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Abstract Modeling the net carbon balance is challenging due to the knowledge gaps in the variability
and processes controlling gross carbon fluxes. Terrestrial carbon cycle modeling is susceptible to several
sources of bias, including meteorological uncertainty, model structural uncertainty, and model parametric
uncertainty. To determine the impact of these uncertainties, we compare three model-derived
representations of the global terrestrial carbon balance across 1997-2009: (1) observation-constrained
model-data fusion (CARBon Data Model FraMEwork, CARDAMOM), (2) the reanalysis-driven Trends in
Net Land-Atmosphere Carbon Exchange (TRENDY) land biosphere model ensemble, and (3) the Coupled
Model Intercomparison Project 5 (CMIP5) Earth System Model ensemble. We consider the spread in
carbon cycle simulations attributable primarily to parametric uncertainty (CARDAMOM), structural
uncertainty (TRENDY), and combined structural and simulated meteorological uncertainty (CMIP5). We
find that the spread across the CARDAMOM ensemble long-term mean—produced by parameter
uncertainty—is larger than the spread of TRENDY and CMIPS5 for net biosphere exchange (NBE) but
similar for gross primary productivity (GPP). The carbon flux dynamics of CARDAMOM compares to
models in TRENDY as well as models in TRENDY compare to each other in many regions for NBE
seasonal (nine of 12), NBE interannual (11 of 12), and GPP seasonal variability (7 of 12), although not for
GPP interannual variability (2 of 12). The simple model structure of CARDAMOM and systematic
assimilation of observations is sufficient to produce carbon dynamics within the range of more complex
models. These results are encouraging for the use of model-data fusion products with empirically
estimated uncertainty for global carbon cycle studies.

Plain Language Summary There is uncertainty in where carbon is going into or leaving the
land biosphere on a net basis. Models are used to investigate this movement of carbon, but it is unclear
how different approaches compare: using a complex model for which the best parameter sets are difficult
to determine or using a simpler model for which it is easier to find the right parameters sets that best match
observations. This paper compares collections of relatively complex models with a different approach that
systematically combines remote sensing observations with a simpler model. Comparisons across mean
values, seasonal variations, and interannual variations of photosynthesis and carbon movement show
that the simple model—constrained by observations—is able to recreate most dynamics but also shows a
broader range of possibilities than the collections of more complex models. The results suggest that more
attention needs to be paid to parameter uncertainty in model settings, not just what processes they include.
Including this uncertainty creates a larger spread of carbon cycle outcomes for the present and possibly for
the future.

1. Introduction

Modeling the net biosphere exchange (NBE) of carbon for the terrestrial biosphere is difficult due to the
numerous processes driving variability of considerably larger gross fluxes (photosynthesis, respiration, and
fires), and their overall effect on the net carbon balance (Piao et al., 2020). There are still large knowledge
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gaps in how best to represent and parameterize such processes for the terrestrial biosphere models (TBMs)
that contain the model of the carbon cycle embedded in Earth System Models (ESMs). These knowledge
gaps are particularly apparent in the spread in future carbon cycle projections under rising atmospheric CO,
concentrations and climate change. Across ESMs contained in the Coupled Model Intercomparison Project
(CMIP5) archive, it is uncertain whether the present-day carbon sink will become stronger, weaken, or even
become a source under future climate change (Friedlingstein et al., 2014; Fatichi et al., 2019; Le Quéré et al.,
2018). Carbon cycle response to climatic change is the second largest source of uncertainty in predictions
of global temperature rise due to anthropogenic CO, emissions, behind only climate sensitivity (e.g., cloud
formation processes), but greater than aerosols, initial conditions, or anthropogenic emissions scenarios
(Booth et al., 2012; Bodman et al., 2013; Bonan & Doney, 2018; Huntzinger et al., 2017). Thus, reducing
the uncertainty in carbon cycle models remains a priority for improving long-term predictions of the Earth
system. Terrestrial carbon cycle modeling approaches are susceptible to several sources of error, stemming
largely from uncertainties in model processes and meteorological drivers. Model uncertainty can be further
separated into structural uncertainty (e.g., fidelity and complexity of process representation to reality) and
parametric uncertainty (specification accuracy of the parameter values in any given model) (Collins, 2007).
While previous research has shown that overall model uncertainty dominates long-term carbon cycle uncer-
tainty compared to initial conditions or human emission scenarios (Bonan & Doney, 2018), it is not clear
whether the structural or parametric component dominates model uncertainty (Huntzinger et al., 2017).

In developing TBMs, considerable attention has been paid to structural uncertainty by refining and adding
process representation to the carbon cycle, for example, nutrient dynamics processes (Fisher et al., 2014) and
vegetation demography (Fisher et al., 2018). By contrast, parametric uncertainty has received less attention.
For many carbon-related processes, the parameters of these models are still assigned based on plant func-
tional types (PFTs) (Bonan, 2019). Furthermore, because the models are so complex, the process of deriving
the PFT-specific values to be used for each parameter is often manual and opaque. However, the variabil-
ity in vegetation parameters can be as large within a PFT as between them (Butler et al., 2017; Konings
& Gentine, 2017; van Bodegom et al., 2014), suggesting that assuming uniform parameter values per PFT
could be a significant source of error. Furthermore, the combination of complex models with simple param-
eter choices can lead to compensating errors. These compensating errors can lead to models having similar
short-term climatic sensitivities yet very different long-term flux predictions (Huntzinger et al., 2017). Such
compensating errors among parameters (also known as equifinality Beven & Freer, 2001) are a particular
concern for projecting the carbon cycle into novel environments such as occur during long-term climate
simulations. It has been shown that the uncertainty in parameters alone can drive a 461 ppm spread in pre-
dictions of atmospheric CO,, larger than the 418 ppm uncertainty across concentration scenarios (Booth
etal., 2012). Additionally, as a regional example, the high spread of gross primary productivity (GPP) in ESMs
has been traced back to a high spread in emergent specific leaf area for the East Asian monsoon region (Cui
et al., 2019). Thus, the difficulty of parameterization of structurally complex models leads to uncertainty
when predicting long-term carbon fluxes.

So-called data assimilation or model-data fusion techniques can be used to compare model outputs to obser-
vations in order to constrain parameter values and model states (Rayner et al., 2019; Wikle & Berliner, 2007).
Furthermore, the uncertainty in these parameters (and associated states of the carbon pools and fluxes)
can be used to explicitly quantify the role of parametric uncertainty on carbon cycle variables. At regional
to global scales, remote sensing data can be systematically assimilated as observational constraints to opti-
mize model parameters, either within a PFT-based framework (MacBean et al., 2018; Norton et al., 2019)
or for deriving parameters on a pixel-by-pixel basis (Bloom et al., 2016). In general, there is a trade-off
in model-data fusion studies between the complexity of the underlying carbon cycle model and the com-
plexity of the assimilation method used. Studies using relatively complex carbon cycle models requiring
simplifying assumptions, such as Gaussianity and a differentiable cost function to ensure computational
tractability (e.g., MacBean et al., 2016; Scholze et al., 2007). By contrast, assimilation methods using Markov
chain Monte Carlo approaches allow uncertainty estimation without any assumptions on the shapes of
distributions but require large (e.g., millions) of model runs. They are therefore only tractable for rela-
tively parsimonious models that can be run for numerous iterations with current computer resources (e.g.,
Keenan et al., 2012; Williams et al., 2005). Using parsimonious models also helps to reduce equifinality,
which can remain significant in model-data fusion studies, especially those using more complex models
(Castro-Morales et al., 2019). Note that this trade-off between model complexity and the degree to which
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Fires Rh parameter choices can be rigorously optimized to be most consistent
y with observational data extends beyond model-data fusion. More gener-
ally, there is a choice between the systematically optimized parameters
from model-data fusion and using the expert manual parameter tuning
common in the development of more structurally complex TBMs.

The CARBon Data Model FraMEwork (CARDAMOM) is a model-data
fusion framework (Bloom et al., 2016; Bloom & Williams, 2015) built
around the Data Assimilation Linked Ecosystem Carbon (DALEC)
. l _ model (v2.1). CARDAMOM uses an adaptive Metropolis-Hastings

’- - Markov chain Monte Carlo (MHMCMC) algorithm data assimila-
tion method and Bayesian inference to update prior distributions of

parameters—including initial conditions—in CARDAMOM to better

Figure 1. Diagram of the DALEC carbon cycle model in CARDAMOM. match remote sensing observations. In order to further reduce equifinal-

Adapted from (Bloom et al., 2016).

ity, the MHMCMC incorporates known limits on relationships among

carbon cycle processes (so-called ecological and dynamic constraints).
For example, the turnover rate of the soil organic matter pool is constrained to be lower than the turnover
rate of litter (Bloom & Williams, 2015), which helps avoid unrealistic jumps in soil organic matter (Fox et al.,
2009). Like all modeling systems, CARDAMOM's approach has several disadvantages (inability to represent
biosphere-atmosphere interactions (Green et al., 2017), sensitivity to observational uncertainty, missing pro-
cesses related to nutrient dynamics, land use change, etc.) that may be prohibitive for specific applications.
Nevertheless, it has been used to investigate a variety of carbon cycle processes, including the effect of fire
on turnover rate (Exbrayat et al., 2018), arctic carbon cycling (Lopez-Blanco et al., 2019), and the pools and
parameters of the carbon cycle across the globe (Bloom et al., 2016).

In this work, we aim to understand the trade-off between model structural uncertainty and parameter uncer-
tainty for global-scale modeling of the terrestrial carbon cycle. That is, we address the following question:
Can simplified models, with data-informed parameters (such as in CARDAMOM), simulate realistic observ-
able carbon fluxes (i.e., NBE and GPP) and their uncertainty, relative to more structurally complex ecosystem
models? NBE is the summation of the terrestrial carbon fluxes of GPP, autotrophic respiration, heterotrophic
respiration, and fires. Note that it does not account for contributions from methane fluxes nor from lateral
fluxes of carbon such as harvest products, or dissolved organic carbon in rivers, etc. We also evaluate the
GPP, since it is the largest and most studied of the component fluxes of NBE (Fatichi et al., 2019).

To address this question, we intercompare the mean values, dynamics, and spread in simulated NBE and
GPP fluxes of CARDAMOM with those of traditional ensembles of complex TBMs, such as the Trends in Net
Land-Atmosphere Carbon Exchange (TRENDY) (Sitch et al., 2008) and Coupled Model Intercomparison
Project 5 (CMIP5) (Taylor et al., 2012) ensembles. TRENDY is an ensemble of TBMs that are all forced by the
same meteorology. The TBMs in the CMIP5 ensemble are similar but are coupled to a simulated atmosphere
in a full ESM. Note that, unlike the estimate of parameter uncertainty in CARDAMOM, the intermodel range
of TRENDY and CMIP5 does not statistically capture their complete model structural uncertainty. Never-
theless, consistent with common practice in the interpretation of these ensembles, the intermodel range is
taken here to reflect, in part, the effects of different structural representation in individual member mod-
els. We further interpret CMIP5, which consists of coupled land-atmosphere models, to reflect additional
uncertainty in meteorological drivers, compared to the reanalysis-driven TRENDY ensemble.

2. Methods

2.1. CARDAMOM

CARDAMOM is a model-data fusion system that uses a relatively simple carbon cycle model—DALEC
model (Version 2.1)—and a data assimilation algorithm using adaptive MHMCMC (Haario et al., 2001). The
underlying carbon cycle model—DALECv2.1—is a modified version of DALEC (Bloom & Williams, 2015)
that consists of six pools of carbon and one plant-available water pool and depicted in Figure 1 and detailed
in the supporting information. Additionally, CARDAMOM includes ecological and dynamical constraints
that help reduce the parameter search space and guard against equifinality (Bloom et al., 2016). Meteorolog-
ical forcings include temperature (monthly minimum and maximum), shortwave radiation, vapor pressure
deficit, precipitation, atmospheric CO, concentrations, and burned area.
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Table 1
Observation-Based Data Sets Assimilated Into the CARDAMOM Simulation
Observation Data set description Assumed uncertainty
Leaf area index (LAI) 2010-2015 MODIS LAI retrievals? +log(1.2)
Soil organic matter (SOM) Soil C inventory (Hiederer & Kochy, 2011) +log(1.5)
Biomass Derived from GLAS and machine learning (Saatchi et al., 201 1)IJ > +log(1.5)
Solar-induced fluorescence (SIF) 2010-2015 GOSAT retrievals of fluorescence (Frankenberg et al., 2011)¢ +log(2)
Fire C emissions 2010-2015 Derived from inverse estimates of CO emissions +20%

(Worden et al., 2017) and CO,:CO ratios (Bowman et al., 2017)

Net biosphere exchange (NBE) 2010-2013 CMS-Flux, GOSAT CO;-derived 4° x 5° inverse estimates (Liu et al., 2017). Seasonal: +1 g C/m?/day,

Annual: +0.02 g Cfmzfday

Note. Uncertainties denoted as +log() indicate log-transformed model and observed quantities.
30nly mean 2010-2015 LAI is assimilated into CARDAMOM, in order to mitigate the influence of seasonal LAI retrieval biases (Bi et al., 2015). bgee Bloom et al.
(2016) for details. “Time-resolved SIF is assimilated as a relative constraint on the temporal variability of GPP.

Here, CARDAMOM was run with monthly time series from 1997-2015 of meteorological drivers from
the combined data sets from Climate Research Unit (CRU) and reanalysis data from National Centers for
Environmental Prediction (NCEP), the CRUNCEP data set (Harris et al., 2014; Kalnay et al., 1996; Viovy,
2018). Atmospheric CO, concentrations from Mauna Loa (Keeling et al., 2009) were also used as a driver.
Lastly, burned area was obtained from the Global Fire Emissions Database Version 4.1s (Giglio et al., 2013;
Randerson et al., 2012).

All assimilated data sets are described in Table 1. The cost function and uncertainties used in the assimi-
lation are further described in detail in the supporting information. The data sets are first regridded to the
4° x 5° resolution GEOS-Chem grid (Bey et al., 2001), which corresponds to that of the coarsest assimi-
lated data set, NBE. CARDAMOM is then run at this resolution. The dynamic assimilated data sets span the
period 2010-2015, with solar-induced fluorescence (SIF)—photon emissions approximately proportional to
GPP—and fire emission estimates spanning this entire period, while NBE constraints were only available
from 2010 to 2013 (Mohammed et al., 2019). The modeled initial conditions for biomass in 1997 were con-
strained by a global, remote sensing-derived map (Saatchi et al., 2011), though some error may be induced
by the fact that this biomass map represents average conditions over 2001-2003. Similarly, initial conditions
for the soil organic matter pool were also constrained by a static map of soil organic carbon (Hiederer &
Kochy, 2011). Note that these estimated initial conditions—based on the assimilated data—do not have to
be in equilibrium in contrast to most TBMs retrieve their initial conditions from a long run that reaches an
equilibrium state.

The uncertainty values applied to each observation represent a combination of both observational uncer-
tainty (errors in measurement), and systematic model-observation error (i.e., model representation error or
bias in the data). For lack of better knowledge on both error distributions at 4° x 5° resolution, we manually
selected uncertainty values associated with each data set for this study to capture the predominant spatial
and temporal variability of the data sets listed in Table 1.

The MHMCMC assimilation with CARDAMOM optimizes the model parameters to best match assimilated
data and creates 250 ensemble members each with different model parameter sets. The distribution of the
parameters and outputs represent an estimated uncertainty. We run the assimilation four times at each point
to create four separate ensembles where the MHMCMC process is initialized differently. We combine these
separate ensembles in our analysis to create one ensemble of 1,000 different parameter sets. All parameters
converged for 38% of pixels based on a Gelman-Rubin convergence using a treshold of 1.2 (the between chain
variance divided by the average variance of each chain) and across the whole data set, 77% of of individual
parameter solutions converged (Figure S1).

2.2. Comparison: Models, Time, and Regions

We compared estimates of NBE and GPP from CARDAMOM and the TRENDY and CMIP5 ensembles
(Table 2). We used the TRENDY V2 output that covered 1901 to 2010. This included nine TBMs: TRIFFID,
LPJ, SDGVM, Hyland, NCAR CLM4C, NCAR CLM4CN, OCN, ORCHIDEE, and Vegas (Le Quéré et al.,
2018; Sitch et al., 2008). We used the S2 experiment, which includes historical climate from CRUNCEP, and
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Figure 2. Spatial regions used to aggregate the models for comparison.

increasing atmospheric CO,. Note that not all TRENDY models had output on a monthly resolution. Where
monthly resolution was necessary—monthly climatology comparisons—only the six models with monthly
resolution output were used here: LPJ, Vegas, CLM4C, CLM4CN, TRIFFID, and OCN. We further used mod-
els from the CMIP5 archives that had C4MIP experiments (those with a predictive carbon cycle) and had
both NBE and GPP publicly available (Taylor et al., 2012) (Table S2). The historical run and RCP8.5 run of
the models were downloaded from the CMIPS5 archive.

We performed our model comparisons for the period between 1997 and 2009. The RCP8.5 run was used
to extend the four years (2006 to 2009) that were not covered by the CMIPS5 historical run. We began our
comparison at 1997 since that is the earliest that Global Fire Emissions Database Version 4 was available
as an input for CARDAMOM. The comparison ended in 2009 in order to keep the entirety of the com-
parison outside the time period where carbon fluxes were assimilated into CARDAMOM (2010 to 2015).
That is, we chose the 1997-2009 test period to be different from the assimilation period in order to ensure
that CARDAMOM's performance as a forward model is tested rather than its ability to match specific
assimilation data.

Finally, all analyses were performed at each grid point and then aggregated into regions adapted from the
Atmospheric Tracer Transport Model Intercomparison Project (Gurney et al., 2004) but with the addition of
aregion around the Congo rainforest, as carbon cycle dynamics there are expected to differ significantly from
elsewhere in North and South Africa (Figure 2). Analysis was performed across regions to better match the
informational content of the assimilated NBE from Carbon Monitoring System Flux framework (CMS-Flux)
(Liu et al., 2014) and for ease of interpretation.

2.3. Calculation of NBE

NBE is the balance of carbon flux to the atmosphere and includes GPP, autotrophic respiration, het-
erotrophic respiration, fires, and land use (NBE > 0 to the atmosphere) (Fatichi et al., 2019). Note that the
representation of fires and land use varies such that those fluxes are not explicitly represented in each of the

Table 2
Meteorology and Data Approaches of Models in Comparison

Land-atmosphere

Model Drivers coupling Observation constraints Model type
CARDAMOM Reanalysis (CRUNCEP) No Land-surface and atmospheric C datasets  Process
TRENDY Reanalysis (CRUNCEP) No None Process
CMIP5 Simulated meteorology Yes None Process
QUETIN ET AL. 50f17
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(a) T models considered in this paper. The fire carbon emissions in CAR-
; Vg, O eg.TRENDY Model DAMOM are based off of observed burned area combined with combus-
/ \ o O O CARDAMOM tion fractions (parameters that are optimized during assimilation). When
O‘*—-....___ . Ensemble Member comparing models outside the window of assimilated data, the emis-
%7 O N P Intra-correlation sions are thus a combination of prognostic and diagnostic calculations.

In contrast, most TRENDY models and CMIP5 have prognostic fire emis-

— Inter-correlation
sion, predicted from climate drivers. These differences in estimating fire

(b) _ are only pronounced in regions—here Congo, tropical Asia, and South
o (SR Low Overlap, Wide Africa—where there is a large amount of burning (Giglio et al., 2013;

Randerson et al., 2012). Additionally, CARDAMOM does not explicitly

Low Overlap, Narrow include land use; however, the parameter optimization—including states

of carbon pools—is based on observations that do include the impact of

High Overlap, Wide historical land use change (Pongratz et al., 2009). The TRENDY S2 experi-

ment we use here does not include land use change (Le Quéré et al., 2018;

—*#‘5@%%@*— High Overlap, Narrow Sitch et al., 2008), while CMIP5 also includes land use change (Taylor et

al., 2012). We expect GPP, respiration, and fires (where there is a large

Figure 3. (a) Diagram of relationship among different ensemble members.  3mount of burning) to dominate NBE over the broad regions and decadal
(b) Schematic of possible patterns in cross-correlation distributions (with ; :
time scale on which we compare the models.

correlation on the x axis). Gray shaded violin is intra-correlation (e.g.,
correlation of TRENDY with CARDAMOM). Blue circles are

inter-correlations (e.g., correlation between TRENDY models). Fraction of 2.4. Comparison Metrics
overlap depends on the uncertainty in both ensembles. The long-term statistics—including the mean, interannual variability

(standard deviation of annual values), and seasonality (climatology of
monthly mean)—of NBE and GPP were calculated for each CARDAMOM ensemble member, each model
in TRENDY and CMIP5 for the period 1997 to 2009. The statistical difference among median values—across
ensembles—was calculated by performing a Kruskal-Wallis H-test, which is a nonparametric test to falsify
the null hypothesis that the medians of two distributions are the same.

Additionally, we designed an experiment specifically to investigate whether the dynamics—for example, the
pattern of temporal variability—are similar among CARDAMOM and each of the two ensembles of opportu-
nity. This is driven by the recognition that the above statistics could differ not just because of parametric and
model uncertainty but also because of observational uncertainty. To address whether the relatively simplistic
nature of the model underlying CARDAMOM (induced by the model-data fusion) prevents it from repre-
senting the same temporal dynamics as either the TRENDY or CMIP5 ensembles, the distribution of Pearson
correlations among ensemble members of each model group (CARDAMOM, TRENDY, and CMIP5) was
compared to that among members from the different ensembles. For example, each model in the TRENDY
ensemble is correlated with each member of the CARDAMOM ensemble, the “intracorrelation” (1,000 cor-
relations per TRENDY model) at each grid point (as illustrated in Figure 3). The resulting correlations are
considered the TRENDY-CARDAMOM correlations. Additionally, each model in the TRENDY ensemble
is also correlated with each other model in the TRENDY ensemble; these correlations are considered the
TRENDY-TRENDY correlations or more generally the “intercorrelation” as in Figure 3.

Finally, to aggregate over each region, the distributions of correlations at the grid point were averaged
together. Each grid point contains an independent CARDAMOM ensemble (i.e., there is not a fixed way to
pick, which ensembles to aggregate across space). For example, the first ensemble member in Grid Point X is
not necessarily related to the first ensemble member in Group Y. Here, we chose to combine the ensembles
ranked by correlation value. For this reason, when averaging the TRENDY-CARDAMOM correlations, we
first ranked the correlations from lowest to highest in each grid point and then averaged them together. As
a result, the distribution that is reported for a region spans the mean of the lowest correlations to the mean
of the highest correlations. This is in contrast to the TRENDY-TRENDY correlations (and CMIP5-CMIP5
correlations, for Figure S2) where a particular model has a solution across space. The result of this is that
the regional averages are made up of the average correlation of Model X with Model Y.

We further created a simple univariate metric to summarize the amount of overlap among—using
TRENDY and CARDAMOM distributions as an example again—the TRENDY-TRENDY agreement and the
TRENDY-CARDAMOM agreement. A strong overlap of the distributions is defined by more than 75% of the
TRENDY-CARDAMOM correlations falling above the median of the TRENDY-TRENDY correlations minus
two times the interquartile distance of the TRENDY-TRENDY correlations. Similarly, a separate metric was
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Figure 4. The mean (a) and the coefficient of interannual variation (b) of 1997-2009 NBE for CARDAMOM, TRENDY,
and CMIPS5. Boxplots reflect the uncertainty across the ensembles.

used to summarize whether the strongest correlations among TRENDY and CARDAMOM were as strong
(or nearly as strong) as the strongest correlations among TRENDY models. For this metric, we calculated the
difference between the maximum TRENDY-TRENDY correlation and the maximum TRENDY-
CARDAMOM correlation. The maximums were judged as close if the maximum TRENDY-CARDAMOM
correlation was no more than 0.05 less than the maximum TRENDY-TRENDY correlation. All correlation
distributions were compared separately for NBE and GPP and separately for seasonal and interannual time
scales. Note that both these metrics were only used to compare two groups of distributions in a binary way
and do not have precise values. The binary determinations of the groups of distributions as overlapping or
having equally high maxima are presented visually alongside the distributions below.

3. Results

The seasonal and interannual variation of NBE and GPP are intercompared for CARDAMOM, CMIP5, and
TRENDY in detail below. Additionally, in supporting information section S4, we compare most of these
fluxes to FluxCom, an empirical estimate of NBE and GPP based on flux tower observations (Tramontana et
al., 2016). We include FluxCom to serve as an independent—entirely empirical—estimate to contrast with

the three estimates that include process information in the form of models (supporting information Figures
S9-S13).

3.1. Long-Term Mean and Interannual Standard Deviation
3.1.1. NBE

The median of the CARDAMOM ensemble is significantly different than other models (p < 0.05) in at least
9 of 12 regions for each of the other models and with significant overlap of the ensembles in only 2 of 12
regions. The largest differences in the long-term means of regional NBE across all modeling approaches
occur in the tropics, with a relatively strong source in all three wet tropical regions for CARDAMOM (~0.25
g C/m?/day), a consistent weak sink in TRENDY models (~ —0.1 g C/m?/day), and consistently neutral
CMIP5 models (Figure 4a). The disagreement in whether the tropical regions are a source or a sink par-
allels continued disagreement in the modeling literature (see overview in Fatichi et al., 2019). The source
present in CARDAMOM is driven by the assimilated CMS-Flux NBE observations (as shown in Figure S4a).
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Figure 5. The mean (a) and the standard deviation of interannual variation (b) of 1997-2009 GPP for CARDAMOM,
TRENDY, and CMIP5. Boxplots reflect the uncertainty across the ensembles.

By contrast, the weak sinks in TRENDY and CMIP5 are more consistent with the relatively neutral sink esti-
mated by atmospheric inversion estimates driven primarily by extratropical CO, surface flasks observations
(Gaubert et al., 2019). A strong tropical source is a robust feature of fluxes derived from CO, satellite obser-
vations, which have substantial tropical coverage (Bowman et al., 2017; Crowell et al., 2019; Liu et al., 2017).
We note that, as mentioned in section 2.2, the time period considered here (1997-2009) is before the training
period with satellite data for CARDAMOM (2010-2015). Consequently, we must assume that the tropical
dynamics have not fundamentally changed between those periods of time.

Itis notable that even with an observational constraint on NBE, the CARDAMOM ensemble spread of mean
NBE is larger than the spread of the other estimates in all regions. The spread in the CARDAMOM ensemble
is larger than that of either TRENDY or CMIP5 (Figure 4a). In the tropics, the 95th percentile range of the
ensemble spread includes CARDAMOM ensemble members that are nearly neutral, or even a weak sink
(Figure 4a). In comparison, the CARDAMOM 95th percentile in temperate Eurasia—though still larger
than either TRENDY or CMIP5—is about a third that of the tropics. This broad range in CARDAMOM
outcomes highlights that the spread in CARDAMOM solutions are likely providing a better sampling of the
full uncertainty than the limited ensembles of opportunity across all regions.

There is less disagreement across model ensembles for the standard deviation of the interannual variation
in either median value or ensemble spread (Figure 4b). All models show a relatively large interannual vari-
ability and ensemble spread in the tropics, though they are not dramatically different than for some other
regions. For example, Tropical South America has median and interquartile ranges that are only somewhat
larger than those for Europe for CARDAMOM and TRENDY: median = 0.15 g C/m?/day, IQR = 0.06 g
C/m?/day in Tropical South America versus median = 0.14 g C/m?/day, IQR = 0.06 g C/m?/day in Europe
for CARDAMOM, and median = 0.17 g C/m?/day, IQR = 0.08 g C/m?/day in Tropical South America ver-
sus median = 0.14 g C/m?/day, IQR = 0.05 g C/m?/day in Europe for TRENDY. The median value and
ensemble spread of CMIP5 interannual variation amplitude are consistently larger than that of TRENDY
across all regions and generally larger than that of CARDAMOM except for boreal regions (Figure 4b). The
large interannual variability in CMIP5 is consistent with findings of larger than observed meteorology and
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Figure 6. Comparison of the NBE mean-centered seasonal climatology of each region for CARDAMOM, TRENDY, and
CMIPS. The 25th to 75th percentiles are shown for CARDAMOM, TRENDY, and CMIP5 as shading.

vegetation variability in the fully coupled ESMs capturing the compounding effects of both meteorologi-
cal and biogeochemical uncertainties (Anav, Friedlingstein et al., 2013; Anav, Murray-Tortarolo et al., 2013;
Merrifield & Xie, 2016, Quetin & Swann, 2018). The spread of the amplitude of interannual variability in
CMIPs5 is consistently larger in the Southern Hemisphere than in the Northern Hemisphere. TRENDY also
generally has a larger amplitude of interannual variation compared to the median CARDAMOM value
(8 of 12 regions). However, the ensemble spread of CARDAMOM is equal or larger than TRENDYSs in all
but one region and shows a lot of overlap. The more closely shared values of TRENDY and CARDAMOM
(relative to the larger differences between TRENDY and CMIP5) highlight the impact of sharing similar
meteorology on carbon cycle dynamics.

3.1.2. GPP

Across model ensembles, there is strong agreement in the simulations of the mean GPP from 1997-2009
(Figure 5a). Using our metric of greater than 75% of CARDAMOM ensemble members within twice the
interquartile distance, there is strong overlap among CARDAMOM ensemble members and alternative
model ensembles across most regions (TRENDY [8 of 12 regions] and CMIP5 [11 of 12 regions]). Even
with this strong overlap, the majority of regions have statistically distinct ensemble medians (p < 0.05).
The spread across the CARDAMOM ensemble is larger than the spread across TRENDY in all regions and
larger or equal to the spread across CMIP5 in all but temperate South America, South Africa, and Australia
(Figure 5a). CARDAMOM has the largest GPP in the boreal regions and is consistently lower than both
TRENDY and CMIPS5 in tropical South America and the Congo, while there is general agreement in tropical
Asia. The general difference between CARDAMOM and TRENDY/CMIP5—higher GPP in the high lati-
tudes, lower in the tropics—is similar to shifts when TBMs are constrained by observations of SIF either as
a data assimilation product (MacBean et al., 2018) or optimal integration with already run model ensembles
(Parazoo et al., 2014).

The interannual variability of GPP is qualitatively similar across regions, especially relative to the regional
variations in NBE interannual variation (Figure 5b). The ordering of magnitudes is generally—from low-
est to highest —CARDAMOM (regional median = 0.19 g C/m?/day), TRENDY (regional median = 0.20 g
C/m?/day), and CMIP5 (regional median = 0.35 g C/m?/day) the same ordering as for NBE interannual
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Figure 7. Comparison of the GPP mean-centered seasonal climatology of each region for CARDAMOM, TRENDY, and
CMIPS. The line is the ensemble median, 25th to 75th percentiles are shown for CARDAMOM, TRENDY, and CMIP5
as shading.

variability. CARDAMOM and TRENDY are quite similar in most regions with strong overlap in all regions
except the boreal regions, temperate South America, and the Congo. Additionally, the medians are statisti-
cally different (p < 0.05) in only half the regions (6 of 12 regions). As for the interannual variation of NBE,
the magnitude and spread of the CMIP5 ensemble are larger than for both TRENDY and CARDAMOM,
particularly in the Southern Hemisphere (Figure 5b) likely reflecting the impact of meteorological uncer-
tainty in the CMIP5 models.

3.2. Seasonality
The seasonal cycle of both NBE and GPP has relatively consistent amplitudes across models, and generally

the 25th to 75th percentile spread across ensembles is small compared to the median values (Figures 6 and 7).
3.2.1. NBE

The greatest disagreement in the seasonal cycle of NBE occurs in northern Africa, the tropical regions,
and Australia (Figure 6). The greatest qualitative agreement occurs in the higher latitudes, where there are
stronger seasonal cycles of climate. Though broadly consistent with all other models across most of the year,
CARDAMOM consistently has a different shape during the initiation of the growing season. CARDAMOM
has a gradual decrease of NBE (CO, drawn from the atmosphere) over the period January to April while
TRENDY and CMIP5 are nearly flat (no change) until April; this is most apparent in the regions boreal
N. America and Europe (Figure 6). Additionally, in the high latitudes TRENDY and CMIPS5 agree strongly
but CARDAMOM has a different growing season value of NBE, either a stronger sink (boreal Eurasia) or
a weaker one (boreal N. America). Disagreement across models stands out in the temperate Eurasia and

northern Africa regions where CARDAMOM, TRENDY, and CMIP5 have similar magnitudes.
3.2.2. GPP

There is generally less disagreement across the seasonal cycle of GPP than in the seasonal cycle of NBE
(Figure 7). The spread across the ensembles is large in the tropics for CARDAMOM, TRENDY, and CMIP5
across the tropics and CMIP5 stands out as different from the other models in tropical S. America, while
all models disagree in the Congo (Figure 7). Similarly to the seasonal cycle of NBE, the beginning of the
growing season is more gradual in CARDAMOM than other models in the high latitudes, particularly in
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Figure 8. The correlation among TRENDY models and CARDAMOM ensemble members (gray violin, white diamond
is median value) and cross correlation among TRENDY models (blue circles) for NBE seasonal climatology (a), NBE
interannual variation (b), GPP seasonal climatology (c), and GPP interannual variation (d) across regions. Red triangles
represent regions for which more than 75% of CARDAMOM-TRENDY correlations are within 2*interquartile from

the median of TRENDY-TRENDY correlations. Blue triangles indicate regions for which the maximum
CARDAMOM-TRENDY correlation is greater than or no more than 0.05 correlation less than the maximum
TRENDY-TRENDY correlation.

the boreal regions. This slow increase after winter may signify a difference in the models in how GPP under
near freezing temperatures is represented.

3.3. Comparing TRENDY and CARDAMOM Seasonal and Interannual Variability

We compare the agreement in variability across the TRENDY ensemble (using correlations of pairs of the
different TRENDY models) with the agreement among TRENDY models and CARDAMOM ensemble mem-
bers (using the correlation of each TRENDY model and each CARDAMOM ensemble member). However,
because both data sets are based on the CRUNCEP meteorological forcing, their differences are solely due
to model structure and the observations CARDAMOM assimilates. Thus, this comparison can determine
whether the simplified structure of CARDAMOM is able to create similar dynamics as the TRENDY models.

We find strong overlap among TRENDY-TRENDY correlations and TRENDY-CARDAMOM correlations
in most regions (high overlap denoted by red triangles in Figure 8) for both the NBE seasonal cycle (9
of 12 regions) and NBE interannual variability (11 of 12). High overlap can be due to the two distribu-
tions having similar medians or due to one of the distributions being relatively broad compared to the
other, as shown in Figure 3b. For the NBE seasonal cycle, the high overlap is due to mediocre agree-
ment among TRENDY models and most of the CARDAMOM ensemble members agreeing with the bulk
of TRENDY models. For NBE interannual variation, the overlap of distributions is due to a lack of agree-
ment among TRENDY models (and the resulting broad distribution of correlations). The TRENDY-TRENDY
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correlations for NBE interannual variation are grouped around 0 and low correlation values and have a rela-
tively broad distribution. This TRENDY-TRENDY disagreement is then reflected in a similar distribution of
TRENDY-CARDAMOM correlations. We note that this disagreement is primarily in the TRENDY ensemble,
as the CARDAMOM-CARDAMOM correlations for NBE interannual variability have a relatively strong
correlation, though there is still a broad range of correlations (Figure S3).

In contrast, fewer regions show strong overlap between distributions for the GPP seasonal cycle (7 of 12)
and for the GPP interannual variability (2 of 12) (Figure 8). The lack of overlap in GPP seasonal cycle is
due to a strong agreement among TRENDY models—high average correlation and a small distribution—so
that, even though there is high correlation in TRENDY-CARDAMOM, a large portion of it still falls outside
the TRENDY-TRENDY distribution. The difference in GPP interannual variability is more systematic—with
the bulk distribution of TRENDY-CARDAMOM correlations not agreeing with the relatively strong
TRENDY-TRENDY correlations.

We further compared the strongest correlations in each distribution: Is at least one CARDAMOM ensem-
ble member able to match a TRENDY model as well (or at least within 0.05) as two of the TRENDY
models are able to match each other? From this perspective (denoted by blue triangles in Figure 8), the
TRENDY-CARDAMOM contains at least one high correlation member in most regions for NBE seasonal
(12 of 12), GPP seasonal (12 of 12), NBE interannual variation (12 of 12), and GPP interannual variation
(90f12).

Overall, the TRENDY-CARDAMOM correlation distributions are broader than those for TRENDY-TRENDY
for both NBE and GPP, across all the regions and for both the seasonal cycle and interannual variation
(Figure 8). This broader distribution of relationships suggests that the CARDAMOM ensemble contains
a more diverse set of patterns than the TRENDY ensemble. This is particularly apparent in the seasonal
cycles of both variables and in the GPP interannual variability where the TRENDY-TRENDY correlations
are relatively high, and the distribution is compact compared to the TRENDY-CARDAMOM distribution.
By contrast, there is little agreement across the TRENDY ensemble on the interannual variability of NBE,
where median TRENDY-TRENDY and TRENDY-CARDAMOM correlations are near 0, and the spread of
the two distributions is similar in most regions.

4. Discussion

4.1. Simple Versus Complex Models: Dynamics of Carbon Cycle Fluxes

The match among CARDAMOM, TRENDY, and CMIP5 suggests that the relatively simple structure of
CARDAMOM is sufficient (at least relative to current alternative models and uncertain observations) to
simulate the amplitude of and much of the dynamics of the carbon cycle variation across regions of the
globe (Figures 4-8 and S4-58). Though the processes resulting in fluxes of carbon are compley, it is possi-
ble to capture their dynamics with a model simpler than typical TBMs. The simulation of NBE and GPP by
CARDAMOM is informed by both the carbon cycle model and observational constraints included in this
analysis. The benefits of assimilating multiple streams of observations to constrain carbon cycle estimates
and provide empirical uncertainties for those estimates appear to largely compensate for any drawbacks of
a simple model.

We focused our investigation on the dynamics—particularly the interannual variation—of TRENDY and
CARDAMOM, as they are driven by meteorology from similar reanalysis data sets. Areas where there is
consistent disagreement among the two suggest more detailed investigation is necessary to determine how
either TRENDY or CARDAMOM (or both) might be improved. For example, we hypothesize that the con-
sistent difference between CARDAMOM and TRENDY in the shape of the ramp up of GPP and NBE at the
beginning of the boreal growing season is due to an oversimplified representation of leaf-out processes in
CARDAMOM (Figures 6-7). In CARDAMOM, the day of leaf out (and leaf fall) is an optimized parameter
for each pixel that does not change from year to year once set during assimilation. In reality, the leaf-out
day is likely a function of climate (e.g., temperature and photoperiod) (Richardson et al., 2010, 2013; White
etal., 1997, 2010). These observed differences can be investigated in future work through incremental tests
of more complex models, especially as more observational constraints become available. It is possible that
this process is also part of the reason for the systematic discrepancy between CARDAMOM and TRENDY
in the pattern of interannual variation (Figure 8). Previous work has shown that interannual variation of
GPP is closely tied to the variation in growing season duration (Keenan et al., 2012). At the same time, the
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CARDAMOM-TRENDY mismatch in interannual variation could also be due to the use of the SIF constraint
in CARDAMOM leading to a more realistic set of interannual variation in GPP. This hypothesis is supported
by the fact that there are consistently CARDAMOM ensemble members—though only a few—that correlate
highly with TRENDY models, at least showing the capability of the CARDAMOM structure to recreate pat-
terns similar to those created by more structurally complex models (Figure 8). In future work, we can learn
more about the processes governing these interannual variations by considering the difference between
CARDAMOM ensemble members that match and do not match other models and observations where they
are available.

4.2. TRENDY and CMIP5 Ensembles Underestimate the Range of Plausible Carbon Cycle Fluxes
Due to Parameter Uncertainty

The spread across ensembles of TRENDY or CMIP5 provides an estimate of the range of outcomes that are
possible from different models. The spread of these ensembles is not a formal uncertainty as the models
are neither independent nor systematically constrained by their ability to predict observations (Knutti et al.,
2013; Masson & Knutti, 2011). To constrain flux estimates, there have been a number of attempts to weight
each ensemble member by the skill of reproducing observations (Abramowitz & Gupta, 2008; Parazoo et al.,
2014; Sanderson et al., 2017). However, the result from CARDAMOM that even systematically constrained
parameter uncertainty is large relative to the TRENDY and CMIP5 ensembles suggests that they are likely
underestimating the plausible carbon cycle outcomes. Indeed, the CARDAMOM ensemble spread—driven
solely by uncertainty in observationally constrained parameters—is as large or larger than the spread of
TRENDY—driven by structural uncertainty—in all regions (and in most regions larger than the spread of
CMIP5 as well) (Figures 4 and 5). We propose that CARDAMOM is likely capturing a more complete set of
outcomes than the TRENDY or CMIP5 outcomes due to the importance—and uncertainty—of functional
parameters. If this is true, estimates of outcomes based on TRENDY and CMIP5 used in hindcasts and
forecasts are underestimating the possible range of flux outcomes.

Additional efforts to improve model-data fusion systems such as CARDAMOM might therefore be useful
toward better understanding the past and future of the terrestrial carbon cycle. These results are consis-
tent with previous work showing the importance of parameter choice to model-simulated NBE and GPP.
In Booth et al. (2012), a carbon cycle model is simplified to a few functional parameters, and the spread
in future predictions is estimated by varying these functional parameters across a reasonable range of
uncertainty—indeed, the results show the spread is as large as that of the whole CMIP5 ensemble. Similarly,
in the diagnostic effort of Cui et al. (2019), a simple model of functional parameters is fit to global models
of the Multiscale Synthesis and Terrestrial Model Intercomparison Project ensemble to show that the varia-
tion in functional parameters explains a large portion of the variation in GPP. Lovenduski and Bonan (2017)
demonstrate that model uncertainty dominates the spread of future terrestrial biosphere projections and
suggests that a multitude of modeling approaches is part of what is required for more reliable projections.
Taken together with the results of the comparison performed in this work, these results suggest that future
development of carbon cycle estimation systems should carefully consider parametric uncertainty.

4.3. CARDAMOM Permits Carbon Cycle Outcomes Not Found in TRENDY and CMIP5 Ensembles
There is no agreed upon observational arbiter to determine which simulations are more realistic when com-
paring the ensembles from CARDAMOM, TRENDY, and CMIP5. Although there are many candidate data
sets to be used as a benchmark, all are either sparse (in the case of in situ measurements) or uncertain
(in the case of remote sensing measurements Anav et al., 2015; Jiang et al., 2017). However, CARDAMOM
(like other data assimilation systems) has the potential to expose additional carbon cycle outcomes when
the uncertainty associated with observational constraints and the flexibility created by different realistic
parameter values are considered. One example of such an outcome is the presence of a carbon source in
the tropics in CARDAMOM not found in CMIP5 or TRENDY. This is driven by the CMS-Flux NBE obser-
vational constraint used. While the question of whether tropical land surface is a source or sink of carbon
remains controversial (Baccini et al., 2017; Gaubert et al., 2019; Schimel et al., 2014), satellite CO, obser-
vations clearly indicate a source-and the CARDAMOM results reflect the impact of that data. However,
the ability of CARDAMOM to match these observations (Figures 4 and S1) suggests that realistic parame-
ter choices exist for which a source can exist in an integrated carbon cycle model (conserves mass) and are
consistent with other observational constraints (e.g., SIF, leaf area index, biomass, and fire emissions).
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As a second example of CARDAMOM's greater range of outcomes, it is notable that the ensemble spread
of GPP in CARDAMOM, TRENDY, and CMIP5 are of similar magnitudes, while the ensemble spread of
NBE in TRENDY and CMIP5 is much smaller relative to the ensemble spread of NBE in CARDAMOM
(Figures 4 and 5). The NBE estimates from all the models—relatively small compared to GPP—demonstrate
the close balance of GPP with respiration and fire. However, the relatively large ensemble spread of NBE
in CARDAMOM suggests that either the NBE range in CARDAMOM is underconstrained (e.g., because of
too wide an assumed uncertainty in observations) or that the NBE/GPP ratio in TRENDY and CMIP5 is
overconstrained (e.g., through too limited a range of parameter scenarios considered). It is unclear which of
the two, if not both, is true.

This study cannot conclusively attribute differences between CARDAMOM, TRENDY, and CMIPS5, to fail-
ures of any of the three data sets. We argue that at present, no sufficiently high-fidelity observational bench-
marks of carbon fluxes exist to determine whether either CARDAMOM or TRENDY and CMIPS5 ensembles
are more correct at times when they disagree, particularly in regions where observations are sparse, such as
the tropics or boreal regions (Schimel et al., 2015). Nevertheless, insofar as CARDAMOM rigorously assim-
ilates observational estimates of NBE and other constraints and their uncertainty, it might be expected to
more closely approximate uncertain observational data sets and estimate an empirical uncertainty. Indeed,
the problem of interpolating uncertain observations to determine a global benchmark is not unique to the
carbon cycle. In the atmospheric sciences, long-term reanalyses of weather models—incorporating numer-
ous assimilated data streams—have a strong history (Harms et al., 1992) being used as pseudo-observations
to benchmark the simulated atmospheres in climate models (e.g., Gleckler et al., 2008). Relative to its appli-
cation in atmospheric sciences and meteorology, the use of data assimilation within carbon cycle science is
still relatively new. A number of open questions remain, including the role of structural error (Keenan et al.,
2011; Wieder et al., 2015), choice of assimilation method (Fox et al., 2009), or combination of data sets
used (Chevallier et al., 2019; McNeall et al., 2016; Smith et al., 2019), and consistency between performance
during and outside the assimilation time window. Nevertheless, as model-data fusion systems such as CAR-
DAMOM and other efforts continue to mature in the medium and long terms, they could eventually serve
as a “carbon cycle reanalysis” to benchmark global vegetation.

5. Conclusions

We compared the NBE and GPP estimates from CARDAMOM—a relatively simple carbon cycle model
with parameters optimized through data assimilation—and the complex TBMs in TRENDY and CMIP5.
The assimilated CMS-Flux NBE in CARDAMOM-shaped distinct differences in carbon sources and sinks
compared to both TRENDY and CMIP5. However, the dynamics of the models were similar, with only
systematic differences between the CARDAMOM ensemble and TRENDY ensemble in GPP interannual
variation. These comparisons provide evidence that the complexity of CARDAMOM is sufficient to simu-
late the dynamics of GPP and NBE fluxes, showing little systematic difference with more complex TBMs.
Additionally, we propose that the spread across the TRENDY and CMIP5 ensembles does not capture the
full spread of potential carbon cycle behavior, as the spread in CARDAMOM from optimized parameters
alone is as large or larger.

Comparisons between CARDAMOM and other TBMs in TRENDY and CMIP5 have highlighted two areas
to be investigated in future work: (1) the range of uncertainty in NBE and (2) the growing season param-
eterization in boreal regions. In the first, NBE appears highly constrained in complex land surface models
compared to the spread in GPP. This leads to a weak sink that is not observed in CMS-Flux or estimated
through CARDAMOM. In the second, the consistent difference between the growing season increase of
complex models and CARDAMOM suggests that improvements to CARDAMOM can likely be made based
on improved process representation of early growing season leaf out. The ability to optimize parameters
based on remote sensing observations and constrain parameter uncertainty makes CARDAMOM a useful
addition to the suite of models currently estimating global fluxes of the terrestrial carbon cycle.
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