
Rearrangement on Lattices with Pick-n-Swaps:
Optimality Structures and Efficient Algorithms

Jingjin Yu

Abstract—We propose and study a class of rearrangement
problems under a novel pick-n-swap prehensile manipulation
model, in which a robotic manipulator, capable of carrying an
item and making item swaps, is tasked to sort items stored
in lattices of variable dimensions in a time-optimal manner.
We systematically analyze the intrinsic optimality structure,
which is fairly rich and intriguing, under different levels of
item distinguishability (fully labeled, where each item has a
unique label, or partially labeled, where multiple items may
be of the same type) and different lattice dimensions. Focusing
on the most practical setting of one and two dimensions, we
develop low polynomial time cycle-following based algorithms
that optimally perform rearrangements on 1D lattices under
both fully- and partially-labeled settings. On the other hand, we
show that rearrangement on 2D and higher dimensional lattices
becomes computationally intractable to optimally solve. Despite
their NP-hardness, we prove that efficient cycle-following based
algorithms remain asymptotically optimal for 2D fully- and
partially-labeled settings, in expectation, using the interesting
fact that random permutations induce only a small number
of cycles. We further improve these algorithms to provide
1.x-optimality when the number of items is small. Simulation
studies corroborate the effectiveness of our algorithms.

code: github.com/rutgers-arc-lab/lattice-rearrangement

I. INTRODUCTION

Effective object manipulation [1], a task and motion plan-
ning challenge that remains difficult for machines to master,
is essential in fulfilling the true potential of autonomous
robots. In the past few decades, in tackling the challenge,
while some research has emphasized integrated solutions with
promising results [2]–[6], significant efforts have been devoted
to examining key components including perception [7]–[10],
rearrangement planning [11]–[22], and manipulation [23]–
[30], among others, as a thorough understanding of these
components is indispensable toward the end goal of enabling
truly intelligent object manipulation.

For the same reason, in this work, we perform a systematic
structural and algorithmic study on a class of prehensile
rearrangement problems where items are stored in individual
cells of a lattice of dimension d = 1, 2, . . ., under a novel
pick-n-swap model (see Fig. 1, bottom row, for example
start and goal configurations). The stored items may be fully
labeled or partially labeled. In a fully-labeled setting, each
item has a unique label and must go to a specific lattice
cell. In a partially-labeled setting, multiple items may have
the same label or type, and are thus interchangeable. A

J. Yu are with the Department of Computer Science, Rutgers,
the State University of New Jersey, Piscataway, NJ, USA. E-Mail:
jingjin.yu@cs.rutgers.edu.

2 1211101 43 5 6 7 8 9

794 126 83 1112 105

2

12

11

10

1

4

3

5

6

7

8

9

16

15

14

13

13

14

8

2

9

10

5

4

7

1

11

16

12

3

6

15

Fig. 1. [top row] Real world examples of items stored in lattice/grids that
need rearrangement from time to time. [top left] Shirts. [top right] Shoe
display. [bottom row] Examples of the rearrangement problem formulations
studied in this work. [bottom left] A set of 12 items in a row that must be
rearranged either according to the labels or according to the types (colors).
[bottom right] A set of 16 items in a two-dimensional lattice that must be
rearranged either according to the labels or according to the types (colors).

robotic manipulator, capable of picking up items, carrying
them around (a single item at a time), and executing item
swaps, is tasked to rearrange items to reach a desired goal
configuration in a time-optimal manner. Efficient solutions
for rearrangement problems on lattices find many practical
applications, including the rearrangement of products at stores
and show rooms (see Fig. 1, top row), the sorting of books
on bookshelves, and inventory management in autonomous
vertical warehouses, to list a few. To accomplish the task, the
robot must carefully plan a sequence with which the items are
picked and subsequently placed, to minimize the number of
pick-n-swaps and end-effector travel, which is usually easier
to execute than pick-n-swaps and less time-consuming.

As a summary of our findings and contributions, we ob-
serve that, due to the intricate interaction between minimizing
the number of pick-n-swaps and minimizing the end-effector
travel, time-optimal rearrangement on lattices demonstrates a
rich and complex structure. In particular, there is an interesting
dichotomy, in terms of computational complexity, between
one-dimensional lattices and lattices in higher dimensions. For
1D lattices, both the fully-labeled setting and the partially-
labeled setting can be optimally solved in low-polynomial time
through a carefully designed cycle-following procedure based
on the fact that optimal pick-n-swap sequences naturally in-
duce one or more cycles [31], [32]. Here, the partially-labeled
setting possesses a more complex structure as compared to
the fully-labeled setting. Once we move from 1D lattices to

https://jingjinyu.com/
https://github.com/rutgers-arc-lab/lattice-rearrangement/

2D lattices, minimizing the end-effector travel becomes com-
putationally intractable for both fully- and partially-labeled
settings. Nevertheless, through careful analysis, we are able
to show that our algorithmic solutions still achieve asymptotic
optimality in expectation. That is, as the number of items goes
to infinity, the solution converges to the optimal solution, in
expectation. When the number of items is small, the solution
is near-optimal, i.e., 1.x-optimal.

From an application perspective, focusing on the scheduling
of pick-n-swaps and end-effector travel, our study reveals
intrinsic combinatorial structures, as highlighted above, that
apply generally to robotic rearrangement problems, which go
beyond settings that are lattice-based.

Related work. Multi-object rearrangement is computation-
ally challenging. As a variation of multi-robot motion planning
problems, rearrangement inherits the PSPACE-hard complex-
ity [33]. When geometric constraints must be considered,
the relatively simple Navigation Among Movable Obstacle
(NAMO) problem is shown to be NP-hard [34]. If consideration
of plan quality is further required, as is often the case in
practice, optimally resolving dependency [35] or planning
an optimal object pick-n-place sequence are both NP-hard
[19]. Rearrangement problems addressed in this paper have
a somewhat similar complexity structure.

Despite the high computational complexity, due to its
high utility, multi-object rearrangement has been extensively
studied, with many research working with non-prehensile
(e.g., pushing) manipulations, sometimes assisted with prehen-
sile (grasping) actions. A complete sensing-planning-control
framework is proposed in Chang et al. [36] for the singulation
of objects in clutter, which uses both perturbation pushes
and grasping actions. In [37], hierarchical supervised learning
from demonstration is applied to the singulation task. Based
on over-segmented RGB-D images, in [38], a push proposal
network is constructed for push-only singulation. Results that
bridge singulation and clutter removal include [39], [40],
where learning-based methods are trained to dictate when
to push or grasp. To deal with the combinatorial explosions
inherent in rearrangement, a randomized kinodynamic planner
is employed in [15] for rearranging objects on a tabletop,
allowing the effective exploration of configurations. King et
al. [41] further integrates a physics-based model to enable
the use of the entire robotic arm for complex rearrangement
manipulations. A physics-based approach is also used in [42]
for handling grasping in clutter. For a similar task, Bejjani et
al. [43] uses a receding horizon planner with a learned value
function that interleaves planning and plan execution.

Huang et al. [20] has developed an Iterated Local Search
(ILS) method for accomplishing multiple tabletop rearrange-
ment tasks including singulating, separation, formation, and
sorting of many identically shaped cubes. In [44], Monte
Carlo Tree Search is combined with deep-learning for sep-
arating many objects into coherent clusters within a bounded
workspace. In contrast to [20], non-convex objects are sup-
ported. More recently, Pan and Hauser proposed a bi-level
planner [22] that employs both pushing and overhand grasping

that is capable of sorting up to 200 objects.
On work that uses mainly prehensile actions, the earliest

is perhaps the study of NAMO problems [12], [45], which
applies backtracking search to effectively deal with mono-
tone and linear NAMO instances, among others. Exploring the
dependency graph structure, difficult non-monotone tabletop
rearrangement instances are solved using monotone solvers
as subroutines [16], [46]. Han et al. [19] shows that table-
top rearrangement embeds a Feedback Vertex Set (FVS)
problem [47] and the Traveling Salesperson Problem (TSP)
[48], both of which are NP-hard, rendering optimally solving
these problems intractable. Nevertheless, integer programming
models are provided that can quickly compute high-quality
rearrangement solutions for practical-sized problem instances.
In exploring object dependency structures, studies like [16],
[19] put more emphasis on the combinatorial aspects of
object rearrangement. To that end, classical Vehicle Routing
Problems (VRP) [49] become relevant. In [21], a polynomial-
time, complete planner for reasoning rearrangement for object
retrieval in a constrained, shelf-like setting is proposed. In a
subsequent study [50], the number of objects to be relocated
for retrieval is minimized while considering sensor occlusion.

Organization. The rest of the paper is organized as follows.
In Sec. II, we formally define the rearrangement problems
studied in this paper. In Sec. III and Sec. IV, we provide
structural analysis and describe algorithms for the fully- and
partially-labeled settings in 1D, respectively. 2D and higher
dimensions are examined in Sec. V. We characterize the be-
havior of our algorithms through simulation studies in Sec. VI,
and discuss and conclude in Sec. VII.

II. REARRANGEMENT ON LATTICES

We examine a multi-object rearrangement problem where
items are stored in a d-dimensional lattice or grid, d = 1, 2, . . .,
with dimension i having a capacity or length of mi. Items are
assumed to be stored at full capacity, i.e., an m1 × . . .×md

lattice stores Πd
i=1mi items (see, e.g., Fig. 1). The items, to

be rearranged, may be fully labeled or partially labeled. In
a (fully) labeled setting, each item has a unique label from
the set {1, . . . ,Πd

i=1mi} and must be relocated to a specific
location (coordinate) on the m1 × . . . × md lattice. In a
partially-labeled setting, there are k > 1 types of items where
items within a given type are considered interchangeable;
items of the same type are to be grouped, via rearrangement,
possibly into contiguous clusters.

It is assumed that a robotic manipulator is capable of picking
up an item, temporarily holding it, moving it to a different
location, and swapping the held item with the item at the new
location. That is, in a single pick-n-swap operation where a
robot end-effector is located above a fixed lattice coordinate,
the robot may execute one of the following:

• pick up an item and hold it on the robot’s end-effector
(only if no item is already held by the robot),

• swap the item held by the robot’s end-effector with an
item inside the lattice at the given coordinate, or

• place the item held by the robot’s end-effector at the
lattice coordinate if no item is already at the coordinate.

In this paper, we use lattice coordinate and cell interchange-
ably. Such a pick-n-swap model can be readily realized, for
example, using two adjacent suction cups, two parallel grippers
mounted side-by-side, and so on. The pick-n-swap primitive
also models, to a lesser extent, a dual-arm robot or for that
matter, how humans perform such rearrangement tasks. We
have also examined alternative pick-n-place models, which is
briefly discussed in Sec. VII.

The pick-n-swap model leads to a natural partition of
the robot operation into pick-n-swap operations and end-
effector travel operations. A rearrangement plan can then
be represented as a sequence of lattice coordinates, P =
{p0, p1, . . . , pN}, where the robot end-effector starts from
the rest position p0 and sequentially executes pick-n-swap
operations at p1, p2, and so on. For quantifying the quality of
a rearrangement plan P , it is assumed that each pick-n-swap
incurs a (time) cost of cp and the (time) cost of traveling a unit
distance (the distance between two adjacent cells) by the end-
effector is ct. The total cost of completing a rearrangement
plan is then

JT (P) = Ncp +

N∑︂
i=0

dist(pi, pi+1)ct, (1)

where dist(pi, pi+1) is the effective distance traveled by the
end-effector between pi and pi+1; pN+1 = p0. The distance
metric may be L1, Euclidean (L2), and so on, depending the
end-effector’s motion mechanism. For example, if a human is
to arrange shoes for the setup shown in Fig. 1 [top right], then
horizontal travel is the main source of travel distance cost. This
study works with Euclidean distances, i.e., dist(pi, pi+1) =
∥pi − pi+1∥2.

Because a pick-n-swap involves precise robot arm place-
ment and challenging grasp planning/execution, similar to
[19], it is assumed that the total pick-n-swap cost dominates
the total end-effector travel cost. That is, on the right side of
(1), the first term will be considered first, yielding a sequential
optimization problem in which minimizing the number of
pick-n-swaps, N , takes priority. We mention that our analysis
provides individual treatments for minimizing the number of
pick-n-swaps and the travel cost, allowing practitioners to
adapt the algorithms based on cp/ct.

As practical robotic rearrangement operations are generally
limited to one and two dimensions, our study also centers
on the cases of d = 1, 2, with some discussions of higher
dimensions. In the d = 1 case, let m1 = m be the capacity of
the lattice, viewed as a single row. It is assumed that p0 is at
the leftmost cell. In the labeled setting, the lattice is equivalent
to a row with its cells labeled 1, . . . ,m from left to right; the
rearrangement problem is then to relocate item with label i to
the i-th cell. In the partially-labeled setting, there are k types
of items, k < m, possibly to be arranged into contiguous
clusters (see, e.g., Fig. 1 [lower left]), though we do not make
assumptions about the goal configurations.

In the d = 2 case, we have an m1(row) × m2(column)
lattice; p0 is at the top left cell of the lattice. In the labeled
setting, it is assumed without loss of generality that lattice cells
are labeled following a column-major order: cells in column
i, 1 ≤ i ≤ m2, are labeled (i − 1) ∗ m1 + 1, . . . , im1, from
top to bottom, respectively. In the goal configuration, the item
labeled j must be located at cell j. In the partially-labeled
setting, beside considering arbitrary goal configurations, two
natural goal configuration patterns are analyzed in more detail,
with one having the goals of the same type aggregated (see,
e.g., Fig. 1 [bottom right]) and the other having each type
occupying a single column of the lattice.

For convenience, we denote the one dimensional la-
beled and partially-labeled problems, as stated above, as the
labeled one-dimensional rearrangement (LOR) problem and
the partially-labeled one-dimensional rearrangement (POR)
problem, respectively. The two-dimensional problems corre-
sponding to LOR and POR are named as LTR and PTR,
respectively. In this study, we analyze the structural properties
of LOR/POR/LTR/PTR as induced by minimizing the objective
specified in (1). Based on the findings, we design efficient
algorithms for computing (near)-optimal plans.

III. FULLY-LABELED REARRANGEMENT IN 1D

For combinatorial optimization problems involving the re-
configuration of many bodies, the labeled settings are often
more challenging (e.g., [19], [51]). In our case, however, the
labeled case is structurally simpler, due to the absence of
dependencies among the items to be relocated. This allows
the computation of (exact) optimal solutions for LOR.

Recall that LOR requires rearranging a row of m items.
Therefore, LOR can be viewed as going from one random
permutation of m labeled items to the canonical order [m] :=
1, . . . ,m. An LOR instance is therefore fully specified by
a permutation π of [m], where πi, 1 ≤ i ≤ m is the
label of the item that occupies cell i in the initial config-
uration. We start with a simple cycle-following algorithm,
SWEEPCYCLESLOR, that solves LOR near-optimally, i.e.,
minimizing the end-effector travel distance to near-optimality
after minimizing the number of pick-n-swap operations to
the smallest possible. Then, we describe a more involved
algorithm, OPTPLANLOR, that computes a rearrangement
plan that also minimizes the end-effector travel.

A. Cycle Following with Left to Right Sweeping

Consider an LOR instance with 9 items and the initial
configuration π = (3, 2, 4, 1, 7, 6, 9, 5, 8). The instance can be
solved by starting with the leftmost item that needs rearrange-
ment, in this case 3, and moving it from cell 1 to cell 3, which
replaces item 4 that in turn replaces item 1. This yields a cycle
341 (see Fig. 2). After following this cycle, the end-effector
returns to cell 1. The end-effector then works with the next
leftmost item that is not at goal, 7, inducing another cycle
7985. All together, there are two cycles, (341) and (7985),
containing 7 items in total (here, we deviate slightly with how
cycles are normally counted in permutations, where a single

item in the correct cell would be counted as a cycle as well,
which we do not by default).

3 5967142 8 1 5967432 8

Fig. 2. [left] The initial configuration of an LOR instance with two cycles
marked in different colors. A plan is shown that rearranges items following
the cycle (341). [right] The resulting intermediate configuration.

These cycles are uniquely determined by the initial config-
uration π. Noticing that each cycle requires one more pick-n-
swap than the number of items in the cycle, the instance is
solved using a minimum 3+1+4+1 = 9 pick-n-swaps. After
processing all cycles, the LOR instance is solved and the end-
effector returns to its rest position (cell 1). The straightforward
algorithm SWEEPCYCLESLOR is outlined in Alg. 1, in which
the routine SWAP(ℓ, i, j) will pick up item j at cell ℓ (if it is
not ε, denoting a null item) and swap it with item i being
held (if it is not ε). It is clear that SWEEPCYCLESLOR runs
in linear or O(m) time.

Algorithm 1: SWEEPCYCLESLOR (π)

▷ are there more cycles?

1 while there are more items to be rearranged do
▷ follow & resolve the leftmost cycle

2 i← leftmost i where πi ̸= i
3 SWAP (i, ε, πi); g ← πi

4 while g ̸= i do
5 SWAP (g, g, πg); g ← πg

6 SWAP (i, i, ε)

The optimality properties of SWEEPCYCLESLOR are es-
tablished in Proposition III.1 and Proposition III.2.

Proposition III.1. SWEEPCYCLESLOR minimizes the num-
ber of required pick-n-swap operations for LOR.

Proof. To solve each cycle, it is clear an item on the cycle
must be first picked without any other items on the cycle
already held by the end-effector to swap. This means that for
each cycle, one additional pick is unavoidable. Induction over
the cycles of π then proves the proposition.

In what follows, by asymptotic optimality, we mean that the
solution converges to the optimal solution as the number of
items goes to infinity.

Proposition III.2. After minimizing the number of pick-n-
swaps, SWEEPCYCLESLOR computes asymptotically-optimal
solutions for LOR, minimizing end-effector travel in expecta-
tion, assuming that π is a random permutation.

Proof. Given the initial configuration π, rearranging each cy-
cle will cause the end-effector to end where it starts following
SWEEPCYCLESLOR, which is the leftmost location where a
cycle starts. The total distance traveled by the end-effector can
be factored into (i) the distance traveled to solve each cycle,

and (ii) the overhead of traveling after solving a cycle to the
next, including the overhead before starting the first cycle and
after completing the last cycle. For (i), because each cycle
must be rearranged to minimize the number of pick-n-swaps,
the distance for solving each cycle is already at the minimum
possible. For (i), the end effector travel from left to right in
between solving cycles. This adds no more than 2m distance
in total. We show that 2m is inconsequential in comparison to
the the distance incurred by (i). To compute distance incurred
by (i), given a random π, for a fixed i, the expected distance
between item i and cell i is

Ei =
i− 1 + . . .+ 1 + 0 + 1 + . . .+m− i

m
.

Tallying over i from 1 to m, the expected total distance due
to resolving all cycles is then Eπ = E1 + . . . + Em ≈ m2

3 ,
which dominates 2m. Therefore, the total end-effector travel
distance produced by SWEEPCYCLESLOR is asymptotically
optimal in expectation.

Let Hm denote the m-th harmonic number. We can further
estimate the expected total cost according to Eq. (1).

Proposition III.3. For LOR with random initial configura-
tions, the expected total rearrangement cost is

TLOR(m) = (m+Hm − 2)cp +
m2ct
3

. (2)

Proof. To compute the expected total cost including pick-n-
swaps, we know that the number of cycles (here cycles of size
1 are included) in a random permutation π of [m] is Hm [52],
the m-th harmonic number. Given any π, the probability of
any item i is already at cell i is 1

m . The expected number of
cycles of length 1 is then 1, making the expected number of
cycles of at least 2 in a random permutation Hm−1. The total
number of pick-n-swaps is then m−1, the number of items that
must be rearranged, plus Hm − 1, the extra number of pick-
and-swap operations for completing cycles. The total (time)
cost of rearrangement, in expectation, is then given by (2).

B. Cycle Sweeping with Cycle Switching

In SWEEPCYCLESLOR, each cycle is followed through one
bye one, without switching to another cycle before one is com-
plete. If we interleave the completion of cycles, however, end-
effector travel can be shortened without adding the number
of pick-n-swaps. In the example illustrated in Fig. 3, the plan
by SWEEPCYCLESLOR uses 6 pick-n-swaps and a total end-
effector distance of 14. The alternative plan, which breaks
cycles during the rearrangement process, uses also 6 pick-n-
swaps but only a total distance of 10.

From the example, we observe a switch from one cycle
to another cycle before completing rearranging the first can
reduce end-effector travel. The saved distance corresponds to
reducing the end-effector travel without holding an item. In the
example, the bottom plan avoids traveling from the leftmost lo-
cation to item 5’s initial location (and back), saving a distance
of 2 + 2 = 4. The observation leads to the OPTPLANLOR

4 2 5 1 3 2 5 4 3

1

1 2 4 5

3

1 2 5 4 3

4 2 5 1 3 2 3 4 5

1

2 4 1 3

5

42 1 5

3

Fig. 3. [top] A rearrangement plan with a total distance of 3+3+4+4 = 14
as computed by SWEEPCYCLESLOR [bottom] A rearrangement plan with a
total distance of 2 + 2 + 3 + 3 = 10. Both plans require six pick-n-swap
operations; the later one does not wait for one cycle to finish.

algorithm that groups cycles for more effective rearrangement.
To describe the algorithm, some definitions are in order. Given
a permutation π, let Cπ be the set of all cycles induced by
π. For a c ∈ Cπ , let min(c) and max(c) be the smallest and
largest item labels of items in c, respectively. With a slight
abuse of notation, the definitions min and max extend to a
set of cycles, i.e., for C ⊂ Cπ , min(C) = minc∈C min(c)
and max(C) = maxc∈C max(c).

We group elements of Cπ into equivalence classes as
follows. Initially, let Cπ := {{ci} | ci ∈ Cπ}. Elements
of Cπ are grouped (via union) if their ranges overlap. That
is, for two cycle groups C1, C2 ∈ Cπ , if their ranges
[min(C1),max(C1)] and [min(C2),max(C2)] intersect, we
update Cπ to (Cπ\{C1, C2}) ∪ {C1 ∪ C2}.

Since there are only a finite number of cycles, the grouping
process will stop and yield a set of cycle groups that are pair-
wise disjoint. Then, a rearrangement plan can be computed as
follows. Let the leftmost group of cycles be C1 = {c1, c2, . . .}
where min(c1) < min(c2) < We start performing cycle
following on c1 until the end-effector passes over location
min(c2) (where c2 starts) for the first time, at which point
we pause following c1 and switch to following c2. Similarly,
as c2 is being followed, we will switch to following c3 as
the end-effector passes over min(c3) for the first time, and so
on. At some point, the end effector will reach max(C1), the
rightmost reach of the cycle group C1. If there are additional
cycle groups on the right of C1, we pause working with C1

and start working the next cycle group on the right of C1, and
return to C1 after all items to the right of C1 are rearranged
(iteratively).

An outline of the OPTPLANLOR algorithm is given in
Alg. 2, which in turn calls Alg. 3 and Alg. 4. It is not difficult
to observe that OPTPLANLOR runs in O(m) time. We further
prove its distance optimality.

Algorithm 2: OPTPLANLOR (π)

▷ retrieve cycles as singleton sets
1 Cπ ← GETCYCLES (π)
▷ group cycles with overlapping ranges

2 while ∃C1, C2 ∈ Cπ with overlapping ranges do
3 Cπ ← (Cπ\{C1, C2}) ∪ {C1 ∪ C2}
▷ process cycle groups

4 C ← left most cycle group in Cπ
5 PROCESSCYCLEGROUP (ε, C, π, Cπ)

Algorithm 3: PROCESSCYCLEGROUP (p, C, π, Cπ)

1 c← leftmost cycle in cycle group C
2 PROCESSCYCLE (p, c, C, π, Cπ)

Algorithm 4: PROCESSCYCLE (p, c, C, π, Cπ)

1 c′ ← leftmost cycle in cycle group C after c
2 C′ ← leftmost cycle group to the right of C in Cπ
▷ process cycle c from left

3 i← min(c); SWAP (i, p, πi); g ← πi

4 while g ̸= i do
▷ switch cycles within group?

5 while c′ ̸= null and g > min(c′) do
6 PROCESSCYCLE (g, c′, C, π, Cπ)
7 c′ ← leftmost cycle in cycle group C after c′

▷ switch to the next cycle group?
8 if g == max(C) and C′ ̸= null then
9 PROCESSCYCLEGROUP (g, C′, π, Cπ)

▷ following the current cycle
10 SWAP (g, g, πg); g ← πg

11 SWAP (i, i, p);

Theorem III.1. For LOR, OPTPLANLOR computes a rear-
rangement plan with minimum end-effector travel, among all
plans that minimize the number of pick-n-swaps.

Proof. We prove the theorem by showing that: (a) end-effector
travel is minimal within each cycle group, and (b) end-effector
travel between two adjacent cycle groups is minimized (this
is trivially true).

To prove (a), for an item with label i, let π−1
i be its initial

location (this is natural, since we then have ππ−1
i

= i). Notice
that the minimum distance the end-effector must travel while
carrying item i is |π−1

i −i|. In PROCESSCYCLE, within a cycle
group, an item i is moved exactly a total distance of |π−1

i − i|,
even though it may be done in multiple steps. For example,
in the top figure of Fig. 3, item 4 is moved a distance of 3 in
a single move. In the bottom figure, item 4 is first moved a
distance of 2 and later followed by a move of distance 1. We
note that, an item i may be moved more than |π−1

i − i| by
OPTPLANLOR if it is carried from one cycle group to another,
but such travel is attributed to travel between adjacent cycle
groups.

Remark. Alg. 2 has a pre-processing stage where the cycles
are ordered. We note that this stage can be interleaved with the
actual processing stage (Alg. 3). We opted for the standalone
pre-processing stage to make the algorithm hopefully more
clear and the running time analysis more straightforward.

IV. PARTIALLY-LABELED REARRANGEMENT IN 1D

In the (fully) labeled setting, each item requiring rearranging
has a single possible destination, limiting the combinatorial
explosion of feasible rearrangement plans. This is no longer
the case in the partially-labeled setting where each item of
a given type can have multiple goal arrangements (e.g., in

Fig. 1 [left], item 6 may go to locations 4, 5, or 6). In
other words, a partially-labeled problem can be viewed as
many labeled problems mixed together, demanding additional
computational efforts for selecting a best labeling to solve
the problem. Nevertheless, we show that the one-dimensional
partially-labeled problem POR can still be optimally solved
despite the significant added complexity.

We describe an optimal algorithm for POR, OPTPLANPOR,
that applies to arbitrary goal configurations. Because the algo-
rithm is somewhat involved, for readability, we describe the
algorithm over a natural but restricted class of POR instances
where each type of items form a contiguous section in the
goal configuration (see, e.g., Fig. 4). In such instances, for
a given type 1 ≤ t ≤ k, let ni be the number of items
of type t,

∑︁k
t=1 nt = m. In the goal configuration, items

of type t fill locations between ℓt =
∑︁t−1

i=1 ni + 1 and
rt =

∑︁t
i=1 ni, inclusive. Define range(t) := [ℓt, rt]. An

instance of this restricted POR problem is then fully specified
by the initial configuration of the items as a sequence of types,
i.e., (t1, . . . , tm), where 1 ≤ ti ≤ k.
1) Algorithm description: In the first phase, simple matchings

are made between initial and goal locations. Starting from the
left side, for the item at location i with type ti, i ̸= ti, we select
its goal to be the leftmost available one. Fig. 4 [top left] shows
an example. The matchings induce a set of cycles (Fig. 4, [top
right]), which are distance optimal but do not minimize the
number of pick-n-swaps. As is the case with LOR, each cycle
requires one more pick-n-swap plus the number of items in
the cycle. We call the subroutine FORMCYCLES and note that
additional end-effector travel between these cycles is needed
for obtaining a full rearrangement plan.

Fig. 4. Illustration of the first two phases of the OPTPLANPOR algorithm.
[top left] The colored edges show a simple matching of items with proper
goals. [top right] The matchings induce three cycles, two solid ones and one
dashed one. [bottom left] Swapping the two red edges on the left merge two
cycles without adding end-effector travel. [bottom right] Swapping the two
green edges merge two cycles but incur additional end-effector travel costs.

In the second phase, the initial set of cycles are merged
in a pairwise manner when two cycles have edges going to
the same item type in the same direction (either both left or
both right). Formally, two cycles can be merged in this phase if
they contain two items ti and tj , respectively, and ti, tj satisfy
ti = tj and i, j are either both on the left of range(ti) or both
on the right of range(ti). For example, the left two cycles
in Fig. 4 [top right] can be merged by swapping the goals
of the left two red edges, yielding Fig. 4 [bottom left]. The

process reduces the number of pick-n-swap operations but does
not incur additional end-effector travel, because each merge
keeps the total distance unchanged. We call this subroutine
MERGECYCLES.

In the third phase, cycles are further merged in a pairwise
manner if two cycles have edges going to the same type but in
different directions. Formally, two cycles can be merged in this
phase if they contain two items ti and tj , respectively, ti = tj ,
and i, j are on different side of range(ti). For example, in
Fig. 4 [bottom left], the two cycles both have edges going
into the third (green) type, but in different directions. Merging
these two cycles, as shown in Fig. 4 [bottom right], will reduce
the number of pick-n-swaps by one but will incur additional
end-effector travel. We note that, to ensure total distance
optimality, the merge here needs to be done by computing a
minimum spanning tree (MST) based on the added distances
when two cycles are merged. We call the associated subroutine
MERGECYCLESMST.

After the third phase completes, we obtain a set of cycles
that minimizes the number of pick-n-swaps. These cycles are
now much like the cycles in the labeled case and are swept
through and switched similarly. We call this last subroutine
GROUPSWEEPCYCLESPOR, which connects all cycles and
composes the full rearrangement plan.
2) Algorithm outline and optimality properties: The OPT-

PLANPOR algorithm and the MERGECYCLESMST subrou-
tine are outlined in Alg. 5 and Alg. 6. The other subroutines,
FORMCYCLES, MERGECYCLES, and GROUPSWEEPCYCLE-
SPOR are relatively straightforward to implement based on
the description; we omit these pseudo-code.

Algorithm 5: OPTPLANPOR (t1, . . . , tm)

▷ phase 1: form cycles, C is a list of cycles
1 C ← FORMCYCLES (t1, . . . , tm)
▷ phase 2: merge cycles, w/o added distance

2 C′ ← MERGECYCLES (C)
▷ phase 3: merge cycles, w/ added distance

3 C′′ ← MERGECYCLESMST (C′)
▷ phase 4: group, sweep, and switch cycles

4 GROUPSWEEPCYCLESPOR (C′′)

In MERGECYCLESMST, a graph GC is constructed that
captures the distances between cycles that can be merged to
reduce the number of pick-n-swaps. The function CYCLEDIS-
TANCE computes the closest distance between two cycles for
merging in the obvious way. This distance in Fig. 4 [bottom
right] is 1 (we note that the actual swap will incur a cost
doubling this distance). After the GC is constructed, which can
have multiple connected components, a minimum spanning
tree algorithm is executed, e.g., Prim’s algorithm [53], yielding
a spanning forest F of GC . Each tree T in F will result in a
single merged cycle.

We proceed to establishing important properties of OPT-
PLANPOR and the subroutines. From here on, arbitrary goal
configurations are assumed unless stated otherwise.

Algorithm 6: MERGECYCLESMST (C)

▷ initialize a cycle merge distance graph
1 VC ← C; EC ← {}; W ← {}; GC ← (VC , EC ,W);
▷ compute ‘‘merge distance’’ between cycles

2 for all ci, cj ∈ VC do
3 EC ← EC ∪ {eij = (ci, cj)}
4 wij ← CYCLEDISTANCE (ci, cj); W ←W ∪ {wij}
▷ compute a minimum spanning forest over GC

5 F ← MST (GC)
▷ merge cycles for each tree T in F

6 C′ ← {}
7 for each tree T in F do
8 while T has an edge eij = (ci, cj) do
9 ci ← merge ci and cj

10 collapse edge eij in T
11 Add the single cycle c in T to C′

12 return C′

Proposition IV.1. For POR with k types of items, MERGE-
CYCLES creates cycles that are distance optimal. When goals
are aggregated by items types, there are at most k − 1 cycles
after completing the MERGECYCLES subroutine.

Proof. FORMCYCLES creates cycles that are distance optimal
by construction, which is clear by looking at the minimum
number of times the end-effector must pass over or stop at
a given cell of the lattice in order to move items of a given
type to the goals. For each initial and goal configurations pair,
and a type, this number is fully determined and realized by
FORMCYCLES. For example, for sorting the first type (cyan)
in Fig. 4, the end-effector must pass cell 3 at least once and
must also stop at the cell at least once, because all cyan items
should be to the left of cell 4 in the goal configuration and
there are two cyan items in the initial configuration to the right
of cell 3. The cycles created by FORMCYCLES realizes this
minimum end-effector travel. Then, because MERGECYCLES
does not add additional distance, the total distance remains at
the minimum.

For the rest of the proposition, in the case where the
goal configuration has the types aggregated, each type can
participate in at most two cycles after MERGECYCLES is
performed. Moreover, the leftmost and rightmost types in the
goal configuration can each only participate in a single cycle.
This is because all items of type t in the initial configuration
to the left (or right) of range(t) will be in a single cycle after
MERGECYCLES is performed, by construction.

Lemma IV.1. For POR, MERGECYCLESMST reduces the
number of pick-n-swaps to the minimum while incurring the
minimum amount of additional end-effector travel.

Proof. After MERGECYCLES, for each pair of the resulting
cycles, they cannot be merged to reduce the number of pick-
n-swaps without incurring additional end-effector travel. To
see that this is the case, after MERGECYCLES, for each pair
of cycles, say c1 and c2, they can be merged to reduce the
number of pick-n-swaps if and only if they contain items of

the same type. Suppose that c1 and c2 both involve items of
the same type, say t (there could be multiple such types for
a pair of cycles), and c1 is to the left of c2. Then it must be
the case that edges of c1 for restoring type t items and edges
of c2 for restoring type t items do not cross (by construction
of MERGECYCLES). The third (green) type in Fig. 4 [bottom
left] gives an example. For a type t, denote the set of edges
of c1 (resp., c2) for restoring type t items as Et

1 (resp., Et
2).

To merge c1 and c2, it requires for exactly one t, one edge of
Et

1 and one edge of Et
2 to swap their ends so that Et

1 and Et
2

will cross over range(t). This operation will incur additional
end-effector travel that cannot be avoided.

The optimal way to merge two cycles c1 and c2 sharing
same item types is by doing the merge on the type t where Et

1

and Et
2 are closest to each other. Without loss of generality,

assume Et
1 is to the left of Et

2. The distance between Et
1

and Et
2 is then simply the distance between the right most

position reached by Et
1 and the leftmost position reached by

Et
2. Computing this over all applicable types then yields the

distance between c1 and c2 (this is done in CYCLEDISTANCE
in MERGECYCLESMST).

For all cycles that can be merged into a single cycle,
the merging process naturally induces a spanning tree of the
involved cycles. The optimal merging sequence is then given
by a minimum spanning tree as computed in MERGECY-
CLESMST.

Theorem IV.1. For POR, OPTPLANPOR computes a rear-
rangement plan with the minimum end-effector travel after
minimizing the total number of pick-n-swaps.

Proof. By Lemma IV.1, after MERGECYCLESMST, we ob-
tain a set of cycles corresponding to the least number of pick-
n-swaps and the minimum end-effector travel to realize this.
What is left is to “connect” these cycles together to yield a
complete rearrangement plan. This connection process is per-
formed using GROUPSWEEPCYCLESPOR, which maintains
the number of pick-n-swaps and adds only the minimum travel
distance for cycles that are spatially disjoint. As a result, the
overall OPTPLANPOR algorithm ensures distance optimality
after minimizing the number of pick-n-swaps.

In terms of running time, FORMCYCLES can be performed
in linear time using multiple passes over the initial and goal
configurations. During the execution of FORMCYCLES, data
structures can be built so that cycles are associated with types.
With the proper data structures, MERGECYCLES can be run in
linear time by going through the types one by one, resulting in
an O(m) running time. For MERGECYCLESMST, computing
GC and the distances between cycles can be done in linear
time through amortization analysis. Computing a minimum
spanning tree can be done in O(|EC | + |VC | log |VC |) time
[54]. Merging cycles can be done at the same time as the
minimum spanning tree is built, which does not take additional
time. GROUPSWEEPCYCLESPOR takes O(m) time. The to-
tal running time of OPTPLANPOR is then O(m + |EC | +
|VC | log |VC |). If the goals are aggregated based on types,

there are at most k − 1 cycles (Proposition IV.1) entering
MERGECYCLESMST, resulting in a total running time of
O(m + k log k). In the general case, the running time is
O(m logm).

V. REARRANGEMENT IN 2D AND HIGHER DIMENSIONS

For higher dimensions, the cycle-following structure for
LOR and POR carry over. However, minimizing end-effector
travel becomes more challenging, as the problem now contains
a Traveling Salesperson Problem (TSP), as will be shown.
Nevertheless, strategies can be derived that yield asymptotic
optimality.

A. Fully-Labeled 2D (LTR) and Higher Dimensions

1) Labeled Rearrangement in 2D (LTR): An LTR instance is
specified by its lattice dimension m1,m2, and a permutation π
of [m1m2]. Similar to LOR, minimizing the number of pick-
n-swaps for LTR can be achieved via cycle following. This
allows proving results for LTR similar to Propositions III.1
and III.2. A natural extension to SWEEPCYCLESLOR can be
made to support the 2D setting: for an LTR instance with an
initial configuration π, we compute all its cycles as c1, . . . , ck.
The new algorithm, which we call SWEEPCYCLESLTR, again
performs cycle following of the cycles and moving to cycle
ci+1 after completing cycle ci.

Then, we note that the cycle switching procedure for LOR
(e.g, the process illustrated in Fig. 3) can be generalized to
LTR. That is, for consecutive items a1 and b1 belonging to
cycle c1 and an item a2 belonging to cycle c2, instead of going
from a1 to b1, it can potentially save travel distance by going
from a1 to a2, finishing c2 (and possibly additional cycles),
and then going to b1 to finish c1. The optimal switching
schedule can be computed using a minimum spanning tree
procedure somewhat similar to MERGECYCLESMST. There
is however a key difference: in MERGECYCLESMST, the
cycles to be merged have symmetric distances but the distance
from cycle c1 to c2 and the distance from cycle c2 to c1 are
different in merging cycles for LTR. That is, the graph where
the cycles are vertices, over which a minimum spanning tree
is to be constructed, is now directed. This means that we need
to apply a directed minimum spanning tree algorithm [55],
[56]. The end effector rest position should also be considered
in computing the directed minimum spanning tree.

We call the overall cycle switching procedure for LTR
as SWITCHCYCLESLTR, which clearly runs in polynomial
time. We omit the pseudo code for these two algorithms
given their similarity to LOR and POR. These algorithms are
asymptotically optimal in expectation.

Proposition V.1. The number of pick-n-swaps is minimized by
SWEEPCYCLESLTR and SWITCHCYCLESLTR. Furthermore,
they compute asymptotically distance-optimal solutions for
LTR in minimizing end-effector travel in expectation, assuming
that π is a random permutation.

Proof. It is clear that SWEEPCYCLESLTR and SWITCHCY-
CLESLTR minimize the number of pick-n-swaps. Without

loss of generality, assume m1 ≥ m2. Following similar
reasoning as used in the proof of Proposition III.2, a ran-
dom permutation π will require an average distance Eπ =
Ω((m1 + m2)m1m2) = Ω(m2

1m2). In expectation, there are
Hm1m2

≈ logm1m2 = O(logm1) cycles. Traveling through
all these cycles once then incurs a distance cost of no more
than O(m1 logm1), which is inconsequential as compared to
Ω(m2

1m2).

For m1 = m2 = m, the expected distance from cycles
over a random LTR instance can be readily computed as
((2 +

√
2 + 5 ln(

√
2 + 1))/15)m2 ≈ 0.52m2. We omit the

details but note that this is equivalent to computing the average
distance between two points in a unit square and multiply that
distance by m2. SWEEPCYCLESLTR can be implemented by
making a constant number of linear passes over the m1 ×m2

lattice, yielding an O(m1m2) time. SWITCHCYCLESLTR re-
quires more work; a naive implementation requires O(m3

1m
3
2)

time, mainly for checking switching distances between cycles.
In a sense, the asymptotic optimality provided by SWEEPCY-
CLESLTR and SWITCHCYCLESLTR is the best one can do,
because optimizing distance for LTR, unlike for LOR, is NP-
hard. We note that the hardness holds regardless of whether
the number of pick-n-swaps is minimized.

Theorem V.1. Minimizing the total end-effector travel dis-
tance for LTR is NP-hard.

Proof. We prove the claim via a reduction from the Euclidean
TSP [48]. Given an Euclidean TSP instance specified by a set
of points embedded in a rectangular region (e.g., Fig. 5, left),
we superimpose a lattice over the region at some resolution
m1 × m2. To construct the LTR instance, we set the initial
condition π to be the identity permutation, i.e., πi = i for all
1 ≤ i ≤ m1m2. Then, we update π for each of the black
points in the TSP instance. For a given black point in the
TSP instance, let its coordinates be (x1, x2). Without loss of
generality, we may assume that the (x1, x2) satisfy 1 < x1 <
m1 and 1 < x2 < m2. We update π such that πm1x2+x1

=
m1(x2−1)+x1 and πm1(x2−1)+x1

= m1x2+x1. That is, each
black point in the TSP instance is converted to two adjacent
items (red points in Fig. 5, right) that must be exchanged. We
refer to each pair of the adjacent items to be exchanged as a
cluster.

Fig. 5. [left] An Euclidean TSP instance, fully specified by a the set of (black
and green) points. [right] A corresponding LTR instance where each black
point in the TSP instance is replaced by two items that must be exchanged.
The green point corresponds to the end-effector rest position.

By selecting sufficiently large m1 and m2, end-effector
travel cost for solving each cluster becomes negligible. There-
fore, for the LTR instance, the optimal end-effector travel
cost is determined by the cost of end-effector travel between
clusters. An optimal solution to the TSP problem then maps to
an optimal solution to the LTR instance that minimizes end-
effector travel (minor details are omitted).

On the other hand, in any valid solution to the LTR instance,
the end-effector must start from the rest position (the top left
point), go to each cluster to make the exchange, and eventually
return to the rest position. Because the travel cost for solving
each cluster locally is negligible (again, some minor but formal
arguments are omitted here), a distance optimal solution then
translates back to an optimal solution to the initial Euclidean
TSP instance.

Remark. It is clear that the decision version of the LTR
instance is NP-complete, because the distance of a given rear-
rangement plan can be checked in linear time. Such transition
of computational complexity is also observed elsewhere as
dimension changes, e.g., shortest paths or visibility become
hard as dimension rises from two to three.
2) Labeled Rearrangement in Higher Dimensions: We briefly

discuss extensions to dimensions higher than two. It is straight-
forward to observe that Proposition V.1 and Theorem V.1 con-
tinue to hold in higher dimensions through a direct embedding,
i.e., a two-dimensional problem can be readily reduced to a
d-dimensional problem via adding additional dimensions.

Corollary V.1. For labeled rearrangement on d-dimensional
lattices, with a fixed d ≥ 2, a cycle-following procedure, after
minimizing the number of pick-n-swaps, also yields a total
end-effector travel distance that is asymptotically optimal.

Corollary V.2. Minimizing the total end-effector travel dis-
tance for labeled rearrangement on d-dimensional lattices,
with a fixed d ≥ 2, is NP-hard.

B. Partially-Labeled 2D (PTR) and Higher Dimensions

Our main focus on PTR is finding near-optimal solutions.
We present such an algorithm for minimizing the number
of pick-n-swaps and show that it is asymptotically distance-
optimal in expectation for two common goal configuration
patterns shown in Fig. 6. In goal configuration pattern A,
items of the same type is aggregated in both dimensions. In
pattern B, each type occupies a single column of the lattice.
For notational convenience, it is assumed that the number of
types k = m1 = m2 is a perfect square, e.g., k = 4 = 22.
Our analysis does not depend on this last assumption.

For PTR, minimizing the number of pick-n-swaps can be
realized in polynomial time, as it is for POR: for each type,
matchings can be made to yield cycles with minimum end-
effector travel. These cycles can be merged using a procedure
similar to MERGECYCLES and MERGECYCLESMST, which
minimizes the number of pick-n-swaps.

On the other hand, similar to LTR, minimizing the end-
effector travel is computationally intractable, regardless of

Fig. 6. [left] An example of a PTR start configuration. [middle] The
corresponding goal configuration pattern A. [right] The corresponding goal
configuration pattern B.

whether the number of pick-n-swaps is minimized. This is
true because LTR is a special case of PTR. We note that we
can also show that the hardness results continue to hold for
goal configuration patterns A and B.

Corollary V.3. Computing a rearrangement plan for minimiz-
ing the travel distance for PTR is NP-hard.

Next, we describe our algorithm for PTR, which applies
generally and does not depend on the goal configuration
pattern. The algorithm is fairly similar to OPTPLANPOR for
POR but with only three phases; the two cycle merging phases
in POR are merged into a single phase. In the first phase, for
each type of items that need to be rearranged, a bipartite graph
is constructed that connects all applicable initial configurations
to all goal configurations, with the edge weight being the
distance between a pair of start and goal configurations. A
matching is then performed on this bipartite graph to get a
1-1 mapping between initial and goal configurations. This can
be done efficiently using the Hungarian algorithm [57]. After
the first phase, which we call FORMCYCLESPTR, some initial
cycles C are formed.

In the second phase, cycles in C are merged through
goal swaps. Two cycles can be merged through goal swaps
(similar to what is done in Fig. 4 [bottom left] → Fig. 4
[bottom right]) if they contain items of the same type. Unlike
POR, where some merges do not change end-effector travel
distance, a merge here will cause the total distance to increase
in general. Therefore, only a single cycle merging phase
is done for PTR. The procedure for doing so is the same
as MERGECYCLESMST for POR: a graph G is constructed
where each cycle is a node and there is an edge between
each pair of mergeable cycles with the edge weight being the
additional distance that is incurred for the merge, due to goal
swaps. A minimum spanning forest is then constructed for
merging all mergeable cycles. After the second phase, which
we call MERGECYCLESPTR, no more than k/2 cycles are
left and the number of pick-n-swaps is minimized. Let this set
of cycles be C ′.

In the third and last phase, cycles in C ′ are again connected
to form a complete rearrangement plan. This is realized
through another round of minimum spanning tree computation,
for which another graph G′ is needed for capturing the distance
between cycles. Here, for two cycles c1 and c2, the distance
between them is simply minv1∈c1,v2∈c2 dist(v1, v2). Similar
to the LTR case, here, the distance between two cycles are
directed. Therefore, G′ is also directed. We also include p0, the

end-effector’s initial location, as a vertex in G′ and compute its
distance to cycles in C ′ in the same way. After the minimum
spanning tree T is computed for G′, a double covering of this
tree starting at p0, going through the cycles and back, yields
a complete rearrangement plan with the minimum number of
pick-n-swaps. Denoting the last phase as SWEEPCYCLESPTR
and the overall algorithm PLANPTR (we omit the algorithm
outline since it is fairly similar to OPTPLANPOR), we proceed
to analyze the distance optimality.

Theorem V.2. PLANPTR computes asymptotically distance-
optimal solutions for PTR with goal configuration patterns A
and B, in expectation.

Proof. We first examine pattern A. Intuitively, the required
amount of distance for moving items to a proper goal domi-
nates other distances. To establish this, we estimate the differ-
ent costs. For a single item of a given type, the initial location
can be anywhere in the lattice. Therefore, the expected distance
for restoring it, regardless of where the goal is, is Ω(k). The
total cost, in expectation, is then E = Ω(k3). It is clear that
the cycles computed by FORMCYCLESPTR, in expectation,
has a total length no more than E. Because the MERGECY-
CLESPTR subroutine only swaps goals within a

√
k ×

√
k

square region, each swap will add at most O(
√
k) additional

distance (we omit the straightforward computation based on
the triangle inequality). Therefore, MERGECYCLESPTR will
add at most O(k5/2) distance. In the last phase, because at
most k/2 cycles are connected, SWEEPCYCLESPTR incurs
an additional connection distance cost of O(k2). Because
MERGECYCLESPTR and SWEEPCYCLESPTR only add costs
that are asymptotically inconsequential as compared to E,
PLANPTR is asymptotically distance-optimal in expectation
for PTR with goal configuration pattern A.

For pattern B, it is clear that the expected cost remains at
E = Ω(k3). For MERGECYCLESPTR, although goal swaps
may happen over a distance of up to k, we note that no two
different swaps will never cross each other in the vertical
direction. We readily see that (again, via an application of
the triangle inequality) the cumulative distance increase per
type is bounded by 2k. The total additional cost over all
types due to MERGECYCLESPTR is then bounded by O(k2).
For pattern B, SWEEPCYCLESPTR essentially goes from the
leftmost column to the right most and back, which incurs O(k)
distance. Therefore, PLANPTR is asymptotically distance-
optimal in expectation for PTR with goal configuration pattern
B.

We mention without elaboration that, similar to the labeled
setting, the structural results obtained for POR and PTR readily
extend to higher dimensions.

VI. SIMULATION STUDIES

In this section, based on simulation studies, we highlight
some properties of the rearrangement problems and corrob-
orate the guarantees provided by our algorithms. We im-
plemented all algorithms described in the paper in Python.

Each data point presented in a figure, is an average over 100
randomly-generated instances according to some distribution
to be stated. We mention that our basic Python implemen-
tation is fairly efficient; each instance, with some containing
10000 items, is solved within 1 second. For practical-sized
problems with a few hundred items, each takes less than
10−3 second to solve. We do not present the computation
time here as it will not be representative of an optimized
implementation in C/C++. The source code, with implemen-
tations of both greedy and optimized/optimal algorithms for
LOR/POR/LTR/PTR problems, is available at https://github.
com/rutgers-arc-lab/lattice-rearrangement/.

For LOR and LTR, since cycle following is a natural strategy
which minimizes the number of pick-n-swaps, only end-
effector travel is examined here. In Fig. 7 [left], LOR instances
are generated following the uniform random distribution. We
then take the end-effector travel distance computed by OPT-
PLANLOR and divide it by m2. The figure shows that the ratio
converges to 1/3 (the gray dotted horizontal line) as expected.
A contributing reason that the total travel cost is close to m2/3,
even when m is small, is that there are not many cycles so
the distance due to traveling between cycles is very minimal.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 100 1000 10000

 0.333

 0.32

 0.325

 0.33

 0.335

 0.34

 0.345

 0.35

 10 100 1000 10000

uniform random uniform random

O
pt

.d
is

t.
/
m

2

G
re

ed
y

/
op

t.
(d

is
t.)

10-random√
m-random

Fig. 7. Two plots illustrating properties of LOR and the associated algorithms.
The y-axes are unit-less. The x-axes are the number of items in an instance,
which is the case for all figures in this section. [left] The optimal end-effector
travel distance for LOR (computed by OPTPLANLOR) divided by m2 where
m is the number of items. [right] End-effector travel distance ratio between
SWEEPCYCLESLOR and OPTPLANLOR (optimal) for three different initial
arrangement patterns.

In Fig. 7 [right], the ratio of the travel distance between
SWEEPCYCLESLOR (non-optimal) and OPTPLANLOR (opti-
mal) is evaluated over three item distribution patterns: uniform
random, 10-random, and

√
m-random, where x-random means

that every block of x items, counting from the left, are uni-
formly randomly distributed in the generated LOR instances.
OPTPLANLOR does significantly better than the greedy (best-
first) SWEEPCYCLESLOR, especially when the number of
items m is small, which actually corresponds to more practical
settings.

For LTR, since cycle following is again natural, we focus on
end-effector travel (all plans have optimal numbers of pick-n-
swaps). On an m×m square lattice where m is also a perfect
square, we evaluate the performance of cycle-following algo-
rithms over three distributions: uniform random, column ran-
dom, where items are uniformly randomly distributed within
columns, and block random, where items are randomized
within

√
m ×

√
m blocks. Fig. 8 [left] presents the ratio of

the distance from all cycles divided by m2, which is the same

https://github.com/rutgers-arc-lab/lattice-rearrangement/
https://github.com/rutgers-arc-lab/lattice-rearrangement/

for SWEEPCYCLESLTR and SWITCHCYCLESLTR. That is,
traveling between cycles is not included. We observe that
both uniform random and block random settings have travel
distances that converge to about 0.52m2 as predicted, whereas
the column random setting, essentially a one-dimensional
problem, shows convergence to m2/3, also as expected.

 0.3

 0.4

 0.5

 0.6

 0.7

 100 1000

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 100 1000

C
yc

le
di

st
./

m
2

To
ta

l
/

cy
cl

es
(d

is
t.)

uniform random
column random

block random uniform random
column random

block random

Fig. 8. Properties of LTR and the associated algorithms. [left] Ratio of dis-
tance incurred by following cycles versus m2 for three item distributions. Two
gray dotted horizontal line at around 0.52 and 1/3 are added for reference.
[right] Total distance from algorithms versus the total cycle distances for three
distributions and two algorithms.

In Fig. 8 [right], for each randomness setting, the solid
(resp., dashed) line shows the ratio between the distance cost
from SWITCHCYCLESLTR (resp., SWEEPCYCLESLTR) and
the distance from cycles only. SWITCHCYCLESLTR clearly
outperforms the greedy SWEEPCYCLESLTR algorithm in all
cases. For both uniform random and block random, SWITCH-
CYCLESLTR incurs little extra distance beyond the necessary
distance needed for following cycles.

For POR and PTR, we look at both the end-effector travel
distance and the number of pick-n-swaps. The ratios of
distance and number of pick-n-swaps between the greedy
algorithm and OPTPLANPOR are given in Fig. 9 for different
number of item types. The optimal OPTPLANPOR algorithm
is 1-2% better than the greedy algorithm on distance, and up to
over 5% better on the number of pick-n-swaps (which carries
more importance).

 1

 1.02

 1.04

 1.06

 100 1000

 1

 1.01

 1.02

 1.03

 100 1000

G
re

ed
y

/
op

t.
(d

is
t.)

G
re

ed
y

/
op

t.
(p

ic
ks

)2 types
4 types
6 types
8 types

10 types

2 types
4 types
6 types
8 types

10 types

Fig. 9. Performance of the greedy algorithm versus the optimal algorithm
(OPTPLANPOR) for POR. [left] End-effector travel distance ratios for differ-
ent number of types. [right] Ratios between the number of pick-n-swaps for
the two algorithms for different number of types.

For PTR, while we no longer have algorithms for computing
the optimal distance (recall that the problem is NP-hard), our
minimum spanning tree based algorithm still demonstrates a
much better performance when compared to greedy best-first
approaches, as shown in Fig. 10, for both patterns (pattern A
and pattern B).

 1

 1.04

 1.08

 1.12

 1.16

 100 1000

 1

 1.04

 1.08

 1.12

 1.16

 100 1000

G
re

ed
y

/
M

ST
(d

is
t.)

G
re

ed
y

/
M

ST
(p

ic
ks

)pattern A, dist
pattern A, pick

pattern B, dist
pattern B, pick

Fig. 10. Performance of the greedy algorithm versus the minimum spanning
tree based cycle merging algorithm for PTR. [left] Distance and pick-n-swap
ratios for “block” item distribution. [right] Distance and pick-n-swap ratios
for “column” item distribution.

VII. CONCLUSION AND DISCUSSION

In this paper, we have performed a systematic study of
lattice-based robotic rearrangement using the pick-n-swap
primitive. For both the fully-labeled and the partially-labeled
settings under all lattice dimensions, we either provide efficient
algorithms for optimally solving the problem (i.e., LOR, POR),
or provide algorithms that are asymptotically optimal when the
problem is NP-hard (LTR, PTR). We have demonstrated, via
simulation, that our algorithms perform fairly well with respect
to absolute optimality measures and in comparison with the
already decent greedy best-first approaches.

In addition to providing characterization and solutions for
the specific problems, our analysis points to a general solution
structure for such rearrangement problems: forming cycles
naturally and then optimally connecting them, e.g., using
a minimum spanning tree. Combined with proper analysis,
guarantees can often be obtained. We believe this general
structural insight applies to enhancing the efficiency in solving
rearrangement problems beyond lattices.

We conclude the paper with some open-ended discussion.
Domain topology. The lattices examined in this work

are embedded in Euclidean spaces. This assumption may be
relaxed. For example, an application may call for rearranging
items that form a circle. The algorithms developed in this study
can be adapted to work for such scenarios with relatively minor
changes. The main update surrounds the distance computation
for two lattice points, which changes as the domain’s topology
changes. Depending on whether the end-effector travels along
the circle or in straight lines between two consecutive pick-n-
swaps, the optimal rearrangement plan may change.

Bi-criteria optimization. In our treatment of lattice-based
rearrangement problems, there exists a fairly good level of
flexibility that allows balancing between the two (sometimes
competing) objectives in Eq. (1). For example, in POR, a
minimum total-distance feasible solution is first computed,
allowing subsequent trade-off between reducing the number
of pick-n-swaps and adding additional end-effector travel. If
we enforce that the rearrangement task must be completed,
then OPTPLANPOR (Alg. 5) computes the full relevant Pareto
frontier. On the other hand, our algorithms do not produce the
entire Pareto optimal frontier for the two objectives if partial
solutions are also considered.

Bounded optimality. While not a focus of this work, if
it is desirable, the algorithms in this work can be shown to
provide bounded optimality guarantees, in addition to ensuring
asymptotic optimality. This can be achieved by comparing the
extra travel distance with the minimum required distance for
realizing the rearrangement task.

Alternative pick-n-place primitives. We have examined a
few other natural pick-n-place primitives. It would appear that
the pick-n-swap model provides a very nice balance between
the complexity of system (e.g., end-effector, workspace) de-
sign and achievable efficiency. For example, if the end-effector
cannot swap items, e.g., it moves a picked item to a temporary
location if it cannot be directly placed, it will make the system
twice as inefficient; it will double the number of pick-n-place
operations as picks and places are always executed with end-
effector travel in between. The travel distance also doubles as
a result. We are also looking at further optimization of a dual-
arm solution over this work; because the two arms can be at
two places, additional efficiency appears possible.

ACKNOWLEDGMENTS

This work is supported in part by NSF awards IIS-
1734419, IIS-1845888, and CCF-1934924. We sincerely thank
the anonymous reviewers for bringing up many insightful
suggestions and intriguing questions.

REFERENCES

[1] M. T. Mason, “Toward robotic manipulation,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 1, pp. 1–28, 2018.

[2] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in 2011 IEEE International Conference on
Robotics and Automation. IEEE, 2011, pp. 1470–1477.

[3] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[4] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” arXiv preprint
arXiv:1703.09312, 2017.

[5] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza,
D. Ma, O. Taylor, M. Liu, E. Romo et al., “Robotic pick-and-place
of novel objects in clutter with multi-affordance grasping and cross-
domain image matching,” in 2018 IEEE international conference on
robotics and automation (ICRA). IEEE, 2018, pp. 3750–3757.

[6] A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learning
feasibility for task and motion planning in tabletop environments,” IEEE
robotics and automation letters, vol. 4, no. 2, pp. 1255–1262, 2019.

[7] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel
objects using vision,” The International Journal of Robotics Research,
vol. 27, no. 2, pp. 157–173, 2008.

[8] M. Gualtieri, A. Ten Pas, K. Saenko, and R. Platt, “High precision
grasp pose detection in dense clutter,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp.
598–605.

[9] C. Mitash, K. E. Bekris, and A. Boularias, “A self-supervised learning
system for object detection using physics simulation and multi-view pose
estimation,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017, pp. 545–551.

[10] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A
convolutional neural network for 6d object pose estimation in cluttered
scenes,” in Robotics: Science and Systems, 2018.

[11] O. Ben-Shahar and E. Rivlin, “Practical pushing planning for rearrange-
ment tasks,” IEEE Transactions on Robotics and Automation, vol. 14,
no. 4, pp. 549–565, 1998.

[12] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles:
Real-time reasoning in complex environments,” International Journal
of Humanoid Robotics, vol. 2, no. 04, pp. 479–503, 2005.

[13] K. Treleaven, M. Pavone, and E. Frazzoli, “Asymptotically optimal al-
gorithms for one-to-one pickup and delivery problems with applications
to transportation systems,” IEEE Transactions on Automatic Control,
vol. 58, no. 9, pp. 2261–2276, 2013.

[14] G. Havur, G. Ozbilgin, E. Erdem, and V. Patoglu, “Geometric re-
arrangement of multiple movable objects on cluttered surfaces: A
hybrid reasoning approach,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2014, pp. 445–452.

[15] J. A. Haustein, J. King, S. S. Srinivasa, and T. Asfour, “Kinodynamic
randomized rearrangement planning via dynamic transitions between
statically stable states,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2015, pp. 3075–3082.

[16] A. Krontiris and K. E. Bekris, “Dealing with difficult instances of object
rearrangement.” in Robotics: Science and Systems, vol. 1123, 2015.

[17] J. E. King, M. Cognetti, and S. S. Srinivasa, “Rearrangement planning
using object-centric and robot-centric action spaces,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 3940–3947.

[18] R. Shome, K. Solovey, J. Yu, K. Bekris, and D. Halperin, “Fast,
high-quality dual-arm rearrangement in synchronous, monotone tabletop
setups,” in International Workshop on the Algorithmic Foundations of
Robotics. Springer, 2018, pp. 778–795.

[19] S. D. Han, N. M. Stiffler, A. Krontiris, K. E. Bekris, and J. Yu,
“Complexity results and fast methods for optimal tabletop rearrangement
with overhand grasps,” The International Journal of Robotics Research,
vol. 37, no. 13-14, pp. 1775–1795, 2018.

[20] E. Huang, Z. Jia, and M. T. Mason, “Large-scale multi-object rearrange-
ment,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 211–218.

[21] J. Lee, Y. Cho, C. Nam, J. Park, and C. Kim, “Efficient obstacle
rearrangement for object manipulation tasks in cluttered environments,”
in 2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 183–189.

[22] Z. Pan and K. Hauser, “Decision making in joint push-grasp action space
for large-scale object sorting,” arXiv preprint arXiv:2010.10064, 2020.

[23] R. H. Taylor, M. T. Mason, and K. Y. Goldberg, “Sensor-based manipula-
tion planning as a game with nature,” in Fourth International Symposium
on Robotics Research, 1987, pp. 421–429.

[24] K. Y. Goldberg, “Orienting polygonal parts without sensors,” Algorith-
mica, vol. 10, no. 2, pp. 201–225, 1993.

[25] K. M. Lynch and M. T. Mason, “Dynamic nonprehensile manipulation:
Controllability, planning, and experiments,” The International Journal
of Robotics Research, vol. 18, no. 1, pp. 64–92, 1999.

[26] M. Dogar and S. Srinivasa, “A framework for push-grasping in clutter,”
Robotics: Science and systems VII, vol. 1, 2011.

[27] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis—a survey,” IEEE Transactions on Robotics, vol. 30, no. 2,
pp. 289–309, 2013.

[28] N. C. Dafle, A. Rodriguez, R. Paolini, B. Tang, S. S. Srinivasa,
M. Erdmann, M. T. Mason, I. Lundberg, H. Staab, and T. Fuhlbrigge,
“Extrinsic dexterity: In-hand manipulation with external forces,” in 2014
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 1578–1585.

[29] A. Boularias, J. Bagnell, and A. Stentz, “Learning to manipulate
unknown objects in clutter by reinforcement,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 29, no. 1, 2015.

[30] N. Chavan-Dafle and A. Rodriguez, “Prehensile pushing: In-hand
manipulation with push-primitives,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2015,
pp. 6215–6222.

[31] A. Gál and P. B. Miltersen, “The cell probe complexity of succinct data
structures,” Theoretical computer science, vol. 379, no. 3, pp. 405–417,
2007.

[32] E. Curtin and M. Warshauer, “The locker puzzle,” The Mathematical
Intelligencer, vol. 28, no. 1, pp. 28–31, 2006.

[33] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of
motion planning for multiple independent objects; PSPACE-hardness of
the” warehouseman’s problem”,” The International Journal of Robotics
Research, vol. 3, no. 4, pp. 76–88, 1984.

[34] G. Wilfong, “Motion planning in the presence of movable obstacles,”
Annals of Mathematics and Artificial Intelligence, vol. 3, no. 1, pp. 131–
150, 1991.

[35] J. van Den Berg, J. Snoeyink, M. C. Lin, and D. Manocha, “Centralized
path planning for multiple robots: Optimal decoupling into sequential
plans.” in Robotics: Science and systems, vol. 2, no. 2.5, 2009, pp. 2–3.

[36] L. Chang, J. R. Smith, and D. Fox, “Interactive singulation of objects
from a pile,” in 2012 IEEE International Conference on Robotics and
Automation. IEEE, 2012, pp. 3875–3882.

[37] M. Laskey, J. Lee, C. Chuck, D. Gealy, W. Hsieh, F. T. Pokorny,
A. D. Dragan, and K. Goldberg, “Robot grasping in clutter: Using a
hierarchy of supervisors for learning from demonstrations,” in 2016
IEEE International Conference on Automation Science and Engineering
(CASE). IEEE, 2016, pp. 827–834.

[38] A. Eitel, N. Hauff, and W. Burgard, “Learning to singulate objects using
a push proposal network,” in Robotics research. Springer, 2020, pp.
405–419.

[39] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” in 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 4238–
4245.

[40] B. Huang, S. D. Han, A. Boularias, and J. Yu, “Dipn: Deep interaction
prediction network with application to clutter removal,” in Proceedings
IEEE International Conference on Robotics & Automation, 2021, note:
to appear.

[41] J. E. King, J. A. Haustein, S. S. Srinivasa, and T. Asfour, “Nonprehensile
whole arm rearrangement planning on physics manifolds,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2015, pp. 2508–2515.

[42] M. Moll, L. Kavraki, J. Rosell et al., “Randomized physics-based motion
planning for grasping in cluttered and uncertain environments,” IEEE
Robotics and Automation Letters, vol. 3, no. 2, pp. 712–719, 2017.

[43] W. Bejjani, R. Papallas, M. Leonetti, and M. R. Dogar, “Planning
with a receding horizon for manipulation in clutter using a learned
value function,” in 2018 IEEE-RAS 18th International Conference on
Humanoid Robots (Humanoids). IEEE, 2018, pp. 1–9.

[44] H. Song, J. A. Haustein, W. Yuan, K. Hang, M. Y. Wang, D. Kragic,
and J. A. Stork, “Multi-object rearrangement with monte carlo tree
search: A case study on planar nonprehensile sorting,” arXiv preprint
arXiv:1912.07024, 2019.

[45] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipula-
tion planning among movable obstacles,” in Proceedings 2007 IEEE
international conference on robotics and automation. IEEE, 2007, pp.
3327–3332.

[46] A. Krontiris and K. E. Bekris, “Efficiently solving general rearrangement
tasks: A fast extension primitive for an incremental sampling-based
planner,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2016, pp. 3924–3931.

[47] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of computer computations. Springer, 1972, pp. 85–103.

[48] C. H. Papadimitriou, “The euclidean travelling salesman problem is np-
complete,” Theoretical computer science, vol. 4, no. 3, pp. 237–244,
1977.

[49] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,”
Management science, vol. 6, no. 1, pp. 80–91, 1959.

[50] C. Nam, J. Lee, Y. Cho, J. Lee, D. H. Kim, and C. Kim, “Planning for
target retrieval using a robotic manipulator in cluttered and occluded
environments,” arXiv preprint arXiv:1907.03956, 2019.

[51] K. Solovey and D. Halperin, “k-color multi-robot motion planning,” The
International Journal of Robotics Research, vol. 33, no. 1, pp. 82–97,
2014.

[52] P. Flajolet and R. Sedgewick, Analytic combinatorics. cambridge
University press, 2009.

[53] R. C. Prim, “Shortest connection networks and some generalizations,”
The Bell System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[54] D. B. Johnson, “Priority queues with update and finding minimum
spanning trees,” Information Processing Letters, vol. 4, no. 3, pp. 53–57,
1975.

[55] Y.-J. Chu, “On the shortest arborescence of a directed graph,” Scientia
Sinica, vol. 14, pp. 1396–1400, 1965.

[56] J. Edmonds, “Optimum branchings,” Journal of Research of the national
Bureau of Standards B, vol. 71, no. 4, pp. 233–240, 1967.

[57] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

	Introduction
	Rearrangement on Lattices
	Fully-Labeled Rearrangement in 1D
	Cycle Following with Left to Right Sweeping
	Cycle Sweeping with Cycle Switching

	Partially-Labeled Rearrangement in 1D
	Algorithm description
	Algorithm outline and optimality properties

	Rearrangement in 2D and Higher Dimensions
	Fully-Labeled 2D (LTR) and Higher Dimensions
	 Labeled Rearrangement in 2D (LTR)
	Labeled Rearrangement in Higher Dimensions

	Partially-Labeled 2D (PTR) and Higher Dimensions

	Simulation Studies
	Conclusion and Discussion
	References

