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Abstract. The terrestrial carbon cycle plays a critical role
in modulating the interactions of climate with the Earth sys-
tem, but different models often make vastly different predic-
tions of its behavior. Efforts to reduce model uncertainty have
commonly focused on model structure, namely by introduc-
ing additional processes and increasing structural complex-
ity. However, the extent to which increased structural com-
plexity can directly improve predictive skill is unclear. While
adding processes may improve realism, the resulting mod-
els are often encumbered by a greater number of poorly de-
termined or over-generalized parameters. To guide efficient
model development, here we map the theoretical relation-
ship between model complexity and predictive skill. To do
so, we developed 16 structurally distinct carbon cycle models
spanning an axis of complexity and incorporated them into a
model—data fusion system. We calibrated each model at six
globally distributed eddy covariance sites with long observa-
tion time series and under 42 data scenarios that resulted in
different degrees of parameter uncertainty. For each combi-
nation of site, data scenario, and model, we then predicted
net ecosystem exchange (NEE) and leaf area index (LAI)
for validation against independent local site data. Though
the maximum model complexity we evaluated is lower than
most traditional terrestrial biosphere models, the complex-
ity range we explored provides universal insight into the
inter-relationship between structural uncertainty, parametric
uncertainty, and model forecast skill. Specifically, increased
complexity only improves forecast skill if parameters are ad-
equately informed (e.g., when NEE observations are used for

calibration). Otherwise, increased complexity can degrade
skill and an intermediate-complexity model is optimal. This
finding remains consistent regardless of whether NEE or LAI
is predicted. Our COMPLexity EXperiment (COMPLEX)
highlights the importance of robust observation-based pa-
rameterization for land surface modeling and suggests that
data characterizing net carbon fluxes will be key to improv-
ing decadal predictions of high-dimensional terrestrial bio-
sphere models.

1 Introduction

The role of the terrestrial biosphere in the global carbon cy-
cle is challenging to model (Friedlingstein et al., 2013) due
to the diverse processes, forcings, and feedbacks driving vari-
ability of gross fluxes (Heimann and Reichstein, 2008; Luo
et al., 2015). Many attempts to reduce model uncertainty
have focused on matching models to nature by represent-
ing an increasing number of processes known to influence
different parts of the carbon cycle (e.g., vegetation demogra-
phy, Fisher et al., 2018, or plant hydraulics, Kennedy et al.,
2019). In this way, models of the terrestrial biosphere have
become more complex over time (Fisher et al., 2014; Bo-
nan, 2019; Fisher and Koven, 2020). Despite such advance-
ments, the spread in terrestrial carbon cycle predictions re-
mains large (Arora et al., 2020) and is dominated more so
by model uncertainty than by either internal variability of the
climate system or emission scenario uncertainty (Lovenduski
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and Bonan, 2017; Bonan and Doney, 2018). Because the be-
havior of the terrestrial biosphere feeds back directly on the
rate of CO, accumulation in the atmosphere, understanding
the most effective ways of reducing this model uncertainty is
crucial. Progress can benefit not only long-term predictions
of global change, but also near-term, regional-scale ecologi-
cal forecasts aimed at informing sustainable decision-making
(Dietze et al., 2018; Thomas et al., 2018; White et al., 2019)
and modeling studies focused on understanding the recent
past (Schwalm et al., 2020).

While ecological models are becoming more and more de-
tailed, the extent to which predictive skill scales with model
complexity is not clear. The logic behind enhancing model
realism with increased complexity is intuitive: a highly sim-
plistic model may be structurally unable to capture key rela-
tionships defining the system (it underfits), which would nat-
urally imply that greater detail is needed to improve model
performance. However, excessively complex models have
their own limitations. Because they often contain more pa-
rameters than can be robustly determined with the available
data (e.g., Prentice et al., 2015; Shi et al., 2018; Feng, 2020),
they are prone to learning “noise” instead of true interac-
tions (also called overfitting; Ginzburg and Jensen, 2004;
Hawkins, 2004; Keenan et al., 2013). Equifinality — the case
in which vastly different parameter sets can yield similar
model performance (Beven, 1993; Beven and Freer, 2001)
— also becomes more likely as model complexity increases.
This dichotomy between model complexity and model per-
formance is known in the statistics and machine learning
communities as the bias—variance tradeoff. According to this
theory, a model that balances the costs of under- and over-
fitting can minimize forecast error (Lever et al., 2016). It is
therefore possible that other approaches to reducing carbon
cycle model uncertainty (e.g., improving model parameteri-
zation) may be more effective than increasing structural real-
ism in some circumstances, as also noted by Shiklomanov et
al. (2020) and Wu et al. (2020a).

Here, we explicitly map the relationship between model
complexity and predictive performance across a spectrum of
model structures and parameterizations, hypothesizing that
an intermediate-complexity carbon cycle model can outper-
form a low- or high-complexity one. Our approach can in-
form ecological models that operate on a spectrum of scales,
from localized at the level of individual stands to highly gen-
eralizable across the global land surface. This study is par-
ticularly relevant for global ecological models, which often
function as the land surface component of large-scale Earth
system models and have been employed in contexts that carry
significant policy relevance (e.g., Intergovernmental Panel on
Climate Change (IPCC) reports; Stocker et al., 2014). Here-
after we refer to global ecological models as terrestrial bio-
sphere models, or TBMs.

We note a distinction between conceptualizing complex-
ity as a straightforward count of a model’s parameters, equa-
tions, or processes, versus as an emergent property of its so-
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Figure 1. Conceptual diagram of effective complexity in three-
parameter space. A sphere (a) has three unique dimensions span-
ning the three axes of variability (analogous to a larger solution
space for a given model). In the region defined by the same three
axes, a disc (b) has only two unique dimensions (analogous to a
smaller solution space, perhaps due to two parameters being highly
correlated).

lution space. When locations or data constraints do not al-
low certain model parameter values or modeled states, this
reduces the effective complexity of the remaining set of pos-
sible solutions. That is, one can consider what we term the
“effective complexity” of a model as a function of the ac-
tual parameter combinations that are possible for that model,
or equivalently, the volume of space occupied by these pa-
rameter combinations. Two models with the same number of
parameters may have very different effective complexities,
for example, because correlations between parameters (e.g.,
allocation fraction to foliage and turnover rate of foliage; Fox
et al., 2009) or the extent to which they are constrained (i.e.,
many more states are possible in the absence of assimilated
data than in the presence of it; Keenan et al., 2013), or when
the assimilated data have high uncertainty, can influence the
models’ effective degrees of freedom. As a simple analogy,
consider the difference between a sphere and a disc in three-
dimensional space (Fig. 1). Although both exist within the
space determined by three unconstrained parameters (axes),
they are not identical because the volumes they occupy — and
the relationships between their parameters — are drastically
different. The same can be true between models: one model’s
equations or assimilated observations may constrain the di-
mensionality of its potential parameter space to “resemble” a
disc, while that occupied by another, less constrained model
may look more like a sphere.

Model-data fusion (MDF) systems (also known as data
assimilation systems) provide an effective way of isolating
and evaluating different model structures by using obser-
vations to derive optimized model parameters with uncer-
tainty. An increasingly common tool for carbon cycle sci-
ence, MDF has been leveraged to provide insight into long-
term trends of carbon fluxes (e.g., Rayner et al., 2005), to rec-
oncile the roles of specific datasets in constraining paramet-
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ric uncertainty (e.g., Keenan et al., 2013), and more (Scholze
et al., 2017). Here we use an MDF system called the CAR-
bon DAta MOdel fraMework, or CARDAMOM (Bloom and
Williams, 2015; Bloom et al., 2016), chosen because of its
high customizability. The structure of its underlying ecosys-
tem carbon model, DALEC (Williams et al., 2005; Bloom
and Williams, 2015), can be easily adjusted to become more
simple or detailed (e.g., by changing the number of carbon
pools or by modifying the functional representations of cer-
tain carbon fluxes). Various combinations of observational
and functional constraints can also be tested in the assimila-
tion process, along with different assumptions on the amount
of error inherent to each assimilated dataset (the character-
ization of which is an ongoing challenge for the modeling
community; Keenan et al., 2011). Taken together, this flexi-
bility allows for experimentation with the different levers that
control effective model complexity.

In this paper, we demonstrate the extent to which the pre-
diction accuracy of two key carbon cycle variables can the-
oretically scale with model complexity. Net ecosystem ex-
change (NEE) and leaf area index (LAI) were chosen for the
analysis because they represent integrated effects of different
parts of the carbon cycle (NEE is the balance of photosyn-
thesis and ecosystem respiration fluxes, while LAI strongly
controls canopy photosynthesis; Bonan, 1993). Additionally,
both are commonly measured and modeled. To explore the
complexity—skill relationship, we developed 16 structurally
distinct carbon cycle models (i.e., variants of the DALEC
model) spanning a range of complexity and calibrated them
using the CARDAMOM framework. Several recent studies
have demonstrated the utility of CARDAMOM for under-
standing multiple aspects of the carbon cycle (e.g., Lépez-
Blanco et al., 2019; Konings et al., 2019; Yin et al., 2020;
Bloom et al., 2020; Quetin et al., 2020), lending confidence
for its use here. We calibrated each DALEC variant within
CARDAMOM under 42 different data scenarios (i.e., com-
binations of data constraints and assumptions about observa-
tional error) representing different degrees of certainty with
which parameters are determined. Each model was calibrated
and validated at six globally distributed eddy covariance sites
covering a range of biomes and vegetation types, with data
collected over multiple years. To quantify complexity, we
computed the effective complexity of each model calibra-
tion using a principal component analysis (PCA) that reduced
the parameter space to its primary axes of variance. Forecast
skill was determined using an overlap metric that takes ac-
count of uncertainty both in the model forecast and the val-
idation data. Though the range of complexity we evaluated
here is lower than that populated by large-scale TBMs, this
experiment reveals universal modeling elements that control
performance. Specifically, here our COMPLexity EXperi-
ment (COMPLEX) aims to answer the following questions.
(a) What controls a given model run’s effective complexity?
(b) Under what conditions does increasing model complexity
improve forecast skill?

https://doi.org/10.5194/bg-18-2727-2021

2 Methods
2.1 Suite of carbon cycle models (DALEC variants)

The Data Assimilation Linked Ecosystem Carbon (DALEC)
model suite includes 16 related intermediate-complexity
models of the terrestrial carbon cycle. Each model variant
tracks the state and dynamics of both live and dead carbon
pools, their interactions, and responses to meteorology and
disturbance such as fire or biomass removals. From an initial
DALEC model (Williams et al., 2005), we produced alternate
structures that either aimed to reduce complexity by focusing
on core variables/processes and removing others or aimed to
increase complexity by including hypothesized missing car-
bon pools or improving on over-simplified processes.
Accordingly, the DALEC suite spans a range of model
structures (i.e., number of carbon pools, carbon pool connec-
tivity) and process representations (component sub-models
of varying complexity) related to different simulations of
photosynthesis, plant respiration, decomposition, and water
cycle feedbacks. These representations are listed in Table 1
and described in further detail in Appendix A. To facilitate
disentanglement of the impacts of specific alternate process
representations, the different sub-models can be related to a
common baseline structure of the carbon cycle (Fig. 2a). Spe-
cific variants of this general structure for the least and most
detailed models in this analysis are presented in Fig. 2b—
¢, while additional diagrams for the remaining models are
shown in Appendix B (Figs. B1-B7). Across models, car-
bon enters the system via gross primary productivity (GPP),
which is allocated to autotrophic respiration (R,) and non-
canopy live tissues based on fixed fractions. Canopy growth
and mortality is determined by a phenology sub-model which
is sensitive to day of year (sub-model scheme CDEA), envi-
ronmental factors (GSI), or a combination of environmen-
tal factors and estimated net canopy carbon export (NCCE).
Mortality of wood and fine roots follows continuous turnover
based on first-order kinetics. Decomposition of dead organic
matter and associated heterotrophic respiration (Ry) follows
first-order kinetics with an exponential temperature sensitiv-
ity (and, in models C2—-CS5, a linear soil moisture sensitivity).

2.2 Site selection

COMPLEX uses information from six globally distributed
eddy covariance sites participating in FLUXNET (Pastorello
et al., 2020) (Table 2). Our site selection procedure aimed
to maximize biogeographical spread and diversity of natural
ecosystems while fulfilling specific data requirements. These
constraints collectively yielded a series of site selection cri-
teria that are described in detail in Appendix C. As an exam-
ple, the sites must not be dominated by the C4 photosynthetic
pathway, nor arable agriculture nor intensively grazed grass-
land. Additionally, we required that the range of time series
observations to be used for model calibration and validation
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Table 1. Summary of the DALEC sub-model combinations assessed in COMPLEX. For a detailed description see the Supplement. ID is model identifier. CDEA: Combined Deciduous
Evergreen Analytical model; CDEA+: CDEA with variable labile release fraction; GSI: growing season index; NCCE: net canopy carbon export; ACM: aggregated canopy model;
T': temperature; M: soil moisture; CUE: carbon use efficiency. fNPP : GPP indicates a fixed fractional allocation of gross primary production (GPP) to foliage net primary production
(NPP). DOM is dead organic matter. Models are grouped according to common characteristics, as follows: C models all share the Combined Deciduous Evergreen Analytical (CDEA
or CDEA+) phenology sub-model; G models use the growing season index (GSI) phenology sub-model; E models use the evergreen (constant allocation) phenology sub-model; and S
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models are simple, reduced-complexity variants of other models.

1D Canopy Method of Water Ry CUE Number of DOM Live

phenology computing GPP cycle parameters  pools  pools
Cl CDEA ACM vl No T R, : GPP 23 2 4
C2 CDEA+ ACM vl Yes T+M R,:GPP 33 2 4
C3* CDEA+ ACM vl Yes T+M R,:GPP 35 2 4
C4* CDEA+ ACM vl Yes T+M R,:GPP 34 2 4
C5 CDEA+ Analytical Ball-Berry  Yes T+M R,:GPP 34 2 4
C6 CDEA ACM v2 No T R, : GPP 23 2 4
C7 CDEA ACM v2 Yes T R, : GPP 27 2 4
cs® CDEA ACM vl Yes T R, : GPP 36 2 4
El fNPP : GPP ACM vl No T R, : GPP 17 3 3
Gl GSI ACM v2 No T Rm : GPP + Ry : NPP 37 3 4
G2 GSI ACM v2 Yes T Rm : GPP + Rg : NPP 40 3 4
G3 GSI+NCCE ACM v2 No T RmLeaf(T) + RmWood : GPP + RyRoot: GPP + Rg : NPP 43 3 4
G4 GSI+NCCE ACM v2 Yes T RmLeaf(T) + RmWood : GPP + Ry Root : GPP + Rg : NPP 43 3 4
S1 fNPP : GPP ACM vl No T R, : GPP 11 1 2
S2 CDEA ACM vl No T R, : GPP 14 1 3
S4 CDEA ACM vl No T R, : GPP 17 3 2

* Includes cold weather GPP limitation. # Includes surface runoff parameterization (assumes constant runoff to infiltration ratio at surface). b Includes two water storage pools (plant-available and
plant-unavailable water).
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Figure 2. Overview of the carbon pools (filled boxes) and fluxes (arrows, with names in open boxes) represented in the DALEC model suite.
(a) Broad structure of the DALEC model maintained across all variants in the suite; (b) carbon cycle structure of the simplest model; (c) car-

bon cycle structure of the most detailed model.

spanned at least a decade. Data collated at each site are de-
scribed below (see Sect. 2.3).

2.3 Model-data fusion

We used the CARDAMOM model-data fusion system
(Bloom and Williams, 2015; Bloom et al., 2016) to param-
eterize the DALEC model suite with available observations
of the carbon cycle. Specifically, we employed Bayesian in-
ference to retrieve time-invariant, site-specific, optimized pa-
rameters and initial conditions for a given DALEC model
(y) as informed by observations (Q), where p(y|0) x p(y)-
p(0|y). Here, p(y|0) is the posterior parameter probability
distribution, p(y) is the prior parameter probability distribu-
tion, and p(O|y) is proportional to the likelihood of param-
eters y given observations O.

For each model, p(y) is derived as the product of (i) the
prior probability density functions for each model parame-
ter and (ii) ecological and dynamical constraints (EDCs, i.e.,
functional constraints). EDCs are simple mathematical func-
tions that impose conditions on inter-relationships between
model parameters based on known ecological theory. They
are used to inform parameter prior information with broader
ecological knowledge and tend to reduce bias and equifinal-
ity (Bloom and Williams, 2015). One example of an EDC in

https://doi.org/10.5194/bg-18-2727-2021

CARDAMOM is the imposed constraint that litter turnover
times are faster than soil organic matter turnover times (e.g.,
Gaudinski et al., 2000). In this analysis, each model includes
some or all of the EDCs documented in Bloom et al. (2016).

The likelihood p(O]|y) is derived as a function of
the mismatch between observations O and the model
realization M corresponding to y, such that p(O|y) x
exp (—% ,11\’:1<0”0;nM")2 , where o, is the error for the
nth observation. This formulation requires no assumptions
on the normality of prior or posterior parameter distri-
butions and is robust to missing data. In our analysis,
monthly-averaged eddy covariance NEE measurements from
FLUXNET, monthly-averaged leaf area index (LAI) esti-
mates from the Copernicus Global Land Service (Verger
et al., 2014; Fuster et al., 2020), and in situ wood stock
surveys were made available for ingestion into the model
(see Appendix C). NEE uncertainty was assumed to be
0.58gCm~2d~! based on estimates of random errors in
eddy covariance measurements from Hill et al. (2012). A
time-varying uncertainty estimate was included with the
Copernicus LAI product, and site-specific, locally derived
biomass uncertainties were provided by the site PI or drawn
from relevant publications when necessary. Model drivers in-

Biogeosciences, 18, 2727-2754, 2021
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Table 2. Summary of sites, showing their location, FLUXNET code, observational time period, mean climate information, and ecosystem
type. Latitude is given in —90/90 and longitude is —180/180. Ecosystem type is denoted using the International Geosphere-Biosphere
Programme (IGBP) classification. DBF: deciduous broadleaf forest; EBF: evergreen broadleaf forest; ENF: evergreen needleleaf forest;

WSA: woody savanna.

Site name Site code  Reference Latitude  Longitude IGBP Data  Mean Mean
record annual annual

temp. precip.

[°C]  [mmyr~']

Howard Springs ~AU-How  Beringer et al. (2007) —12.4943 131.1523  WSA  2001-2014 27.0 1449
Hyytidld FI-Hyy Suni et al. (2003) 61.84741 2429477 ENF  1999-2014 3.8 709
Le Bray FR-LBr Berbigier et al. (2001) 4471711 —0.7693 ENF  1998-2008 13.6 900
Puéchabon FR-Pue Rambal et al. (2004) 43.7413 3.5957 EBF  2000-2014 13.5 883
Guyaflux GF-Guy  Aguilos et al. (2018) 527877 —52.92486 EBF  2004-2018 25.7 3041
Harvard Forest US-Hal Munger and Wofsy (2020a, b) 42.5378 —72.1715 DBF 1998-2012 6.2 1071

cluded monthly average site meteorology (air temperature,
shortwave radiation, atmospheric CO, concentration, vapor
pressure deficit, precipitation, and wind speed). Here models
were run at the monthly time step.

To sample the distribution p(y|0O) (namely the prod-
uct of p(0O|y) and p(y)), we used an adaptive proposal
Metropolis—Hastings Markov chain Monte Carlo (MCMC)
approach (Haario et al., 2001). We performed 108 iterations
for each of four chains, which were checked for conver-
gence using the Gelman—Rubin criterion (<1.2). A subset
of 100 samples of y was selected from the latter half of
each chain for our analysis. For additional details on the
implementation of this algorithm within CARDAMOM, see
Bloom and Williams (2015).

2.4 Experimental design

We performed a factorial experiment such that each of the
16 structurally distinct carbon cycle models was run within
CARDAMOM under all possible combinations of sites, ob-
servational and functional constraints, and assumptions on
data uncertainties. These scenarios represented differing de-
grees of certainty with which parameter distributions were
determined. Specifically, we considered (a) six sites; (b) six
options for assimilated data, including one for which no data
were ingested into the model; (c) four options for the mag-
nitude of error assumed on the assimilated datasets (repre-
sented by scalar multipliers on the prescribed nominal uncer-
tainties); and (d) two options for EDC state (either present
or absent) (Table 3). In total, this factorial approach yielded
4032 unique model runs (16 models x 6 sites x 21 data sce-
narios X 2 EDC states). Using a high number of factorial
model runs both added robustness to our interpretation and
allowed for consideration of each factor’s influence across a
range of background conditions.

Figure 3 shows examples of three model analyses at the
FR-LBEr site, highlighting the range in NEE prediction per-
formance across different model structures and data scenar-
ios. Each model run contains a calibration period (the first

Biogeosciences, 18, 2727-2754, 2021

Table 3. Model specifications varied in the factorial experiment.
Each of the 16 model versions was run with every combination of
scenarios across each variable. Note that observational error scalars
were not applied when no data were assimilated into the model.

Variable Scenarios

Site AU-How
FI-Hyy
FR-LBr
FR-Pue
GF-Guy
US-Hal

Assimilated data NEE
NEE, LAI
NEE, LAI, biomass
LAI
LAI biomass
None

Observational error scalar 50 %
100 %
150 %
200 %

EDC state All present

All absent

5 years of the site record; shown in white) during which op-
timized parameters were derived and a forecast period (the
remaining years of the record, which always spanned at least
5 years because no site contained fewer than 10 years of data;
shown in gray) during which fluxes and pools were predicted
with the optimally parameterized model. In the scenario pre-
sented, model S2 is highly constrained by multiple datasets
(Fig. 3a). By contrast, model C2 is moderately constrained
(Fig. 3b), and model G4 is poorly constrained (Fig. 3c),
which is evident by comparing the relative uncertainty of the
NEE forecasts (blue shading) for each model. To highlight
the effectiveness of the assimilation system, corresponding

https://doi.org/10.5194/bg-18-2727-2021
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time series based only on prior parameter distributions are
presented in Fig. S1.

Accounting for prediction uncertainty — as well as data un-
certainty (red shading) — is a key goal of our model skill
evaluation approach. Forecast skill for each model run was
computed by comparing predictions and observations drawn
strictly from the forecast period, using the histogram inter-
section algorithm (see Sect. 2.5.1). The complexity of each
run was quantified based on its effective complexity (see
Sect. 2.5.2).

2.5 Analysis
2.5.1 SKkill metric

We chose the histogram intersection as a skill metric because
it captures accuracy along with both prediction uncertainty
(i.e., the ensemble spread for a given model output) and ob-
servational uncertainty (i.e., the mean value and error for a
given observation). This approach contrasts with more famil-
iar metrics such as the coefficient of determination (R2) or
root-mean-square error (RMSE), which do not account for
uncertainties surrounding individual data points or predic-
tions.

The histogram intersection is a simple algorithm that cal-
culates the similarity of two discretized distributions p and
g and is commonly used in the machine learning commu-
nity (e.g., for image classification; Jia et al., 2006; Maji et
al., 2008). Specifically, the histogram intersection of p and
g is computed as Y ;_;min(p;, g;), where n is the number
of bins in the two histograms (here, n was set to 50). In our
case, p was the histogram of predicted NEE or LAI ensem-
bles for a given time step, and g was a discretized Gaussian
distribution with mean and standard deviation equivalent to
the observed NEE or LAI value and its error, respectively.
We normalize the metric by ) 7_, p; so that it is bounded be-
tween 0 (no overlap) and 1 (identical distributions). Because
histograms p and g correspond to individual months in the
forecast period, the metric used for analysis was the average
histogram intersection over all such months.

We note that results for NEE predictions are presented in
the main figures of this paper, while those for LAI predictions
are included in the supporting information.

2.5.2 Complexity metric

The effective complexity of each model run links model
structure (i.e., process representation) and number of param-
eters to the information content of assimilated data. It was
computed using a principal component analysis (PCA) on the
posterior parameter space. When applied to CARDAMOM
output, the PCA reduces the posterior parameter space (n
ensembles of m parameters) to a set of at most m uncorre-
lated variables that successively maximize variance. As such,
this approach finds the smallest number of unique dimen-
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sions necessary to explain the most variability in the pos-
terior parameter space of each model analysis. Specifically,
we defined effective complexity as the number of principal
components for which 95 % of variance in the posterior pa-
rameter space was explained. Note that in our experiment, a
given DALEC model variant has a distribution of effective
complexities corresponding to the different specifications for
each run (i.e., data scenario, site; Table 3).

3 Results
3.1 Behavior of effective complexity metric

Effective complexity — defined as the number of principal
components for which 95 % of the variance in the posterior
parameter space is explained (see Sect. 2.5.2) — is primarily
determined by model structure (Fig. 4a, inset). Specifically,
over all runs included in the experiment, effective complex-
ity varies far more between different models than between
the other tested factors (assimilated data, observational er-
ror scalar, site, and EDC presence or absence). This link
to model structure provides insight into the metric’s inter-
pretability and justifies its use as a measure of model com-
plexity.

While predominantly determined by the choice of model,
effective complexity also varies according to the degree to
which parameters are constrained (Fig. 4a). It therefore cap-
tures the inter-relationship between model structure and pa-
rameterization. Within a given model structure, each of the
experimentally varied factors yields a range of distinct com-
plexities that follows a predictable pattern: effective com-
plexity is higher for runs with weaker constraints on pa-
rameters than it is for runs with stronger constraints on pa-
rameters. This is easily interpretable in the case of assimi-
lated data, which is the dominant within-model control on
effective complexity (Fig. 4b). Runs for which no observa-
tions are ingested into the model have consistently higher
effective complexities than runs for which NEE, LAI, and
biomass observations are all ingested (compare yellow and
purple circles in Fig. 4b), since the observational constraints
reduce the possible model solution space. Similar behavior
is also observed across the different error scalars tested in
the experiment (larger observational error assumptions cor-
respond to higher effective complexities (Fig. S2)) and be-
tween the presence versus absence of EDCs (the absence
of non-observational realism constraints yields higher effec-
tive complexities (Fig. S3)). Conceptually, this pattern can
be understood in the following way. Parameters in a given
model’s high-complexity runs were sampled from wider pos-
terior distributions (due to weak or absent constraints) than
in its low-complexity runs. This implies greater variance be-
tween parameter sets selected in high-complexity runs — and
thus more distinct dimensions of variability in the posterior
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Figure 3. Example model runs (title of each subplot) at the FR-LBr site. The calibration window — the first 5 years of the record — is
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(a) Forecast skill =0.15; effective complexity = 7; (b) forecast skill =0.44; effective complexity = 24; (c) forecast skill = 0.22; effective

complexity = 39.

parameter space — than in low-complexity runs for the same
model.

3.2 Relationship between effective complexity and skill
Across all runs performed in the experiment, the hypothesis
that an intermediate-complexity carbon cycle model can out-

perform a low- or high-complexity model is confirmed, both
when NEE is predicted (Fig. 5a) and when LAI is predicted

Biogeosciences, 18, 2727-2754, 2021

(Fig. S4a). Runs on both extremes of the complexity axis per-
form poorly, due to overfitting in the low-complexity case
(parameters are over-determined, leading to accurate predic-
tions in the training period but poor ones in forecast) and un-
derfitting in the high-complexity case (parameters are under-
determined, yielding poor predictions in both training and
forecast). Figure 3a and 3c demonstrate this contrasting be-
havior at the FR-LBr site.

https://doi.org/10.5194/bg-18-2727-2021



C. A. Famiglietti et al.: Optimal model complexity for terrestrial carbon cycle prediction

(a)

G4 1| 3 Sites

[ Error scalar
G3 1| @ Assimilated data
[ EDCs

G2 A

G1 A

C8 1

C3 A

C5 A

C4 A

Model

C2 A

C7 1

C6 A
Models
€11 Sites
Error scalars
Data

E1 EDCs

521 0 10 20
Total complexity
S1 A range

10 15 20 25 30 35 40
Effective complexity

2735
(b)
G4 1 a o0 O x4
G3 A [0)]e)©) o *
G2 A @00 O *
G1 A @O O %
C8 A 00 @™O >
C3 1 Qo0 hx e
C5 4 (0.0)] a0 %
o C4 1 00 000 *
©
o
= C24 00 MO *
C7 4 00 O %
C6 A Q0 O %
Cl 4 Q® O ¥*
i % Number of parameters
s4 a» o % © NEE runs
E1l @O * O NEE+LAIl runs
© NEE+LAl+biomass runs
S24 @DO w O LAlruns
O LAl+biomass runs
S1 @ O O No obs runs

10 15 20 25 30 35 40
Effective complexity

Figure 4. Influence of the experimentally varied factors on effective complexity. (a) Range of effective complexity attributable to sites, error
scalars, assimilated data, and EDCs for each model (row). Inset: range of attributed effective complexity across all model runs. (b) Average
effect of assimilated data combination on effective complexity for each model. Colored circles are means of corresponding runs. Models are
ordered from fewest (S1) to greatest (G4) number of parameters. See Table 1 for definition of model IDs.

When runs for which no data were assimilated — that is,
runs with the least informed parameters — are withheld from
the analysis, increasing complexity no longer degrades skill
(Fig. 5b). More specifically, the relationship between ef-
fective complexity and skill increases monotonically when
all runs have some baseline constraint on parameters. This
result also holds regardless of which variable is predicted
(Fig. S4b) as well as when the number of runs within each
complexity bin is standardized via bootstrapping (Fig. S5).
The decline in performance attributable to the most ex-
treme effective complexity scenarios is also preserved across
RMSE and R? metrics (not shown; further comparison be-
tween different metrics is beyond the scope of this paper).
This finding implies that increasing complexity by introduc-
ing suitable data-constrained parameters can improve perfor-
mance, but that doing so by adding unconstrained dimen-
sions can degrade it. That is, the processes and parameters
introduced in the most detailed models (such as G1-G4) can
lead to improvements in predictive skill over simpler mod-
els only when they are sufficiently well-characterized (i.e.,
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adequately informed by data). Importantly, larger observa-
tional uncertainty assumptions reduce the effectiveness of as-
similated data at constraining parameters in high-complexity
models. The monotonically increasing relationship between
complexity and skill is strongest when observational error is
assumed to be relatively small (Fig. S6).

Assimilated data determine the shape of the overall
complexity—skill relationship in COMPLEX. Not only does
the presence of any assimilated observations control the re-
sponse of skill to increasing complexity, but the specific
choice of assimilated observations also matters. In particu-
lar, assimilating monthly NEE observations improves both
NEE (Fig. 6a—c) and LAI predictions (Fig. S7a—c) by com-
plex models over simple models: note the positive/increasing
trends between complexity and skill in these cases. However,
such improvements in predictive performance are not consis-
tently observed across the complexity axis when other data,
but not NEE, are ingested. The ingestion of LAI data and
biomass estimates yields a small positive trend (Fig. 6d) —
although this relationship is clearly weaker than when NEE

Biogeosciences, 18, 2727-2754, 2021
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Figure 5. Relationship between effective complexity and NEE forecast skill for (a) all model runs in the experiment and (b) the subset of
runs in panel (a) for which data were assimilated. Dark gray shading spans the 25th to 75th percentiles of runs; light gray shading spans
the 5th to 95th percentiles; blue points are medians of effective complexity bins. Average forecast skill is computed using the histogram

intersection metric.

is also assimilated (Fig. 6a) — and simple models informed
only by LAI perform just as well as complex models when
predicting NEE. Indeed, these runs show a constant skill
level across the complexity axis (Fig. 6e). When predict-
ing LAI though, complex models outperform simple models
with only the assimilation of LAI (Fig. S7e). All such com-
binations contrast with the case in which no data are assimi-
lated: forecast skill for those runs declines with complexity,
regardless of target variable (Figs. 6f, S7f).

Recall that the magnitude of skill — the degree of overlap
between model predictions and observations (see Sect. 2.5.1)
— reflects the ability of the model to capture the data along
with its uncertainty. Particularly in scenarios corresponding
to low effective complexities, models tend to overfit when
NEE is assimilated (as demonstrated in Fig. 3a). Overfitting
is a key factor causing the discrepancy in performance be-
tween low-complexity runs that do (e.g., Fig. 6¢) and do not
assimilate NEE (e.g., Fig. 6e).

Regardless of which data are assimilated, site-specific
characteristics also introduce additional variability into the
form of the relationship between effective complexity and
skill (Fig. 7). To better understand and isolate site-specific
dynamics, here we only interpret runs for which at least one
data type is assimilated. Most sites show high-complexity
performance optima, consistent with Fig. 5b. However, sev-
eral are characterized by a threshold effect for which perfor-
mance increases significantly once a certain effective com-
plexity is attained and remains stagnant thereafter (e.g., a
low-complexity threshold around 10 for FI-Hyy and FR-
Pue). This “diminishing returns” effect suggests that the per-
formance benefit of added structural detail has the potential
to stabilize for all but the simplest models. The two tropical
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sites included in our analysis demonstrate additional unique
dynamics. GF-Guy is the only site for which the performance
of the most complex models appears to slightly degrade, even
when all observations including NEE are assimilated, and
no threshold is apparent at AU-How. Overall, the site anal-
ysis demonstrates the large variability in model performance
across space, including between sites sharing biome classifi-
cations (e.g., FI-Hyy and FR-LBr) or broadly similar climate
types (e.g., GF-Guy and AU-How).

4 Discussion

4.1 Effective complexity and the inter-relationship
between model structure and parameterization

We defined a concept of effective complexity that is linked to
model structure and number of parameters as well as to the
information content of calibration data (Fig. 4). This met-
ric can inform future studies seeking to investigate the role
of model complexity by providing a simple and comparable
quantification of parameter posteriors. Conventional com-
plexity measures (e.g., counts of observable model attributes)
can serve as reasonable approximations of the more nuanced
definition specific to ensemble methods that we present here.
Still, effective complexity is rarely identical to the number of
model parameters: it is generally lower. Correlations between
model parameters can and do occur whether the model is
poorly or well-constrained (Keenan et al., 2013) and whether
it is simple or complex, implying that all carbon cycle mod-
els have “constrainable” dimensions. Importantly, though,
none of the high-parameter models in our experiment have
so much redundancy that their average effective complexity
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Figure 6. Complexity—skill relationship for NEE predictions, split by combination of assimilated data (title of each subplot). Average forecast
skill is computed using the histogram intersection metric. Ordering of subplots reflects the strongest (a) to weakest (f) data constraint.

across runs is equivalent to that of any low-parameter model
(Fig. 4). Whether this is also true for large-scale TBMs re-
mains an open question.

Overall, the behavior of the effective complexity met-
ric highlights that the best-performing analyses (i.e., runs
with the highest forecast skill) in the COMPLEX maximize
model structural breadth and minimize parametric uncer-
tainty. Models built with high numbers of processes but with-
out effective parameter constraints (i.e., runs that maximize
structural breadth but do not attempt to minimize paramet-
ric uncertainty) are not sufficient to optimize performance
(Fig. 5). Additionally, models of the carbon cycle can overfit
if they are calibrated in too narrow a subset of conditions and
underfit if they are improperly parameterized and therefore
biased, as shown in Fig. 3.

4.2 Influence of data constraints and site on
complexity—skill relationship

The main factors controlling the observed complexity—skill
relationship are (a) whether, and which, data are assimilated
into the model and (b) the geographical location at which
the analysis is undertaken. One way to interpret the role of
data in the relationship is explicit: models with the ability
to assimilate monthly observations of NEE, which uniquely
represent the integrated behavior of terrestrial carbon cy-
cling and its internal dynamics, are more likely to experi-
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ence gains in skill with increased complexity than those that
cannot. This result is consistent with the prominent role of
NEE observations in reducing model projection uncertainty
identified by Keenan et al. (2013). The effects of LAI and
biomass observations in COMPLEX are somewhat more nu-
anced. All models in the DALEC suite are able to extract in-
formation from the LAI data and produce reasonably skilled
NEE predictions (Fig. 6e), though such data do not improve
the skill of complex models over simple ones. The ingestion
of LAI data most directly constrains specific features relat-
ing to growth or carbon allocation, potentially informing the
seasonality of NEE. Finally, the impacts of biomass obser-
vations on forecast skill were relatively muted in our exper-
iments. Given that biomass data are particularly useful for
informing the carbon cycling of slow pools (Williams et al.,
2005), the relatively short calibration (5 years) and forecast
periods (> 5 years) tested here, along with the temporal spar-
sity of these data in COMPLEX (i.e., a few measurements per
site instead of continuous time series for LAI or NEE), may
have obscured their utility.

Several recent TBM efforts have sought to enable the as-
similation of eddy covariance or remote sensing observations
(e.g., Bacour et al., 2015; Raoult et al., 2016; Schiirmann et
al., 2016; Peylin et al., 2016; MacBean et al., 2018; Norton et
al., 2019) as well as measurements of functional traits (e.g.,
LeBauer et al., 2013). Our results underscore the value of
such efforts to reduce parameter uncertainty, despite the fact

Biogeosciences, 18, 2727-2754, 2021
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Figure 7. Complexity—skill relationship for NEE predictions, split by site (title of each subplot). Only runs for which data were assimilated
are plotted. Average forecast skill is computed using the histogram intersection metric.

that the computational costs associated with data assimilation
are relatively high (e.g., MacBean et al., 2016). Increased use
of emulators may help reduce this computational cost (Fer et
al., 2018).

Given the demonstrated value of data constraints and the
specification of their uncertainty (Fig. S6), the need to char-
acterize and quantify this uncertainty (Keenan et al., 2011)
remains particularly critical for model—-data fusion studies.
In this analysis, NEE uncertainty was assumed to remain
constant both in time (i.e., for all observations regardless of
season or year) and in space (i.e., across sites), which likely
over-generalizes the specifications of individual sensors and
the possibility of systematic or increasing biases. These as-
sumptions become even more important to account for when
assimilating global datasets, for which retrieval accuracy can
vary across land cover types or with atmospheric conditions
such as clouds or snow (e.g., Fang et al., 2013). One bene-
fit of the Copernicus LAI product used here is its explicit,
spatially variable quantification of uncertainty, which is still
relatively rare for remote sensing datasets. Though the ro-
bustness of these uncertainties has been challenged with in-
dependent observations in some locations (e.g., Zhao et al.,
2020), this approach represents a level of detail well-suited
to the coupling of data to large-scale or global models.

The observed variability in the complexity—skill relation-
ship across sites (Fig. 7) suggests that predictability itself is
spatially heterogeneous. Further, it implies that the benefit to
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model performance accrued by the addition of a given pro-
cess should not be expected to affect all locations uniformly,
even when site-specific parameter uncertainty is minimized
through calibration or optimization. Models not tuned locally
likely smooth this spatial variability in predictability drasti-
cally (van Bodegom et al., 2012; Berzaghi et al., 2020), and
thus model development and calibration must include loca-
tions spanning a wide range of vegetation, climate, soil char-
acteristics, and disturbance histories.

4.3 Recommendations for selecting appropriate model
complexity

Overall, our results suggest that the benefits of increased
model complexity (e.g., gains in skill attributable to the in-
troduction of specific processes or to additional detail ap-
plied to existing mechanisms) are attainable only when pa-
rameters are sufficiently well characterized. Here, this ben-
efit is achieved when high complexity is balanced by data-
assisted parameter optimization (in particular, when NEE ob-
servations are assimilated). More broadly, the relationship
between complexity and skill is dynamic and extends beyond
model structural choices. As a result, it is difficult to quan-
tify whether model parameters corresponding to any spe-
cific model implementation — including outside the DALEC
suite — are adequately informed such that increased model
complexity is beneficial to performance. To assist in this en-

https://doi.org/10.5194/bg-18-2727-2021



C. A. Famiglietti et al.: Optimal model complexity for terrestrial carbon cycle prediction

deavor, we present the following recommendations for model
development and evaluation.

1. Assimilate  well-characterized, repeat-observation
datasets to constrain model parameters at the scale of
model application.

2. Use long time series to undertake independent forecast
evaluation studies, and factor observational uncertainty
into model evaluation (e.g., using overlap metrics).

3. Test whether model updates that add complexity lead to
forecast improvements (not only calibration improve-
ments), and test for possible model simplification im-
provements also.

4. Seek to calibrate or optimize model parameters even
when data assimilation is not possible (e.g., using
optimality-based approaches; Walker et al., 2017; Jiang
et al., 2020).

Finally, while beyond the scope of this study, future work
will investigate the linkage between specific processes or
process representations (e.g., the inclusion or exclusion of
water cycling) and predictive performance to better parse
ecological controls on the complexity—skill relationship.

4.4 Transferability to large-scale models (TBMs)

This analysis tested a spectrum of structurally distinct rep-
resentations of the carbon cycle based on the intermediate-
complexity ecosystem model DALEC, which allowed for
coupling with the CARDAMOM model-data fusion system
in a computationally tractable manner. Because our findings
are not explicitly linked to the roles of specific processes or
model features, however, their implications extend beyond
the use of DALEC-like models to a wide variety of ecologi-
cal models, including TBMs.

Traditional (based on plant functional type, or PFT) pa-
rameter determination in TBMs is far from random. It is
informed by data — for example, by hypotheses or gener-
alizations derived from prior literature (e.g., Oleson et al.,
2010; Lawrence et al., 2011) or by model calibration at spe-
cific locations (e.g., Williams et al., 1997) — and therefore
endowed with ecological knowledge. Accordingly, TBM pa-
rameters are likely more informed than the least constrained
parameters retrieved in our analysis, which were freely sam-
pled from wide uniform distributions and caused the high-
complexity decline in performance (Fig. 5). However, while
this may be true locally, the common assumption on unifor-
mity of parameters within PFTs casts doubt on their precision
across the regional or global scales at which TBMs typically
make predictions (van Bodegom et al., 2012). Indeed, using
a suite of global TBMs participating in the Multi-scale Syn-
thesis and Terrestrial Model Intercomparison Project (MsT-
MIP; Huntzinger et al., 2013), Schwalm et al. (2019) showed
that increases in model performance were more often linked
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to the omission rather than inclusion of various processes,
suggesting a tradeoff between complexity and skill similar
to that observed here. This conclusion calls into question the
conventional paradigm that greater complexity significantly
and consistently improves skill across current TBMs.

Earth observation (EO) is one key approach that can
provide the high-spatial- and high-temporal-resolution data
on carbon cycling needed for more localized calibrations
(Exbrayat et al., 2019). In COMPLEX, we used Coperni-
cus LAI data, though there are also opportunities to in-
gest biomass maps from space lidar or radar, estimates
of photosynthesis from solar-induced fluorescence (SIF),
and satellite-based atmospheric inversions of regional NEE,
among others, in future studies. If supplied with appropriate
error estimates, these datasets can over time provide pow-
erful constraints for high-resolution carbon cycle analyses
with TBMs or DALEC-like models. A key research goal is to
determine the appropriate model complexity for maximizing
the information content of these EO data for robust forecasts
and analyses.

Alternative methodologies for deriving ecosystem param-
eters outside the realm of PFTs are also becoming increas-
ingly common (van Bodegom et al., 2012; Bloom et al.,
2016; Exbrayat et al., 2018; Berzaghi et al., 2020; Fisher
and Koven, 2020) and may represent a way forward in ad-
dressing the tradeoff between structural and parametric un-
certainty. Recent work has focused on upscaling in situ trait
data (e.g., from the TRY database; Kattge et al., 2020) to
yield spatially variable maps of key ecosystem parameters,
using modeled relationships with climate or canopy proper-
ties (often referred to as environmental filtering relationships,
since the environment “filters” the possible distribution of pa-
rameters at a given location; e.g., Verheijen et al., 2013; van
Bodegom et al., 2014; Butler et al., 2017), leaf economics
(Sakschewski et al., 2015), or optimality theory (e.g., Smith
et al., 2019). Other studies have investigated how TBM pa-
rameters optimized at eddy covariance sites covary with cli-
mate (e.g., Peaucelle et al., 2019; Wu et al., 2020b). These
efforts are not without their challenges, however. The spatial
coverage of in situ trait data as well as eddy covariance sites
is sparse relative to the large diversity of ecosystem behav-
ior (Schimel et al., 2015), and such datasets also comprise a
non-representative sample of species and disturbance histo-
ries (Sandel et al., 2015). These biases may limit the repre-
sentativeness of the modeled relationships. Taking a differ-
ent approach, a small subset of models has also been devel-
oped to operate altogether independently from the paradigm
of PFTs (e.g., using trait-based approaches; Scheiter et al.,
2013; Pavlick et al., 2013; Fyllas et al., 2014). Our results
imply that these and future developments to improve the flex-
ibility of model parameters will play critical roles in enabling
the trend of increasing model complexity and may be a more
fruitful avenue towards reducing the uncertainty of TBM pre-
diction than model structural changes and additions.
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5 Conclusions

Our approach to understanding the relationship between
model complexity and model predictive performance is novel
in its focus on sampling the spectrum of possible parameter
uncertainty states for a variety of model structures and cal-
ibration data. Taken together, lessons learned from the be-
havior of the effective complexity metric as well as the data
and site effects discussed here represent a comprehensive
pattern: improving the robustness of parameter calibration
is a prerequisite for effectively increasing structural com-
plexity. Specifically, we found that increasing model com-
plexity actively degrades predictive skill in the most extreme
cases of parameter uncertainty. Assimilating data — particu-
larly monthly observations of net ecosystem exchange — con-
siderably improve the performance of complex models rela-
tive to simple models, though the magnitude and persistence
of this improvement vary across space. Overall, the growing
focus on understanding and reducing parametric uncertain-
ties within large-scale models (such as via direct data assim-
ilation, the development and implementation of alternatives
to PFTs, and parameter sensitivity analyses; e.g., Fisher et
al., 2019, and more) is both a necessary direction and a sig-
nificant opportunity for improving the predictability of the
terrestrial biosphere. Our conclusion for model construction
and usage matches those from other scientific fields, as stated
by Albert Einstein: “to make the irreducible basic elements
as simple and as few as possible without having to surrender
the adequate representation of a single datum of experience”
(Caprice, 2013).
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Appendix A: DALEC model descriptions

The Data Assimilation Linked Ecosystem Carbon (DALEC)
model suite includes a range of related intermediate-
complexity models of the terrestrial carbon cycle. Each
model version is comprised of sub-models related to different
simulations of photosynthesis, plant and heterotrophic res-
piration, canopy phenology, stomatal conductance, and the
inclusion of water cycling (Table 1). The sub-models are de-
scribed in detail in the following sections (Sect. A.1-A.5).
Each section contains a table highlighting the key features of
each sub-model (Tables A1-A5).

Al Photosynthesis and stomatal conductance
Al.l Aggregated Canopy Model Version 1 (ACM1)

The Aggregated Canopy Model Version 1 (ACM1) estimates
canopy gross primary productivity (i.e., photosynthesis) as
a function of temperature, shortwave radiation, day length,
atmospheric CO; concentration, leaf area, and mean foliar
nitrogen content (Williams et al., 1997; Fox et al., 2009).
ACMI1 was designed and calibrated to emulate a state-of-
the-art process-orientated ecosystem model SPA (Williams
et al., 1996, 2001; Smallman et al., 2013). As such, ACM1
contains 10 parameters which implicitly capture the more
complex process representations (e.g., temperature sensitiv-
ity, radiative transfer) found within SPA. An 11th parameter
represents the canopy photosynthetic efficiency (the product
of nitrogen use efficiency and foliar nitrogen), which is es-
timated by CARDAMOM as a location-specific, optimized
value.

ACM1 has no explicit capacity to simulate drought or di-
rect overheating stress on canopy processes. Canopy photo-
synthesis is connected to the wider carbon cycle through the
leaf area, although the role of the roots in water supply is
neglected as is its interplay with CO; supply via stomatal
conductance.

Al1.2 Aggregated Canopy Version 1+ cold weather
GPP

The GPP module also includes an empirical cold-weather
GPP limitation sensitivity function. The cold temperature
limitation factor (denoted as g) is used as a multiplier on
the DALEC GPP function output, to act as a thermostat
that regulates evergreen needleleaf carbon uptake. The cold-
weather factor g is calculated using added model parameters
(Tminmin and Tminmax) and temperature observations (7iin),
such that g =0 if Tinin < Tminmin, & = 1 if Tmin > Tminmaxo
and g = (Tmin — Tminmin)/ (Tminmax — Tminmin) Otherwise.

Al.3 Aggregated Canopy Version 2 (ACM2)

The aggregated canopy model for gross primary productiv-
ity and evapotranspiration is the successor version to ACMI,
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hereafter known as ACM2 (Smallman and Williams, 2019).
ACM?2 builds on the ACMI1 outline creating a model of
ecosystem water cycling to facilitate the implementation of a
mechanistic stomatal conductance model linking the canopy
to soil water via fine roots. ACM2 also optimizes the stomatal
intrinsic water use efficiency (for details see Williams et al.,
1996; Bonan et al., 2014). ACM2 simulates shortwave and
longwave isothermal radiation balances, canopy interception
of rainfall, and soil infiltration. ACM2 is therefore capable
of simulating canopy transpiration, soil evaporation, evapo-
ration of canopy intercepted rainfall, soil water runoff and
drainage.

Al.4 Analytical Ball-Berry

For the analytical Ball-Berry GPP module of CARDAMOM,
leaf-level GPP and stomatal conductance are calculated using
the coupled leaf photosynthesis—stomatal conductance devel-
oped by Ball-Berry (Ball et al., 1987) and an analytical solu-
tion to the system of equations developed by Baldocchi (Bal-
docchi, 1994). This new module serves to calculate both GPP
and evapotranspiration coupled through the stomatal behav-
ior. This formulation added the maximum rate of carboxyla-
tion (Vemax), the maximum rate of electron transport (Jmax),
stomatal slope and intercept, and boundary layer conduc-
tance to the set of parameters that were optimized through
data assimilation, while removing the explicit water use ef-
ficiency (where there is a water cycle in CARDAMOM) and
canopy efficiency parameters. We scaled the leaf level results
of GPP and stomatal conductance to the canopy as a “big
leaf” with an exponential decay function of LAI (Sellers et
al., 1992).

A2 Autotrophic respiration (R,)

Autotrophic (plant) respiration (R,) is a key ecosystem car-
bon flux returning approximately half of GPP back to the
atmosphere (Waring et al., 1998). While this overall pro-
portionality remains true, subsequent studies have identified
variation in the R, : GPP fraction linked, among others, to cli-
mate, nutrient status, and plant age (e.g., Collalti and Pren-
tice, 2019). Furthermore, there are multiple competing hy-
potheses for how to explain the broad proportionality and
site-specific variations (e.g., Collalti and Prentice, 2019; Col-
lalti et al., 2020), requiring an investigation of multiple ap-
proaches.

A2.1 Fixed R, : GPP fraction

Autotrophic respiration (R,) is assumed to be a fixed (time-
invariant) fraction of GPP (R, : GPP) such that

R, = GPP x R, : GPP. (A1)

It varies in space as a retrieved location-specific parameter.
A prior value (0.46+0.12) for the R, : GPP fraction is drawn
from Waring et al. (1998) and (Collalti and Prentice, 2019).
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Table A1. Summary of the key features for each photosynthesis sub-model.

Sub-model Key feature(s)
ACM1 1. Estimates GPP sensitivity to temperature, CO,, SW radiation, and leaf area
2. Stomatal conductance uses empirical approach
ACM1 + cold weather GPP  Same as ACM1, includes an empirical cold-weather GPP suppression scheme
ACM?2 1. Estimates GPP and ET sensitivity to temperature, CO,, SW radiation, leaf area, and water

supply via fine roots

2. Stomatal conductance uses optimality approach
3. Simulates full ecosystem water balance

Analytical Ball-Berry

1. Sensitive to temperature, CO,, SW radiation, and leaf area

2. Stomatal conductance uses empirical approach
3. Simulates full ecosystem water balance
4. Time-varying water use efficiency

Table A2. Summary of key features for each respiration sub-model.

Sub-model Key feature(s)

Fixed R, : GPP

1. Simple approach supported by literature on annual timescales

Fixed Rm:GPP + Rg:NPP

1. Simple approach with well-supported literature values for growth respiration (Rg)

2. Allows quantification of relative importance of growth and maintenance respiration (Rpy,)

Canopy cost respiration model

1. Links canopy respiration to traits and temperature

2. Facilitates implementation of economic models of canopy phenology

A2.2 Fixed Ry, : GPP fraction R, : NPP

R, can be divided between respiration associated with tis-
sue growth (Rg) and maintenance (Rpm). Rg has a robust
mechanistic understanding, allowing it to be estimated as
a fixed fraction of carbon allocated to plant tissues (Caioc;
gCm~2d~") independently of ecosystem type and climatic
conditions (0.22; Waring and Schlesinger, 1985):

Rg = Caitoe X 0.22. (A2)

We continue to retrieve a location-specific fixed fraction of
GPP respired as Ry, (Ry, : GPP):

Ry = GPP x Ry, : GPP. (A3)

This formulation allows for variation between the propor-
tion of R, attributed to either Ry or Ry, as they have inde-
pendent drivers. Note that this model structure implicitly as-
sumes that maintenance respiration is fully coupled to GPP
and growth activity, neglecting any distinct temperature sen-
sitivity of respiration versus photosynthesis.

A2.3 Canopy cost respiration model

The sensitivity of Ry, to tissue temperature and nitrogen con-
tent is well established (e.g., Ryan, 1991; Reich et al., 2008;
Atkin et al., 2017); however the exact formulation of the re-
lationship remains poorly understood (Thomas et al., 2019).

Biogeosciences, 18, 2727-2754, 2021

We implemented the canopy maintenance respiration model
proposed by Reich et al. (2008), which has been extensively
evaluated in comparison with alternate approaches (Thomas
et al., 2019). Wood and fine root maintenance respiration
continue to be represented using a fixed fraction as described
in Sect. A.2.2. Estimation of growth respiration continues to
be a fixed fraction of NPP.

Following Reich et al. (2008), the estimation of canopy
maintenance respiration occurs in two stages: (i) estimation
of the canopy maintenance respiration per gram of leaf car-
bon at 20°C (RZ | . ¢C(m~2leaf)~!d™!) and (ii) daily
temperature adjustment. erno—leaf is estimated as a function of
the leaf nitrogen concentration ([Niear]; mmol N (g leaf)~1)
and two retrieved parameters. Parameter o represents the
reference maintenance respiration at 20°C and [Nies] =1,
while g is the exponential [Nje,¢] sensitivity parameter. Both
o and B are retrieved by CARDAMOM as DALEC model
parameters. The Reich et al. (2008) model estimates main-
tenance respiration in units of nmol C (gleaf)~! s~!, which
is adjusted to gC(gCleaf)~'d~! by the remaining terms:
1 x 1072 scales from nmolC to molC, 12 is the atomic
mass of carbon adjusting molC to gC, the factor 2 adjusts
gC(gleaf)~!s~! to gC(gCleaf)~! assuming 50 % of leaf
biomass is carbon, and 86400 is the number of seconds in

https://doi.org/10.5194/bg-18-2727-2021
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Table A3. Summary of key features for each decomposition sub-model.

Sub-model

Key feature(s)

Temperature sensitivity

1. Robust estimation of first-order exponential temperature sensitivity

Temperature and soil moisture sensitivity

1. Robust estimation of first-order exponential temperature sensitivity

2743

2. Varying linear sensitivity to moisture content

a day giving gC (gleaf)~' d~!:

R20

m—lea

= 10% X [Nieaf]? x (1 x 10—9> x 12 % 2 x 86400.
(A4)

[Niear] is determined from existing DALEC parameters
representing the mean foliar nitrogen content (avN; gN m~2)
and leaf mass per unit area (LMA; gm™2):

avN/LMA

[Nieaf] = ( 14

) « 1000, (AS)

The factor of 14 is the atomic weight of nitrogen and 1000
scales the result from moIN g~! to mmoIN g~ 1.

Temperature strongly impacts metabolic activity and thus
maintenance respiration. The canopy maintenance respira-
tion (Rm—leaf) at the current temperature (7') is estimated fol-
lowing a Q1¢ function (= 2; widely used) and scaled by the

size of the canopy carbon pool (Crop; gC m™2):
Rin-teat = Ry jeqp ¥ 2717729 x Cpo, (A6)

The instantaneous temperature response is well captured
by existing models. However, the impact of long-term tem-
perature changes and associated acclimation of both pho-
tosynthetic and respiratory pathways are not accounted for.
Therefore, simulations over longer timescales may overes-
timate negative feedbacks of increased canopy maintenance
respiration due to warming (Atkin et al., 2015; Wang et al.,
2020).

A3 Decomposition and heterotrophic respiration

Heterotrophic respiration results from decomposition and
mineralization processes in carbon pools containing dead or-
ganic matter. Depending on the model structure, these can
include a fine litter pool (Rp—jy composed of foliar and fine
root inputs), a wood litter (Ry_woodlit both fine and coarse
woody debris), and soil organic matter (Rh—_som)- In all cases,
decomposition and mineralization follow a first-order ki-
netic approach with environmental modifiers. When litter
and wood litter pools turn over, a fraction of their carbon
is released as heterotrophically respired C while the remain-
der passes to the soil organic matter pool (Diit, Diitwood;
gCm~2d~"). All decomposition of soil organic matter is het-
erotrophically respired. All models assume heterotrophic C
respiration is respired as CO».

https://doi.org/10.5194/bg-18-2727-2021

A3.1 Temperature sensitivity

All dead organic matter pools follow a common basic form of
a pool-specific turnover parameter (Opool; fraction per day at
0°C) combined with an exponential response linked to tem-
perature (Thax; C) and a sensitivity parameter (y):

Ru—pool = Cpool X G)pool x eV Tmax, (A7)
A3.2 Temperature and soil moisture sensitivity

Heterotrophic respiration regulated by both temperature (as
in Sect. A.3.1) and a linear function of the ratio of current
precipitation to the site mean (as proxy for near-surface soil
moisture). The functional form allows for varying linear sen-
sitivity, such that

Rh—pool = Cpool X ®pool x f(T)
x ((P/P)=1)-sp+1), (A8)

where P is the monthly precipitation, P is the average pre-
cipitation, and sp is the precipitation sensitivity parameter.
Note that sensitivity is positive-definite (i.e., no heterotrophic
limitations induced for high-moisture events). See Quetin et
al. (2020) and Bloom et al. (2020) for further details.

A4 Canopy phenology

A4.1 Combined Deciduous-Evergreen Analytical
(CDEA) model

The CDEA phenology model is based primarily on a day of
year approach to simulate the turnover of a labile pool to sup-
port canopy growth and subsequent canopy turnover (Bloom
and Williams, 2015). Each time step, a fixed fraction of GPP
is allocated to the canopy and a labile pool which supplies
the canopy with new growth based on the CDEA model. The
CDEA model uses parameterized values for the peak day of
year for labile turnover (i.e., supplying leaf growth) and leaf
turnover plus two further parameters which define the stan-
dard deviation of a Gaussian distribution specifying the pe-
riod of time over which canopy phenology occurs. The frac-
tion of the canopy which is turned over each year is defined
by a leaf lifespan parameter, while the labile pool is assumed
to fully turnover each year.

The CDEA model provides an easy-to-calibrate diagnos-
tic model of mean canopy phenology. However, it does not

Biogeosciences, 18, 2727-2754, 2021
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Table A4. Summary of key features for each phenology sub-model.

C. A. Famiglietti et al.: Optimal model complexity for terrestrial carbon cycle prediction

Scheme Key feature(s)

CDEA 1. Simple to calibrate, provides robust diagnostic of canopy phenological timing
CDEA+ 1. Same as CDEA, with variable labile release fraction

GSI 1. Links canopy phenology to environmental factors supporting prognostic simulations
NCCE 1. Links canopy phenology to environmental factors supporting prognostic simulations

2. Introduces economic return on canopy investment.

Table AS. Summary of key features for each water cycle sub-model.

Scheme Key feature(s)

Empirical bucket

1. First-order plant—soil carbon—water feedback

ACM?2: multi-layer root model

1. Allows semi-mechanistic representation of hydraulic processes

2. Explicit representation of transpiration, wet canopy evaporation, soil evaporation,

drainage, and runoff

vary phenology in response to changing environmental con-
ditions limiting simulation of inter-annual variability. As a
result, the CDEA model has a limited capacity to inform on
the meteorological drivers of canopy phenology.

A4.2 CDEA+

Phenology is the same as Sect. A.4.1; labile C release to fo-
liar C is optimizable (annually ~ 15 %—100 % of labile C al-
located to foliar C).

A4.3 Growing season index (GSI) + GPP return

Canopy phenology is sensitive to environmental conditions
(e.g., Jolly et al., 2005; Forkel et al., 2015) and plant carbon
economic constraints (e.g., Flack-Prain et al., 2021) driving
interannual variation in leaf area dynamics. The growing sea-
son index (GSI) is a piecewise model linking canopy phenol-
ogy to linear functions of day length, temperature, and vapor
pressure deficit scaled 0—1 (GSI; Jolly et al., 2005). The GSI
model was implemented in Smallman et al. (2017) and aug-
mented to include a requirement for new leaf area to lead to
an increase in GPP greater than a critical threshold retrieved
as part of CARDAMOM.

However, we note that recent plant economic theory in-
dicates that canopies are optimizing net canopy carbon ex-
port (NCCE,; e.g., Thomas et al., 2019; Flack-Prain et al.,
2021) — that is, photosynthesis minus respiratory and con-
struction costs, rather than photosynthesis alone. To investi-
gate this level of process complexity, in Sect. A.4.4 we in-
clude a canopy maintenance respiration model to assess the
NCCE.

Biogeosciences, 18, 2727-2754, 2021

A4.4 Growing season index (GSI) 4+ net canopy carbon
export (NCCE)

Optimality theory is increasingly being used to explain
canopy phenology based on maximizing some metric of the
carbon economy. One approach which is gaining support is
optimizing net canopy carbon export (NCCE): that is, en-
suring photosynthetic gains are greater than costs associated
with leaf growth and maintenance respiration (e.g., Thomas
and Williams, 2014; Flack-Prain et al., 2021). While further
research is needed to refine these theoretical models, we im-
plement a model consistent with existing literature.

The GSI model proposes an amount of new leaf area.
Whether this grows or not is determined by quantifying
whether the increase in GPP averaged over the expected life
span of the leaf is greater than the increased maintenance res-
piration costs and the carbon required to construct the new
leaf and the associated growth respiration.

A5 Water cycling
A5.1 Empirical bucket

The bucket approach extends the DALEC baseline structure
to include a plant-available water pool, where the hydrologi-
cal balance is defined as the sum of precipitation inputs (P)
and evapotranspiration (ET) and runoff (R) outputs. The to-
tal plant-available water W at time ¢ 4 1 is determined in the
following way:

WE+1)=W(@)+ (P @) —ET@) — R(@)) At, (A9)
where At is the time period. Runoff is calculated as

R()=aW()?, (A10)
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where « is a second-order decay constant. Evapotranspira-
tion is derived as

BT — VPD (1)
(1) = GPP (1) ——. (Al1)

€

where v, is the inherent use efficiency. The plant-available
water limits GPP such that

(%)
GPP (t) = GPPpay () -max ( 1, — ), (A12)
w

where w is the plant-available water stress threshold. Note
that the parameters «, ve, w, and Wy are optimized in CAR-
DAMOM. For further details, see Quetin et al. (2020) and
Bloom et al. (2020).

A5.2 ACM2: multi-layer root model

The ACM2 model includes a multi-layer representation of
the soil and root access (Smallman and Williams, 2019).
There are five soil layers, three of which are accessible to
roots to supply the canopy with water. The top two lay-
ers have a fixed thickness of 10 and 20cm, respectively,
with a third layer which is expandable based on root pen-
etration. Soil-layer-specific field capacity, porosity, and hy-
draulic conductances are calculated using soil texture. Using
these data, infiltration of precipitation, drainage between soil
layers, soil hydraulic resistance to root uptake of water, and
soil surface evaporation are estimated. Soil surface evapo-
ration occurs from the top soil layer only. For a complete
description, see Smallman and Williams (2019).

https://doi.org/10.5194/bg-18-2727-2021
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Appendix B: Carbon cycle structure for DALEC
variants

Model carbon path:
C1-8
GPP R,

NPP

(]
(€]
NPP allocation

Plant mortality
Decomposition
o

Live biomass Dead organic matter
Figure B1. Carbon cycle structure for models C1-C8.
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Figure B2. Carbon cycle structure for model E1.
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Figure B4. Carbon cycle structure for model S1.
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Model carbon path:
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Figure B5. Carbon cycle structure for model S2.
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Figure B6. Carbon cycle structure for model S3.
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Figure B7. Carbon cycle structure for model S4.
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Appendix C: Data requirements and site selection

COMPLEX uses information from six sites across the globe
(Fig. C1). The selection aimed to maximize their biogeo-
graphical spread and diversity of natural ecosystems while
fulfilling specific data requirements. A key DALEC model
criterion requires that the sites must not be dominated by C4
photosynthetic pathway, be arable agriculture or intensively
grazed grassland. COMPLEX makes use of a range of time
series observations, including LAI, NEE, and wood stock in-
ventory. Furthermore, the experiment uses temporally dis-
tinct calibration and prediction periods requiring observa-
tional constraints to span both periods. Collectively both sci-
entific and data availability created a series of site selection
criteria which are described below.

Time series information on leaf area are drawn from the
(EO) Copernicus 1km product derived from Earth observa-
tions which provides estimates of LAI magnitude at fine tem-
poral resolution and concurrent location-specific estimates
on uncertainty. Using this EO product and the abovemen-
tioned calibration/prediction period constraints requires site
data collection periods to be post-1998.

Simulation of NEE is a key focus of COMPLEX, mak-
ing the availability of long-term, temporally consistent, high-
quality NEE estimated derived from eddy covariance es-
sential (e.g., FLUXNET2015; Pastorello et al., 2020). The
FLUXNET?2015 database provides consistent information on
data quality (e.g., observation uncertainty and proportion of
model—data gap-filling) that underpins the site selection pro-
cess. Here, to avoid comparing DALEC-simulated NEE with
largely statistically gap-filled observations, only sites with
<20 % gap-filled data are used.

Hill et al. (2012) demonstrated that assimilation of NEE
observations provides substantial new information up to at
least 5 years in duration. To create a balanced experimen-
tal design, COMPLEX sites are required to have a mini-
mum of 10 years of observations (i.e., 5 years calibration and
remainder evaluation). Building on existing analyses with
DALEC (e.g., Smallman et al., 2017), COMPLEX quanti-
fies the role of woody biomass information on constraining
the DALEC models’ predictive capacity of NEE. Therefore,
multiple wood stock estimates are required spanning both
the calibration and prediction periods. As determining the
amount and access of inventory data often requires direct
contact with site managers, this stage occurs later in the se-
lection process.
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Figure C1. Map of FLUXNET sites used in the experiment.

Collectively, the abovementioned and model process rep-
resentations formed the basis of a site selection procedure to
filter the FLUXNET2015 database. This process ultimately
led to the selection of six sites (Table 2).

a. Sites must represent a natural ecosystem (i.e., remove
arable agriculture and intensively grazed sites) domi-
nated by C3 photosynthesis species.

b. Sites have observations spanning > 10 years after 1998.

c. Sites have <20 % gap-filled observations: threshold var-
ied to ensure that at least one site representative is
available for boreal, temperate, and tropical ecosys-
tems spanning, where appropriate, canopy phenological
types (i.e., needle versus broadleaf, evergreen versus de-
ciduous).

d. Contact site managers to determine availability of wood
stock observations.
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Code and data availability. Data generated in COM-
PLEX  (performance and complexity metrics corre-
sponding to each model run) are publicly available at
https://doi.org/10.6084/m9.figshare.13409096 (Famiglietti,
2020). We thank FLUXNET site PIs Jean-Marc Ourcival and
Serge Rambal (FR-Pue), Lindsay Hutley and Jason Beringer
(AU-How), Bill Munger and Steve Wofsy (US-Hal), Denis Lous-
tau (FR-LBr), and Timo Vesala (FI-Hyy) for providing much of
the data used in our analysis. We thank Yuan Zhao, Rong Ge,
and Penghui Zhu for their assistance in preparing the data.
Analysis code is available at github.com/cfamigli/COMPLEX
(https://doi.org/10.5281/zenodo.4716391, Famiglietti, 2021).
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