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Abstract

Response surface modeling is an essential technique for identifying the optimal
input parameters in a process, especially when the physical knowledge about the
process is limited. It explores the relationships between the process input vari-
ables and the response variables through a sequence of designed experiments.
Conventional response surface models typically rely on a large number of exper-
iments to achieve reliable modeling performance, which can be cost prohibitive
and time-consuming. Furthermore, nonlinear input-output relationships in some
processes may not be sufficiently accounted for by existing modeling methods.
To address these challenges, this paper develops a new response surface mod-
eling approach based on hybrid multi-task learning (H-MTL). This approach
decomposes the variability in process responses into two components—a global
trend and a residual term, which are estimated through self-learning and MTL
of Gaussian process (GP), respectively. MTL leverages the similarities between
multiple similar-but-not-identical GPs, thus achieving superior modeling perfor-
mance without increasing experimental cost. The effectiveness of the proposed
method is demonstrated by a case study using experimental data collected from
real-world ultrasonic metal welding processes with different material combina-

tions. In addition, the hyperparameter selection, the effects of the number of
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tasks, and the determination of the stopping criterion are discussed in detail.
Keywords: Multi-task learning, Gaussian process, Response surface modeling,
Ultrasonic metal welding, Smart manufacturing, Data-efficient learning,

Process optimization

1. Introduction

In extensive industrial applications, one overarching goal is to optimize the
process response, which can be the performance of a process or the quality of
a product, by controlling the operational input factors. Due to the complex
physical phenomena involved in some applications, quantifying the relationship
between input variables and response variables using physics-based models can
be extremely difficult. Response surface modeling is a statistical tool to establish
an empirical input-output relationship in a process. It has been investigated and
successfully applied in a number of scientific and engineering disciplines, such
as analytical chemistry [1], environmental science [2], food industry [3], and
manufacturing [4-13].

A general response surface model can be expressed by:

y= flz1,29,...,24), (1)

where y is the response and x1,z2,..., and x4 are the input variables. The
procedure of constructing response surface modeling is mathematically equiv-
alent to the model fitting in a regression analysis. Most existing studies of
response surface modeling fit the regression model from only a single dataset of
the targeted process [14]. Though these studies achieved satisfactory modeling
performance, the acquisition of training datasets through experiments is expen-
sive and time-consuming. Typically, production costs associated with process
optimization in manufacturing can be divided into three major categories: (1)
costs of materials and machine usage, (2) labor costs, and (3) costs induced
by delayed decision-making in choosing the process parameters during produc-

tion launch [15-17]. Furthermore, the costs increase significantly as the design



space increases. For instance, for a process with three input variables and each
input variable has five levels, the total number of parametric combinations is
53 = 125. This number increases exponentially with the number of input vari-
ables. Therefore, a cost-effective response surface modeling method is critically
needed.

A manufacturing process/machine may be tasked with different materials,
configurations, tools, etc. An emerging opportunity in cost-effectively obtain-
ing the response surface model of a new process lies in sharing the knowledge
or information available from other experiments conducted under similar pro-
cessing conditions. For example, the influence of welding time, clamping pres-
sure/force, and vibration amplitude, on the joint strength in ultrasonic metal
welding has been investigated separately in four different studies conducted by
different researchers and corresponding response surfaces were obtained [10-13].
The experiments in these studies were carried out on different metal materials
(magnesium to titanium, aluminum to steel, aluminum to copper, and copper
to copper). In these modeled response surfaces, although the ranges of the max-
imum failure load and the obtained optimal welding parameters are different,
the trends over the three welding parameters share some similarities. This indi-
cates that one can potentially transfer knowledge and insights across different
processes, thereby improving the learning/modeling efficiency and performance.
Additionally, it has been demonstrated that tooling design [18], tool conditions
[16, 19-22], joint configuration [12], and specimen surface condition [18, 23] sub-
stantially influence the joint strength in ultrasonic metal welding. Leveraging
the similarities between different welding settings can potentially save a large
amount of time and costs.

In this paper, we present a new H-MTL-based approach to cost-effectively
model the response surfaces of multiple similar-but-not-identical manufacturing
processes. In the proposed approach, the response surface for a given process is
decomposed into two parts—a global trend and a local spatial variability, which
are estimated by self-learning and MTL, respectively. An iterative procedure is

established to find the optimal decomposition and model parameters for each



part.

The remainder of this paper is organized as follows. Section 2 reviews exist-
ing response surface modeling and MTL methods. In Section 3, we present the
H-MTL-based response surface modeling approach. A simulation-based numer-
ical case study and a real-world case study using experimental data collected
from ultrasonic metal welding processes are presented in Section 4. The hyper-
parameter selection, the effects of the number of tasks, and the determination
of the stopping criterion are discussed in Section 5. Finally, Section 6 concludes

the paper.

2. Literature Review

Response surface methodology was first introduced by Box and Wilson in
1951 [24]. The modeling techniques used in response surface methodology have
been evolving since then. The most popularly used models include polynomial
regression and multiple linear regression [14]. For example, Awad and Hassan
optimized the environmental and quality cost in machining processes using poly-
nomial regression with selected machining parameters, including cutting speed,
feed speed, depth of cut, and tool nose radius [8].

In recent years, machine learning techniques have been increasingly adopted
to capture intricate, nonlinear input-output relationships, including artificial
neural network, support vector machine (SVM), and Gaussian process (GP) [9—
12, 25-29]. For instance, Jurkovic et al. [9] studied the influence of three input
parameters, including cutting speed, feed rate, and depth of cut, on three output
responses, namely, cutting force, surface roughness, and tool life, in a high-speed
turning process. They compared the performances of SVM regression, polyno-
mial regression, and artificial neural network. Zhao et al. built a response sur-
face of tensile strength of the joint in ultrasonic welding of magnesium-titanium
dissimilar alloys using artificial neural network and identified the optimal ranges
of three welding parameters including clamping force, welding time, and vibra-

tion amplitude [10]. Satpathy et al. performed a similar study on ultrasonic spot



welding of aluminum-copper dissimilar metals using linear regression model, ar-
tificial neural network, and adaptive neuro-fuzzy inference system. They also
analyzed the influence of welding parameters and their interactions [11]. Meng
et al. characterized the influence of welding time and welding amplitude on
the resulting joint quality in terms of shear and peel strengths using machine
learning-based response surface models, and analyzed the differences in two
quality indices [12]. They further developed a multi-objective optimization ap-
proach to optimize a compound strength indicator that was defined as the aver-
age of normalized shear and peel strengths. Sun et al. proposed to predict the
welding quality using Bayesian regularized neural network with features gener-
ated and selected from welding process signals [29]. The relationship between
welding process parameters, weld attributes, and joint performance was also
investigated.

Recent studies showed that deep reinforcement learning (DRL) have superior
performance for sequential optimization problems with a high-dimensional para-
metric space when the descriptive mathematical models are not available [27,
30]. He et al. developed a DRL-based framework for efficiently optimizing textile
chemical manufacturing process with multi criteria [31]. Leng et al. applied a
DRL algorithm to minimize the cost of color changeovers in an automotive paint-
ing process [32]. In these examples, deep neural networks were used to approx-
imate the interaction between the process variables and systems/environments,
and a large amount of data and computation resources are required. However,
such a large dataset may not be accessible in some manufacturing applications
due to the high cost of physical experiments.

MTL has emerged as a solution for transferring knowledge among multi-
ple similar-but-not-identical processes. MTL is particularly useful in scenarios
where it is expensive or infeasible to recollect sufficient training data and rebuild
the models for new learning tasks. In the past few years, MTL was successfully
used in multiple engineering/manufacturing applications, e.g., [33-36]. In the
automotive industry, an engineering-guided MTL approach was developed to

improve the machined surface shape prediction by integrating MTL with cut-



ting force variation modeling [33]. In the energy industry, Shireen et al. [34]
proposed an iterative MTL approach for time-series modeling of solar panel
photovoltaic outputs, and the proposed method overcomes the challenge in time
series data modeling caused by a significant amount of missing or unavailable
historical data. In grain quality monitoring, Wang et al. [35] established a
mixed-effect framework for thermal field estimation and adopted a spatiotem-
poral MTL approach to model the local variability. Most recently, Chen et
al. [36] developed an MTL method for data-efficient spatiotemporal modeling
of tool surface progression in ultrasonic metal welding. A new spatiotempo-
ral kernel was devised based on a squared sine exponential damping function to
characterize the periodic trend of tool surfaces. They also analyzed the computa-
tional efficiency of their method and developed effective computing acceleration
methods. Ramezankhani et al. [37] developed a neural network-based transfer
learning framework for robust and reliable modeling for exotherm curve in com-
posites autoclave processing. To the best of our knowledge, the application of
MTL in response surface modeling has not been explored.

It should be noted that, although many machine learning models are avail-
able, it is challenging to include the results from all machine learning techniques
in one study. Our pilot study showed that other machine learning techniques,
such as SVM, had performance worse than candidate methods discussed later
in this manuscript. In this study, because of the spatial correlation pattern
shown by the data set, we identify GP as the most appropriate baseline method
for modeling the residual variability, and focus on the comparison between the

MTL version and single-task learning (STL) version of GP modeling.

3. H-MTL-Based Response Surface Model

Assume there are m similar-but-not-identical processes, the response surface

model for process [ can be expressed as

Zi(x) = (B ) + fi(x) + €,e ~ N(0,02), (2)
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Figure 1: Illustration of the H-MTL learning scheme.

where x is the vector of input parameters, Z; is the response surface model for

process I, ¢;(-) is the global trend with parameters 3;, f; is the local spatial

2
¢ -

variability, and € is a zero-mean error term with variance o
Fig. 1 illustrates the learning scheme of the proposed H-MTL algorithm.
Instead of applying the conventional MTL approaches directly, we decompose
the response surface of a given process into a global trend that is governed
by process input parameters and a local spatial variability term that follows a
zero-mean GP. The global trend is estimated individually for each task through
self-learning, and the local spatial variability term can be jointly learned across
multiple similar-but-not-identical processes. In other words, the H-MTL model
is a combination of a self-learning regression model and an MTL-GP model.
This hybrid modeling approach is inspired by the combination of a regres-
sion model and a simple GP model in geostatistics. Such a combination has
been widely discussed since Matheron first introduced the universal kriging in
1969 [38], and it has been proven that this approach can yield higher predic-
tion accuracy than a plain regression model or GP model in many applications,

including mapping pollution in soil layers [39-41], temperature estimation in
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Figure 2: Flowchart of the proposed H-MTL algorithm procedure.

climate monitoring [42], monitoring geometric quality in semiconductor manu-
facturing [43], and remaining useful life estimation for machining tools [44]. In
geostatistics, different terms including kriging with external drift and regression-
kriging have been used to describe the combination of a linear regression model
and a zero-mean GP [39-42]. This technique has also been referred to as ad-
ditive GP or integrated GP in some studies, e.g., [43, 44]. In these methods,
the regression and GP models are estimated using the same data set, essentially
representing an STL scheme. However, in Model (2), we hypothesize that the
local variability term, which is modeled by a zero-mean GP, shares similarities
among multiple similar-but-not-identical processes. Consequently, MTL can be
applied to learn the GP term to improve the learning efficiency and performance.

Two sets of parameters need to be estimated for each process in the Model (2),



the parameters (3; in the self-learning model and the parameters in the zero-
mean GP f;. Because it is very challenging to estimate both sets of parame-
ters analytically, we develop an iterative model estimation procedure, which is
shown by Fig. 2. Similar iterative estimation procedures have been developed
for regression-kriging methods [41, 45] and MTL methods [33-35]. In the ini-
tialization of our procedure, we set the local spatial variability component as 0
for all processes. In the first iteration, the initial parameters of the global trend
model are estimated individually for each process, and the residual is modeled
by MTL-GP. In iteration j, the parameters of the global trend model, ﬁlj , are es-
timated by fitting the model, g(ﬁf; x), to the response subtracting the MTL-GP
modeled local variability component from previous iteration, Z;(x) — Alj ).
The model of the local variability component, flj (), is updated by fitting the
new residual, Z;(x) — g(,@{; x), with MTL-GP. The process of model updating
is repeated until a stopping criterion is satisfied. In our method, the stopping
criterion is defined as follows: if the average change of the parameters in the
AféH = %Z?LHA&
determined threshold 7, the procedure will stop. It is worth noting that other

global trend models for each process, , is below a pre-

stopping criteria, e.g., VABI < 1, can also be used. The discussion of threshold
selection can be found in Section 5.3.

As reviewed in Appendix A, the model parameters of the MTL-GP model
are estimated through an expectation—maximization (EM) algorithm, and the
computational complexity of MTL-GP model is O(kymn?), where k; is the
number of EM steps, m is the number of tasks, and n is the training sample
size. In the H-MTL model, the computational complexity of MTL-GP model
is dominant, while the computational cost of the self-learning regression can be
neglected. The computational complexity of the H-MTL model is O(kikomn?),

where ko is the number of iterations needed to reach stopping criterion.



4. Case Studies

In this section, the effectiveness of the proposed H-MTL-based response
surface modeling is demonstrated by a simulation-based numerical case study
and a real-world case study using experimental data collected from ultrasonic
metal welding.

The H-MTL-based response surface modeling method is compared with four
representative state-of-the-art response surface modeling techniques: GP, linear
regression (LR), GP with LR, and MTL-GP. A summary of these candidate
models is given in Table 1. GP and MTL-GP model response surfaces using
a GP with a constant mean. LR models the global trend only. In GP with
LR, the response surface is decomposed into a global trend and a local vari-
ability term, which are modeled by LR and GP, respectively. This approach
is sometimes referred to as universal kriging, kriging with external drift, and
regression-kriging [39-42]. GP, LR, and GP with LR are considered as STL
approaches because they do not transfer knowledge across processes. The H-
MTL model and MTL-GP model, described in Sections 3 and Appendix A,
respectively, are both MTL methods.

Table 1: Summary of candidate response surface modeling techniques

Combining GP with  Transferring knowledge
Method
regression model? from other processes?
H-MTL Yes Yes
MTL-GP No Yes
GP w/ LR Yes No
LR No No
GP No No

The prediction error for data point 4 in the dataset is given by

e(ai) = Z(@i) — Z(z), (3)
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where Z (x;) and Z(x;) are the predicted value and ground truth of the response,
respectively. Root mean squared error (RMSE) and mean absolute error (MAE),
which are defined by Eqgs. (4) and (5), respectively, are used as the metrics to
evaluate the prediction performance. A smaller RMSE or MAE indicates a

better prediction performance.

RMSE = % > e(i)?, (4)
MAE = %Z le(zi)|, (5)

where n is the total number of settings in testing dataset. Additionally, stan-
dard deviation (SD), defined by Eq. (6), is used to characterize the variation
of prediction errors. A smaller SD of the prediction errors implies a smaller

prediction variability.

1 n n

SD=, |~ Z (e(z;) — &), where &= %Z e(z;). (6)

4.1. Numerical Case Study

In this section, we use a numerical example to illustrate the underlying
learnt model in the H-MTL-based response surface modeling approach. We
simulate a dataset with 5 processes over 100 input values, where the GP priors

are inductively correlated. The joint GP prior distributions can be expressed as

f~N(@O,%), ©=K oK (7)

where ® denotes the Kronecker product, K* is the base covariance matrix over
inputs, K7 is a | x [ positive semi-definite matrix that specifies the inter-task
correlations. The response y; for process [ is a combination of a randomly

generated linear trend and the corresponding GP:

Yy~ + b+ N(0,%), EzzKl];@KI, (8)
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Table 2: The averages of RMSE, MAE, and SD of the candidate response surface modeling

techniques. The smallest values for each metric are bolded.

H-MTL MTL-GP GPw/LR LR GP

RMSE | 0.502 0.621 0.724 1.053 1.236
MAE 0.382 0.521 0.460 0.821 0.867
SD 0.441 0.519 0.714 1.007 1.199
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Figure 3: The boxplots of prediction errors in the testing dataset with five candidate methods.

where a; and b; are randomly sampled constants. For each task, responses of
100 input values are generated. 20 of them are randomly selected as the training
data and the remaining 80 responses are used as the test data.

Table 2 lists the averages of RMSE, MAE, and SD of the candidate response
surface modeling techniques. H-MTL model achieves a superior prediction per-
formance with the lowest averages of RMSE and MAE. The average of SD in
H-MTL model is also smallest. Fig. 3 shows the distributions of prediction er-
rors from all tasks. H-MTL model has a mean of prediction errors close to 0 and

the smallest ranges and the interquartile ranges of the prediction errors. These
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imply that the H-MTL model can reduce the bias and variability in the predic-
tion results. This numerical example shows that H-MTL model can improve the
performance of the response surface modeling when the residual variability from
multiple similar-but-not-identical processes that follow joint GP priors. When
the true GP priors are unknown from a real-world dataset, a pilot study can be

used to check the validity of the assumption of the task similarity.

4.2. Real-World Case Study

Ultrasonic metal welding is a solid-state joining technique. A bonding be-
tween thin metal sheets clamped under pressure is created with oscillating shears
generated by ultrasonic vibration. It has wide industrial applications such as
electric vehicle battery assembly, electronic packaging, and automotive body
construction [10-13; 19-22]. The joint strength of ultrasonic metal welding is
influenced by a set of process parameters, including welding pressure, welding
time, and vibration amplitude. The relationship between process parameters
and joint strength in ultrasonic metal welding has been actively investigated in
the literature, e.g., [10-13]. In the rest of this section, we will first introduce the
experimental setup and then compare the modeling performances of the H-MTL

method and existing response surface modeling approaches.

4.2.1. Experimental Setup

The experiments are conducted on ultrasonic metal welder (Branson Ul-
traweld L20 Spot Welder) with a universal controller (Branson VersaGraphix
controller). 0.254 mm-thick 110 copper sheet and 0.254 mm-thick 1100 alu-
minum sheets are used in this study. The specimens are 50.8 mm long and 25.4
mm wide. The ethanol-moistened cleaning wipes are used to clean the surfaces
of the specimens and to get rid of contaminants before welding. The welding is
conducted at a fixed frequency of 20 kHz. Welding pressure, welding time, and
vibration amplitude are considered as the process input variables. Table 3 lists
the details of input variables and their levels. Welding pressure varies between

25 psi and 70 psi at 15 psi intervals, welding time are chosen from 0.2 s to 1.0

13



s with increments of 0.2 s, and three levels of vibration amplitude are selected
as 30 pm, 35 um, and 40 pum. A full factorial design of experiments is chosen
and the total number of factor level combinations of the three parameters is
therefore 4 x 5 x 3 = 60. The maximum load strength obtained through the T-
peel test is selected as the response variable to represent the weld quality. The
T-peel test is performed following ASTM D1876 with a constant strain rate of

0.5 mm/second at room condition.

Table 3: Input variables and their levels in the experimental design.

Variable Unit Levels
Welding pressure psi 25, 40, 55, 70
Welding time second 0.2, 0.4, 0.6, 0.8, 1.0
Vibration amplitude pm 30, 35, 40

Three combinations of metals, aluminum to aluminum (Al-Al), copper to
aluminum (Cu-Al), and copper to copper (Cu-Cu), are used to represent similar-
but-not-identical welding processes. Because the ultrasonic welding process can
be affected by some external factors, such as the material properties of speci-
mens [18, 23] and the tool health status of the welding machine [20, 21], and
these factors cannot be precisely monitored or controlled, the welding process
may present a certain level of instability even under the same welding condi-
tions [10, 18, 23, 46, 47]. To ensure the accuracy and reliability of the data, the
experiments for each combination of materials at each factor level are repeated
three times in a random order and the average maximum loads are used as the
responses of joint strength. A total of 60 x 3 x 3 = 540 experiments have been

conducted.

4.2.2. Analysis of Results

The three-dimensional (3D) distributions of joint strength over three weld-
ing parameters are displayed in Fig. 4. In Al-Al welding, two data points at
(25 psi, 40 pum, 1 second) and (55 psi, 40 pum, 1 second) are not available, be-
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cause excessive welding energy is generated with the high values of welding time
and vibration amplitude, and the top Al plates are cracked or collapsed for all
samples at these two settings. The monotonic trends of the welding strength
over the welding parameters can be observed. In this study, LR is utilized to
model the global trends. The highest maximum load strength of Cu-Cu among
all settings is higher than of Al-Al and Cu-Al. Although the ranges of the max-
imum load strengths in the three response surfaces are different, similar overall
trends over the welding parameters can be observed. As such, it is reasonable
to consider them as similar-but-not-identical processes.

In order to simulate the process of building a complete response surface
model with a reduced number of actual experiments, the following procedure
is taken: for each task, 20 out of 60 parametric combinations are randomly
selected as the training data, and the remaining 40 combinations are used as
the test data (38 settings in testing data for Al-Al).

The comparative results are presented by Table 4. It is clear that the H-
MTL model outperforms other approaches in terms of the averages of RMSE,
MAE, and SD. In all tasks, the MTL-based approaches demonstrate a significant
improvement compared with STL approaches. The distributions of prediction
errors from each task are shown in Fig. 5. It can be noticed that, in all three
tasks, the means of prediction errors of the H-MTL model are close to 0 and
the ranges and the interquartile ranges of the prediction errors of the H-MTL
model are the smallest, indicating that the H-MTL model leads to the lowest
bias and variability. In conclusion, with the same number of experiments, the H-
MTL-based response surface model achieves a superior prediction performance

compared to the state-of-the-art methods.

5. Discussion

In this section, we discuss three practical issues for implementing the pro-
posed H-MTL method in industrial applications, including hyperparameter se-

lection, the effects of the number of tasks, and the determination of the stopping
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Table 4: The performance comparison of the response surface modeling techniques with all

three tasks. The smallest values for each task are bolded. H-MTL model achieves the best

overall performance while MTL-GP is the second to best method.

(a) RMSE
H-MTL MTL-GP GPw/LR LR GP
Al-Al | 9.603 8.826 11269  11.373  12.755
Cu-Al | 4.202 4.664 4.824 5669  4.873
Cu-Cu | 8.166  10.857 11.010  11.725 14.079
Mean | 7.323 8.116 9.034 9.5890  10.569
(b) MAE
H-MTL MTL-GP GPw/LR LR GP
Al-Al | 6.654 6.961 7727 8457 10.063
Cu-Al | 3.312 3.702 3.962 4583  3.924
Cu-Cu | 6.066 8.422 8.192 9.241 10.424
Mean | 5.344 6.362 6.627  7.427 8.137
(c) SD
H-MTL MTL-GP GPw/LR LR  STL-GP
AI-AL | 9.041 8.993 10811 10572  12.284
Cu-Al | 3.752 4.299 4.678 5214 4.822
Cu-Cu | 7.700 9.415 10.809  11.828  14.078
Mean | 6.831 7.569 8.766 9.205  10.395
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Figure 5: The boxplots of prediction errors from each testing dataset with five candidate

methods.

criterion.

5.1. Hyperparameter Selection

The performance of the H-MTL model can be affected by three hyperparam-
eters, i.e., 7 and 7 that specify the normal-inverse-Wishart distribution, as well
as the initial value of the error variance o2, and these hyperparameters need
to be determined prior to the modeling procedure. In this section, experiments
are conducted to investigate the effects of the hyper parameters. In every run,
each hyperparameter is assigned with one of 18 candidate values, varying from
0.0001 to 200. All 18 x 18 x 18 = 5832 possible combinations are tested to
identify the appropriate ranges of the hyperparameters.

Fig. 6 displays the trends of RMSE when a pair of hyperparameters change

while another hyperparameter is kept at a fixed value. It can be observed that
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(c) RMSE vs. 052 and 7 while 7 is fixed at 0.05

Figure 6: Slices of the effects of hyperparameter pairs on RMSE.

low RMSEs are obtained with 0.02 < 7 < 0.1, 2 < 7 < 10, 0.01 < 02 <
0.2. In other words, satisfying prediction results can be achieved when the
hyperparameters are selected from appropriate ranges. The optimal ranges of
the hyperparameters may vary case by case, and a cross-validation study can

be conducted to find the appropriate values using the training data.

5.2. Effects of the Number of Tasks

The effects of the number of tasks have been discussed in a number of MTL-
related studies [33-35]. In general, the prediction performance will improve

when the number of similar tasks increases because more information is trans-
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ferred. A similar conclusion could be drawn from this study.

In Section 4.2.2, the training data from all three tasks has been utilized.
In this section, three experiments are conducted for each pair of tasks under
the same experimental setup as described in Section 4.2.1. The results are
summarized in Table 5 and Table 6. In all cases, the RMSEs are reduced
in response surfaces built with the H-MTL model. It proves that even the
information from only one external task is shared, the H-MTL approach can
still improve the prediction performances of the response surface for the target
task, though the improvement rate is smaller, as shown by Table 6. This implies
that the MTL-based response surface modeling can benefit from more similar

tasks.

Table 5: The RMSE comparison for GP w/ LR model and H-MTL model for each pair of

tasks.
(a) Al-Al and Cu-Al (b) Al-Al and Cu-Cu
GP w/ LR H-MTL GP w/ LR H-MTL
Al-Al 11.269 10.932 Al-Al 11.269 9.729
Cu-Al 4.824 4.664 Cu-Cu 11.010 10.317

(c) Cu-Al and Cu-Cu

GP w/ LR H-MTL
Cu-Al 4.824 4.382
Cu-Cu | 11.010 8.969

5.8. Effects of the Number of Iterations and the Stopping Criterion

The proposed H-MTL model could estimate the optimal decomposition of
individual trends and local variability components iteratively, and it is impor-
tant to choose an appropriate stopping criterion to prevent overfitting. In this
section, we first study the effects of the number of iterations in the parameter es-
timation process. Fig. 7 shows the changes of the training and testing RMSE as
ad|

well as the difference between estimated parameters between iterations,
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Table 6: The improvement rate for each pair of tasks. The row name represents the target

task to be predicted and the column name represents the external task that is included in

learning.
Al-Al  Cu-Al  Cu-Cu | Two external tasks
Al-Al | N/A 299%  10.59% 14.78%
Cu-Al | 3.31% N/A 9.17% 12.91%
Cu-Cu | 4.78% 18.58% N/A 25.83%
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ber of iterations.

Figure 7: The effects of the number of iterations.

vs. the number of iterations. It is noticed that, as the number of iterations
increases, the training RMSE keeps decreasing, while the testing RMSE first
decreases and then increases, and the change of estimated parameters between
two consecutive iterations reduces continuously. This implies that the algorithm
can be considered as converged when the estimated parameters do not change
significantly and we should stop the iteration process to prevent overfitting. In
59
est testing RMSE can be obtained from 11-th to 14-th iteration. Hence, it is

this example, is smaller than 0.01 after 10-th iteration, and the small-

reasonable to choose HA[? H < 0.01 as the stopping criterion in this case study.
It should be noted that a similar iterative procedure has been widely applied

and discussed for the combination of a regression model and GP model in the
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literature [45, 48]. Although it has been proven that a satisfactory prediction
performance can be achieved with a single iteration in practice [48], fitting each
component iteratively until convergence is required for obtaining the optimal
result [45]. Our study agrees with these opinions. The training RMSE with one
single iteration deviates from the optimal RMSE at 11-th iteration by 3% and
the testing RMSE deviates by 1%. This performance is acceptable for prac-
titioners who prefer computational efficiency and responsive decision-making.
On the other hand, convergence is indeed required for achieving the optimal
performance at the cost of more iterations. In practice, users should choose
single-iteration or convergence approaches based on their applications.

The convergence of the iterative procedure may not be guaranteed and slow
convergence or non-convergence may happen and lead to undesirable prediction
results. A practical solution is to monitor the changes in estimated parameters
and re-initialize the parameters randomly when fluctuation occurs or conver-

gence is not achieved within a certain number of iterations.

5.4. Future Work

The proposed H-MTL model can be potentially applied to a number of
other processes and disciplines where cost-effective response surface modeling
is needed. However, it should be noted that some difficulties may prevent suc-
cessful applications. First, the modeling performance relies heavily on the task
similarity. If a process is not related/similar to other processes, MTL models
could be misled and give even worse performances than STL. Another poten-
tial challenge is the selection of self-learning models. The similarity in residual
variability can be affected by an improper self-learning model. However, there
is a lack of quantitative evaluation for task similarity, and a pilot study on a
validation dataset may provide valuable insights.

Sampling design, or design of experiments, in MTL is still an open question.
Different sampling schemes may lead to largely varying prediction performance.
The goal of sampling design is to optimally allocate the experimental efforts

such that the parametric space can be more effectively explored. In this study,
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the training datasets are randomly sampled from all combinations of param-
eters. An intelligent sampling design could further reduce the cost of actual

experiments and improve the learning performance.

6. Conclusion

In this paper, an H-MTL-based response surface modeling approach has been
developed for the first time. In this approach, the response surface of a given pro-
cess is decomposed into two components—a global trend and a residual variabil-
ity components, which are fitted through self-learning and MTL, respectively.
By leveraging the similarities between multiple similar-but-not-identical pro-
cesses, the H-MTL-based response surface modeling can achieve modeling per-
formance superior to conventional STL-based response surface modeling meth-
ods. A simulation-based numerical case study and a real-world case study with
the data collected from ultrasonic metal welding processes demonstrate that the
proposed method can improve the prediction performance of response surface
modeling without increasing the cost of experiments. Furthermore, the hyper-
parameter selection, the effects of number of tasks, and the determination of the
stopping criterion are discussed in detail. Finally, future research is suggested

to focus on the quantification of task similarity and sampling design for MTL.
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Appendix A. Review of MTL-GP model

There are a number of MTL algorithms for GP available with different ways
of defining the commonality among different tasks. Without loss of generality,
we adopt the inductive approach of MTL-GP developed by Yu et al. [49] in
this study to illustrate the concept of MTL. In MTL, datasets from multiple
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processes are taken in the training stage. Assume there are m similar-but-not-
identical processes with the same number of input parameters, d. For each
process [, the observation data can be represented as D; = {(X;,y:)}, where
X; € R™*4 4, € R™, ny, is the size of observation data for process . We further
assume that there are in total n distinct data points in {D;} with min({n;})
<n <), n and denote X = UX;,l =1,...,n as the set of distinguished x in
{D,}. The goal of MTL is to estimate m related functions f;, l =1,...,m, and
predict the responses with unobserved parameters for a certain process based
on observation data from all m processes.

Given the mean py and covariance K of function values f = [f(z1),...,
f(2,)]7, there exist unique po, € R” and C, € R™™ such that puy = Kpa,
K = kCyuk. p, and C, are sampled from the hyper prior specified by a

normal-inverse-Wishart distribution

p (e, Ca) = N (ua|o,ica) W (Calrw™) (A.1)

where 7 and 7 are the hyper parameters that specify the distribution. For each
function f; in process [, there exists a unique o! € R™ such that f; = o'k
and o ~ N(pra, Cy). Given a parameter vector, x € X, the response can be
expressed as

Y= Zaén(wi,m) +e,e ~N(0,02), (A.2)
i=1

where x; € X.

The model parameters 6 = {14, Cq,02} and o' can be estimated through
an expectation—maximization (EM) algorithm. The EM algorithm is an itera-
tive method to find maximum likelihood estimates of parameters by alternating

between an expectation step and a maximization step, which are shown below.

e E-step: Given the current @ = {4, Cy, 02}, this step estimate the expec-

tation and covariance of o :

) 1 ) _
&l = <02an;<51 + Cal) (ﬂnfyl + Calua) , (A.3)

€ €

1 -1
C, = <02an}@[ + C;l) ) (A.4)

€
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where k] € R™*" is the base kernel (-, ) evaluated between X; and X.

e M-step: This step optimizes the model parameters 6 based on the estima-
tions in FE-step:

1 .
Ho = Z &', (A.5)
!

T™+m

1 1 A1 A1 T
Ca:T+m WN&FLLJ'_TK' +zl:cal+2l:{a_ua] {a_ﬂa} ’

(A.6)

1 112
o~ S ZHyl — nlalH + tr[kC k)] (A.7)
! 1

Once the model parameters # and &' are obtained with the EM algorithm,
the predictor of an unobserved response in process [ corresponding to an input

parameter vector x, can be expressed as

f'l(a:*) = Zdéﬁ(wi,m*). (A.8)
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