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Abstract Modeling the net carbon balance is challenging due to the knowledge gaps in the variability

and processes controlling gross carbon fluxes. Terrestrial carbon cycle modeling is susceptible to several

sources of bias, including meteorological uncertainty, model structural uncertainty, and model parametric

uncertainty. To determine the impact of these uncertainties, we compare three model-derived

representations of the global terrestrial carbon balance across 1997–2009: (1) observation-constrained

model-data fusion (CARBon Data Model FraMEwork, CARDAMOM), (2) the reanalysis-driven Trends in

Net Land-Atmosphere Carbon Exchange (TRENDY) land biosphere model ensemble, and (3) the Coupled

Model Intercomparison Project 5 (CMIP5) Earth System Model ensemble. We consider the spread in

carbon cycle simulations attributable primarily to parametric uncertainty (CARDAMOM), structural

uncertainty (TRENDY), and combined structural and simulated meteorological uncertainty (CMIP5). We

find that the spread across the CARDAMOM ensemble long-term mean—produced by parameter

uncertainty—is larger than the spread of TRENDY and CMIP5 for net biosphere exchange (NBE) but

similar for gross primary productivity (GPP). The carbon flux dynamics of CARDAMOM compares to

models in TRENDY as well as models in TRENDY compare to each other in many regions for NBE

seasonal (nine of 12), NBE interannual (11 of 12), and GPP seasonal variability (7 of 12), although not for

GPP interannual variability (2 of 12). The simple model structure of CARDAMOM and systematic

assimilation of observations is sufficient to produce carbon dynamics within the range of more complex

models. These results are encouraging for the use of model-data fusion products with empirically

estimated uncertainty for global carbon cycle studies.

Plain Language SummaryThere is uncertainty in where carbon is going into or leaving the

land biosphere on a net basis. Models are used to investigate this movement of carbon, but it is unclear

how different approaches compare: using a complex model for which the best parameter sets are difficult

to determine or using a simpler model for which it is easier to find the right parameters sets that best match

observations. This paper compares collections of relatively complex models with a different approach that

systematically combines remote sensing observations with a simpler model. Comparisons across mean

values, seasonal variations, and interannual variations of photosynthesis and carbon movement show

that the simple model—constrained by observations—is able to recreate most dynamics but also shows a

broader range of possibilities than the collections of more complex models. The results suggest that more

attention needs to be paid to parameter uncertainty in model settings, not just what processes they include.

Including this uncertainty creates a larger spread of carbon cycle outcomes for the present and possibly for

the future.

1. Introduction

Modeling the net biosphere exchange (NBE) of carbon for the terrestrial biosphere is difficult due to the

numerous processes driving variability of considerably larger gross fluxes (photosynthesis, respiration, and

fires), and their overall effect on the net carbon balance (Piao et al., 2020). There are still large knowledge
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gaps in how best to represent and parameterize such processes for the terrestrial biosphere models (TBMs)

that contain the model of the carbon cycle embedded in Earth System Models (ESMs). These knowledge

gaps are particularly apparent in the spread in future carbon cycle projections under rising atmospheric CO2

concentrations and climate change. Across ESMs contained in the Coupled Model Intercomparison Project

(CMIP5) archive, it is uncertain whether the present-day carbon sink will become stronger, weaken, or even

become a source under future climate change (Friedlingstein et al., 2014; Fatichi et al., 2019; Le Quéré et al.,

2018). Carbon cycle response to climatic change is the second largest source of uncertainty in predictions

of global temperature rise due to anthropogenic CO2emissions, behind only climate sensitivity (e.g., cloud

formation processes), but greater than aerosols, initial conditions, or anthropogenic emissions scenarios

(Booth et al., 2012; Bodman et al., 2013; Bonan & Doney, 2018; Huntzinger et al., 2017). Thus, reducing

the uncertainty in carbon cycle models remains a priority for improving long-term predictions of the Earth

system. Terrestrial carbon cycle modeling approaches are susceptible to several sources of error, stemming

largely from uncertainties in model processes and meteorological drivers. Model uncertainty can be further

separated into structural uncertainty (e.g., fidelity and complexity of process representation to reality) and

parametric uncertainty (specification accuracy of the parameter values in any given model) (Collins, 2007).

While previous research has shown that overall model uncertainty dominates long-term carbon cycle uncer-

tainty compared to initial conditions or human emission scenarios (Bonan & Doney, 2018), it is not clear

whether the structural or parametric component dominates model uncertainty (Huntzinger et al., 2017).

In developing TBMs, considerable attention has been paid to structural uncertainty by refining and adding

process representation to the carbon cycle, for example, nutrient dynamics processes (Fisher et al., 2014) and

vegetation demography (Fisher et al., 2018). By contrast, parametric uncertainty has received less attention.

For many carbon-related processes, the parameters of these models are still assigned based on plant func-

tional types (PFTs) (Bonan, 2019). Furthermore, because the models are so complex, the process of deriving

the PFT-specific values to be used for each parameter is often manual and opaque. However, the variabil-

ity in vegetation parameters can be as large within a PFT as between them (Butler et al., 2017; Konings

& Gentine, 2017; van Bodegom et al., 2014), suggesting that assuming uniform parameter values per PFT

could be a significant source of error. Furthermore, the combination of complex models with simple param-

eter choices can lead to compensating errors. These compensating errors can lead to models having similar

short-term climatic sensitivities yet very different long-term flux predictions (Huntzinger et al., 2017). Such

compensating errors among parameters (also known as equifinality Beven & Freer, 2001) are a particular

concern for projecting the carbon cycle into novelenvironments such as occur during long-term climate

simulations. It has been shown that the uncertainty in parameters alone can drive a 461 ppm spread in pre-

dictions of atmospheric CO2, larger than the 418 ppm uncertainty across concentration scenarios (Booth

et al., 2012). Additionally, as a regional example, the high spread of gross primary productivity (GPP) in ESMs

has been traced back to a high spread in emergent specific leaf area for the East Asian monsoon region (Cui

et al., 2019). Thus, the difficulty of parameterization of structurally complex models leads to uncertainty

when predicting long-term carbon fluxes.

So-called data assimilation or model-data fusion techniques can be used to compare model outputs to obser-

vations in order to constrain parameter values and model states (Rayner et al., 2019; Wikle & Berliner, 2007).

Furthermore, the uncertainty in these parameters (and associated states of the carbon pools and fluxes)

can be used to explicitly quantify the role of parametric uncertainty on carbon cycle variables. At regional

to global scales, remote sensing data can be systematically assimilated as observational constraints to opti-

mize model parameters, either within a PFT-based framework (MacBean et al., 2018; Norton et al., 2019)

or for deriving parameters on a pixel-by-pixel basis (Bloom et al., 2016). In general, there is a trade-off

in model-data fusion studies between the complexity of the underlying carbon cycle model and the com-

plexity of the assimilation method used. Studies using relatively complex carbon cycle models requiring

simplifying assumptions, such as Gaussianity and a differentiable cost function to ensure computational

tractability (e.g., MacBean et al., 2016; Scholze et al., 2007). By contrast, assimilation methods using Markov

chain Monte Carlo approaches allow uncertainty estimation without any assumptions on the shapes of

distributions but require large (e.g., millions) of model runs. They are therefore only tractable for rela-

tively parsimonious models that can be run for numerous iterations with current computer resources (e.g.,

Keenan et al., 2012; Williams et al., 2005). Using parsimonious models also helps to reduce equifinality,

which can remain significant in model-data fusion studies, especially those using more complex models

(Castro-Morales et al., 2019). Note that this trade-off between model complexity and the degree to which
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Figure 1.Diagram of the DALEC carbon cycle model in CARDAMOM.
Adapted from (Bloom et al., 2016).

parameter choices can be rigorously optimized to be most consistent

with observational data extends beyond model-data fusion. More gener-

ally, there is a choice between the systematically optimized parameters

from model-data fusion and using the expert manual parameter tuning

common in the development of more structurally complex TBMs.

The CARBon Data Model FraMEwork (CARDAMOM) is a model-data

fusion framework (Bloom et al., 2016; Bloom & Williams, 2015) built

around the Data Assimilation Linked Ecosystem Carbon (DALEC)

model (v2.1). CARDAMOM uses an adaptive Metropolis-Hastings

Markov chain Monte Carlo (MHMCMC) algorithm data assimila-

tion method and Bayesian inference to update prior distributions of

parameters—including initial conditions—in CARDAMOM to better

match remote sensing observations. In order to further reduce equifinal-

ity, the MHMCMC incorporates known limits on relationships among

carbon cycle processes (so-called ecological and dynamic constraints).

For example, the turnover rate of the soil organic matter pool is constrained to be lower than the turnover

rate of litter (Bloom & Williams, 2015), which helps avoid unrealistic jumps in soil organic matter (Fox et al.,

2009). Like all modeling systems, CARDAMOM's approach has several disadvantages (inability to represent

biosphere-atmosphere interactions (Green et al., 2017), sensitivity to observational uncertainty, missing pro-

cesses related to nutrient dynamics, land use change, etc.) that may be prohibitive for specific applications.

Nevertheless, it has been used to investigate a variety of carbon cycle processes, including the effect of fire

on turnover rate (Exbrayat et al., 2018), arctic carbon cycling (López-Blanco et al., 2019), and the pools and

parameters of the carbon cycle across the globe (Bloom et al., 2016).

In this work, we aim to understand the trade-off between model structural uncertainty and parameter uncer-

tainty for global-scale modeling of the terrestrial carbon cycle. That is, we address the following question:

Can simplified models, with data-informed parameters (such as in CARDAMOM), simulate realistic observ-

able carbon fluxes (i.e., NBE and GPP) and their uncertainty, relative to more structurally complex ecosystem

models? NBE is the summation of the terrestrial carbon fluxes of GPP, autotrophic respiration, heterotrophic

respiration, and fires. Note that it does not account for contributions from methane fluxes nor from lateral

fluxes of carbon such as harvest products, or dissolved organic carbon in rivers, etc. We also evaluate the

GPP, since it is the largest and most studied of the component fluxes of NBE (Fatichi et al., 2019).

To address this question, we intercompare the mean values, dynamics, and spread in simulated NBE and

GPP fluxes of CARDAMOM with those of traditional ensembles of complex TBMs, such as the Trends in Net

Land-Atmosphere Carbon Exchange (TRENDY) (Sitch et al., 2008) and Coupled Model Intercomparison

Project 5 (CMIP5) (Taylor et al., 2012) ensembles. TRENDY is an ensemble of TBMs that are all forced by the

same meteorology. The TBMs in the CMIP5 ensemble are similar but are coupled to a simulated atmosphere

in a full ESM. Note that, unlike the estimate of parameter uncertainty in CARDAMOM, the intermodel range

of TRENDY and CMIP5 does not statistically capture their complete model structural uncertainty. Never-

theless, consistent with common practice in the interpretation of these ensembles, the intermodel range is

taken here to reflect, in part, the effects of different structural representation in individual member mod-

els. We further interpret CMIP5, which consists of coupled land-atmosphere models, to reflect additional

uncertainty in meteorological drivers, compared to the reanalysis-driven TRENDY ensemble.

2. Methods
2.1. CARDAMOM

CARDAMOM is a model-data fusion system that uses a relatively simple carbon cycle model—DALEC

model (Version 2.1)—and a data assimilation algorithm using adaptive MHMCMC (Haario et al., 2001). The

underlying carbon cycle model—DALECv2.1—is a modified version of DALEC (Bloom & Williams, 2015)

that consists of six pools of carbon and one plant-available water pool and depicted in Figure 1 and detailed

in the supporting information. Additionally, CARDAMOM includes ecological and dynamical constraints

that help reduce the parameter search space and guard against equifinality (Bloom et al., 2016). Meteorolog-

ical forcings include temperature (monthly minimum and maximum), shortwave radiation, vapor pressure

deficit, precipitation, atmospheric CO2concentrations, and burned area.

QUETIN ET AL. 3of17



Journal of Advances in Modeling Earth Systems 10.1029/2019MS001889

Table 1
Observation-Based Data Sets Assimilated Into the CARDAMOM Simulation

Observation Data set description Assumed uncertainty

Leaf area index (LAI) 2010–2015 MODIS LAI retrievalsa ±log(1.2)

Soil organic matter (SOM) Soil C inventory (Hiederer & Köchy, 2011) ±log(1.5)

Biomass Derived from GLAS and machine learning (Saatchi et al., 2011)b ≥±log(1.5)

Solar-induced fluorescence (SIF)  2010–2015 GOSAT retrievals of fluorescence (Frankenberg et al., 2011)c ±log(2)

Fire C emissions 2010–2015 Derived from inverse estimates of CO emissions ±20%

(Worden et al., 2017) and CO2:CO ratios (Bowman et al., 2017)

Net biosphere exchange (NBE)  2010–2013 CMS-Flux, GOSAT CO2-derived 4◦×5◦inverse estimates (Liu et al., 2017).  Seasonal:±1gC/m2/day,

Annual:±0.02 g C/m2/day

Note. Uncertainties denoted as±log() indicate log-transformed model and observed quantities.
aOnly mean 2010–2015 LAI is assimilated into CARDAMOM, in order to mitigate the influence of seasonal LAI retrieval biases (Bi et al., 2015).bsee Bloom et al.
(2016) for details.cTime-resolved SIF is assimilated as a relative constraint on the temporal variability of GPP.

Here, CARDAMOM was run with monthly time series from 1997–2015 of meteorological drivers from

the combined data sets from Climate Research Unit (CRU) and reanalysis data from National Centers for

Environmental Prediction (NCEP), the CRUNCEP data set (Harris et al., 2014; Kalnay et al., 1996; Viovy,

2018). Atmospheric CO2concentrations from Mauna Loa (Keeling et al., 2009) were also used as a driver.

Lastly, burned area was obtained from the Global Fire Emissions Database Version 4.1s (Giglio et al., 2013;

Randerson et al., 2012).

All assimilated data sets are described in Table 1. The cost function and uncertainties used in the assimi-

lation are further described in detail in the supporting information. The data sets are first regridded to the

4◦×5◦resolution GEOS-Chem grid (Bey et al., 2001), which corresponds to that of the coarsest assimi-

lated data set, NBE. CARDAMOM is then run at this resolution. The dynamic assimilated data sets span the

period 2010–2015, with solar-induced fluorescence (SIF)—photon emissions approximately proportional to

GPP—and fire emission estimates spanning this entire period, while NBE constraints were only available

from 2010 to 2013 (Mohammed et al., 2019). The modeled initial conditions for biomass in 1997 were con-

strained by a global, remote sensing-derived map (Saatchi et al., 2011), though some error may be induced

by the fact that this biomass map represents average conditions over 2001–2003. Similarly, initial conditions

for the soil organic matter pool were also constrained by a static map of soil organic carbon (Hiederer &

Köchy, 2011). Note that these estimated initial conditions—based on the assimilated data—do not have to

be in equilibrium in contrast to most TBMs retrieve their initial conditions from a long run that reaches an

equilibrium state.

The uncertainty values applied to each observation represent a combination of both observational uncer-

tainty (errors in measurement), and systematic model-observation error (i.e., model representation error or

bias in the data). For lack of better knowledge on both error distributions at 4◦×5◦resolution, we manually

selected uncertainty values associated with each data set for this study to capture the predominant spatial

and temporal variability of the data sets listed in Table 1.

The MHMCMC assimilation with CARDAMOM optimizes the model parameters to best match assimilated

data and creates 250 ensemble members each with different model parameter sets. The distribution of the

parameters and outputs represent an estimated uncertainty. We run the assimilation four times at each point

to create four separate ensembles where the MHMCMC process is initialized differently. We combine these

separate ensembles in our analysis to create one ensemble of 1,000 different parameter sets. All parameters

converged for 38% of pixels based on a Gelman-Rubin convergence using a treshold of 1.2 (the between chain

variance divided by the average variance of each chain) and across the whole data set, 77% of of individual

parameter solutions converged (Figure S1).

2.2. Comparison: Models, Time, and Regions

We compared estimates of NBE and GPP from CARDAMOM and the TRENDY and CMIP5 ensembles

(Table 2). We used the TRENDY V2 output that covered 1901 to 2010. This included nine TBMs: TRIFFID,

LPJ, SDGVM, Hyland, NCAR CLM4C, NCAR CLM4CN, OCN, ORCHIDEE, and Vegas (Le Quéré et al.,

2018; Sitch et al., 2008). We used the S2 experiment, which includes historical climate from CRUNCEP, and
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Figure 2.Spatial regions used to aggregate the models for comparison.

increasing atmospheric CO2. Note that not all TRENDY models had output on a monthly resolution. Where

monthly resolution was necessary—monthly climatology comparisons—only the six models with monthly

resolution output were used here: LPJ, Vegas, CLM4C, CLM4CN, TRIFFID, and OCN. We further used mod-

els from the CMIP5 archives that had C4MIP experiments (those with a predictive carbon cycle) and had

both NBE and GPP publicly available (Taylor et al., 2012) (Table S2). The historical run and RCP8.5 run of

the models were downloaded from the CMIP5 archive.

We performed our model comparisons for the period between 1997 and 2009. The RCP8.5 run was used

to extend the four years (2006 to 2009) that were not covered by the CMIP5 historical run. We began our

comparison at 1997 since that is the earliest that Global Fire Emissions Database Version 4 was available

as an input for CARDAMOM. The comparison ended in 2009 in order to keep the entirety of the com-

parison outside the time period where carbon fluxes were assimilated into CARDAMOM (2010 to 2015).

That is, we chose the 1997–2009 test period to be different from the assimilation period in order to ensure

that CARDAMOM's performance as a forward model is tested rather than its ability to match specific

assimilation data.

Finally, all analyses were performed at each grid point and then aggregated into regions adapted from the

Atmospheric Tracer Transport Model Intercomparison Project (Gurney et al., 2004) but with the addition of

a region around the Congo rainforest, as carbon cycle dynamics there are expected to differ significantly from

elsewhere in North and South Africa (Figure 2). Analysis was performed across regions to better match the

informational content of the assimilated NBE from CarbonMonitoring System Flux framework (CMS-Flux)

(Liu et al., 2014) and for ease of interpretation.

2.3. Calculation of NBE

NBE is the balance of carbon flux to the atmosphere and includes GPP, autotrophic respiration, het-

erotrophic respiration, fires, and land use (NBE>0 to the atmosphere) (Fatichi et al., 2019). Note that the

representation of fires and land use varies such that those fluxes are not explicitly represented in each of the

Table 2
Meteorology and Data Approaches of Models in Comparison

Land-atmosphere

Model Drivers coupling Observation constraints  Model type

CARDAMOM Reanalysis (CRUNCEP)  No  Land-surface and atmospheric C data sets  Process

TRENDY  Reanalysis (CRUNCEP)  No None Process

CMIP5  Simulated meteorology  Yes None Process
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(a)

(b)

Figure 3.(a) Diagram of relationship among different ensemble members.
(b) Schematic of possible patterns in cross-correlation distributions (with
correlation on thexaxis). Gray shaded violin is intra-correlation (e.g.,
correlation of TRENDY with CARDAMOM). Blue circles are
inter-correlations (e.g., correlation between TRENDY models). Fraction of
overlap depends on the uncertainty in both ensembles.

models considered in this paper. The fire carbon emissions in CAR-

DAMOM are based off of observed burned area combined with combus-

tion fractions (parameters that are optimized during assimilation). When

comparing models outside the window of assimilated data, the emis-

sions are thus a combination of prognostic and diagnostic calculations.

In contrast, most TRENDY models and CMIP5 have prognostic fire emis-

sion, predicted from climate drivers. These differences in estimating fire

are only pronounced in regions—here Congo, tropical Asia, and South

Africa—where there is a large amount of burning (Giglio et al., 2013;

Randerson et al., 2012). Additionally, CARDAMOM does not explicitly

include land use; however, the parameter optimization—including states

of carbon pools—is based on observations that do include the impact of

historical land use change (Pongratz et al., 2009). The TRENDY S2 experi-

ment we use here does not include land use change (Le Quéré et al., 2018;

Sitch et al., 2008), while CMIP5 also includes land use change (Taylor et

al., 2012). We expect GPP, respiration, and fires (where there is a large

amount of burning) to dominate NBE over the broad regions and decadal

time scale on which we compare the models.

2.4. Comparison Metrics

The long-term statistics—including the mean, interannual variability

(standard deviation of annual values), and seasonality (climatology of

monthly mean)—of NBE and GPP were calculated for each CARDAMOM ensemble member, each model

in TRENDY and CMIP5 for the period 1997 to 2009. The statistical difference among median values—across

ensembles—was calculated by performing a Kruskal-Wallis H-test, which is a nonparametric test to falsify

the null hypothesis that the medians of two distributions are the same.

Additionally, we designed an experiment specifically to investigate whether the dynamics—for example, the

pattern of temporal variability—are similar among CARDAMOM and each of the two ensembles of opportu-

nity. This is driven by the recognition that the above statistics could differ not just because of parametric and

model uncertainty but also because of observational uncertainty. To address whether the relatively simplistic

nature of the model underlying CARDAMOM (induced by the model-data fusion) prevents it from repre-

senting the same temporal dynamics as either the TRENDY or CMIP5 ensembles, the distribution of Pearson

correlations among ensemble members of each model group (CARDAMOM, TRENDY, and CMIP5) was

compared to that among members from the different ensembles. For example, each model in the TRENDY

ensemble is correlated with each member of the CARDAMOM ensemble, the “intracorrelation” (1,000 cor-

relations per TRENDY model) at each grid point (as illustrated in Figure 3). The resulting correlations are

considered the TRENDY-CARDAMOM correlations. Additionally, each model in the TRENDY ensemble

is also correlated with each other model in the TRENDY ensemble; these correlations are considered the

TRENDY-TRENDY correlations or more generally the “intercorrelation” as in Figure 3.

Finally, to aggregate over each region, the distributions of correlations at the grid point were averaged

together. Each grid point contains an independent CARDAMOM ensemble (i.e., there is not a fixed way to

pick, which ensembles to aggregate across space). For example, the first ensemble member in Grid Point X is

not necessarily related to the first ensemble member in Group Y. Here, we chose to combine the ensembles

ranked by correlation value. For this reason, when averaging the TRENDY-CARDAMOM correlations, we

first ranked the correlations from lowest to highest in each grid point and then averaged them together. As

a result, the distribution that is reported for a region spans the mean of the lowest correlations to the mean

of the highest correlations. This is in contrast to the TRENDY-TRENDY correlations (and CMIP5-CMIP5

correlations, for Figure S2) where a particular model has a solution across space. The result of this is that

the regional averages are made up of the average correlation of Model X with Model Y.

We further created a simple univariate metric to summarize the amount of overlap among—using

TRENDY and CARDAMOM distributions as an example again—the TRENDY-TRENDY agreement and the

TRENDY-CARDAMOM agreement. A strong overlap of the distributions is defined by more than 75% of the

TRENDY-CARDAMOM correlations falling above the median of the TRENDY-TRENDY correlations minus

two times the interquartile distance of the TRENDY-TRENDY correlations. Similarly, a separate metric was
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(a)

(b)

Figure 4.The mean (a) and the coefficient of interannual variation (b) of 1997–2009 NBE for CARDAMOM, TRENDY,
and CMIP5. Boxplots reflect the uncertainty across the ensembles.

used to summarize whether the strongest correlations among TRENDY and CARDAMOM were as strong

(or nearly as strong) as the strongest correlations among TRENDY models. For this metric, we calculated the

difference between the maximum TRENDY-TRENDY correlation and the maximum TRENDY-

CARDAMOM correlation. The maximums were judged as close if the maximum TRENDY-CARDAMOM

correlation was no more than 0.05 less than the maximum TRENDY-TRENDY correlation. All correlation

distributions were compared separately for NBE and GPP and separately for seasonal and interannual time

scales. Note that both these metrics were only used to compare two groups of distributions in a binary way

and do not have precise values. The binary determinations of the groups of distributions as overlapping or

having equally high maxima are presented visually alongside the distributions below.

3. Results

The seasonal and interannual variation of NBE and GPP are intercompared for CARDAMOM, CMIP5, and

TRENDY in detail below. Additionally, in supporting information section S4, we compare most of these

fluxes to FluxCom, an empirical estimate of NBE and GPP based on flux tower observations (Tramontana et

al., 2016). We include FluxCom to serve as an independent—entirely empirical—estimate to contrast with

the three estimates that include process information in the form of models (supporting information Figures

S9–S13).

3.1. Long-Term Mean and Interannual Standard Deviation
3.1.1. NBE

The median of the CARDAMOM ensemble is significantly different than other models (p<0.05) in at least

9 of 12 regions for each of the other models and with significant overlap of the ensembles in only 2 of 12

regions. The largest differences in the long-term means of regional NBE across all modeling approaches

occur in the tropics, with a relatively strong source in all three wet tropical regions for CARDAMOM (∼0.25

g C/m2/day), a consistent weak sink in TRENDY models (∼ −0.1 g C/m2/day), and consistently neutral

CMIP5 models (Figure 4a). The disagreement in whether the tropical regions are a source or a sink par-

allels continued disagreement in the modeling literature (see overview in Fatichi et al., 2019). The source

present in CARDAMOM is driven by the assimilated CMS-Flux NBE observations (as shown in Figure S4a).
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(a)

(b)

Figure 5.The mean (a) and the standard deviation of interannual variation (b) of 1997–2009 GPP for CARDAMOM,
TRENDY, and CMIP5. Boxplots reflect the uncertainty across the ensembles.

By contrast, the weak sinks in TRENDY and CMIP5 are more consistent with the relatively neutral sink esti-

mated by atmospheric inversion estimates driven primarily by extratropical CO2surface flasks observations

(Gaubert et al., 2019). A strong tropical source is a robust feature of fluxes derived from CO2satellite obser-

vations, which have substantial tropical coverage (Bowman et al., 2017; Crowell et al., 2019; Liu et al., 2017).

We note that, as mentioned in section 2.2, the time period considered here (1997–2009) is before the training

period with satellite data for CARDAMOM (2010–2015). Consequently, we must assume that the tropical

dynamics have not fundamentally changed between those periods of time.

It is notable that even with an observational constraint on NBE, the CARDAMOM ensemble spread of mean

NBE is larger than the spread of the other estimates in all regions. The spread in the CARDAMOM ensemble

is larger than that of either TRENDY or CMIP5 (Figure 4a). In the tropics, the 95th percentile range of the

ensemble spread includes CARDAMOM ensemble members that are nearly neutral, or even a weak sink

(Figure 4a). In comparison, the CARDAMOM 95th percentile in temperate Eurasia—though still larger

than either TRENDY or CMIP5—is about a third that of the tropics. This broad range in CARDAMOM

outcomes highlights that the spread in CARDAMOM solutions are likely providing a better sampling of the

full uncertainty than the limited ensembles of opportunity across all regions.

There is less disagreement across model ensembles for the standard deviation of the interannual variation

in either median value or ensemble spread (Figure 4b). All models show a relatively large interannual vari-

ability and ensemble spread in the tropics, though they are not dramatically different than for some other

regions. For example, Tropical South America has median and interquartile ranges that are only somewhat

larger than those for Europe for CARDAMOM and TRENDY: median = 0.15 g C/m2/day, IQR = 0.06 g

C/m2/day in Tropical South America versus median = 0.14 g C/m2/day, IQR = 0.06 g C/m2/day in Europe

for CARDAMOM, and median = 0.17 g C/m2/day, IQR = 0.08 g C/m2/day in Tropical South America ver-

sus median = 0.14 g C/m2/day, IQR = 0.05 g C/m2/day in Europe for TRENDY. The median value and

ensemble spread of CMIP5 interannual variation amplitude are consistently larger than that of TRENDY

across all regions and generally larger than that of CARDAMOM except for boreal regions (Figure 4b). The

large interannual variability in CMIP5 is consistent with findings of larger than observed meteorology and
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Figure 6.Comparison of the NBE mean-centered seasonal climatology of each region for CARDAMOM, TRENDY, and
CMIP5. The 25th to 75th percentiles are shown for CARDAMOM, TRENDY, and CMIP5 as shading.

vegetation variability in the fully coupled ESMs capturing the compounding effects of both meteorologi-

cal and biogeochemical uncertainties (Anav, Friedlingstein et al., 2013; Anav, Murray-Tortarolo et al., 2013;

Merrifield & Xie, 2016, Quetin & Swann, 2018). The spread of the amplitude of interannual variability in

CMIP5 is consistently larger in the Southern Hemisphere than in the Northern Hemisphere. TRENDY also

generally has a larger amplitude of interannual variation compared to the median CARDAMOM value

(8 of 12 regions). However, the ensemble spread of CARDAMOM is equal or larger than TRENDYs in all

but one region and shows a lot of overlap. The more closely shared values of TRENDY and CARDAMOM

(relative to the larger differences between TRENDY and CMIP5) highlight the impact of sharing similar

meteorology on carbon cycle dynamics.

3.1.2. GPP

Across model ensembles, there is strong agreement in the simulations of the mean GPP from 1997–2009

(Figure 5a). Using our metric of greater than 75% of CARDAMOM ensemble members within twice the

interquartile distance, there is strong overlap among CARDAMOM ensemble members and alternative

model ensembles across most regions (TRENDY [8 of 12 regions] and CMIP5 [11 of 12 regions]). Even

with this strong overlap, the majority of regions have statistically distinct ensemble medians (p< 0.05).

The spread across the CARDAMOM ensemble is larger than the spread across TRENDY in all regions and

larger or equal to the spread across CMIP5 in all but temperate South America, South Africa, and Australia

(Figure 5a). CARDAMOM has the largest GPP in the boreal regions and is consistently lower than both

TRENDY and CMIP5 in tropical South America and the Congo, while there is general agreement in tropical

Asia. The general difference between CARDAMOM and TRENDY/CMIP5—higher GPP in the high lati-

tudes, lower in the tropics—is similar to shifts when TBMs are constrained by observations of SIF either as

a data assimilation product (MacBean et al., 2018) or optimal integration with already run model ensembles

(Parazoo et al., 2014).

The interannual variability of GPP is qualitatively similar across regions, especially relative to the regional

variations in NBE interannual variation (Figure 5b). The ordering of magnitudes is generally—from low-

est to highest—CARDAMOM (regional median = 0.19 g C/m2/day), TRENDY (regional median = 0.20 g

C/m2/day), and CMIP5 (regional median = 0.35 g C/m2/day) the same ordering as for NBE interannual
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Figure 7.Comparison of the GPP mean-centered seasonal climatology of each region for CARDAMOM, TRENDY, and
CMIP5. The line is the ensemble median, 25th to 75th percentiles are shown for CARDAMOM, TRENDY, and CMIP5
as shading.

variability. CARDAMOM and TRENDY are quite similar in most regions with strong overlap in all regions

except the boreal regions, temperate South America, and the Congo. Additionally, the medians are statisti-

cally different (p<0.05) in only half the regions (6 of 12 regions). As for the interannual variation of NBE,

the magnitude and spread of the CMIP5 ensemble are larger than for both TRENDY and CARDAMOM,

particularly in the Southern Hemisphere (Figure 5b) likely reflecting the impact of meteorological uncer-

tainty in the CMIP5 models.

3.2. Seasonality

The seasonal cycle of both NBE and GPP has relatively consistent amplitudes across models, and generally

the 25th to 75th percentile spread across ensembles is small compared to the median values (Figures 6 and 7).
3.2.1. NBE

The greatest disagreement in the seasonal cycle of NBE occurs in northern Africa, the tropical regions,

and Australia (Figure 6). The greatest qualitative agreement occurs in the higher latitudes, where there are

stronger seasonal cycles of climate. Though broadly consistent with all other models across most of the year,

CARDAMOM consistently has a different shape during the initiation of the growing season. CARDAMOM

has a gradual decrease of NBE (CO2drawn from the atmosphere) over the period January to April while

TRENDY and CMIP5 are nearly flat (no change) until April; this is most apparent in the regions boreal

N. America and Europe (Figure 6). Additionally, in the high latitudes TRENDY and CMIP5 agree strongly

but CARDAMOM has a different growing season value of NBE, either a stronger sink (boreal Eurasia) or

a weaker one (boreal N. America). Disagreement across models stands out in the temperate Eurasia and

northern Africa regions where CARDAMOM, TRENDY, and CMIP5 have similar magnitudes.
3.2.2. GPP

There is generally less disagreement across the seasonal cycle of GPP than in the seasonal cycle of NBE

(Figure 7). The spread across the ensembles is large in the tropics for CARDAMOM, TRENDY, and CMIP5

across the tropics and CMIP5 stands out as different from the other models in tropical S. America, while

all models disagree in the Congo (Figure 7). Similarly to the seasonal cycle of NBE, the beginning of the

growing season is more gradual in CARDAMOM than other models in the high latitudes, particularly in
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Figure 8.The correlation among TRENDY models and CARDAMOM ensemble members (gray violin, white diamond
is median value) and cross correlation among TRENDY models (blue circles) for NBE seasonal climatology (a), NBE
interannual variation (b), GPP seasonal climatology (c), and GPP interannual variation (d) across regions. Red triangles
represent regions for which more than 75% of CARDAMOM-TRENDY correlations are within 2*interquartile from
the median of TRENDY-TRENDY correlations. Blue triangles indicate regions for which the maximum
CARDAMOM-TRENDY correlation is greater than or no more than 0.05 correlation less than the maximum
TRENDY-TRENDY correlation.

the boreal regions. This slow increase after winter may signify a difference in the models in how GPP under

near freezing temperatures is represented.

3.3. Comparing TRENDY and CARDAMOM Seasonal and Interannual Variability

We compare the agreement in variability across the TRENDY ensemble (using correlations of pairs of the

different TRENDY models) with the agreement among TRENDY models and CARDAMOM ensemble mem-

bers (using the correlation of each TRENDY model and each CARDAMOM ensemble member). However,

because both data sets are based on the CRUNCEP meteorological forcing, their differences are solely due

to model structure and the observations CARDAMOM assimilates. Thus, this comparison can determine

whether the simplified structure of CARDAMOM is able to create similar dynamics as the TRENDY models.

We find strong overlap among TRENDY-TRENDY correlations and TRENDY-CARDAMOM correlations

in most regions (high overlap denoted by red triangles in Figure 8) for both the NBE seasonal cycle (9

of 12 regions) and NBE interannual variability (11 of 12). High overlap can be due to the two distribu-

tions having similar medians or due to one of the distributions being relatively broad compared to the

other, as shown in Figure 3b. For the NBE seasonal cycle, the high overlap is due to mediocre agree-

ment among TRENDY models and most of the CARDAMOM ensemble members agreeing with the bulk

of TRENDY models. For NBE interannual variation, the overlap of distributions is due to a lack of agree-

ment among TRENDY models (and the resulting broad distribution of correlations). The TRENDY-TRENDY
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correlations for NBE interannual variation are grouped around 0 and low correlation values and have a rela-

tively broad distribution. This TRENDY-TRENDY disagreement is then reflected in a similar distribution of

TRENDY-CARDAMOM correlations. We note that this disagreement is primarily in the TRENDY ensemble,

as the CARDAMOM-CARDAMOM correlations for NBE interannual variability have a relatively strong

correlation, though there is still a broad range of correlations (Figure S3).

In contrast, fewer regions show strong overlap between distributions for the GPP seasonal cycle (7 of 12)

and for the GPP interannual variability (2 of 12) (Figure 8). The lack of overlap in GPP seasonal cycle is

due to a strong agreement among TRENDY models—high average correlation and a small distribution—so

that, even though there is high correlation in TRENDY-CARDAMOM, a large portion of it still falls outside

the TRENDY-TRENDY distribution. The difference in GPP interannual variability is more systematic—with

the bulk distribution of TRENDY-CARDAMOM correlations not agreeing with the relatively strong

TRENDY-TRENDY correlations.

We further compared the strongest correlations in each distribution: Is at least one CARDAMOM ensem-

ble member able to match a TRENDY model as well (or at least within 0.05) as two of the TRENDY

models are able to match each other? From this perspective (denoted by blue triangles in Figure 8), the

TRENDY-CARDAMOM contains at least one high correlation member in most regions for NBE seasonal

(12 of 12), GPP seasonal (12 of 12), NBE interannual variation (12 of 12), and GPP interannual variation

(9 of 12).

Overall, the TRENDY-CARDAMOM correlation distributions are broader than those for TRENDY-TRENDY

for both NBE and GPP, across all the regions and for both the seasonal cycle and interannual variation

(Figure 8). This broader distribution of relationships suggests that the CARDAMOM ensemble contains

a more diverse set of patterns than the TRENDY ensemble. This is particularly apparent in the seasonal

cycles of both variables and in the GPP interannual variability where the TRENDY-TRENDY correlations

are relatively high, and the distribution is compact compared to the TRENDY-CARDAMOM distribution.

By contrast, there is little agreement across the TRENDY ensemble on the interannual variability of NBE,

where median TRENDY-TRENDY and TRENDY-CARDAMOM correlations are near 0, and the spread of

the two distributions is similar in most regions.

4. Discussion
4.1. Simple Versus Complex Models: Dynamics of Carbon Cycle Fluxes

The match among CARDAMOM, TRENDY, and CMIP5 suggests that the relatively simple structure of

CARDAMOM is sufficient (at least relative to current alternative models and uncertain observations) to

simulate the amplitude of and much of the dynamics of the carbon cycle variation across regions of the

globe (Figures 4–8 and S4–S8). Though the processes resulting in fluxes of carbon are complex, it is possi-

ble to capture their dynamics with a model simpler than typical TBMs. The simulation of NBE and GPP by

CARDAMOM is informed by both the carbon cycle model and observational constraints included in this

analysis. The benefits of assimilating multiple streams of observations to constrain carbon cycle estimates

and provide empirical uncertainties for those estimates appear to largely compensate for any drawbacks of

a simple model.

We focused our investigation on the dynamics—particularly the interannual variation—of TRENDY and

CARDAMOM, as they are driven by meteorology from similar reanalysis data sets. Areas where there is

consistent disagreement among the two suggest more detailed investigation is necessary to determine how

either TRENDY or CARDAMOM (or both) might be improved. For example, we hypothesize that the con-

sistent difference between CARDAMOM and TRENDY in the shape of the ramp up of GPP and NBE at the

beginning of the boreal growing season is due to an oversimplified representation of leaf-out processes in

CARDAMOM (Figures 6-7). In CARDAMOM, the day of leaf out (and leaf fall) is an optimized parameter

for each pixel that does not change from year to year once set during assimilation. In reality, the leaf-out

day is likely a function of climate (e.g., temperature and photoperiod) (Richardson et al., 2010, 2013; White

et al., 1997, 2010). These observed differences can be investigated in future work through incremental tests

of more complex models, especially as more observational constraints become available. It is possible that

this process is also part of the reason for the systematic discrepancy between CARDAMOM and TRENDY

in the pattern of interannual variation (Figure 8). Previous work has shown that interannual variation of

GPP is closely tied to the variation in growing season duration (Keenan et al., 2012). At the same time, the
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CARDAMOM-TRENDY mismatch in interannual variation could also be due to the use of the SIF constraint

in CARDAMOM leading to a more realistic set of interannual variation in GPP. This hypothesis is supported

by the fact that there are consistently CARDAMOM ensemble members—though only a few—that correlate

highly with TRENDY models, at least showing the capability of the CARDAMOM structure to recreate pat-

terns similar to those created by more structurally complex models (Figure 8). In future work, we can learn

more about the processes governing these interannual variations by considering the difference between

CARDAMOM ensemble members that match and do not match other models and observations where they

are available.

4.2. TRENDY and CMIP5 Ensembles Underestimate the Range of Plausible Carbon Cycle Fluxes
Due to Parameter Uncertainty

The spread across ensembles of TRENDY or CMIP5 provides an estimate of the range of outcomes that are

possible from different models. The spread of these ensembles is not a formal uncertainty as the models

are neither independent nor systematically constrained by their ability to predict observations (Knutti et al.,

2013; Masson & Knutti, 2011). To constrain flux estimates, there have been a number of attempts to weight

each ensemble member by the skill of reproducing observations (Abramowitz & Gupta, 2008; Parazoo et al.,

2014; Sanderson et al., 2017). However, the result from CARDAMOM that even systematically constrained

parameter uncertainty is large relative to the TRENDY and CMIP5 ensembles suggests that they are likely

underestimating the plausible carbon cycle outcomes. Indeed, the CARDAMOM ensemble spread—driven

solely by uncertainty in observationally constrained parameters—is as large or larger than the spread of

TRENDY—driven by structural uncertainty—in all regions (and in most regions larger than the spread of

CMIP5 as well) (Figures 4 and 5). We propose that CARDAMOM is likely capturing a more complete set of

outcomes than the TRENDY or CMIP5 outcomes due to the importance—and uncertainty—of functional

parameters. If this is true, estimates of outcomes based on TRENDY and CMIP5 used in hindcasts and

forecasts are underestimating the possible range of flux outcomes.

Additional efforts to improve model-data fusion systems such as CARDAMOM might therefore be useful

toward better understanding the past and future of the terrestrial carbon cycle. These results are consis-

tent with previous work showing the importance of parameter choice to model-simulated NBE and GPP.

In Booth et al. (2012), a carbon cycle model is simplified to a few functional parameters, and the spread

in future predictions is estimated by varying these functional parameters across a reasonable range of

uncertainty—indeed, the results show the spread is as large as that of the whole CMIP5 ensemble. Similarly,

in the diagnostic effort of Cui et al. (2019), a simple model of functional parameters is fit to global models

of the Multiscale Synthesis and Terrestrial Model Intercomparison Project ensemble to show that the varia-

tion in functional parameters explains a large portion of the variation in GPP. Lovenduski and Bonan (2017)

demonstrate that model uncertainty dominates the spread of future terrestrial biosphere projections and

suggests that a multitude of modeling approaches is part of what is required for more reliable projections.

Taken together with the results of the comparison performed in this work, these results suggest that future

development of carbon cycle estimation systems should carefully consider parametric uncertainty.

4.3. CARDAMOM Permits Carbon Cycle Outcomes Not Found in TRENDY and CMIP5 Ensembles

There is no agreed upon observational arbiter to determine which simulations are more realistic when com-

paring the ensembles from CARDAMOM, TRENDY, and CMIP5. Although there are many candidate data

sets to be used as a benchmark, all are either sparse (in the case of in situ measurements) or uncertain

(in the case of remote sensing measurements Anav et al., 2015; Jiang et al., 2017). However, CARDAMOM

(like other data assimilation systems) has the potential to expose additional carbon cycle outcomes when

the uncertainty associated with observational constraints and the flexibility created by different realistic

parameter values are considered. One example of such an outcome is the presence of a carbon source in

the tropics in CARDAMOM not found in CMIP5 or TRENDY. This is driven by the CMS-Flux NBE obser-

vational constraint used. While the question of whether tropical land surface is a source or sink of carbon

remains controversial (Baccini et al., 2017; Gaubert et al., 2019; Schimel et al., 2014), satellite CO2obser-

vations clearly indicate a source–and the CARDAMOM results reflect the impact of that data. However,

the ability of CARDAMOM to match these observations (Figures 4 and S1) suggests that realistic parame-

ter choices exist for which a source can exist in an integrated carbon cycle model (conserves mass) and are

consistent with other observational constraints (e.g., SIF, leaf area index, biomass, and fire emissions).
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As a second example of CARDAMOM's greater range of outcomes, it is notable that the ensemble spread

of GPP in CARDAMOM, TRENDY, and CMIP5 are of similar magnitudes, while the ensemble spread of

NBE in TRENDY and CMIP5 is much smaller relative to the ensemble spread of NBE in CARDAMOM

(Figures 4 and 5). The NBE estimates from all the models—relatively small compared to GPP—demonstrate

the close balance of GPP with respiration and fire. However, the relatively large ensemble spread of NBE

in CARDAMOM suggests that either the NBE range in CARDAMOM is underconstrained (e.g., because of

too wide an assumed uncertainty in observations) or that the NBE/GPP ratio in TRENDY and CMIP5 is

overconstrained (e.g., through too limited a range of parameter scenarios considered). It is unclear which of

the two, if not both, is true.

This study cannot conclusively attribute differences between CARDAMOM, TRENDY, and CMIP5, to fail-

ures of any of the three data sets. We argue that at present, no sufficiently high-fidelity observational bench-

marks of carbon fluxes exist to determine whether either CARDAMOM or TRENDY and CMIP5 ensembles

are more correct at times when they disagree, particularly in regions where observations are sparse, such as

the tropics or boreal regions (Schimel et al., 2015). Nevertheless, insofar as CARDAMOM rigorously assim-

ilates observational estimates of NBE and other constraints and their uncertainty, it might be expected to

more closely approximate uncertain observational data sets and estimate an empirical uncertainty. Indeed,

the problem of interpolating uncertain observations to determine a global benchmark is not unique to the

carbon cycle. In the atmospheric sciences, long-term reanalyses of weather models—incorporating numer-

ous assimilated data streams—have a strong history (Harms et al., 1992) being used as pseudo-observations

to benchmark the simulated atmospheres in climate models (e.g., Gleckler et al., 2008). Relative to its appli-

cation in atmospheric sciences and meteorology, the use of data assimilation within carbon cycle science is

still relatively new. A number of open questions remain, including the role of structural error (Keenan et al.,

2011; Wieder et al., 2015), choice of assimilation method (Fox et al., 2009), or combination of data sets

used (Chevallier et al., 2019; McNeall et al., 2016; Smith et al., 2019), and consistency between performance

during and outside the assimilation time window. Nevertheless, as model-data fusion systems such as CAR-

DAMOM and other efforts continue to mature in the medium and long terms, they could eventually serve

as a “carbon cycle reanalysis” to benchmark global vegetation.

5. Conclusions

We compared the NBE and GPP estimates from CARDAMOM—a relatively simple carbon cycle model

with parameters optimized through data assimilation—and the complex TBMs in TRENDY and CMIP5.

The assimilated CMS-Flux NBE in CARDAMOM-shaped distinct differences in carbon sources and sinks

compared to both TRENDY and CMIP5. However, the dynamics of the models were similar, with only

systematic differences between the CARDAMOM ensemble and TRENDY ensemble in GPP interannual

variation. These comparisons provide evidence that the complexity of CARDAMOM is sufficient to simu-

late the dynamics of GPP and NBE fluxes, showing little systematic difference with more complex TBMs.

Additionally, we propose that the spread across the TRENDY and CMIP5 ensembles does not capture the

full spread of potential carbon cycle behavior, as the spread in CARDAMOM from optimized parameters

alone is as large or larger.

Comparisons between CARDAMOM and other TBMs in TRENDY and CMIP5 have highlighted two areas

to be investigated in future work: (1) the range of uncertainty in NBE and (2) the growing season param-

eterization in boreal regions. In the first, NBE appears highly constrained in complex land surface models

compared to the spread in GPP. This leads to a weak sink that is not observed in CMS-Flux or estimated

through CARDAMOM. In the second, the consistent difference between the growing season increase of

complex models and CARDAMOM suggests that improvements to CARDAMOM can likely be made based

on improved process representation of early growing season leaf out. The ability to optimize parameters

based on remote sensing observations and constrain parameter uncertainty makes CARDAMOM a useful

addition to the suite of models currently estimating global fluxes of the terrestrial carbon cycle.
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