning [31] (prune at the tensor tile level) would

suffer from low pruning ratio and accuracy loss. In this paper, we

first strive to derive tensor core friendly matrix representations for

weightmatrices in column and row pruning, which allows us to both

enjoy the computation reduction in pruning and exploit existing

tensor core-based highly optimized GEneral Matrix Multiplication

(GEMM) routines for rapid linear transformation. Further, to achieve

both tensor core friendly and high pruning ratio & accuracy, we

present the first tensor tile-based pruning algorithm for transformer

models using a reweightedmethod on group lasso regularization [4].

This algorithm first partitions the weight matrix into tensor tiles,

subsequently uses 𝑙2 norm to update the penalty factor. We then

update the total loss and conduct pruning based on 𝑙2 norm. Finally,

we retrain the non-zero entries in the model in order to preserve

the accuracy after pruning. Last but not least, we introduce an

attention-aware adaptive pruning algorithm design that chooses

different pruning algorithms for various weight matrices that can

reduce more computations and achieve shorter turnaround time.

Third, we demonstrate the effectiveness of E.T. across a wide

range of benchmarks and models. Particularly, we evaluate our

pruning algorithm on WikiText-2 dataset for Transformer, and

GLUE benchmark suite for BERTBASE and DistilBERT. This evalua-

tion covers a significantly wider range of benchmarks and types

of models comparing to the recent art [21]. It is of particular im-

portance to mention that our novel self-attention architecture,

together with attention-aware pruning offers, on average, 1,131

𝜇𝑠 (BERTBASE) and 500𝜇𝑠 (DistilBERT) inference latency across

all the GLUE benchmarks while sustains 95% of the prediction

accuracy/score (Table 1). To the best of our knowledge, E.T.

is the first work that achieves such short turnaround time

for transformer-based models on GPUs while maintaining

the high prediction accuracy. This is benefited from our novel

attention-aware pruning algorithm designs and efficient self-attention

computation system implementations.

The remaining of this paper is organized as follows: Section 2

presents the background. Sections 3 and 4, respectively, discuss the

efficient self-attention computation and attention-aware tensor core

friendly pruning algorithm designs. We evaluate E.T. in Section 5,

describe related work in Section 6, present the potential of E.T. in

Section 7, and conclude in Section 8.

2 BACKGROUND

2.1 Transformer-based Language Models

Transformer is a sequence-to-sequence NLP model [51] which uses

an attention mechanism to draw global dependencies between

input and output. It takes a sequence of word embeddings from one

vocabulary set as input and generates the probability of tokens in

the other vocabulary set. The model mainly consists of encoding

and decoding components. The encoding component is a stack of

2

E.T.: Re-Thinking Self-Attention for

Transformer Models on GPUs SC ’21, November 14–19, 2021, St. Louis, MO, USA

encoders that are all identical in structure but their weights are

trained independently. Likewise, the decoding component is also a

stack of decoders. Note, the number of encoders and decoders can

be adjusted to arrive at different transformer models. For instance,

BERT only contains encoders [25]. BERTBASE has 12 layers in the

encoder stack while BERTLARGE has 24 layers in the encoder stack.

OpenAI GPT-3 [3] only has 12 layers of decoders.

Before the word embedding is processed by the encoder, we add

the position information of the tokens to the sequence so that the

model is aware of the position of the token in each sequence.We use

sine and cosine functions to encode this position information [51]:

PE(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛 (𝑝𝑜𝑠/100002𝑖/𝑑model), (1)

PE(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠 (𝑝𝑜𝑠/100002𝑖/𝑑model), (2)

where 𝑝𝑜𝑠 is the position of the token in the sequence; dmodel is the

dimension of each word’s embedding, and 𝑖 is the 𝑖-th dimension

in the word embedding vector. These positional values are added

to the embedding of each token.

As shown in Figure 1, self-attention is the key for an encoder.

During linear transformation, the input X is multiplied by three

weight matrices, i.e., query (WQ), key (WK), and value (WV), to

arrive atQ,K, and V, respectively. That isQ = X ·WT
Q
,K = X ·WT

K

and V = X · WT
V. Afterwards, we follow Equation 3 to perform

attention computation:

Z = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (Q,K, V) = softmax(Q · KT

√
𝑑𝑘

) · V. (3)

Note, amask is applied to exclude certainword-to-word interactions

before softmax. One popular masking mechanism is to set the

lower triangle part of the masking as 0 and the upper triangle part

as negative infinity. When applied to Q · KT, this mask actually

prevents the position information of later words from affecting the

earlier ones. Multi-head attention extends Equation 3. The attention

model possesses multiple sets ofWQ,WK,WV, which allows the

model to jointly attend to information from different representation

subspaces at different positions and each set of weights is a head.

Since there are multiple Z’s of Equation 3, multi-head attention

combines them by multiplying Z with a weight matrix WO.
√
dk

is the dot product’s scaling factor, where 𝑑𝑘 = 𝑑model
H , and H is the

number of heads.

As shown in Figure 1, after the self-attention module, there is a

multilayer perceptron (MLP) module consisting of two linear trans-

formation layers with an activation layer between them. A layer

normalization is applied after self-attention and MLP respectively,

whose input will be added by the input of the module.

2.2 GPUs and Tensor Cores

In recent GPU architectures, a Streaming Processor (SMX) often

contains both general and tensor cores. Using V100S GPU as an ex-

ample, one SMX contains 64 single floating-point cores, 64 integer

cores, 32 double floating-point cores, and 8 tensor cores. As one ten-

sor core can perform 64 FusedMultiply Add (FMA) operations every

cycle. It implies that one SMX can perform 1,024 operations every

cycle with tensor cores, or tensor core is 8× faster than the general

cores. Note, when one type of core is in use, the other cores cannot

execute since all these cores share certain hardware resources [34].

C = A B + C

A
B

FP 32
FP 16

BFP 16
TF 32

(a) FMA for matrix multiplication (b) Floating point variants

S

S

S

S

Si
gn Exponent Precision (Mantissa)

8 bits 23 bits

5 bits 10 bits

7 bits

Figure 2: Tensor core specification: (a) FMA for matrix multiplica-

tion and (b) floating point variants.

With the tensor core, a large matrix multiplication problem can

be accomplished by a collection of small matrix multiplication. As

shown in Figure 2(a), to perform a matrix multiplication of 16×𝑛
and 𝑛×16, the FMA can perform one 16×16 matrix multiplication of

A and B at a time, and accumulate the result to an eventual result

for a tensor tile of 16×16 in C.

Tensor core comes with precision variations. First, V100S FMA

operation supports mixed-precision which means the matrix multi-

plication is FP16 while the addition goes to FP32 [34]. As shown

in Figure 2(b), the IEEE 754 FP32 format often requires 1 sign bit,

8 exponent bits, and leaving the remaining 23 bits for precision

(mantissa). V100S supports the FP16 which reduces bits for both

exponent and precision. The recent A100 and Google Tensor Pro-

cessing Unit (TPU) also support Brain Floating Point 16 (BFP16)

which cuts more bits from mantissa so that it can represent a wider

value range with lower precision. The A100 GPU also support new

TensorFloat-32 (TF32) type, Int8, Int4, and Binary types [37].

2.3 TensorRT

TensorRT is a high-performance neural network inference frame-

work including a network optimizer and a runtime engine. Given

a trained neural network, it optimizes the network by fusing lay-

ers, choosing the optimal kernel implementation, and reorganizing

the computation based on network structure. Briefly, TensorRT

performs three key optimizations to the neural network compu-

tation graph. First, it eliminates the layers that generate unused

output to avoid unnecessary computation. Second, when possible,

it fuses convolution, bias, ReLU layers to form a single layer. Third,

if multiple layers take the same input tensor, or perform the same

operations with similar parameters simultaneously, it also fuses

these layers, which is referred to as horizontal layer fusion. Note

that these graph optimizations do not change the underlying com-

putations. Instead, they aim to restructure the graph to perform the

operations much faster and more efficiently.

3 NOVEL SELF-ATTENTION ARCHITECTURE

3.1 Tailored Self-Attention Operators

We introduce two tailored operators: (i) on-the-fly attention oper-

ator, i.e., 2 - 6 in Figure 3(a) and 2 - 5 in Figure 3(b), and (ii)

pre-computed linear transformation, a.k.a., step 7’ in Figure 3(b).

On-the-fly attention operator. By performing attention oper-

ator on the fly, we do not need to either write or read the interme-

diate results, respectively, to or from the GPU global memory. Here,

the intermediate results are Q1 · KT
1 ‖Q2 · KT

2 and S in Figures 3(a)

and 3(b). As a result, all operations are performed in either shared

3

SC ’21, November 14–19, 2021, St. Louis, MO, USA Shiyang Chen et al.

= ||

Q K

||]Scaling ()

Masking & softmax

1

3

4 5
6’

S

1 = ||

7’

2

Pre-computed linear
transformation operator

6

S

7

Row iQ K

Scaling ()

1

3

1

Input
(X)

2

Row i
Masking & softmax

4 5 Output

On-the-fly
attention
operator

(a) On-the-fly attention operator w/o pre-computed linear transformation operator.

1

(b) On-the-fly attention operator w/ pre-computed linear transformation operator.

Row i

Input
(X)

Row i

Row i
Output

Row i

1’V

Z On-the-fly
attention
operator

Figure 3: Our self-attention architecture for a sequence of three tokens, four features per token, and two heads, each of which is a thicker

border box. We assume (a) use tensor tile pruning for WQ, WK and WO, row pruning for WV. In (b), WQ and WK remain tensor tile pruned

while WO is row pruned, and WV is dense. Note, the symbol ‖ represents the concatenation of different heads.

memory or registers. Note, our on-the-fly attention operator is dif-

ferent from TensorRT that fuses various kernels into one kernel.

That is, TensorRT still has to write intermediate results to and from

global memory. TensorRT kernel fusion can only avoid copying the

data from the global memory of one kernel to another.

On-the-fly attention requires to resolve the data dependency

from Z toQ,K, and V, as shown in Figure 3(a). There are two levels

of data dependency, that is, head and row-level dependencies: (i)

Each head of Z depends on the corresponding head of Q and K.

Therefore, we can compute each head of Z independently. (ii) Each

row of Z is also independent. It is also important to note that soft-

max requires finding the maximum from the entire row of one head

in Q1 ·KT
1 ‖Q2 ·KT

2 . Hence, one row of one head in Z is the minimal

independent unit we can derive. Since head-level dependency is

straightforward, we explain the row-level dependency below.

As shown in Figure 3(a), we compute each row 𝑖 in Q1 · KT
1 at

a time. This row is calculated by scaling one row of Q1 (2) and

multiplying this scaled row with KT
1 (3). We store row 𝑖 in shared

memory for masking (4) and softmax (5) computations. Since a

Cooperative Thread Array (CTA) is the maximum thread unit in

modern GPUs that can share the same shared memory region, we

schedule a CTA to work on row 𝑖 in S. The threads in each CTA

compute row 𝑖 of Q1K
T
1 in parallel, perform a parallel reduction for

softmax, and arrive at row 𝑖 in S. Still in this on-the-fly attention

operator, this one row of S loads a head from V and performs

multiplication to derive one row of Z (6). As shown in Figure 3(b),

on-the-fly attention operator is slightly revised when pre-computed

linear transformation operator is introduced. When deployed on

tensor cores, E.T. computes a row of tiles in Z at a time. It is also

important to note that even one CTA is responsible for 16 rows

of a head at a time, recent transformer-based models which often

process ≥12 heads, with ≥768 features according to [56], would

have adequate workloads to saturate one V100S GPU.

Pre-computed linear transformation operator. For multi-

head attention, we use WO to combine various heads of Z and

derive the final output matrix in step 7 of Figure 3(a) as following:

Output = Z ·WT
O = (‖Hh=1Zh) · (‖Hh=1WT

O,h) =
H∑
h=1

Zh ·WT
O,h, (4)

where we assume both Z andWO have H heads. We use the con-

catenation operator ‖H
h=1 to concatenate them together. Intuitively,

Equation 4 suggests that the concatenated multiplication, in fact,

multiplies each head of Z with the corresponding head ofWT
O
to

arrive at the resultant matrix of that head. Afterwards, we add

the resultant matrices of all heads together to arrive at the output.

This is also observed in step 7 of Figure 3(a), where Output =

Z1 ·WT
O,1 + Z2 ·WT

O,2.

Assuming S = softmax(Q·KT

√
𝑑𝑘

), we can obtain: Z = S ·V, further
Zh = Sh · Vh for each head h. Using this equation to replace Zh in

Equation 4, we get:

Output =
H∑
h=1

(Sh · Vh) ·WT
O,h =

H∑
h=1

Sh · (Vh ·WT
O,h)

=
H∑
h=1

Sh · (X ·WT
V,h ·WT

O,h) =
H∑
h=1

Sh · X · (WT
V,h ·WT

O,h) .
(5)

The transformation in Equation 5 allows us to compute the

matrix multiplication betweenWV andWO beforehand. Further,

becauseWV andWO are known before the inference computation,

we can pre-compute each head of WT
V,h

·WT
O,h

.

Figure 3(b) shows how the pre-computed linear transformation

operator works for the same example in Figure 3(a). We allow

each head ofWV andWO in 7’ to multiply and arrive at (WT
V,1 ·

WT
O,1)‖(WT

V,2 ·WT
O,2). Then, X multiplies with this matrix in step

1’ . Finally, step 6’ in Figure 3(b) to derive the output. In addition to

the aforementioned derivation, our evaluation of real-world dataset

also exhibits that this pre-computed linear transformation operator

yields the same results as the original design [51].

4

E.T.: Re-Thinking Self-Attention for

Transformer Models on GPUs SC ’21, November 14–19, 2021, St. Louis, MO, USA

3.2 Sequence Length Aware Optimization For
On-the-fly Attention Operator

As the sequence length, i.e., the # of columns in one head of Q1 ·
KT
1 ‖Q2 · KT

2 in Figure 3(a) increases, E.T. could potentially suffer

from two performance issues: (i) The intermediate result residing in

shared memory becomes larger and may exceed the shared memory

capacity. (ii) We need to load the entire K to compute each row

of QKT at step 3 in Figure 3(a). Similarly for step 6 . This could

result in overwhelming memory access traffic.

For the first performance issue, the total needed shared memory

space for a tile row has a relation with sequence length as below:

tileHeight · dmodel

H︸������������������︷︷������������������︸
Tile row i of Q in Figure 3(a)

+ tileHeight · seqLen︸������������������︷︷������������������︸
Tile row i of S in Figure 3(a)

, (6)

where the length of a row in Q1 · KT
1 is the sequence length, i.e.,

seqLen, tileHeight = 16, dmodel is the dimension of the word em-

bedding, and H denotes the number of heads in the model which

ranges from 2 to 128 according to [56]. If we use BERTLARGE, which

features 16 heads, dmodel=1,024, and 384 as the sequence length,

the total needed shared memory is 7KB. Since a commodity GPU

like V100S usually has 96 KB shared memory per processor, our

on-the-fly attention could serve a relatively long sequence length.

For the second performance concern, step 3 of Figure 3(a), where

every row of Q needs to access the entire head of K during the

on-the-fly computation to avoid writing and reading one head of

Q1 · KT
1 ‖Q2 · KT

2 matrix, respectively, to and from global memory.

Our on-the-fly attention dissects the GEMM into the row vector

of Q multiplying a head in KT so that each CTA performs the

inner-product between the row vector and every column vector in

the head. Thus finishing the entire resultant matrix needs Q to be

accessed once while KT to be accessed multiple times. Similarly for

step 6 , where we need to access the entire head of V for each row

of S. As a result, on-the-fly attention would be beneficial only when

K and V are relatively small which means the GPU bandwidth can

afford repeatedly loading them for various rows of Q.

Otherwise, we adopt the outer-product-based GEMM to reduce

the memory traffic when computing 3 and 6 . Using 3 in Fig-

ure 3(a) as an example, we can load the first column Q, and the

first row of KT to compute the partial results for the entire Q1K
T
1 .

Afterwards, we do that for the follow-up columns of Q1, and rows

ofKT
1 . Once each column of Q1 has multiplied with the correspond-

ing row of K1, we arrive at the Q1 · KT
1 . This design only loads

Q1 and K1 once. However, we need to schedule the entire GPU to

perform this computation, writing the results into global memory,

performing global synchronization, then loading one row ofQ1 ·KT
1

in shared memory for the follow-up masking, softmax, and eventual

multiplication with V, similarly for Q2 · KT
2 .

We find sequence length is the key factor that decides whether

we should adopt outer-product-based GEMM, hence break 3 and 6

from our on-the-fly attention. Therefore, an adaptive solution that

switches between on-the-fly and breaking 3 and 6 from on-the-fly

is needed. In the evaluation section, we will present a thorough

study about this design exploration.

3.3 Reordered Self-Attention Architecture For
Pure FP16-based Attention Computation

Figure 4: The heatmap of over-

flow problem faced by atten-

tion mechanism when we use

tensor core to compute Q1 ·
KT
1 ‖Q2 · KT

2 , where the orange

shadow colors are the overflow

entries. Here, we use Trans-

former on WiKiText-2 with se-

quence length = 16 and dimen-

sion of word embedding as 256.

We observe that the result of multiplying one tile of row 𝑖 in Q

with one tile in K goes beyond the value range of FP16. Figure 4

exhibits the overflow problem faced by pure FP16 basedQ1 ·KT
1 ‖Q2 ·

KT
2 . Clearly, one can observe that the majority of the entries are

shadow ones which mean they face overflow problems.

In this context, one needs to use a mixed precision-based tensor

operation. Mixed precision implies that each row 𝑖 of Q1 · KT
1 ‖Q2 ·

KT
2 has to be stored in FP32, and converted back to FP16 for the

subsequent tensor core operations. Mixed precision introduces two

aspects of overhead when compared to pure FP16-based attention:

(i) double the shared memory consumption when storing row 𝑖 of
Q1 ·KT

1 ‖Q2 ·KT
2 ; (ii) converting FP32 back to FP16 for subsequent

masking and softmax computations.

To achieve pure FP16-based attention computation, we move the

scaling operation, i.e., 2 in Figure 3(a) and 3(b), before the matrix

multiplication operation 3 . Note, as shown in Figure 1, scaling

operation is performed after Q1 · KT
1 ‖Q2 · KT

2 is obtained in the

state of the art projects, such as PyTorch [42] and TensorRT [40].

since each row ofQ1 ·KT
1 ‖Q2 ·KT

2 will be converted back to FP16 for

subsequent operations, this implies that our reordering guarantees

pure FP16 will not experience overflow problem during attention

computation. It is also important to note that changing the location

of scaling operation and optimizing softmax accuracy only means

avoiding the overflow errors, which suggests that our reordering

yields the same results for the design without such an adjustment.

4 ATTENTION-AWARE MODEL PRUNING

4.1 Transforming Existing Pruning Designs
into Tensor Core Friendly Formats

W

X

W

(a) Row pruning (b) Column pruning

X

X (adjusted)

Figure 5: Examples of a linear transformation with row/column

pruned weight matrix. 𝑋 is the input embedding matrix.

5

SC ’21, November 14–19, 2021, St. Louis, MO, USA Shiyang Chen et al.

Condensing row/column pruning for the tensor core. Af-

ter row or column pruning [21] of the weight matrixW, we propose

to remove the pruned rows or columns, and condense the existing

nonzero rows or columns into a new dense weight matrixWpruned.

Here, W could represent WQ, WK, WV, and WO. Subsequently,

we can resort to a tensor core-based highly optimized GEMM rou-

tine for rapid matrix multiplication. We further find that row and

column pruning generate different weight matrices that could affect

the subsequent attention computation. This leads to our attention-

aware pruning (Section 4.3).

Row pruning. Figure 5(a) exemplifies the row pruning design.

Assuming the second and last rows are pruned in W. We condense

the pruned W into a 2 by 4 dense Wpruned matrix. Finally, we

multiply the inputXwith the pruned and transposed weight matrix

WT
pruned

to arrive at the resultant matrix with two nonzero columns.

Here, since both X andWT
pruned

are in dense format, one can use

tensor core to accelerate the GEMM. Column pruning adopts a

similar idea to enable tensor core-based GEMM but the procedure

is slightly different. As shown in Figure 5(b), the weight matrix is

column pruning, then transposed and eventually multiplied with

the input matrix X. Because only the first and third columns have

nonzero entries inWpruned, only the first and third columns of X

will have nonzero entries to multiply with. Therefore, one can use

Xadjusted to multiply with WT
pruned

.

Irregular pruning, which does not yield promising time con-

sumption saving, is included here for completeness. Particularly,

irregular pruning produces a weight matrix with nonzero entries

scattered at random locations in the weight matrix. We adopt a

hierarchical sparse format from a recent study [59] to implement

tensor core-based irregular pruned linear transformation. This for-

mat contains two levels of sparsity: (i) a bitmap-based format to

store each tensor tile in the weight matrix that contains at least one

nonzero. (ii) a Block Compressed Sparse Row or Column (BCSR or

BCSC) format to store various nonzero tensor tiles.

4.2 Tensor Tile Pruning for Transformer
Models

Despite row/column/irregular pruned weight matrix can be trans-

formed into formats leveraging tensor cores, one needs to pay non-

trivial overheads on pre-processing the inputs, and post-processing

the resultant matrix. This section introduces a tensor tile-based

pruning algorithm, which either excludes the entire tensor tile of

weights or keeps the entire tensor tile intact within weight matrices.

Apparently, this tensor tile-based pruning introduces significantly

better storage and control-flow logic compared to the aforemen-

tioned approaches in Section 4.1. Below, we formulate this pruning

design into an algorithm that is similar to reweighted 𝑙1 method [4].

Consider an𝑁 -layer Transformer, where the collection ofweights

and bias in the 𝑘th layer are denoted by W𝑘 and b𝑘 , respectively.

We denote the tile row as 𝑟 , tile column as 𝑐 . An original weight

matrix W ∈ R𝑚×𝑛 is divided into 𝑝 × 𝑞 tiles, where 𝑝 = 𝑚
𝑟 , and

𝑞 = 𝑛
𝑐 . In weight pruning, our objective is to prune the weights.

Therefore, we minimize the loss function subject to constraints of

different weight distribution in each layer. Formally, this tensor

tile-based weight pruning can be written as

min 𝑓
({W𝑘 }𝑁𝑘=1, {b𝑘 }𝑁𝑘=1

) }),
subject to # of non-zero tiles in W𝑘 is less than 𝑙𝑘 ,

(7)

where 𝑙𝑘 is the desired numbers of non-zero tiles. The loss func-

tion is denoted by 𝑓
({W𝑘 }𝑁

𝑘=1, {b
𝑘 }𝑁

𝑘=1

)
. To mitigate the accu-

racy loss caused by directly pruning the weights, we relax the

hard constraints by adding regularization terms in the objective

function. When we use group Lasso, the regularization term is∑𝑁
𝑘=1

∑𝑝
𝑖=1

∑𝑞
𝑘=1 𝛽

𝑘
𝑖 𝑗 ‖W𝑘

𝑖 𝑗 ‖2, where 𝑝 and 𝑞 are the number of (tile-

wise) rows and columns in the 𝑘th layer, respectively. Together, we

rewrite the weight pruning problem from Equation 7 as:

min 𝑓
({W𝑘 }𝑁𝑘=1, {b𝑘 }𝑁𝑘=1

) + 𝜆
𝑁∑
𝑘=1

𝑝∑
𝑖=1

𝑞∑
𝑗=1

𝛽𝑘𝑖 𝑗 ‖W𝑘
𝑖 𝑗 ‖2, (8)

where 𝜆 is the weight penalty factor for regularization strength.

We illustrate the training process using an 8 × 4 weight matrix

(two heads; each with 4 × 4) as shown in Figure 6. The training has

the following steps. (i) Initialization. We start with a pre-trained

model. (ii) We check if the current epoch falls into the pre-defined

milestones (i.e., the𝑚1,𝑚2, · · · ,𝑚th
𝑠 epoch). If yes, we select the tile

size 𝑟 ×𝑐 as 2×2 and divide the weight matrix𝑚×𝑛 (8×4) into 𝑝×𝑞
(4 × 2) sub-matrices. We compute the 𝑙2-norm of each tile ‖W𝑘

𝑖 𝑗 ‖2
and update the tile penalty factor 𝛽𝑘𝑖 𝑗 using 𝛽

𝑘
𝑖 𝑗 = 1/(‖W𝑘−1

𝑖 𝑗 ‖2 + 𝜖),
where 𝜖 is a small value preventing division by zero. (iii) We update

the model loss as indicated by Equation 8. Note that in this step we

treat 𝜆 and 𝛽𝑘𝑖 𝑗 as constant. (iv) We train the Transformer model and

update the parameters. We stop increasing 𝜆 when the reweighted

training accuracy drops slightly. As a result, a well-trained set of

parameters will be generated. (v) We perform weight pruning based

on 𝑙2 norm. 1 We first divide the weight matrix 8×4 into 8 2×2 sub-
matrices. 2 We compute 𝑙2 norm of the sub-matrices to produce a

4 × 2 norm matrix. We will select the values with the largest group

𝑙2 norm in a tile. If the value is less than pre-set percentile (say

50%), we set the value to 0. 3 We generate a pruning mask matrix

(8 × 4, all 0s, and 1s) for the 𝑝 × 𝑞 tiles. 4 We multiply the mask

matrix with the original weight matrix element-wisely to obtain

the tensor tile pruned weight matrix. Finally (vi), we retrain the

non-zero entries for several epochs (e.g., 4), to recover the accuracy.

4.3 Novel Attention-aware Adaptive Pruning

Since irregular pruning introduces tremendous overhead, only row,

column, and tensor tile-based pruning algorithms can bring perfor-

mance gains. However, the row pruning of either matrix Q or K

degrades the prediction accuracy severely. The root cause is that the

attention neural network could be interpreted as a retrieval process,

where the row vectors in Q and K are considered as queries and

keys [51]. The dot-product of query and key is computing their

distance in the feature space. Therefore, removing an entire row

means reducing the size of input data. This significantly affects the

captured information from the model. As a result, we only have

column and tile pruning for WQ and WK. For WO, row, column,

and tile pruning are possible candidates.

Now, we considerWQ andWK. On the one hand, because col-

umn pruning either of them will lead to a dense matrix after X

6

E.T.: Re-Thinking Self-Attention for

Transformer Models on GPUs SC ’21, November 14–19, 2021, St. Louis, MO, USA

(i) Initialization
l -norml -norm

l -norm
of

(iii)
Update

total loss
using

Eqn. (8)

No

update pen-
alty factor:

(iv
) T

ra
in

Yes

-0.4
1.1

1.2 2.1
0.8 0.6

2.1
-0.1

0.7 2.1
2.3 1.5

0.4 1.5
1.7 1.2

0.6 1.8
1.6 1.1

0.6 1.8
0.1 3.6

0.4 1.5
1.3 -0.5

1.5
0.3

5.1
3.6

2.2 6.4

3.3 2.6

3.3 3.0

2.0 4.1

2.1

2.11

1

2.11

0

pruning mask

el
em

en
t-w

ise
 m

ul
pl

ic
at

io
n

index

0

0

2.10

1

2.1

2.1

2.1

2.1 0.5
1.1

2.1 1.3
0.6 2.1

1.8 5.1
0.1 3.3

0 0
00

0 0
00

0 0
0 0

2.3
2.1

0.4
1.7

0.5 2.3
1.1 2.1

1.8
0.1

2.1 1.3
0.6 2.1

0.8 0.9
1.5 3.6

1.6 0.7
0.7 0.6

1.4 0.3
2.6 0.5

0.8 0.1
0.9 1.8

1.5
1.2

5.1
3.3

ij=1/(||Wij ）Wij

trained W with
high accuracy

0.4
1.7

0.5 2.3
1.1 2.1

2.1
0.1

2.1 1.3
0.6 2.1

0.8 0.9
1.5 3.6

1.6 0.7
0.7 0.6

1.4 0.3
2.6 0.5

0.8 0.1
0.9 1.8

1.5
1.2

5.1
3.3

3.5

6.6

2.6 2.0

2.1

4.1

2.7 2.6

0.5 0.2

0.4 0.5

0.3 0.3

0.4 0.4

-0.4
1.1

1.2 2.1
0.8 0.6

2.1
-0.1

0.4 1.5
1.7 1.2

0.6 1.8
1.6 1.1

0.6 1.8
0.1 3.6

1.2
0.3

5.1
3.6

(vi) Retrain
nonezero

entries for 4
epoches

0.8 0.9
1.5 3.6

0 0
0 0

(v) Magnitude pruning
 based on l -norm

1.1
0.6

1.7 1.9
1.7 1.6

3.9 1.7
0.2 0.5

0 0
00

0 0
00

0 0
0 0

0 0
0 0

-1.2
-0.6

-0.2 4.2
0.8 3.3

00
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

2.10.7
2.3 1.5

0.4 1.5
1.3 -0.5

1 4

3

3

2

6.4

3.3

3.3

4.1

2

0

0

0

0

(ii
).

M
ile

sto
ne

?

Figure 6: Re-weighted training, pruning, and masked retraining; we use an 8 × 4 weight matrix (two head; each with 4 × 4) as an example.

multiplies with the transpose of either WQ or WK. Therefore, one

cannot enjoy pruned resultant matrix for future operations. On the

other hand, tensor tile pruned matrix can avoid both pre- and post-

processing overhead that is suffered by column pruning. As a result,

we use tensor tile-based pruning for WQ and WK.

ForWV andWO, the preferred pruning patterns are highly de-

pendent upon whether we adopt pre-computed linear transforma-

tion or not. If we do not adopt pre-computed linear transformation,

which is shown in Figure 3(a), we prefer column pruned WV, and

tensor tile pruned WO. Otherwise, since we pre-compute the mul-

tiplication between WV and WO, we care more about the pruning

pattern in the resultant matrix (‖H
h=1W

T
V,h

· WT
O,h

). As shown in

Figure 3(b), we adopt row pruning forWO while leaveWV as dense

matrix for two reasons. First, WO is row pruned because the re-

sultant matrix X · (‖H
h=1W

T
V,h

·WT
O,h

) will remain column pruned

that can benefit step 6 in Figure 3(b). Second,WV is not pruned

because pruning WV will not only lead to no sparsity changes

in X · (‖H
h=1W

T
V,h

·WT
O,h

) but also prevent us from pruning more

entries in the other weight matrices. We abbreviate the method as

attention-aware pruning in the following context.

5 EXPERIMENTS

5.1 Experimental Setup

Datasets. For the Transformer model, we conduct experiments on

theWikitext-2 dataset [30]. For BERTBASE [11] and DistilBERT [48]

models, we conduct experiments on GLUE benchmark [52], a com-

prehensive collection of natural language understanding tasks cov-

ering three NLP categories, i.e., inference tasks (MNLI [55], Quora

Question Pairs (QQP) [62], QNLI [52] (a set of over 100,000+ question-

answer pairs from SQuAD [45]), single-sentence (SST-2 [49]), para-

phrase similarity matching (STS-B [5], Microsoft Research Para-

phrase Corpus (MRPC [12]) and WNLI [26]).

Baseline models. Our baseline models are unpruned Trans-

former, BERTBASE, and DistilBERT. We list the reported prediction

accuracy of BERTBASE and DistilBERT from the original papers

in the first row as shown in Table 1. For BERT, we use the official

BERTBASE [11], uncased model as our pre-trained model. There

are 12 encoder layers (L =12; embedding dimension dmodel = 768;

self-attention heads H = 12), with total number of parameters 110

Million. For DistilBERT, there are 6 encoder layers (L =6; embedding

dimension dmodel = 768; self-attention heads H = 12). For Trans-

former, there are 2 encoder layers (L =2; embedding dimension

dmodel = 800; self-attention heads 𝐻 = 4).

Evaluation metrics. We measure the latency of inference for

different models and sparsities. It takes word embeddings as the

input and generates the output for task-specific post-process. For

pruning algorithms, on WikiText-2, we use the accuracy of next

word prediction. On all GLUE benchmarks, we report the metrics

following the conventions in [52], i.e., accuracy scores are reported

for MNLI, SST-2, QNLI and WNLI; F1 scores are reported for QQP,

MRPC; Spearman correlations are reported for STS-B.

Implementation details. We implement E.T. from scratch in-

stead of using TensorRT [40]. Although TensorRT provides the

API for developers to add customized kernels as plugins, we find

doing that would disrupt TensorRT from optimizing the entire im-

plementation. Further, the optimizer of TensorRT works on the

operator level as opposed to the source code level. It can only fuse

the built-in operators by searching from the pre-defined rules and

implementations. Besides, we have to pay the overhead of wrap-

ping our customized code into TensorRT, as well as maintaining

the compatibility between our kernel and the TensorRT ones.

Regarding pruning, for Transformer, we first train a model from

scratch for 50 epochs, and the resulting trained model is used as our

pre-trained model. We load the pre-trained model, run 50 epochs

reweighted-based training, subsequently another 50 epochs retrain-

ing after applying pruning on the previously trained models. For

BERT, we use the official BERTBASE, uncased model as our pre-

trained model and we set 𝜆 as 0.0001. While a distilled model from

the BERT, uncased checkpoint, is used as the pre-trained model for

DistilBERT [48]. We set 𝜆 as 0.0001 for MNLI and 0.0003 on other

tasks for DistilBERT.We train the models for the downstreamGLUE

tasks with their corresponding datasets. As we feed the data, the

entire pre-trained model and the additional untrained classification

layer are trained on our specific task. For fine-tuning, we run 4

epochs with a learning rate from the range between 0.00003 and
0.00005 (learning rate which gives best performance is selected for

each task) and batch size of 32.

Evaluation platforms. Training and Evaluation are performed

on Python 3.6.10 and CUDA 11.1 on V100SGPU and Intel(R) Xeon(R)

Gold 6244 @ 3.60GHz CPU. The model is trained with PyTorch

1.4.0, and the source code of our implementation is compiled with

NVIDIA nvcc 11.1 and GCC 7.5.0 with the optimization flag of O3.

7

SC ’21, November 14–19, 2021, St. Louis, MO, USA Shiyang Chen et al.

680.0

682.5

0 10 20 30 40 50 60 70 80 90 100

Sparsity (%)

50
75
100
125
150
175

L
at
en
cy

(μ
s) TensorRT

FasterTransformer

Our E.T.

PyTorch

Figure 7: The latency of one encoder layer in BERTBASE model with

the input sequence length = 128.

75 100 125 150 175 200 225 250
Sequence length

0

10

20

30

40

50

L
at
en
cy

(μ
s)

TensorRT Transformer

E.T. OTF Transformer

E.T. partial OTF Transformer

TensorRT BERTBASE

E.T. OTF BERTBASE

E.T. partial OTF BERTBASE

Figure 8: The performance of different attention implementations,

where “OTF” stands for on-the-fly, and “partial OTF” means we

break 2 - 6 of Figure 3(a) into two kernels, i.e., 2 - 3 as one kernel

and 4 - 6 as another kernel.

5.2 Turnaround Time Study

5.2.1 E.T. vs. state-of-the-art. Figure 7 shows the latency of our

implementation of an encoder vs the state-of-the-art including Ten-

sorRT [40], FasterTransformer [39] and PyTorch [42]. For TensorRT,

we use the implementation of the encoder in the BERT demo of

TensorRT [40]. For FasterTransformer, we use the sample code of

C++ API provided with the latest version 3.1. Particularly, we com-

pare the latency of one encoder layer with 𝑑𝑚𝑜𝑑𝑒𝑙 of 768 and 12

heads, which is the configuration of BERTBASE and DistilBERT.

Since E.T. can automatically search through various linear trans-

formation implementations and choose the optimal one (similar to

FasterTransformer), E.T. finds and uses the best CUBLAS GEMM

routine, i.e., algorithm CUBLAS_GEMM_ALGO5_TENSOR_OP (on

our server) [38] when the sparsity is below 40% while attention-

aware pruning afterwards. Overall, we observe that E.T. outper-

forms PyTorch, TensorRT, and FasterTransformer across all sparsity

cases. Notably, as the prune ratio increases, the maximum speedup

climbs to 13.7×, 3.4× and 2.5× over PyTorch, TensorRT, and Faster-

Transformer, respectively.

5.2.2 On-the-fly attention operator vs TensorRT attention. We com-

pare the performance of attention computation, i.e., steps 2 - 6 in

Figure 3(a), between our implementations and the corresponding

BERT plugin in TensorRT [40] in Figure 8. Note, we attempt to com-

pare against FasterTransformer regarding on-the-fly attention op-

erator but found breaking the encapsulation of FasterTransformer,

i.e., inserting cudaDeviceSynchronize() to FasterTransformer ker-

nels for timing, would end up with worse turnaround time than

TensorRT. This leads us to use TensorRT for this comparison.

As shown in Figure 8, either our on-the-fly attention or partial

on-the-fly attention operator would best TensorRT across all cases.

Particularly, for the sequence length between 64 to 256, our average

speedup on Transformer is 2.5×, and 3.3× on BERTBASE. For the

full on-the-fly vs partial on-the-fly, when the sequence length is

short, the full on-the-fly attention has 1.5× speedup in BERTBASE
and 1.4× speedup in Transformer on average. But when the se-

quence length goes beyond 224, our partial on-the-fly attention

starts to outperform. Therefore, E.T. will adapt the partial on-the-fly

attention when sequence length is larger than 224.

1 2 4 8 16
H (# of heads)

0

1

2

S
p
ee
d
u
p

dmodel = 768 dmodel = 1024 dmodel = 2048

Figure 9: The speedup of with pre-computed linear transformation

over without pre-computed linear transformation for one encoder.

5.2.3 Performance impacts of pre-computed linear transformation.

Figure 9 shows the performance of an encoder changing with the

number of heads with sequence length as 128 and dmodel = 768,

1024, and 2048. Here, we use DistilBERT on the MRPC dataset,

where the prune ratio is 50% w/o pre-computed and 80% with pre-

computed linear transformation. The computation saving together

with a higher prune ratio in the pre-computed linear transformation

yields better performances virtually across all cases. On average,

the speedup is 1.1×, 1.3×, and 1.6× respectively for dmodel = 768,

1024 and 2048, respectively. Note, a larger dmodel leads to more

speedup because the computation saving is positively proportional

to the model size. This trend suggests that our pre-computed linear

transformation would offer more benefits when the model becomes

larger, which is also the trend in recent transformer-based models.

5.2.4 Comparison of various pruning algorithms. Figure 10 shows

the performance of different pruning algorithms in the linear trans-

formation with dmodel = 768 and dmodel = 1, 024 and the input se-

quence length as 128. We use the fastest CUBLAS GEMM configura-

tion on our server, i.e., CUBLAS_GEMM_ALGO5_TENSOR_OP [38]

as the unpruned baseline.When sparsity reaches 95%, our tensor tile

pruned linear transformation enjoys 3.5×, 3.2× speedups, respec-

tively for dmodel = 768 and dmodel = 1, 024. The row and column

pruned linear transformation has 1.6× and 1.7×maximum speedups

when dmodel = 1, 024, respectively, while 1.2× and 1.6× maximum

speedups when dmodel = 768, respectively. We observe that the

pruned linear transformer performance is determined by its spar-

sity and pruning method. As the results shown in Figure 10, when

sparsity is the same, tensor tile pruning has better performance

than column pruning.

5.2.5 Hardware profiling. Figure 11 shows the profiling result via

nvprof with 128 as sequence length and BERTBASE configuration.

Figures 11(a) and 11(b) show the memory traffic of accessing global

8

E.T.: Re-Thinking Self-Attention for

Transformer Models on GPUs SC ’21, November 14–19, 2021, St. Louis, MO, USA

0 25 50 75 100

Sparsity (%)

1

2

3

S
p
ee
d
u
p

(a) dmodel=768

0 25 50 75 100

Sparsity (%)

1

2

3

S
p
ee
d
u
p

Unpruned (Dense)

Row-pruning

Column-pruning

Tensor-tile-pruning

(b) dmodel=1,024

Figure 10: The performance of different pruning algorithms of the

linear layers in the encoder.

100 200
Sequence length

0

2

4

6

gl
d
tr
an
sa
ct
io
n
s

×105

(a) gld_transaction

100 200
Sequence length

0.0

0.5

1.0

gs
t
tr
an
sa
ct
io
n
s

×105

(b) gst_transaction

100 200
Sequence length

40

60

80

sm
effi

ci
en
cy

(%
)

(c) SM_efficiency

100 200
Sequence length

0.0

0.5

1.0

IP
C

Our E.T.
TensorRT

(d) IPC

Figure 11: The hardware profiling results of our on-the-fly attention

operator vs. the TensorRT counterpart.

memory using nvprof, where gld_transactions measures the num-

ber of global memory loading transactions and gst_transactions

measures the number of global memory storing transactions. Our

implementation loads 1.8×, on average, more memory compared

to TensorRT. The good news is that our saving on storing the inter-

mediate results to global memory is strikingly more significant, i.e.,

5× on average.

Other than the contribution of reducing global memory traffic,

our CTA-based workload decomposition and kernel fusing expose

more parallelism so the utilization of GPU is higher. Figure 11(c)

shows the average ratio of time when there is at least one warp

residing on the multiprocessors measured by sm_efficiency. Fig-

ure 11(d) shows the instruction-per-cycle (IPC). On average, we

enjoy 30% and 22% boost over baseline on sm_efficiency and IPC,

respectively. The improved resource utilization indicates that the

benefit of on-the-fly attention (i.e., reducing store transactions)

outweighs the overhead (i.e., more load transactions). The intrinsic

reason is that extra load does not saturate the memory bandwidth

of GPU while storing data after each kernel execution hurts the

hardware utilization because it is on the critical path. On-the-fly

Table 1: Comparison of prediction accuracy and inference time of

different models on GLUE benchmark. We test the irregular prun-

ing method [23] on BERTBASE and DistilBERT report the accuracy.

BERTBASE MNLI QQP QNLI SST-2 STS-B MRPC WNLI AVG.

Baseline [11] 84.6 91.2 90.5 93.5 85.8 88.9 56.3 84.4

BERTBASE (ours) 84.3 91.4 91.6 92.8 89.1 89.4 56.3 85.0

Irregular [23]1 81.3 85.7 87.9 89.4 87.1 84.8 56.3 81.8

Pruning ratio (%) 70% 90% 70% 70% 60% 70% 90% 74.3%

Latency (𝑚𝑠) 51.7 17.4 47.2 47.2 78.1 47.2 17.4 43.8

Column (ours) 80.3 86 81.4 85.9 85.3 86.8 56.3 80.3

Pruning ratio (%) 30% 50% 40% 30% 20% 10% 90% 38.6%

Latency (𝑚𝑠) 2.10 1.97 2.04 2.09 2.28 2.50 1.57 2.08

Tensor tile (ours) 82.9 86.2 83.3 84.1 85.3 86.9 56.3 80.7

Pruning ratio (%) 30% 50% 40% 50% 30% 20% 90% 44.3%

Latency (𝑚𝑠) 1.43 1.20 1.44 1.3 1.45 1.56 0.69 1.30

Attention-aware (ours) 81.8 86.4 84.6 84.2 85.2 86.7 56.3 80.7

Pruning ratio (%) 30% 80% 40% 70% 30% 20% 90% 51.4%

Latency (𝑚𝑠) 1.38 0.78 1.25 0.90 1.38 1.46 0.67 1.12

DistilBERT MNLI QQP QNLI SST-2 STS-B MRPC WNLI AVG.

Baseline [48] 82.2 88.5 89.2 91.3 86.9 87.5 56.3 83.1

DistilBERT (ours) 81.9 90.2 89 90.7 86.5 89.5 56.3 83.4

Irregular [23]1 80.3 83.9 84.2 85.4 84.1 81.3 56.3 79.4

Pruning ratio (%) 40% 80% 80% 80% 60% 70% 90% 71.4%

Latency (𝑚𝑠) 44.4 16.1 16.2 16.2 38.4 23.5 8.7 23.4

Column (ours) 76.9 83.9 84.1 83.4 78.1 80.5 56.3 77.6

Pruning ratio (%) 40% 40% 30% 50% 20% 40% 90% 44.3%

Latency (𝑚𝑠) 1.03 1.03 1.06 1.04 1.10 1.12 0.79 1.02

Tensor tile (ours) 77.3 84.7 83.7 82.6 84.5 80.6 56.3 78.5

Pruning ratio (%) 40 % 40% 30% 60% 20% 50% 90% 47.1%

Latency (𝑚𝑠) 0.69 0.66 0.72 0.60 0.77 0.60 0.35 0.63

Attention-aware (ours) 78.4 85.1 83.6 82.6 84.3 81.2 56.3 78.8

Pruning ratio (%) 40% 40% 30% 90% 20% 90% 90% 57.1%

Latency (𝑚𝑠) 0.62 0.62 0.69 0.33 0.74 0.33 0.33 0.53

attention loads more data to reduce the latency of each inference

execution which determines the performance in this scenario.

1 3 4 5 6 7 On-the-fly&

0 1 2 3 4 5
0
50
100
150
200
250
300

T
h
ro
u
gh

p
u
t
(G

B
/s
)

Figure 12: The achieved memory throughput of various steps in

self-attention by TensorRT. Note, steps 1 - 7 are the steps from Fig-

ure 3(a). 2 , a scaling operator, is not reported.

5.2.6 Memory throughput of TensorRT operators. Figure 12 shows

the achieved memory throughput of various steps in TensorRT.

The average achieved memory throughput is 98 GB/s, which is

only 8.6% of the peak memory bandwidth of V100S at 1,134 GB/s.

In contrast, our on-the-fly attention achieves significantly higher

memory throughput, i.e., 311 GB/s or 27.5% of the peak memory

bandwidth. Note, we report memory throughput for GEMM, soft-

max and masking operators because these operators are memory

bound operators. Particularly, according to [36], when arithmetic

intensity is lower than 138, the operator is memory bound. For

operators 1 - 7 , the highest arithmetic intensity is 128 of 1 .

5.3 Evaluation of Pruning Algorithm

We evaluate and compare 4 different pruning methods of BERT

and DistilBERT on GLUE benchmarks: (i) attention-aware pruning:

row pruned for WV on all encoder layers and tensor tile pruned

9

SC ’21, November 14–19, 2021, St. Louis, MO, USA Shiyang Chen et al.

for other weights; (ii) irregular pruning for all weights; (iii) column

pruning for all weights, and (iv) tensor tile pruning for all weights.

5.3.1 BERTBASE. Experimental results for BERT are shown in Ta-

ble 1. There are two baselines, i.e., one from [11] and one our

fine-tuned model. We retain 95% prediction accuracy/score on aver-

age on attention-aware pruning, tensor tile pruning, and irregular

pruning compared to the baseline model BERTBASE (ours). Our

irregular pruning achieves higher prediction accuracy/score [7]

while maintaining higher pruning ratio on average. On the WNLI

task, there is no accuracy loss even when the pruning ratio reaches

90% on our proposed and other pruning methods. On MNLI, STS-B,

MRPC tasks, the accuracy degradation of attention-aware pruning

is within 4.5%. Irregular pruning has a much higher latency (39.1×
on average) even with a higher pruning ratio) than attention-aware

pruning, with similar accuracy, therefore is not hardware-friendly.

Attention-aware pruning outperforms both column pruning and

tensor tile pruning. It has a 0.56% increase on the average score than

the column pruning while gaining a 24.9% more average pruning

ratio. It also has a 13.8% improvement in prune ratio than tensor tile

pruning, while achieving almost the same accuracy on average. E.T.

allows user-controlled pruning ratio and accuracy loss as shown in

Figure 14. Overall, there is a trade-off between pruning ratio and

accuracy. On average, 5% loss of accuracy is lower or similar to

current state-of-the-arts on BERT compression on GLUE bench-

mark [15, 41, 43, 58]. Our reported average model accuracy after

pruning (96%) is higher or the same compared with these works. For

instance, work [43] achieves the only 90% of full model accuracy.

In [41], the compressed models only retain 81.3%, 77.3%, 94.6% of

full model accuracy using different techniques. [58] achieves 89.8%,

and 93.6% of full model accuracy. [15, 58] retain 95.5% of full model

accuracy.

5.3.2 DistilBERT. Two baselines are also adopted for DistilBERT.

The first one is [48] and the other one is our fine-tuned model.

We retain around 94.5% prediction accuracy/score on average on

attention-aware pruning, tensor tile pruning, and irregular prun-

ing compared to the baseline model DistilBERT (ours). Same as

BERTBASE, there is no accuracy loss even when the pruning ratio

reaches 90% for all pruning methods on the WNLI task. On SST-2

and MRPC, our attention-aware pruning achieves a higher pruning

ratio than irregular pruning. Especially on MRPC, attention-aware

pruning has a higher pruning ratio (90% vs. 70%) under the same f1

score. The latency advantage is also significant (44.2× on average)

as shown in Table 1.

Attention-aware pruning outperforms both column pruning and

tensor tile pruning. It has a 1.5% increase on the average score

compared to column pruning, while the average pruning ratio is

22.5% higher. It also has a 17.5% higher average score than tensor

tile pruning. On MNLI, STS-B tasks, more than 95.7% of the original

score is retained for attention-aware pruning and we achieve a

94.4% average score compared to our fine-tuned baseline.

5.3.3 Impacts of pruning on turnaround time. In Table 1, attention-

aware pruning has lower latency among the four pruning methods

presented. In BERTBASE, attention-aware pruning has the maxi-

mum speedup over our other pruning methods in the dataset QNLI,

where the speedup over column pruning is 2.73× and 1.53× over

Figure 13: The masks of in_proj_weight of Transformer after ap-

plying 4 different pruning methods (a) Attention-aware pruning:

WV row pruning and others tensor tile pruning (b) Irregular prun-

ing (c) Column pruning and (d) Tensor tile pruning. The size of

in_proj_weight is 2,400×800, which is divided into three 800×800
matrices, WQ, WK, WV from top to bottom.

tensor tile pruning. We notice that attention-aware pruning can

further increase sparsity and allow self-attention to benefit from

sparsity as well. Therefore, attention-aware pruning has a better

performance compared to tensor tile pruning, and column pruning

when their sparsity is the same. For example, in dataset QNLI, our

column pruning, tensor-tile pruning and attention-aware pruning

all have a pruning ratio of 40% while attention-aware pruning has

1.59× speedup over column pruning and 1.15× speedup compared

to tensor tile pruning. It has an average speedup of 1.15× over

tensor tile pruning and 1.84× over column pruning. We observe

that attention-aware pruning has a similar performance advantage

in DistilBERT and Transformer as well. It has average speedup of

1.18× over tensor tile pruning and 1.98× over column pruning in

DistilBERT. Overall, attention-aware pruning achieves the best accu-

racy/score than other pruning methods. It has the best turnaround

time with the help of the utilization of sparsity in self-attention and

tensor tile pruning for other linear layers.

5.3.4 Transformer. For each pruning method, we set a group of

pruning ratios and report the corresponding prediction accuracy in

Figure 14(a). Overall, there is a very small accuracy loss when the

pruning ratio is below 85% for all pruningmethods. Attention-aware

pruning achieves similar accuracy compared to column pruning

and tensor tile pruning. Our experiments in Figure 14(b) show that

irregular is not hardware friendly since it leads to a higher latency

(19×) than other pruning methods, with similar accuracy. For better

visualization about how the weight matrix is pruned, Figure 13

shows an example of masks of in_proj_weight of Transformer under

the aforementioned 4 different pruning methods, with pruning ratio

of 50%, i.e., (i) WV row pruning and others tensor tile pruning; (ii)

irregular pruning; (iii) column pruning, and (iv) tensor tile pruning.

In Figure 14, attention-aware pruning has 1.19× speedup and

1.05× speedup compared to column pruning and tensor tile pruning

respectively on average. In summary, our approach can achieve

shorter turnaround time (maintaining tensor core friendly) for

transformer-based models while maintaining the high prediction

accuracy and high pruning ratio.

10

E.T.: Re-Thinking Self-Attention for

Transformer Models on GPUs SC ’21, November 14–19, 2021, St. Louis, MO, USA

0 25 50 75 100

Overall sparsity (%)

80

85

90

95

100

P
re
d
ic
ti
on

ac
cu
ra
cy

(%
)

Irregular

Column

Our tensor tile

Our attention aware

(a) Prediction accuracy

0 25 50 75 100

Overall sparsity (%)

102

103

104

L
at
en
cy

(μ
s,

lo
g
sc
al
e)

(b) Latency

Figure 14: Test accuracy and Latency of the pre-trained model and

different pruning ratios using Transformer.

6 RELATEDWORK

Recent years have seen a rise of interest in deep learning acceler-

ation in our community. Although a majority of the well-known

deep learning systems, such as TensorFlow [1] and PyTorch [42]

support inference, training is their major focus. For inference, there

exists a collection of specialized efforts, such as, TensorRT [40],

Clipper [10], BatchMaker [18], TVM [8], and TensorFlow XLA [19].

In this section, we describe the efforts that are closely related to this

work mainly from two aspects, that is, GPU-accelerated inference

and model compression for transformer models.

GPU-accelerated inference engine includes efforts on con-

volutional neural network [47], recurrent neural network [24],

and attention neural network [16, 21, 39, 40]. Among them, E.T.

is closely related to Guo et al. [21] and TurboTransformer [16]. (i)

Guo et al. [21] combines row/column pruning to accelerate matrix

multiplications for inference. However, their design requires in-

putting the dense matrix (after row/column pruning) and the prun-

ing mask instead of directly removing the pruned rows/columns.

Consequently, [21] cannot introduce pruned resultant matrix for

the follow-up computations. In contrast, E.T. revamps row/column

pruning, introduces a tensor tile pruning, and, most importantly,

attention-aware pruning designs. As shown in Table 1, with our

attention-aware pruning, E.T. achieves 1.6×, and 2× speedup over

column-based pruning (which is used in [21]). (ii) TurboTrans-

former [16] designs an inference system that improves the through-

put for various queries. TurboTransformer processes sequences of

different lengths via memory scheduling to avoid batch padding,

which is absent from some fixed-size inference engines like Ten-

sorRT [40]. [16] also implements optimized and fused CUDAkernels

for higher throughput. In comparison, E.T. focuses on the latency

of a single inference with novel architectures and pruning designs.

Therefore, E.T. could serve as the backend for TurboTransformer.

We also notice a recent effort [17] that aims to accelerate attention

computation. However, this work focuses upon sparse self-attention

while E.T. accelerates conventional self-attention.

Transformermodel pruning. Popular Transformer-based deep

learning models often face the large model size and high computa-

tional costs challenges which motivate the need for weight prun-

ing, and quantization [60]. Below, we focus on pruning. Irregular

pruning [20], which heuristically prunes the redundant weights on

arbitrary locations, often results in irregular, sparse weight matrices,

and causes extra memory storage. Structured pruning [29] was

proposed to structurally remove entire filters, channels, or filter

shapes from the weight matrix. By taking advantage of the regular

shapes of the pruned weight matrices, structured pruning avoids

introducing extra indices to indicate the pruned locations and be-

comes more hardware-friendly. However, due to the coarse pruning

granularity used in structured pruning, a considerable accuracy

drop is observed under a high pruning rate. To strike a better bal-

ance, other pruning methods, such as row/column pruning [21] and

hierarchical decomposition [17], focus on breaking the large matrix

into multiple smaller sub-matrices for parallel execution, which

maintains a regular pattern at the sub-matrix level for efficient

execution but allows for irregular, arbitrary pruning at the global

scale to maintain the high accuracy. Other techniques [48] such

as parameter-sharing [25] and distillation have also been explored.

While pruning is extensively explored by existing work, E.T. is the

first to introduce tensor core supported pruning algorithms for

transformer, as well as attention-aware pruning designs.

E.T. tensor tile pruning vs. existing pruningmethods.There

mainly exist four popular directions for pruning, e.g., magnitude-

based, low-rank decomposition, Neural Architecture Search (NAS)

and loss-based pruning. (i) Magnitude-based pruning, which is used

by early work [23], often results in irregular weight distribution

and is even difficult to be accelerated on current parallel architec-

tures as reported in [54]. Not to mention our tensor core hardware.

(ii) Low-rank decomposition [32] decomposed weights into smaller

matrices to reduce the number of parameters. We conduct experi-

ments using Singular Value Decomposition (SVD). On Transformer,

our study shows that the low-rank-based method has worse per-

formance than all the four methods in Figure 14(a). (iii) Loss-based

pruning, such as structured pruning [54], of uses group Lasso as the

relaxation of the hard constraint. Another loss-based pruning uses

dynamic regularization, for instance, Alternating Direction Method

of Multiplier (ADMM) to solve 𝑙0 constraint problem [61]. 2× and

4×more pruning ratios are achieved compared to magnitude-based

pruning and SVD-based pruning on AlexNet on ImageNet, respec-

tively [61]. However, the resultant sparse matrices are irregularly

distributed. And they are difficult to be accelerated on GPUs as

reported in Table 1. (iv) Neural architecture search (NAS)-based [27]

pruning replaces hand-crafted network architecture by an auto-

matic learning process to search/prune the best network. NAS is

orthogonal to our design as we could apply our attention-aware

pruning on a NAS pruned Transformer model.

Our attention-aware pruning is tailored for Transformer acceler-

ation on tensor cores. We extend reweighted optimization method,

which is a loss-based design, for each tile to achieve a high com-

pression rate under the same accuracy requirement than using

a fixed penalty parameter in the group Lasso method. The resul-

tant sparse matrices are highly compatible with tensor cores. More

specifically, tensor tile pruning not only orchestrates the tensor core

architecture for higher performance but also avoids both pre- and

post- processing overhead that is suffered by column pruning. Our

attention-aware pruning results in a pruned resultant matrix that

can further speed up step 6 in Figure 3(a) and 3(b) when deriving

output. Therefore, our pruned transformer-based models achieve a

high pruning ratio and superior performance over the mainstream

projects on various NLP tasks.

11

SC ’21, November 14–19, 2021, St. Louis, MO, USA Shiyang Chen et al.

7 DISCUSSION

E.T. on other hardware platforms. There are other emerging

hardware platforms that aim at accelerating machine learning infer-

ence. AMD introduces an accelerator similar to Tensor Core called

Matrix Core in the recent architecture [2]. Our hardware-friendly

pruning could work on various fixed-size hardware accelerators by

adjusting the pruning hyper-parameters.

On-the-fly attention is optimized for GPU but it has the potential

to extend to other hardware. The idea is to avoid accessing slow

memory and keep most of the operations on fast memory. For exam-

ple, configurable spatial accelerators, such as Field-Programmable

Gate Array (FPGA), are also equipped with fast on-chip Block RAM

(BRAM) [57]. In fact, FPGA might gain more benefits with on-

the-fly attention. Particularly, FPGA often equips larger on-chip

memory when compared to GPU, so the batched multiplication of

Q and K could fully reside on-chip to increase memory efficiency.

Besides, more flexible scheduling and pipeline configurations could

further reduce the breakdown among operators. The Softmax of a

row inQ·K could be decomposed into two stages: sum and element-

wise operation. With a coherent cache design of FPGA, the sum can

be fused with the previous multiplication while the element-wise

operation can be fused with the following S·V multiplication.

E.T. for training.As future work, we plan to integrate our novel

tailored self-attention operators to training. Particularly, first, on-

the-fly attention operator can directly substitute steps 2 - 6 of

Figure 3(a). And this replacement will not affect the backward prop-

agation of training. Second, pre-computed attention will slightly

change the workflow of training. That is, the new architecture will

not have WV and WO matrices anymore. It will directly use a new

matrix, i.e., the ‖H
h=1W

T
V,h

· WT
O,h

matrix. By writing the compu-

tation in the new flow, the backward propagation phase will use

autograd to automatically update this new matrix as opposed to

prior ones, i.e., WV andWO.

8 CONCLUSION

This paper introduces E.T. with three main contributions: (i) We

design a novel self-attention architecture with tailored on-the-fly

attention and pre-computed linear transformation operators, se-

quence length-aware optimization, and scaling operator reordering

designs. (ii) We revamp the existing pruning algorithm, as well as

introducing a tensor tile-based pruning algorithm for transformer

models. And E.T. goes further by introducing attention-aware prun-

ing. Not limited there, (iii) we implement three transformer models,

i.e., BERTBASE, DistilBERT, and Transformer on E.T. across a va-

riety of benchmarks to show the impacts of our optimizations on

accuracy and turnaround time. Taken together, E.T. outperforms

the state of the art efforts, e.g., TensorRT and FasterTransformer.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their helpful

suggestions. This work was in part supported by the NSF CRII

Award No. 2000722 and CAREER Award No. 2046102. Any opinions,

findings and conclusions, or recommendations expressed in this

material are those of the authors and do not necessarily reflect the

views of the funding agencies.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine
Learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation. USENIX Association, USA, 265–283.

[2] AMD. 2021. INTRODUCING AMD CDNA ARCHITECTURE. https://www.amd.
com/system/files/documents/amd-cdna-whitepaper.pdf.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., Virtual, 1877–1901.

[4] Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd. 2008. Enhancing
sparsity by reweighted l1 minimization. Journal of Fourier analysis and applica-
tions 14, 5-6 (2008), 877–905.

[5] Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. 2017.
SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual
Focused Evaluation. In Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017). The Association for Computer Linguistics, Vancouver,
Canada, 1–14.

[6] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan,
and Ilya Sutskever. 2020. Generative pretraining from pixels. In International
Conference on Machine Learning. PMLR, Vienna, Austria, 1691–1703.

[7] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang
Wang, and Michael Carbin. 2020. The lottery ticket hypothesis for pre-trained
bert networks. In Advances in Neural Information Processing Systems. Curran
Associates, Inc., Vancouver, Canada.

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. 2018. TVM: An automated end-to-end optimizing com-
piler for deep learning. In Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation. USENIX Association, USA, 579–594.

[9] Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016. Long Short-Term Memory-
Networks for Machine Reading. (2016), 551–561.

[10] Daniel Crankshaw, XinWang, Guilio Zhou, Michael J Franklin, Joseph E Gonzalez,
and Ion Stoica. 2017. Clipper: A low-latency online prediction serving system.
In 14th Symposium on Networked Systems Design and Implementation. USENIX
Association, Boston, MA, 613–627.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186.

[12] Bill Dolan and Chris Brockett. 2005. Automatically Constructing a Corpus of
Sentential Paraphrases. In Third International Workshop on Paraphrasing (third
international workshop on paraphrasing (IWP2005) ed.). Asia Federation of
Natural Language Processing.

[13] Linhao Dong, Shuang Xu, and Bo Xu. 2018. Speech-transformer: a no-recurrence
sequence-to-sequence model for speech recognition. In International Conference
on Acoustics, Speech and Signal Processing. IEEE, Calgary, Alberta, Canada, 5884–
5888.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2020. An image
is worth 16x16 words: Transformers for image recognition at scale. (2020).
arXiv:arXiv preprint arXiv:2010.11929

[15] Angela Fan, Edouard Grave, and Armand Joulin. 2019. Reducing transformer
depth on demand with structured dropout. (2019). arXiv:arXiv:1909.11556

[16] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. 2021. TurboTransformers: an
efficient GPU serving system for transformer models. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
ACM, New York, NY, USA, 389–402.

[17] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse GPU
kernels for deep learning. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE Press, Virtual,
1–14.

[18] Pin Gao, Lingfan Yu, YongweiWu, and Jinyang Li. 2018. Low latency rnn inference
with cellular batching. In Proceedings of the Thirteenth EuroSys Conference. ACM,
New York, NY, USA, 1–15.

12

E.T.: Re-Thinking Self-Attention for

Transformer Models on GPUs SC ’21, November 14–19, 2021, St. Louis, MO, USA

[19] Google. 2021. XLA: Optimizing Compiler for Machine Learning. https://www.
tensorflow.org/xla

[20] Mitchell Gordon, Kevin Duh, and Nicholas Andrews. 2020. Compressing BERT:
Studying the Effects ofWeight Pruning on Transfer Learning. In Proceedings of the
5th Workshop on Representation Learning for NLP. Association for Computational
Linguistics, Virtual, 143–155.

[21] Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu, Yue Guan, Zehuan Wang,
Xiaoying Jia, Xipeng Li, Minyi Guo, and Yuhao Zhu. 2020. Accelerating sparse
DNN models without hardware-support via tile-wise sparsity. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, Virtual, 1–15.

[22] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhen-
hua Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, Zhaohui Yang, Yi-
man Zhang, and Dacheng Tao. 2020. A Survey on Visual Transformer. (2020).
arXiv:arXiv:2012.12556

[23] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. In Advances in Neural Information
Processing Systems. MIT Press, Cambridge, MA, USA, 1135–1143.

[24] Connor Holmes, Daniel Mawhirter, Yuxiong He, Feng Yan, and Bo Wu. 2019.
Grnn: Low-latency and scalable rnn inference on gpus. In Proceedings of the
Fourteenth EuroSys Conference 2019. ACM, New York, NY, USA, 1–16.

[25] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning
of language representations. (2019). arXiv:arXiv:1909.11942

[26] Hector Levesque, Ernest Davis, and Leora Morgenstern. 2012. The winograd
schema challenge. In Thirteenth International Conference on the Principles of
Knowledge Representation and Reasoning. AAAI Press, Rome, Italy.

[27] Xin Li, Yiming Zhou, Zheng Pan, and Jiashi Feng. 2019. Partial Order Pruning:
For Best Speed/Accuracy Trade-Off in Neural Architecture Search. In Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, Long Beach, CA, USA,
9137–9145.

[28] Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective Ap-
proaches to Attention-based Neural Machine Translation. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, Lisbon, Portugal, 1412–1421.

[29] JS McCarley, Rishav Chakravarti, and Avirup Sil. 2019. Structured pruning of a
bert-based question answering model. (2019). arXiv:arXiv:1910.06360

[30] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2017.
Pointer Sentinel Mixture Models. (2017). arXiv:arXiv:1609.07843

[31] Sharan Narang, Eric Undersander, and Gregory Diamos. 2017. Block-sparse
recurrent neural networks. arXiv preprint arXiv:1711.02782 (2017).

[32] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. 2015.
Tensorizing neural networks. In Proceedings of the 28th International Conference
on Neural Information Processing Systems-Volume 1. MIT Press, Cambridge, MA,
USA, 442–450.

[33] NVIDIA. 2007. cuBLAS. https://developer.nvidia.com/cublas.
[34] NVIDIA. 2017. NVIDIA TESLA V100 GPU ARCHITECTURE. https://images.

nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.
[35] NVIDIA. 2020. CUTLASS. https://github.com/NVIDIA/cutlass.
[36] NVIDIA. 2020. Matrix Multiplication Background User Guide.

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-
multiplication/index.html#math-mem.

[37] NVIDIA. 2020. NVIDIA A100 Tensor Core GPU Architecture.
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-
ampere-architecture-whitepaper.pdf.

[38] NVIDIA. 2021. cuBLAS: cublasgemmalgo_t. https://docs.nvidia.com/cuda/
cublas/index.html#cublasgemmalgo_t.

[39] NVIDIA. 2021. FasterTransformer. https://github.com/NVIDIA/
DeepLearningExamples/tree/master/FasterTransformer.

[40] NVIDIA. 2021. TensorRT. https://developer.nvidia.com/tensorrt.
[41] Peyman Passban, Yimeng Wu, Mehdi Rezagholizadeh, and Qun Liu. 2020. ALP-

KD: Attention-Based Layer Projection for Knowledge Distillation. In Proceedings
of the Conference on Artificial Intelligence. AAAI Press, Virtual, 13657–13665.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. Pytorch: An imperative style, high-performance deep learning
library. In Advances in neural information processing systems. Curran Associates,
Inc., Vancouver, Canada, 8026–8037.

[43] Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020. When BERT Plays
the Lottery, All Tickets Are Winning. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Virtual, 3208–3229.

[44] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-
vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. Sigma: A sparse
and irregular gemm accelerator with flexible interconnects for dnn training. In
International Symposium on High Performance Computer Architecture. IEEE, San

Diego, USA, 58–70.
[45] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.

SQuAD: 100,000+ Questions for Machine Comprehension of Text. In Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Austin, Texas, 2383–2392.

[46] Qing Rao and Jelena Frtunikj. 2018. Deep learning for self-driving cars: Chances
and challenges. In Proceedings of the 1st International Workshop on Software
Engineering for AI in Autonomous Systems. IEEE, Gothenburg, Sweden, 35–38.

[47] Masuma Akter Rumi, Xiaolong Ma, Yanzhi Wang, and Peng Jiang. 2020. Acceler-
ating Sparse CNN Inference on GPUs with Performance-Aware Weight Pruning.
In Proceedings of the ACM International Conference on Parallel Architectures and
Compilation Techniques. ACM, New York, NY, USA, 267–278.

[48] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. (2019).
arXiv:arXiv:1910.01108

[49] Richard Socher, Alex Perelygin, JeanWu, Jason Chuang, Christopher D. Manning,
Andrew Ng, and Christopher Potts. 2013. Recursive Deep Models for Semantic
Compositionality Over a Sentiment Treebank. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Seattle, Washington, USA, 1631–1642.

[50] Betty van Aken, Benjamin Winter, Alexander Löser, and Felix A Gers. 2019. How
does bert answer questions? a layer-wise analysis of transformer representations.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. ACM, New York, NY, USA, 1823–1832.

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in neural information processing systems. Curran Associates
Inc., Red Hook, NY, USA, 5998–6008.

[52] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. 2018. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Association
for Computational Linguistics, Brussels, Belgium, 353–355.

[53] Ziheng Wang. 2020. SparseRT: Accelerating Unstructured Sparsity on GPUs for
Deep Learning Inference. In Proceedings of the ACM International Conference on
Parallel Architectures and Compilation Techniques. Association for Computing
Machinery, New York, NY, USA, 31–42.

[54] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. In Advances in Neural Information
Processing Systems. Curran Associates Inc., Red Hook, NY, USA, 2074–2082.

[55] Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A Broad-Coverage
Challenge Corpus for Sentence Understanding through Inference. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long Papers).
Association for Computational Linguistics, New Orleans, Louisiana, 1112–1122.

[56] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. HuggingFace’s Transformers: State-of-the-art
Natural Language Processing. arXiv:cs.CL/1910.03771

[57] Xilinx. 2017. SDAccel Environment Profiling and Optimization Guide. https://
www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/jbt1504034294480.html.

[58] Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, and Ming Zhou. 2020. BERT-
of-Theseus: Compressing BERT by Progressive Module Replacing. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Virtual, 7859–7869.

[59] Orestis Zachariadis, Nitin Satpute, Juan Gómez-Luna, and Joaquín Olivares. 2020.
Accelerating sparse matrix–matrix multiplication with GPU Tensor Cores. Com-
puters & Electrical Engineering 88 (2020), 106848.

[60] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. 2020.
Gobo: Quantizing attention-based nlp models for low latency and energy efficient
inference. In 53rd Annual International Symposium on Microarchitecture. IEEE,
Athens, Greece, 811–824.

[61] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Far-
dad, and Yanzhi Wang. 2018. A systematic DNN weight pruning framework
using alternating direction method of multipliers. In Proceedings of the European
Conference on Computer Vision. Springer, Munich, Germany, 184–199.

[62] Xiaodong Zhang, Xu Sun, and Houfeng Wang. 2018. Duplicate question iden-
tification by integrating framenet with neural networks. In Proceedings of the
Conference on Artificial Intelligence, Vol. 32. AAAI Press, New Orleans, Louisiana,
USA.

[63] Xingxing Zhang, Furu Wei, and Ming Zhou. 2019. HIBERT: Document Level
Pre-training of Hierarchical Bidirectional Transformers for Document Summa-
rization. In Proceedings of the 57th Annual Meeting. Association for Computational
Linguistics, Florence, Italy, 5059–5069.

13

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

E.T. accelerates the inference of Transformer-family models by

introducing a novel self-attention architecture and an attention-

aware pruning design, which takes advantage of GPU hardware

and Transformer-specific optimization.

We ran the experiment on one V100S GPU and Intel(R) Xeon(R)

Gold 6244 @ 3.60GHz CPU. The training is conducted by the Py-

Torch library based on the pre-trained models. The evaluation of

turnaround time is implemented on CUDA C++. The source code is

compiled with NVCC 11.1. The prediction evaluation is conducted

on General Language Understanding Evaluation (GLUE) bench-

mark. Our inference baselines are the example code from Faster

Transformer (v3.1) and the BERT demo from TensorRT (v7.3). We

ran the baselines on our machine and followed the instruction

provided.

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/cctry/SCpaper-2021 �
/tree/aedab163f44bff8dfad3745d4f57972cb7640cda↩→

Artifact name: E.T.

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: V100S GPU, Intel(R) Xeon(R) Gold

6244 @ 3.60GHz CPU

Operating systems and versions: Ubuntu 18.04

Compilers and versions: NVCC 11.1, GCC 7.5.0

Applications and versions: PyTorch 1.7.0

Libraries and versions: CUDA 11.1

Key algorithms: AdamW Optimizer, Self-attention Network

Input datasets and versions: Pre-trained models: HuggingFace’s

Transformers; Dataset: GLUE benchmark

