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Abstract

Response surface modeling is an essential technique for identifying the optimal

input parameters in a process, especially when the physical knowledge about the

process is limited. It explores the relationships between the process input vari-

ables and the response variables through a sequence of designed experiments.

Conventional response surface models typically rely on a large number of exper-

iments to achieve reliable modeling performance, which can be cost prohibitive

and time-consuming. Furthermore, nonlinear input-output relationships in some

processes may not be sufficiently accounted for by existing modeling methods.

To address these challenges, this paper develops a new response surface mod-

eling approach based on hybrid multi-task learning (H-MTL). This approach

decomposes the variability in process responses into two components—a global

trend and a residual term, which are estimated through self-learning and MTL

of Gaussian process (GP), respectively. MTL leverages the similarities between

multiple similar-but-not-identical GPs, thus achieving superior modeling perfor-

mance without increasing experimental cost. The effectiveness of the proposed

method is demonstrated by a case study using experimental data collected from

real-world ultrasonic metal welding processes with different material combina-

tions. In addition, the hyperparameter selection, the effects of the number of
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tasks, and the determination of the stopping criterion are discussed in detail.

Keywords: Multi-task learning, Gaussian process, Response surface modeling,

Ultrasonic metal welding, Smart manufacturing, Data-efficient learning,

Process optimization

1. Introduction

In extensive industrial applications, one overarching goal is to optimize the

process response, which can be the performance of a process or the quality of

a product, by controlling the operational input factors. Due to the complex

physical phenomena involved in some applications, quantifying the relationship

between input variables and response variables using physics-based models can

be extremely difficult. Response surface modeling is a statistical tool to establish

an empirical input-output relationship in a process. It has been investigated and

successfully applied in a number of scientific and engineering disciplines, such

as analytical chemistry [1], environmental science [2], food industry [3], and

manufacturing [4–13].

A general response surface model can be expressed by:

y = f(x1, x2, . . . , xd), (1)

where y is the response and x1, x2, . . . , and xd are the input variables. The

procedure of constructing response surface modeling is mathematically equiv-

alent to the model fitting in a regression analysis. Most existing studies of

response surface modeling fit the regression model from only a single dataset of

the targeted process [14]. Though these studies achieved satisfactory modeling

performance, the acquisition of training datasets through experiments is expen-

sive and time-consuming. Typically, production costs associated with process

optimization in manufacturing can be divided into three major categories: (1)

costs of materials and machine usage, (2) labor costs, and (3) costs induced

by delayed decision-making in choosing the process parameters during produc-

tion launch [15–17]. Furthermore, the costs increase significantly as the design
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space increases. For instance, for a process with three input variables and each

input variable has five levels, the total number of parametric combinations is

53 = 125. This number increases exponentially with the number of input vari-

ables. Therefore, a cost-effective response surface modeling method is critically

needed.

A manufacturing process/machine may be tasked with different materials,

configurations, tools, etc. An emerging opportunity in cost-effectively obtain-

ing the response surface model of a new process lies in sharing the knowledge

or information available from other experiments conducted under similar pro-

cessing conditions. For example, the influence of welding time, clamping pres-

sure/force, and vibration amplitude, on the joint strength in ultrasonic metal

welding has been investigated separately in four different studies conducted by

different researchers and corresponding response surfaces were obtained [10–13].

The experiments in these studies were carried out on different metal materials

(magnesium to titanium, aluminum to steel, aluminum to copper, and copper

to copper). In these modeled response surfaces, although the ranges of the max-

imum failure load and the obtained optimal welding parameters are different,

the trends over the three welding parameters share some similarities. This indi-

cates that one can potentially transfer knowledge and insights across different

processes, thereby improving the learning/modeling efficiency and performance.

Additionally, it has been demonstrated that tooling design [18], tool conditions

[16, 19–22], joint configuration [12], and specimen surface condition [18, 23] sub-

stantially influence the joint strength in ultrasonic metal welding. Leveraging

the similarities between different welding settings can potentially save a large

amount of time and costs.

In this paper, we present a new H-MTL-based approach to cost-effectively

model the response surfaces of multiple similar-but-not-identical manufacturing

processes. In the proposed approach, the response surface for a given process is

decomposed into two parts—a global trend and a local spatial variability, which

are estimated by self-learning and MTL, respectively. An iterative procedure is

established to find the optimal decomposition and model parameters for each
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part.

The remainder of this paper is organized as follows. Section 2 reviews exist-

ing response surface modeling and MTL methods. In Section 3, we present the

H-MTL-based response surface modeling approach. A simulation-based numer-

ical case study and a real-world case study using experimental data collected

from ultrasonic metal welding processes are presented in Section 4. The hyper-

parameter selection, the effects of the number of tasks, and the determination

of the stopping criterion are discussed in Section 5. Finally, Section 6 concludes

the paper.

2. Literature Review

Response surface methodology was first introduced by Box and Wilson in

1951 [24]. The modeling techniques used in response surface methodology have

been evolving since then. The most popularly used models include polynomial

regression and multiple linear regression [14]. For example, Awad and Hassan

optimized the environmental and quality cost in machining processes using poly-

nomial regression with selected machining parameters, including cutting speed,

feed speed, depth of cut, and tool nose radius [8].

In recent years, machine learning techniques have been increasingly adopted

to capture intricate, nonlinear input-output relationships, including artificial

neural network, support vector machine (SVM), and Gaussian process (GP) [9–

12, 25–29]. For instance, Jurkovic et al. [9] studied the influence of three input

parameters, including cutting speed, feed rate, and depth of cut, on three output

responses, namely, cutting force, surface roughness, and tool life, in a high-speed

turning process. They compared the performances of SVM regression, polyno-

mial regression, and artificial neural network. Zhao et al. built a response sur-

face of tensile strength of the joint in ultrasonic welding of magnesium-titanium

dissimilar alloys using artificial neural network and identified the optimal ranges

of three welding parameters including clamping force, welding time, and vibra-

tion amplitude [10]. Satpathy et al. performed a similar study on ultrasonic spot
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welding of aluminum-copper dissimilar metals using linear regression model, ar-

tificial neural network, and adaptive neuro-fuzzy inference system. They also

analyzed the influence of welding parameters and their interactions [11]. Meng

et al. characterized the influence of welding time and welding amplitude on

the resulting joint quality in terms of shear and peel strengths using machine

learning-based response surface models, and analyzed the differences in two

quality indices [12]. They further developed a multi-objective optimization ap-

proach to optimize a compound strength indicator that was defined as the aver-

age of normalized shear and peel strengths. Sun et al. proposed to predict the

welding quality using Bayesian regularized neural network with features gener-

ated and selected from welding process signals [29]. The relationship between

welding process parameters, weld attributes, and joint performance was also

investigated.

Recent studies showed that deep reinforcement learning (DRL) have superior

performance for sequential optimization problems with a high-dimensional para-

metric space when the descriptive mathematical models are not available [27,

30]. He et al. developed a DRL-based framework for efficiently optimizing textile

chemical manufacturing process with multi criteria [31]. Leng et al. applied a

DRL algorithm to minimize the cost of color changeovers in an automotive paint-

ing process [32]. In these examples, deep neural networks were used to approx-

imate the interaction between the process variables and systems/environments,

and a large amount of data and computation resources are required. However,

such a large dataset may not be accessible in some manufacturing applications

due to the high cost of physical experiments.

MTL has emerged as a solution for transferring knowledge among multi-

ple similar-but-not-identical processes. MTL is particularly useful in scenarios

where it is expensive or infeasible to recollect sufficient training data and rebuild

the models for new learning tasks. In the past few years, MTL was successfully

used in multiple engineering/manufacturing applications, e.g., [33–36]. In the

automotive industry, an engineering-guided MTL approach was developed to

improve the machined surface shape prediction by integrating MTL with cut-
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ting force variation modeling [33]. In the energy industry, Shireen et al. [34]

proposed an iterative MTL approach for time-series modeling of solar panel

photovoltaic outputs, and the proposed method overcomes the challenge in time

series data modeling caused by a significant amount of missing or unavailable

historical data. In grain quality monitoring, Wang et al. [35] established a

mixed-effect framework for thermal field estimation and adopted a spatiotem-

poral MTL approach to model the local variability. Most recently, Chen et

al. [36] developed an MTL method for data-efficient spatiotemporal modeling

of tool surface progression in ultrasonic metal welding. A new spatiotempo-

ral kernel was devised based on a squared sine exponential damping function to

characterize the periodic trend of tool surfaces. They also analyzed the computa-

tional efficiency of their method and developed effective computing acceleration

methods. Ramezankhani et al. [37] developed a neural network-based transfer

learning framework for robust and reliable modeling for exotherm curve in com-

posites autoclave processing. To the best of our knowledge, the application of

MTL in response surface modeling has not been explored.

It should be noted that, although many machine learning models are avail-

able, it is challenging to include the results from all machine learning techniques

in one study. Our pilot study showed that other machine learning techniques,

such as SVM, had performance worse than candidate methods discussed later

in this manuscript. In this study, because of the spatial correlation pattern

shown by the data set, we identify GP as the most appropriate baseline method

for modeling the residual variability, and focus on the comparison between the

MTL version and single-task learning (STL) version of GP modeling.

3. H-MTL-Based Response Surface Model

Assume there are m similar-but-not-identical processes, the response surface

model for process l can be expressed as

Zl(x) = gl(βl;x) + fl(x) + ϵ, ϵ ∼ N (0, σ2
ϵ ), (2)
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Figure 1: Illustration of the H-MTL learning scheme.

where x is the vector of input parameters, Zl is the response surface model for

process l, gl(·) is the global trend with parameters βl, fl is the local spatial

variability, and ϵ is a zero-mean error term with variance σ2
ϵ .

Fig. 1 illustrates the learning scheme of the proposed H-MTL algorithm.

Instead of applying the conventional MTL approaches directly, we decompose

the response surface of a given process into a global trend that is governed

by process input parameters and a local spatial variability term that follows a

zero-mean GP. The global trend is estimated individually for each task through

self-learning, and the local spatial variability term can be jointly learned across

multiple similar-but-not-identical processes. In other words, the H-MTL model

is a combination of a self-learning regression model and an MTL-GP model.

This hybrid modeling approach is inspired by the combination of a regres-

sion model and a simple GP model in geostatistics. Such a combination has

been widely discussed since Matheron first introduced the universal kriging in

1969 [38], and it has been proven that this approach can yield higher predic-

tion accuracy than a plain regression model or GP model in many applications,

including mapping pollution in soil layers [39–41], temperature estimation in
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Figure 2: Flowchart of the proposed H-MTL algorithm procedure.

climate monitoring [42], monitoring geometric quality in semiconductor manu-

facturing [43], and remaining useful life estimation for machining tools [44]. In

geostatistics, different terms including kriging with external drift and regression-

kriging have been used to describe the combination of a linear regression model

and a zero-mean GP [39–42]. This technique has also been referred to as ad-

ditive GP or integrated GP in some studies, e.g., [43, 44]. In these methods,

the regression and GP models are estimated using the same data set, essentially

representing an STL scheme. However, in Model (2), we hypothesize that the

local variability term, which is modeled by a zero-mean GP, shares similarities

among multiple similar-but-not-identical processes. Consequently, MTL can be

applied to learn the GP term to improve the learning efficiency and performance.

Two sets of parameters need to be estimated for each process in the Model (2),
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the parameters βl in the self-learning model and the parameters in the zero-

mean GP fl. Because it is very challenging to estimate both sets of parame-

ters analytically, we develop an iterative model estimation procedure, which is

shown by Fig. 2. Similar iterative estimation procedures have been developed

for regression-kriging methods [41, 45] and MTL methods [33–35]. In the ini-

tialization of our procedure, we set the local spatial variability component as 0

for all processes. In the first iteration, the initial parameters of the global trend

model are estimated individually for each process, and the residual is modeled

by MTL-GP. In iteration j, the parameters of the global trend model, β̂j
l , are es-

timated by fitting the model, g(β̂j
l ;x), to the response subtracting the MTL-GP

modeled local variability component from previous iteration, Zl(x) − f̂ j−1
l (x).

The model of the local variability component, f̂ j
l (x), is updated by fitting the

new residual, Zl(x) − g(β̂j
l ;x), with MTL-GP. The process of model updating

is repeated until a stopping criterion is satisfied. In our method, the stopping

criterion is defined as follows: if the average change of the parameters in the

global trend models for each process,
∥∥∥∆β̂

∥∥∥ = 1
m

∑m
l=1

∥∥∥∆β̂l

∥∥∥, is below a pre-

determined threshold η, the procedure will stop. It is worth noting that other

stopping criteria, e.g., ∀∆β̂l < η, can also be used. The discussion of threshold

selection can be found in Section 5.3.

As reviewed in Appendix A, the model parameters of the MTL-GP model

are estimated through an expectation–maximization (EM) algorithm, and the

computational complexity of MTL-GP model is O(k1mn3), where k1 is the

number of EM steps, m is the number of tasks, and n is the training sample

size. In the H-MTL model, the computational complexity of MTL-GP model

is dominant, while the computational cost of the self-learning regression can be

neglected. The computational complexity of the H-MTL model is O(k1k2mn3),

where k2 is the number of iterations needed to reach stopping criterion.
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4. Case Studies

In this section, the effectiveness of the proposed H-MTL-based response

surface modeling is demonstrated by a simulation-based numerical case study

and a real-world case study using experimental data collected from ultrasonic

metal welding.

The H-MTL-based response surface modeling method is compared with four

representative state-of-the-art response surface modeling techniques: GP, linear

regression (LR), GP with LR, and MTL-GP. A summary of these candidate

models is given in Table 1. GP and MTL-GP model response surfaces using

a GP with a constant mean. LR models the global trend only. In GP with

LR, the response surface is decomposed into a global trend and a local vari-

ability term, which are modeled by LR and GP, respectively. This approach

is sometimes referred to as universal kriging, kriging with external drift, and

regression-kriging [39–42]. GP, LR, and GP with LR are considered as STL

approaches because they do not transfer knowledge across processes. The H-

MTL model and MTL-GP model, described in Sections 3 and Appendix A,

respectively, are both MTL methods.

Table 1: Summary of candidate response surface modeling techniques

Method
Combining GP with

regression model?

Transferring knowledge

from other processes?

H-MTL Yes Yes

MTL-GP No Yes

GP w/ LR Yes No

LR No No

GP No No

The prediction error for data point i in the dataset is given by

e(xi) = Ẑ(xi)− Z(xi), (3)
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where Ẑ(xi) and Z(xi) are the predicted value and ground truth of the response,

respectively. Root mean squared error (RMSE) and mean absolute error (MAE),

which are defined by Eqs. (4) and (5), respectively, are used as the metrics to

evaluate the prediction performance. A smaller RMSE or MAE indicates a

better prediction performance.

RMSE =

√√√√ 1

n

n∑
i=1

e(xi)2, (4)

MAE =
1

n

n∑
i=1

∣∣e(xi)
∣∣ , (5)

where n is the total number of settings in testing dataset. Additionally, stan-

dard deviation (SD), defined by Eq. (6), is used to characterize the variation

of prediction errors. A smaller SD of the prediction errors implies a smaller

prediction variability.

SD =

√√√√ 1

n

n∑
i=1

(
e(xi)− ē

)2
, where ē =

1

n

n∑
i=1

e(xi). (6)

4.1. Numerical Case Study

In this section, we use a numerical example to illustrate the underlying

learnt model in the H-MTL-based response surface modeling approach. We

simulate a dataset with 5 processes over 100 input values, where the GP priors

are inductively correlated. The joint GP prior distributions can be expressed as

f ∼ N (0,Σ), Σ = Kf ⊗Kx, (7)

where ⊗ denotes the Kronecker product, Kx is the base covariance matrix over

inputs, Kf is a l × l positive semi-definite matrix that specifies the inter-task

correlations. The response yl for process l is a combination of a randomly

generated linear trend and the corresponding GP:

yl ∼ alx+ bl +N (0,Σl), Σl = Kf
ll ⊗Kx, (8)
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Table 2: The averages of RMSE, MAE, and SD of the candidate response surface modeling

techniques. The smallest values for each metric are bolded.

H-MTL MTL-GP GP w/ LR LR GP

RMSE 0.502 0.621 0.724 1.053 1.236

MAE 0.382 0.521 0.460 0.821 0.867

SD 0.441 0.519 0.714 1.007 1.199

Figure 3: The boxplots of prediction errors in the testing dataset with five candidate methods.

where al and bl are randomly sampled constants. For each task, responses of

100 input values are generated. 20 of them are randomly selected as the training

data and the remaining 80 responses are used as the test data.

Table 2 lists the averages of RMSE, MAE, and SD of the candidate response

surface modeling techniques. H-MTL model achieves a superior prediction per-

formance with the lowest averages of RMSE and MAE. The average of SD in

H-MTL model is also smallest. Fig. 3 shows the distributions of prediction er-

rors from all tasks. H-MTL model has a mean of prediction errors close to 0 and

the smallest ranges and the interquartile ranges of the prediction errors. These
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imply that the H-MTL model can reduce the bias and variability in the predic-

tion results. This numerical example shows that H-MTL model can improve the

performance of the response surface modeling when the residual variability from

multiple similar-but-not-identical processes that follow joint GP priors. When

the true GP priors are unknown from a real-world dataset, a pilot study can be

used to check the validity of the assumption of the task similarity.

4.2. Real-World Case Study

Ultrasonic metal welding is a solid-state joining technique. A bonding be-

tween thin metal sheets clamped under pressure is created with oscillating shears

generated by ultrasonic vibration. It has wide industrial applications such as

electric vehicle battery assembly, electronic packaging, and automotive body

construction [10–13, 19–22]. The joint strength of ultrasonic metal welding is

influenced by a set of process parameters, including welding pressure, welding

time, and vibration amplitude. The relationship between process parameters

and joint strength in ultrasonic metal welding has been actively investigated in

the literature, e.g., [10–13]. In the rest of this section, we will first introduce the

experimental setup and then compare the modeling performances of the H-MTL

method and existing response surface modeling approaches.

4.2.1. Experimental Setup

The experiments are conducted on ultrasonic metal welder (Branson Ul-

traweld L20 Spot Welder) with a universal controller (Branson VersaGraphix

controller). 0.254 mm-thick 110 copper sheet and 0.254 mm-thick 1100 alu-

minum sheets are used in this study. The specimens are 50.8 mm long and 25.4

mm wide. The ethanol-moistened cleaning wipes are used to clean the surfaces

of the specimens and to get rid of contaminants before welding. The welding is

conducted at a fixed frequency of 20 kHz. Welding pressure, welding time, and

vibration amplitude are considered as the process input variables. Table 3 lists

the details of input variables and their levels. Welding pressure varies between

25 psi and 70 psi at 15 psi intervals, welding time are chosen from 0.2 s to 1.0
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s with increments of 0.2 s, and three levels of vibration amplitude are selected

as 30 µm, 35 µm, and 40 µm. A full factorial design of experiments is chosen

and the total number of factor level combinations of the three parameters is

therefore 4× 5× 3 = 60. The maximum load strength obtained through the T-

peel test is selected as the response variable to represent the weld quality. The

T-peel test is performed following ASTM D1876 with a constant strain rate of

0.5 mm/second at room condition.

Table 3: Input variables and their levels in the experimental design.

Variable Unit Levels

Welding pressure psi 25, 40, 55, 70

Welding time second 0.2, 0.4, 0.6, 0.8, 1.0

Vibration amplitude µm 30, 35, 40

Three combinations of metals, aluminum to aluminum (Al-Al), copper to

aluminum (Cu-Al), and copper to copper (Cu-Cu), are used to represent similar-

but-not-identical welding processes. Because the ultrasonic welding process can

be affected by some external factors, such as the material properties of speci-

mens [18, 23] and the tool health status of the welding machine [20, 21], and

these factors cannot be precisely monitored or controlled, the welding process

may present a certain level of instability even under the same welding condi-

tions [10, 18, 23, 46, 47]. To ensure the accuracy and reliability of the data, the

experiments for each combination of materials at each factor level are repeated

three times in a random order and the average maximum loads are used as the

responses of joint strength. A total of 60 × 3× 3 = 540 experiments have been

conducted.

4.2.2. Analysis of Results

The three-dimensional (3D) distributions of joint strength over three weld-

ing parameters are displayed in Fig. 4. In Al-Al welding, two data points at

(25 psi, 40 µm, 1 second) and (55 psi, 40 µm, 1 second) are not available, be-
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(a) Al-Al

(b) Cu-Al

(c) Cu-Cu

Figure 4: The 3D distributions of joint strengths over three welding parameters. The size and

color of the markers represent the values of joint strength. Two data points in Al-Al are not

available due to the welding failure.
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cause excessive welding energy is generated with the high values of welding time

and vibration amplitude, and the top Al plates are cracked or collapsed for all

samples at these two settings. The monotonic trends of the welding strength

over the welding parameters can be observed. In this study, LR is utilized to

model the global trends. The highest maximum load strength of Cu-Cu among

all settings is higher than of Al-Al and Cu-Al. Although the ranges of the max-

imum load strengths in the three response surfaces are different, similar overall

trends over the welding parameters can be observed. As such, it is reasonable

to consider them as similar-but-not-identical processes.

In order to simulate the process of building a complete response surface

model with a reduced number of actual experiments, the following procedure

is taken: for each task, 20 out of 60 parametric combinations are randomly

selected as the training data, and the remaining 40 combinations are used as

the test data (38 settings in testing data for Al-Al).

The comparative results are presented by Table 4. It is clear that the H-

MTL model outperforms other approaches in terms of the averages of RMSE,

MAE, and SD. In all tasks, the MTL-based approaches demonstrate a significant

improvement compared with STL approaches. The distributions of prediction

errors from each task are shown in Fig. 5. It can be noticed that, in all three

tasks, the means of prediction errors of the H-MTL model are close to 0 and

the ranges and the interquartile ranges of the prediction errors of the H-MTL

model are the smallest, indicating that the H-MTL model leads to the lowest

bias and variability. In conclusion, with the same number of experiments, the H-

MTL-based response surface model achieves a superior prediction performance

compared to the state-of-the-art methods.

5. Discussion

In this section, we discuss three practical issues for implementing the pro-

posed H-MTL method in industrial applications, including hyperparameter se-

lection, the effects of the number of tasks, and the determination of the stopping
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Table 4: The performance comparison of the response surface modeling techniques with all

three tasks. The smallest values for each task are bolded. H-MTL model achieves the best

overall performance while MTL-GP is the second to best method.

(a) RMSE

H-MTL MTL-GP GP w/ LR LR GP

Al-Al 9.603 8.826 11.269 11.373 12.755

Cu-Al 4.202 4.664 4.824 5.669 4.873

Cu-Cu 8.166 10.857 11.010 11.725 14.079

Mean 7.323 8.116 9.034 9.589 10.569

(b) MAE

H-MTL MTL-GP GP w/ LR LR GP

Al-Al 6.654 6.961 7.727 8.457 10.063

Cu-Al 3.312 3.702 3.962 4.583 3.924

Cu-Cu 6.066 8.422 8.192 9.241 10.424

Mean 5.344 6.362 6.627 7.427 8.137

(c) SD

H-MTL MTL-GP GP w/ LR LR STL-GP

Al-Al 9.041 8.993 10.811 10.572 12.284

Cu-Al 3.752 4.299 4.678 5.214 4.822

Cu-Cu 7.700 9.415 10.809 11.828 14.078

Mean 6.831 7.569 8.766 9.205 10.395
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(a) Al-Al (b) Cu-Al

(c) Cu-Cu

Figure 5: The boxplots of prediction errors from each testing dataset with five candidate

methods.

criterion.

5.1. Hyperparameter Selection

The performance of the H-MTL model can be affected by three hyperparam-

eters, i.e., τ and π that specify the normal-inverse-Wishart distribution, as well

as the initial value of the error variance σ2
ϵ , and these hyperparameters need

to be determined prior to the modeling procedure. In this section, experiments

are conducted to investigate the effects of the hyper parameters. In every run,

each hyperparameter is assigned with one of 18 candidate values, varying from

0.0001 to 200. All 18 × 18 × 18 = 5832 possible combinations are tested to

identify the appropriate ranges of the hyperparameters.

Fig. 6 displays the trends of RMSE when a pair of hyperparameters change

while another hyperparameter is kept at a fixed value. It can be observed that

18



(a) RMSE vs. τ and π while σ2
ϵ is fixed at 0.02 (b) RMSE vs. τ and σ2

ϵ while π is fixed at 5

(c) RMSE vs. σ2
ϵ and π while τ is fixed at 0.05

Figure 6: Slices of the effects of hyperparameter pairs on RMSE.

low RMSEs are obtained with 0.02 < τ < 0.1, 2 < π < 10, 0.01 < σ2
ϵ <

0.2. In other words, satisfying prediction results can be achieved when the

hyperparameters are selected from appropriate ranges. The optimal ranges of

the hyperparameters may vary case by case, and a cross-validation study can

be conducted to find the appropriate values using the training data.

5.2. Effects of the Number of Tasks

The effects of the number of tasks have been discussed in a number of MTL-

related studies [33–35]. In general, the prediction performance will improve

when the number of similar tasks increases because more information is trans-
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ferred. A similar conclusion could be drawn from this study.

In Section 4.2.2, the training data from all three tasks has been utilized.

In this section, three experiments are conducted for each pair of tasks under

the same experimental setup as described in Section 4.2.1. The results are

summarized in Table 5 and Table 6. In all cases, the RMSEs are reduced

in response surfaces built with the H-MTL model. It proves that even the

information from only one external task is shared, the H-MTL approach can

still improve the prediction performances of the response surface for the target

task, though the improvement rate is smaller, as shown by Table 6. This implies

that the MTL-based response surface modeling can benefit from more similar

tasks.

Table 5: The RMSE comparison for GP w/ LR model and H-MTL model for each pair of

tasks.

(a) Al-Al and Cu-Al

GP w/ LR H-MTL

Al-Al 11.269 10.932

Cu-Al 4.824 4.664

(b) Al-Al and Cu-Cu

GP w/ LR H-MTL

Al-Al 11.269 9.729

Cu-Cu 11.010 10.317

(c) Cu-Al and Cu-Cu

GP w/ LR H-MTL

Cu-Al 4.824 4.382

Cu-Cu 11.010 8.969

5.3. Effects of the Number of Iterations and the Stopping Criterion

The proposed H-MTL model could estimate the optimal decomposition of

individual trends and local variability components iteratively, and it is impor-

tant to choose an appropriate stopping criterion to prevent overfitting. In this

section, we first study the effects of the number of iterations in the parameter es-

timation process. Fig. 7 shows the changes of the training and testing RMSE as

well as the difference between estimated parameters between iterations,
∥∥∥∆β̂

∥∥∥
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Table 6: The improvement rate for each pair of tasks. The row name represents the target

task to be predicted and the column name represents the external task that is included in

learning.

Al-Al Cu-Al Cu-Cu Two external tasks

Al-Al N/A 2.99% 10.59% 14.78%

Cu-Al 3.31% N/A 9.17% 12.91%

Cu-Cu 4.78% 18.58% N/A 25.83%

(a) The training and testing RMSEs vs. the num-

ber of iterations.
(b)

∥∥∥∆β̂
∥∥∥ vs. the number of iterations.

Figure 7: The effects of the number of iterations.

vs. the number of iterations. It is noticed that, as the number of iterations

increases, the training RMSE keeps decreasing, while the testing RMSE first

decreases and then increases, and the change of estimated parameters between

two consecutive iterations reduces continuously. This implies that the algorithm

can be considered as converged when the estimated parameters do not change

significantly and we should stop the iteration process to prevent overfitting. In

this example,
∥∥∥∆β̂

∥∥∥ is smaller than 0.01 after 10-th iteration, and the small-

est testing RMSE can be obtained from 11-th to 14-th iteration. Hence, it is

reasonable to choose
∥∥∥∆β̂

∥∥∥ < 0.01 as the stopping criterion in this case study.

It should be noted that a similar iterative procedure has been widely applied

and discussed for the combination of a regression model and GP model in the
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literature [45, 48]. Although it has been proven that a satisfactory prediction

performance can be achieved with a single iteration in practice [48], fitting each

component iteratively until convergence is required for obtaining the optimal

result [45]. Our study agrees with these opinions. The training RMSE with one

single iteration deviates from the optimal RMSE at 11-th iteration by 3% and

the testing RMSE deviates by 1%. This performance is acceptable for prac-

titioners who prefer computational efficiency and responsive decision-making.

On the other hand, convergence is indeed required for achieving the optimal

performance at the cost of more iterations. In practice, users should choose

single-iteration or convergence approaches based on their applications.

The convergence of the iterative procedure may not be guaranteed and slow

convergence or non-convergence may happen and lead to undesirable prediction

results. A practical solution is to monitor the changes in estimated parameters

and re-initialize the parameters randomly when fluctuation occurs or conver-

gence is not achieved within a certain number of iterations.

5.4. Future Work

The proposed H-MTL model can be potentially applied to a number of

other processes and disciplines where cost-effective response surface modeling

is needed. However, it should be noted that some difficulties may prevent suc-

cessful applications. First, the modeling performance relies heavily on the task

similarity. If a process is not related/similar to other processes, MTL models

could be misled and give even worse performances than STL. Another poten-

tial challenge is the selection of self-learning models. The similarity in residual

variability can be affected by an improper self-learning model. However, there

is a lack of quantitative evaluation for task similarity, and a pilot study on a

validation dataset may provide valuable insights.

Sampling design, or design of experiments, in MTL is still an open question.

Different sampling schemes may lead to largely varying prediction performance.

The goal of sampling design is to optimally allocate the experimental efforts

such that the parametric space can be more effectively explored. In this study,
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the training datasets are randomly sampled from all combinations of param-

eters. An intelligent sampling design could further reduce the cost of actual

experiments and improve the learning performance.

6. Conclusion

In this paper, an H-MTL-based response surface modeling approach has been

developed for the first time. In this approach, the response surface of a given pro-

cess is decomposed into two components—a global trend and a residual variabil-

ity components, which are fitted through self-learning and MTL, respectively.

By leveraging the similarities between multiple similar-but-not-identical pro-

cesses, the H-MTL-based response surface modeling can achieve modeling per-

formance superior to conventional STL-based response surface modeling meth-

ods. A simulation-based numerical case study and a real-world case study with

the data collected from ultrasonic metal welding processes demonstrate that the

proposed method can improve the prediction performance of response surface

modeling without increasing the cost of experiments. Furthermore, the hyper-

parameter selection, the effects of number of tasks, and the determination of the

stopping criterion are discussed in detail. Finally, future research is suggested

to focus on the quantification of task similarity and sampling design for MTL.
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Appendix A. Review of MTL-GP model

There are a number of MTL algorithms for GP available with different ways

of defining the commonality among different tasks. Without loss of generality,

we adopt the inductive approach of MTL-GP developed by Yu et al. [49] in

this study to illustrate the concept of MTL. In MTL, datasets from multiple
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processes are taken in the training stage. Assume there are m similar-but-not-

identical processes with the same number of input parameters, d. For each

process l, the observation data can be represented as Dl = {(Xl,yl)}, where

Xl ∈ Rnl×d, yl ∈ Rnl , nl, is the size of observation data for process l. We further

assume that there are in total n distinct data points in {Dl} with min({nl})

≤ n ≤
∑

l nl and denote X = ∪Xl, l = 1, . . . , n as the set of distinguished x in

{Dl}. The goal of MTL is to estimate m related functions fl, l = 1, . . . ,m, and

predict the responses with unobserved parameters for a certain process based

on observation data from all m processes.

Given the mean µf and covariance K of function values f = [f(x1),. . .,

f(xn)]
⊺, there exist unique µα ∈ Rn and Cα ∈ Rn×n such that µf = κµα,

K = κCακ. µα and Cα are sampled from the hyper prior specified by a

normal-inverse-Wishart distribution

p (µα,Cα) = N
(
µα|0,

1

π
Cα

)
IW

(
Cα|τ,κ−1

)
, (A.1)

where π and τ are the hyper parameters that specify the distribution. For each

function fl in process l, there exists a unique αl ∈ Rn such that fl = αlκ

and αl ∼ N (µα,Cα). Given a parameter vector, x ∈ Xl, the response can be

expressed as

y =
n∑

i=1

αl
iκ(xi,x) + ϵ, ϵ ∼ N (0, σ2

ϵ ), (A.2)

where xi ∈ X.

The model parameters θ = {µα,Cα, σ
2
ϵ } and αl can be estimated through

an expectation–maximization (EM) algorithm. The EM algorithm is an itera-

tive method to find maximum likelihood estimates of parameters by alternating

between an expectation step and a maximization step, which are shown below.

• E-step: Given the current θ = {µα,Cα, σ
2
ϵ }, this step estimate the expec-

tation and covariance of αl :

α̂l =

(
1

σ2
ϵ

κ⊺
l κl +C−1

α

)−1 (
1

σ2
ϵ

κ⊺
l yl +C−1

α µα

)
, (A.3)

Cαl =

(
1

σ2
ϵ

κ⊺
l κl +C−1

α

)−1

, (A.4)
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where κ⊺
l ∈ Rnl×n is the base kernel κ(·, ·) evaluated between Xl and X.

• M-step: This step optimizes the model parameters θ based on the estima-

tions in E-step:

µα =
1

π +m

∑
l

α̂l, (A.5)

Cα =
1

τ +m

πµαµ
⊺
α + τκ−1 +

∑
l

Cαl +
∑
l

[
α̂l − µα

] [
α̂l − µα

]⊺ ,

(A.6)

σ2
ϵ =

1∑
l nl

∑
l

∥∥∥yl − κlα̂
l
∥∥∥2 + tr[κlCαlκ⊺

l ]. (A.7)

Once the model parameters θ and α̂l are obtained with the EM algorithm,

the predictor of an unobserved response in process l corresponding to an input

parameter vector x∗ can be expressed as

f̂l(x∗) =
n∑

i=1

α̂l
iκ(xi,x∗). (A.8)
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with nonparametric variance function estimation, Biometrics 55 (3) (1999)

704–710.

[46] W. Guo, C. Shao, T. H. Kim, S. J. Hu, J. J. Jin, J. P. Spicer, H. Wang,

Online process monitoring with near-zero misdetection for ultrasonic weld-

ing of lithium-ion batteries: An integration of univariate and multivariate

methods, Journal of Manufacturing Systems 38 (2016) 141–150.

[47] C. Shao, K. Paynabar, T. H. Kim, J. J. Jin, S. J. Hu, J. P. Spicer, H. Wang,

J. A. Abell, Feature selection for manufacturing process monitoring using

cross-validation, Journal of Manufacturing Systems 32 (4) (2013) 550–555.

[48] P. K. Kitanidis, Generalized covariance functions in estimation, Mathemat-

ical Geology 25 (5) (1993) 525–540.

[49] K. Yu, V. Tresp, A. Schwaighofer, Learning gaussian processes from multi-

ple tasks, in: Proceedings of the 22nd international conference on Machine

learning, 2005, pp. 1012–1019.

31


	Introduction
	Literature Review
	H-MTL-Based Response Surface Model
	Case Studies
	Numerical Case Study
	Real-World Case Study
	Experimental Setup
	Analysis of Results


	Discussion
	Hyperparameter Selection
	Effects of the Number of Tasks
	Effects of the Number of Iterations and the Stopping Criterion
	Future Work

	Conclusion
	Review of MTL-GP model

