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Abstract. We discuss Dirac neutrinos whose right-handed component νR has new interac-
tions that may lead to a measurable contribution to the effective number of relativistic
neutrino species Neff . We aim at a model-independent and comprehensive study on a variety
of possibilities. Processes for νR-genesis from decay or scattering of thermal species, with
spin-0, spin-1/2, or spin-1 initial or final states are all covered. We calculate numerically and
analytically the contribution of νR to Neff primarily in the freeze-in regime, since the freeze-
out regime has been studied before. While our approximate analytical results apply only
to freeze-in, our numerical calculations work for freeze-out as well, including the transition
between the two regimes. Using current and future constraints on Neff , we obtain limits
and sensitivities of CMB experiments on masses and couplings of the new interactions. As a
by-product, we obtain the contribution of Higgs-neutrino interactions, ∆NSM

eff ≈ 7.5× 10−12,
assuming the neutrino mass is 0.1 eV and generated by the standard Higgs mechanism.
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1 Introduction

While the knowledge of the neutrino parameters has increased in recent years, the two most
important aspects have not been pinned down yet. That is, the absolute mass scale and the
question whether light neutrinos are self-conjugate or not. The neutrino mass scale is only
bounded from above [1], and both the Dirac and the Majorana character of neutrinos are
compatible with all observations [2]. Here we will assume that they are not self-conjugate,
hence neutrinos are Dirac particles. The necessary presence of the right-handed components
νR in this case introduces the possibility that they contribute to the effective number of
relativistic neutrino species Neff [3–5]. While in the Standard Model (SM) the contribution
via Higgs-neutrino interactions is tiny (as we will confirm as a by-product of our study),
new interactions of Dirac neutrinos can easily increase it to measurable sizes. This exciting
possibility has been considered in several recent studies [6–12].1

1In addition to this possibility, a variety of other neutrino-related new physics could also affect Neff — see,
e.g., [13–20].
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In general, the contribution of νR to Neff depends on both the coupling strength and
the energy scale of the new interactions. If the energy scale is high and the coupling strength
sizable, νR are in thermal equilibrium with the dense and hot SM plasma at high temper-
atures. As the Universe cools down, the interaction rate decreases substantially due to the
low densities and temperatures of νR and the SM particle species. When the interaction rate
can no longer keep up with the Universe’s expansion, νR decouple from the SM plasma at a
decoupling temperature Tdec. Below Tdec, the comoving entropy density of νR remains a con-
stant (i.e., νR freeze out), which fixes the contribution of νR to Neff . If all three flavors of νR
decouple at a temperature much higher than the electroweak scale, their contribution to Neff
is 0.14 [5, 7], which is close to present constraints [21, 22] and can easily be probed/excluded
by upcoming surveys [23–26].

In ref. [10] we have considered the most general effective four-fermion contact interac-
tions of Dirac neutrinos with the SM fermions and their effect on Neff . Those contact inter-
actions are assumed to be valid above the decoupling temperature, which usually holds for
heavy particles with sizeable couplings (e.g., TeV particles with > O(10−2) couplings). How-
ever, small masses and/or tiny couplings are also rather common in many models, making
these assumptions invalid.

In fact, if the interactions are mediated by very weakly coupled particles (like the SM
Higgs-neutrino coupling), the right-handed neutrinos may never be in thermal equilibrium
with the SM plasma. Nevertheless, via feeble interaction slowly some contribution of νR
to the energy density and hence Neff is built up, before the production stops (or becomes
ineffective) because of dilution of the ingredients for νR-genesis. In particular, if νR are
produced from massive particles, the production rate becomes exponentially suppressed when
the temperature is below their masses. Hence, the comoving entropy density of νR will also
be frozen at a certain level. This freeze-in mechanism, first discussed in the context of dark
matter [27], is the content of the present paper.

We will assume here the presence of new interactions of νR with some generic boson
(B) and fermion (F ) which may or may not be SM particles. In the most general set-up,
one of, or both, B and F may be in equilibrium. In all cases, the mass hierarchy of B and
F defines the dominating process that generates the νR density and thus the contribution
to Neff . All possible cases are considered in this work, except the case when both B and
F are not in equilibrium. In this case, additional interactions of those particles would be
required to generate the νR density, which is beyond the model-independent study envisaged
here. The case of a massless fermion F includes F being the left-handed component of the
Dirac neutrino (which is in equilibrium due to its SM interactions), and is also automatically
part of this analysis. We show in this paper that if decay (scattering) of new particles is
the dominating freeze-in process, limits on the new coupling constants of order 10−9 (10−4)
may be constrained for new particle masses around GeV. Our framework also allows us to
calculate the contribution of SM Dirac neutrinos to Neff , for which the freeze-in occurs via
the tiny Yukawa interactions with the Higgs boson: ∆NSM

eff ≈ 7.5× 10−12 (mν/(0.1 eV))2.
The paper is built up as follows: in section 2 we discuss our framework and the several

cases that may be present. The calculation of the interaction rates is summarized in section 3.
An analytical estimate of the resulting contribution to Neff is given in section 4, and compared
to the numerical result for Dirac neutrino masses generated by the SM Higgs mechanism in
section 5. The full numerical analysis for the general cases is presented in section 6. We
conclude in section 7 and put several technical details in appendices.
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2 Framework

If neutrinos are Dirac particles and have beyond the Standard Model (BSM) interactions,
generically one can consider the following Lagrangian:2

L ⊃ gνBFνR + h.c., (2.1)

where gν is a coupling constant, B and F stand for a scalar boson and a chiral fermion,
respectively. Besides this scalar interaction, we also consider the vector case:

L ⊃ gνBµFγµνR + h.c., (2.2)

for which the analysis will be similar. In both cases, the masses of B and F are denoted
by mB and mF , respectively. Note that in our framework B and F can be BSM or SM
particles.3 What is essentially relevant here is whether they are in thermal equilibrium or
not during the νR-genesis epoch. Therefore we have the following cases (see table 1):

• (I) Both B and F are in thermal equilibrium. In this case, the dominant process for
νR-genesis is B or F decay: B → F + νR (if mB > mF ) or F → B+ νR (if mF > mB),
to which we refer as subcases (I-1) and (I-2) respectively. Note that other processes
such as B + B → νR + νR and F + F → νR + νR also contribute to νR-genesis. Being
typically a factor of g2

ν/(16π2) smaller than the decay processes, their contributions in
this case are subdominant.

• (II) Only B is in thermal equilibrium while F is not. If B is heavier than F , defined
as subcase (II-1), then the dominant process for νR-genesis is still B decay, similar
to (I-1). We should note, however, that the collision term in (II-1) is different from
that of (I-1), as will be shown later in eqs. (6.4)–(6.9). If F is heavier than B, since
F is assumed not to be in thermal equilibrium, F decay is less productive than B
annihilation: B +B → νR + νR via the t-channel diagram in table 1. We refer to it as
subcase (II-2).

• (III) Only F is in thermal equilibrium while B is not. Likewise, we have subcase (III-1)
for mF > mB and subcase (III-2) for mB > mF , with their dominant processes being
F → B + νR and F + F → νR + νR, respectively.

• (IV) Neither F or B is in thermal equilibrium. If in a Dirac neutrino model, given
a new interaction in eq. (2.1) or (2.2), neither of them is in thermal equilibrium, one
should check whether there are other interactions involving different particles, which
would be the dominant contribution to νR production. If indeed all interactions of
νR in the model are in case (IV), then typically the abundance of νR is suppressed.
Although if neither of them is in thermal equilibrium, sizable abundances of F , B and
hence νR are still possible, quantitative results in this case depend however not only
on gν but also on other parameters (e.g. the couplings of F and B to the SM content).
Hence we leave this model-dependent case to future work.

2Throughout this paper, we assume that the new interactions of neutrinos universally couple to all flavors
with flavor-independent coupling constants.

3In fact, if both B and F are SM particles, the only possible interaction that can arise from a gauge
invariant terms is hνLνR where h is the SM Higgs (see section 5). If one of them is a non-SM particle, then
it allows for more possibilities. Here we refrain from further discussions on model-dependent details and
concentrate on the generic framework.
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Cases Dominant processes for νR-genesis S|M|2

(I-1) F and B in
thermal equilibrium,

mB > mF F

νR
B

p1

p3

p4

scalar B:
|gν |2(m2

B −m2
F )

vector Bµ:
|gν |2

(
2m2

B −m2
F −

m4
F

m2
B

)

(I-2) F and B in
thermal equilibrium,

mF > mB B

νR
F

p1

p3

p4

scalar B:
|gν |2(m2

F −m2
B)

vector Bµ (for 16π2m2
B & g2

νm
2
F ):

|gν |2(m2
F −m2

B)(2m2
B +m2

F )m−2
B

(II-1) B in thermal
equilibrium, F not,

mB > mF F

νR
B

p1

p3

p4

scalar B:
|gν |2(m2

B −m2
F )

vector Bµ:
|gν |2
3m2

B
(m2

B −m2
F )(2m2

B +m2
F )

(II-2) B in thermal equilibrium,
F not,

mF > mB

F

νRB

B νR
p2

p1 p3

p4

complex scalar B:
|gν |4

tu−m4
B

|t−m2
F |2

for real scalar B, see eq. (3.16)
for vector B, see eqs. (3.18) and (3.20)

(III-1) F in thermal
equilibrium, B not

mF > mB B

νR
F

p1

p3

p4

scalar B:
|gν |2(m2

F −m2
B)

vector Bµ (for 16π2m2
B & g2

νm
2
F ):

|gν |2(m2
F −m2

B)(2m2
B +m2

F )m−2
B

(III-2) F in thermal
equilibrium, B not

mB > mF

B

νRF

F νR

p3p1

p2 p4

scalar B:
|M|2 = |gν |4(t−m2

F )2/(t−m2
B)2

vector Bµ:
4|gν |4(m2

F − u)2/(t−m2
B)2

(IV) B & F not in
thermal equilibrium

Model-dependent;
Abundance of νR usually suppressed

Table 1. Dominant processes for νR-genesis in the BFνR framework — see eqs. (2.1) and (2.2)
and discussions below. For the vector case, dashed lines are interpreted as vector bosons. Some
expressions use the Mandelstam parameters s, t, u. To avoid IR divergences, some results are only
valid for 16π2m2

B & g2
νm

2
F (see text for more details).

We summarize the above cases in table 1. Note that we will remain agnostic about the origin
of the above two interactions in eqs. (2.1) and (2.2). Without a full-fledged UV-complete
model there may arise conceptual issues for the vector case, which will be discussed later.
In addition, if B or F are sufficiently light, they may also contribute to Neff directly (see,
e.g., [28–30]), depending on whether they are SM particles or not, and on their thermal
evolution. This possibility will not be studied in this work.

The νR energy density, ρνR , is determined by the following Boltzmann equation [10]:
ρ̇νR + 4HρνR = CνR . (2.3)

– 4 –
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Here ρ̇νR ≡ dρνR/dt, H is the Hubble parameter, and CνR is referred to as the collision term.
For a 2→ 2 process, the collision term is computed from the following integral:

CνR ≡ NνR

∫
EνRdΠ1dΠ2dΠ3dΠ4(2π)4δ4(p1 + p2 − p3 − p4)

×S|M|2 [f1f2(1± f3)(1± f4)− f3f4(1± f1)(1± f2)] , (2.4)

dΠi ≡
1

(2π)3
d3pi
2Ei

, fi ≡
1

exp (Ei/Ti)∓ 1 , (i = 1, 2, 3, 4), (2.5)

where NνR = 6 (including ν and ν of three flavors4); EνR is the energy of νR; S is the
symmetry factor (which in most cases5 is 1); |M|2 is the squared amplitude of the process;
pi, Ei, and Ti denote the momentum, energy, and temperature of the i-th particle in the
process. To be more specific, we have labeled the momenta p1, p2, p3 and p4 for each 2→ 2
process in table 1. For decay processes presented in table 1 we avoid using p2, hence the final
momenta are still p3 and p4, as already indicated in the diagrams in table 1. In this way,
one can apply eq. (2.4) to decay processes with a minimal modification: only quantities with
subscripts “2” need to be removed. In addition, since in all the diagrams p3 is always the
momentum of νR, we set EνR = E3 in eq. (2.4).

In the presence of energy injection to the νR sector, the SM sector obeys the following
Boltzmann equation:

ρ̇SM + 3H(ρSM + PSM) = −CνR , (2.6)
where ρSM and PSM are the energy density and pressure of SM particles. In later discussions,
we may also use the entropy density of the SM, denoted by sSM ≡ (ρSM +PSM)/T . The three
thermal quantities have the following temperature dependence:

ρSM = g
(ρ)
?
π2

30T
4, PSM = g

(P )
?

π2

90T
4, sSM = g

(s)
?

2π2

45 T
3. (2.7)

The effective degrees of freedom of the SM, namely g(ρ)
? , g(P )

? , and g(s)
? , can reach 106.75 at

sufficiently high temperatures, and for T at a few MeV are almost equal to 10.75, coming from
three left-handed neutrinos, two chiral electrons, and one photon: 2×3×7/8+2×2×7/8+2 =
43/4. We refer to figure 2.2 in ref. [31] for recent calculations of g(ρ)

? which will be used in
our analyses. Regarding the small difference between g

(P )
? and g

(ρ)
? which is important for

entropy conservation, we use dg(P )
? /dT = 3(g(ρ)

? − g(P )
? )/T [10] to obtain g(P )

? from g
(ρ)
? .

In this work, we study the effect of Dirac neutrinos on Neff by solving eqs. (2.3) and (2.6)
analytically (see section 4) or numerically (see section 6). When the solution is obtained, the
νR contribution to Neff can be computed by

∆Neff = 4
7g

(ρ)
?,dec

10.75
g

(s)
?,dec

4/3
ρνR,dec
ρSM,dec

, (2.8)

4Conceptually, we treat particles and anti-particles as different species in the thermal plasma rather than
the same species with doubled internal degrees of freedom. This treatment can simplify a few potential issues
related to the symmetry factor and conjugate processes (e.g., whether F → B+νR and F → B+νR should be
taken into account simultaneously or not). In practice, due to the identical thermal distributions, we combine
them into a single equation so that ρνR in eq. (2.3) contains the energy density of both νR and νR. For more
detailed discussions on this issue, see ref. [10].

5The only exception here is subcase (II-2) when B is a real field. More details will be discussed when |M|2
is computed.
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where the subscript “dec” denotes any moment after νR is fully decoupled from the SM
plasma. In practical use, one only needs to solve eqs. (2.3) and (2.6) starting at a sufficiently
high temperature and ending at any low temperature that is much smaller than mF or mB,
because at such temperatures CνR no longer makes significant contributions. More practically,
because g(ρ)

? ≈ g(s)
? ≈ 10.75 when T is about a few MeV, eq. (2.8) can be reduced to

∆Neff ≈ Nν

(
TνR,low
Tlow

)4
, (2.9)

whereNν = 3 and the subscript “low” denotes generally any moment at which the approxima-
tion g

(ρ)
? ≈ g

(s)
? ≈ 10.75 is valid, typically between 5 and 10MeV (at T = 10MeV, g(ρ)

? ≈
g

(s)
? ≈ 10.76 and at T = 5MeV, g(ρ)

? ≈ g(s)
? ≈ 10.74 [32]).

3 Squared amplitudes

To proceed with the analyses on the various cases summarized in table 1, we need to compute
the squared amplitude |M|2 for each dominant process and take the symmetry factors into
account properly. The result is summarized in table 1.

3.1 B decay (scalar case)
This is the dominant process of νR-genesis for subcases (I-1) and (II-1), assuming B is a
scalar boson. The squared amplitude of scalar B decay reads:

|M|2 =
∑
s4, s3

|gνu4PRv3|2 = 2|gν |2 (p3 · p4) = |gν |2(m2
B −m2

F ), (3.1)

where v3 and u4 denote the final fermionic states. In the second “=”, we have applied the
standard trace technology to the spin sum of s3 and s4 Note that due to the projector PR
in eq. (3.1), only right-handed neutrinos and left-handed F are included. Despite being
formally included in the summation of s3 and s4, contributions of left-handed neutrinos and
right-handed F automatically vanish. In the third “=”, we have used on-shell conditions.
More specifically (and also for later use in other cases), we can expand p2

1 = (p3 + p4)2,
p2

4 = (p1 − p3)2, and p2
3 = (p1 − p4)2 to obtain

p3 · p4 = (m2
1 −m2

3 −m2
4)/2, (3.2)

p1 · p3 = (m2
1 +m2

3 −m2
4)/2, (3.3)

p1 · p4 = (m2
1 −m2

3 +m2
4)/2, (3.4)

where m1, m3, and m4 are the masses of particles 1, 3, and 4, respectively. For the current
process, we have m1 = mB, m3 = 0, and m4 = mF .

3.2 B decay (vector case)
This is the dominant process of νR-genesis for subcases (I-1) and (II-1), assuming B is a
vector boson. The squared amplitude is similar to the previous one, execpt that here we add
a polarization vector εµ and a γµ:

|M|2 =
∑
ε

∑
s4, s3

|gνεµu4γµPRv3|2. (3.5)

Since the vector boson is in initial states, in principle, we would need to take the average
over vector polarizations, which would imply that eq. (3.5) should be divided by a factor of
three. However, since a massive vector boson has three internal degrees of freedom and each

– 6 –
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degree of freedom contributes equally to CνR , we would have to multiply the integrand in
eq. (2.4) by a factor of three; or alternatively, the factor of three should be included in dΠ
in eq. (2.5). To keep eqs. (2.4) and (2.5) in their current form, we do not add the factor of
three in |M|2. As aforementioned, conceptually, we treat each internal degree of a particle as
an independent thermal species. Hence |M|2 in eq. (3.5) should be interpreted as the total
squared amplitude of the three species decaying to νR and F .

When summing over vector polarization, we need∑
ε

εµ(q)ε∗ν(q) = qµqν
m2
B

− gµν . (3.6)

Hence, after performing the summation of spins and vector polarization, we obtain

|M|2 = |gν |2
∑
ε

εµε
∗
ν tr
[
(/p4 +m4)γµPR/p3PLγν

]

= |gν |2
(

2m2
B −m2

F −
m4
F

m2
B

)
, (3.7)

where we have replaced scalar products of p1 with p3 and p4 with particle masses according
to eqs. (3.2)–(3.4).

3.3 F decay (scalar case)
This is the dominant process of νR-genesis for subcases (I-2) and (III-1), assuming B is a scalar
boson. For these two subcases, the diagram shown in table 1 is generated by g∗νB†νRF =
g∗νB

†νRPLF instead of gνBFνR. Hence the squared amplitude reads:
|M|2 =

∑
s1, s3

|g∗νu3PLu1|2 = 2|gν |2 (p1 · p3) = |gν |2(m2
F −m2

B), (3.8)

where u1 is the initial fermionic state. Note that due to the chiral projector PL, only left-
handed F can decay to νR. Therefore, the process can be treated either as unpolarized F
decay, which would contain a factor of 1/2 in eq. (3.8), or as polarized F decay (left-handed),
which does not contain such a factor. Although conceptually different, the two approaches
are equivalent. When computing the collision term, the factor of 1/2 in the unpolarized
approach would be canceled by an additional factor of 2 in the integrand due to the inclusion
of the right-handed component of F . Here we adopt the polarized approach because in some
models where F is a chiral fermion its right-handed component is absent.

3.4 F decay (vector case)
This is the dominant process of νR-genesis for subcases (I-2) and (III-1), assuming B is a
vector boson. Similar to the previous calculation, we add a polarization vector εµ in eq. (3.8)
and sum over it according to eq. (3.6). Therefore, the squared amplitude reads

|M|2 =
∑
ε

∑
s4, s3

|g∗νε∗µu3PLγ
µu1|2

= |gν |2
∑
ε

εµε
∗
ν tr
[
/p3PLγ

µ(/p1 +m1)γνPR
]

= 2|gν |2
[
p1 · p3 + 2(p1 · p4)(p3 · p4)

m2
B

]

= |gν |2
(m2

F −m2
B)(2m2

B +m2
F )

m2
B

. (3.9)
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Here we would like to discuss the IR divergence mB → 0 in the above result. The divergence
of mB → 0 was already present in eq. (3.6). Recall that in unbroken U(1) gauge theories we
have the Ward identity qµMµ = 0 for any Feynman diagram with a photon external leg (εµ)
being replaced by qµ. Therefore, whenever the Ward identity is valid, the longitudinal part
qµqν in eq. (3.6) has no contribution. In our framework, we consider a generic interaction
(BµFγµνR) without specifying the origin of the gauge boson mass. In this case, the Ward
identity is in general not valid and the cancellation of the IR divergence becomes quite model
dependent. In fact, when mB is small, generally one should not expect a strong hierarchy
between mF and mB because the self-energy diagram of Bµ generated by two gνBµFγµνR
vertices is of O(g2

νm
2
F /16π2). Thus, a strong mass hierarchy such as m2

B/m
2
F � g2

ν/16π2

would be unstable under loop corrections. As a rule of thumb, we suggest that eq. (3.9)
should be used only when mB is in the regime of m2

F > m2
B & g2

νm
2
F /16π2.

3.5 B annihilation (scalar case)
This is the dominant process of νR-genesis for subcase (II-2), assuming B is a scalar boson.
Let us first consider complex B so that the two initial states are not identical particles. For
complex B, the upper vertex of the Feynman diagram for subcase (II-2) is generated by
gνBFPRνR, and the lower vertex by its conjugate (g∗νB†νRPLF ). The squared amplitude
reads:

|M|2 =
∑
s4, s3

∣∣∣∣∣g∗νu4PL
i

/pF −mF
gνPRv3

∣∣∣∣∣
2

(3.10)

= |gν |4

|p2
F −m2

F |2
tr
[
/p4PL(/pF +mF )PR/p3PL(/pF +mF )PR

]
= 2|gν |4

2(p1 · p3)(p1 · p4)−m2
B(p3 · p4)

|p2
F −m2

F |2

= |gν |4
tu−m4

B

|t−m2
F |2

, (3.11)

where pF = p1 − p3 and we have used the usual Mandelstam parameters:6

s ≡ (p1 + p2)2 = (p3 + p4)2, (3.12)
t ≡ (p1 − p3)2 = (p4 − p2)2, (3.13)
u ≡ (p1 − p4)2 = (p3 − p2)2. (3.14)

In additon, we have used s+ t+ u = ∑
im

2
i to simplify the result in eq. (3.11).

Next, we consider that B is a real scalar which implies that the two initial states can be
interchanged. In this case, we actually have two diagrams. The second diagram is obtained
by interchanging the p1 and p2 lines. Due to identical particles, we have the symmetry factor
S = 1

2! . Therefore, eq. (3.10) should be modified as

S|M|2 = 1
2!
∑
s4, s3

∣∣∣∣∣g∗νu4PL

[
i

/pF −mF
+ i

/p′F −mF

]
gνPRv3

∣∣∣∣∣
2

, (3.15)

6We note that t in this paper has been used to denote time as well as a Mandelstam parameter (both are
very standard notations). Potential confusion can be avoided if we notice that the former has the dimension
of [energy]−1 and the latter has [energy]2.

– 8 –



J
C
A
P
0
3
(
2
0
2
1
)
0
8
2

where p′F = p2 − p3 is the momentum of F in the second diagram. Following a similar
calculation, we obtain

S|M|2 = |gν |
4

2

[
(t− u)2(tu−m4

B)(
t−m2

F

)2 (
u−m2

F

)2
]
. (3.16)

As is expected, the full result is p1 ↔ p2 (corresponding to t ↔ u) symmetric because the
two initial particles are identical.

3.6 B annihilation (vector case)

This is the dominant process of νR-genesis for subcase (II-2), assuming B is a vector boson.
As a vector field, for Bµ it is also possible to be complex (similar to W± in the SM). For real
Bµ, again, we need to be careful about the issue of identical particles. Let us first consider
complex B. In this case, the upper and lower vertices are generated by gνBµFγµPRνR and
g∗νB

∗µνRPLγµF . The initial states contain two polarization vectors, denoted as εµ1 and εµ2 .
Hence we modify eq. (3.10) to the following form:

|M|2 =
∑
ε1, ε2

∑
s4, s3

|g∗νε
µ
2u4PLγµ

i

/pF −mF
gνε

ρ
1γρPRv3|2, (3.17)

which gives

|M|2 = |gν |4

|p2
F −m2

F |2

[∑
ε2

εµ2 ε
∗ν
2

] [∑
ε1

ερ1ε
∗σ
1

]

× tr
[
/p4PLγµ(/pF +mF )γρPR/p3PLγσ(/pF +mF )γνPR

]
= |gν |4

|t−m2
F |2

[
t3u

m4
B

− 4t2(t+ u)
m2
B

− 4m4
B + t(7t+ 4u)

]
. (3.18)

Now consider that Bµ is real. The analysis is similar to that above eq. (3.15), which
means we need to consider both t- and u-channel diagrams and add a factor of 1

2! due to the
symmetry of identical particles. Hence the squared amplitude including the symmetry factor
reads:

S|M|2 = |gν |
4

2!
∑
ε1, ε2

∑
s4, s3

∣∣∣∣∣u4PL

[
/ε2

i

/pF −mF
/ε1 + /ε1

i

/p′F −mF
/ε2

]
PRv3

∣∣∣∣∣
2

, (3.19)

where p′F = p2 − p3 is the momentum of F in the u-channel diagram. The remaining
calculation is straightforward, though more complicated. A convenient approach is to sepa-
rate the summation of vector polarization and the trace of Dirac matrices in the way similar
to the first step in eq. (3.18), then compute the trace using Package-X [33] before the Lorentz
indices are contracted. The result reads:

S|M|2 = |gν |4K
2m4

B

(
t−m2

F

) 2 (u−m2
F

) 2 , (3.20)
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where

K ≡ −4m8
B

[
6m2

F (t+ u)− 6m4
F + t2 − 8tu+ u2

]
−16m6

B(t+ u)
(
t−m2

F

) (
u−m2

F

)
+m4

B

[
m4
F

(
7t2 − 6tu+ 7u2

)
− 8m2

F tu(t+ u) + 4tu
(
t2 + u2

)]
−4m2

Bm
4
F (t− u)2(t+ u) +m4

F tu(t− u)2. (3.21)

Note that the result is, as it should, symmetric under t↔ u.

3.7 F annihilation (scalar case)
This is the dominant process of νR-genesis for subcase (III-2), assuming B is a scalar boson.
In the diagram for subcase (III-2) in table 1, the upper and lower vertices correspond to
gνBFPRνR and g∗νB†νRPLF .

As previously discussed [see text below eq. (3.8)], when F is in the initial state, we treat
it as polarized scattering which implies that we should sum over the initial spins, rather than
taking the average. Thus, the squared amplitude reads:

|M|2 =
∑
s1, s2

∑
s4, s3

∣∣∣∣∣g∗νu4PLu2
i

p2
B −m2

B

gνv1PRv3

∣∣∣∣∣
2

. (3.22)

The calculation is straightforward and leads to:

|M|2 = 4|gν |4
|t−m2

B|2
(p1 · p3)(p2 · p4) = |gν |4

(
t−m2

F

t−m2
B

)2

. (3.23)

3.8 F annihilation (vector case)
This is the dominant process of νR-genesis for subcase (III-2), assuming B is a vector boson.
For a vector mediator, we modify eq. (3.22) as follows:

|M|2 =
∑
s1, s2

∑
s4, s3

|g∗νu4PLγµu2
i

p2
B −m2

B

gνv1γ
µPRv3|2 (3.24)

= |gν |4

|p2
B −m2

B|2
tr
[
/p4PLγµ(/p2 +m2)γνPR

]
tr
[
(/p1 −m1)γµPR/p3PLγ

ν
]
. (3.25)

The result is

|M|2 = 16|gν |4
|t−m2

B|2
(p1 · p4)(p2 · p3) = 4|gν |4

(
u−m2

F

t−m2
B

)2

. (3.26)

4 Approximate estimation

In this section, we analytically solve eqs. (2.3) and (2.6) with a few crude approximations
made on the collision terms and the temperature dependence of g(ρ)

? and g(P )
? .

Since ρSM is much larger than ρνR , the energy transfer from SM particles to νR has
negligible effect on the SM sector. Therefore, the right-hand side of eq. (2.6) can be neglected
and the co-moving entropy of the SM sector is conserved, which implies

dsSM
dt

= −3HsSM, (4.1)
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where sSM is the entropy density of the SM. Using eq. (4.1), we substitute dt → dsSM in
eq. (2.3) and obtain

dρνR
dsSM

− 4
3
ρνR
sSM

≈ − CνR
3HsSM

. (4.2)

The left-hand side of eq. (4.2) can be written as a total derivative according to d(ρνRs
−4/3
SM ) =

s
−4/3
SM (dρνR − 4

3ρνRs
−1
SMdsSM):

dY

dsSM
≈ − CνR

3Hs7/3
SM

, (4.3)

where we introduced the yield
Y ≡ ρνR

s
4/3
SM

. (4.4)

Therefore, by integrating eq. (4.3) with respect to sSM, we obtain the solution for Y :

Y ≈
∫ ∞
sSM

CνR

3Hs̃7/3
SM

ds̃SM. (4.5)

In the freeze-in regime, the contribution of the back-reaction, that is, the second part in the
squared bracket in eq. (2.4), is typically negligible and CνR can be approximately treated as
a function of the SM temperature T . Since sSM is essentially a function of T , for practical
use, we write eq. (4.5) as an integral of T :

ρνR(T ) ≈ s4/3
SM(T )

∫ ∞
T

CνR(T̃ )
3H(T̃ )s7/3

SM(T̃ )
s′SM(T̃ )dT̃ . (4.6)

Eq. (4.6) is the formula we will use to approximately estimate the abundance of νR. To
proceed with the integration in eq. (4.6), we need to take some power-law approximations.

4.1 Power-law approximation of collision terms

Decay processes. For decay processes, when the contribution of back-reaction can be
neglected, we estimate the collision term as follows

CνR ∼ NνRS|M|
2
∫
E3dΠ1dΠ3dΠ4(2π)4δ4(p1 − p3 − p4)f1, (4.7)

where S|M|2 for decay processes is actually a constant that can be fully determined by mB,
mF and gν — see table 1. Therefore, we can extract it out of the integral. The δ function can
be removed using the procedure introduced in appendix B. According to eq. (B.5), we get

CνR ∼ NνRS|M|
2
∫
E3
|p1|2d|p1|dc1dφ1

(2π)32E1

|p3|2dc3dφ3
(2π)32E3

2π
2E4

J−1f1, (4.8)

where dci = d cos θi and J is an O(1) quantity with its explicit form given in eq. (B.6).
We further make the approximation that f1 is either O(1) or exponentially suppressed, for
T > E1/3 or T < E1/3, respectively. Therefore, we can remove J−1f1 in eq. (4.8) and replace∫
d|pi| → T :

CνR ∼ NνRS|M|
2 4π〈|p1|2〉T
(2π)32〈E1〉

4π〈|p3|2〉
2(2π)3

2π
2〈E4〉

. (4.9)
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Here 4π comes from
∫
dcidφi and “〈 〉” stands for mean values in the integral. Note that

when T � m1, f1 would exponentially suppress the result. So we only consider the regime
in which the temperature is larger or comparable to m1, which implies that 〈Ei〉 and 〈|pi|2〉
are roughly of the order of T and T 2. Hence we replace 〈Ei〉 → T , 〈|pi|2〉 → T 2 and get

CνR ∼


1

16π3NνRS|M|2T 3 (T & m1/3)
0 (T . m1/3)

, (for B/F decay) , (4.10)

where m1 is mB or mF if the initial particle is B or F , respectively.

Annihilation processes. For annihilation processes, the derivation is similar though there
are two noteworthy differences. First, there is an additional 〈dΠ2〉 ∼ 4π〈|p2|2〉T

(2π)32〈E2〉 , which contrib-
utes to CνR by a factor of T 2

(2π)2 . Besides, since S|M|2 depends on the momenta in the integral,
to extract it out of the integral we replace it with its mean value and obtain

CνR ∼


1

64π5NνR〈S|M|2〉T 5 (T & m1/3)
0 (T . m1/3)

, (for B/F annihilation), (4.11)

where m1 is mB or mF , depending on which particles annihilates. To estimate 〈S|M|2〉, we
neglect some O(1) quantities in the expressions in table 1 and take t→ −2〈p1 · p3〉 ∼ −2T 2,
u→ −2〈p1 · p4〉 ∼ −2T 2. The result reads

〈S|M|2〉 ∼ |gν |4
T 4

(T 2 +m2
X/2)2 , (4.12)

where mX denotes the mediator mass:

mX ≡
{
mF for case (II-2)
mB for case (III-2)

. (4.13)

Substituting eq. (4.12) in eq. (4.11), we obtain

CνR ∼


1

64π5NνR |gν |4T 5 mX√
2 . T

1
16π5NνR |gν |4m

−4
X T 9 1

3m1 . T . mX√
2

0 T . 1
3m1

, (for B/F annihilation), (4.14)

where mX is defined in eq. (4.13), m1 takes mB for subcase (II-2) or mF for subcase (III-2),
respectively.

Eqs. (4.10) and (4.14) are our power-law approximations of collision terms for decay
and annihilation processes, respectively. Since we have used several approximations in the
derivation, it should only be an estimation of the order of magnitude. In figure 1, we compare
our power-law approximation of the collision term for subcase (III-2) with the exact result
which is obtained using the method introduced in appendix B.

4.2 Approximate result

With the power-law approximations of collision terms in eqs. (4.10) and (4.14), we are ready
to approximately estimate the abundance of νR using the integral in eq. (4.6). The Hubble
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∝ T
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9

T ∼ mB
19931126

Numerical result

Power-law approximation

Figure 1. Power-law approximation of the collision term of F + F → νR + νR compared with the
numerical (exact) result. In this illustration, the approximate curve is produced according to eq. (4.14)
with NνR = 1, mB = 10GeV andmF = 0.1GeV. The numerical result is obtained using the method in
appendix B with the same values, assuming B is a scalar and initial/final particles obey Fermi-Dirac
statistics.

parameter is determined by H2 = 8πρtot/(3m2
pl), where ρtot is the total energy density and

mpl = 1.22 × 1019 GeV is the Planck mass. We take ρtot ≈ ρSM in the Hubble parameter
so that

H ≈

√
8π3g

(ρ)
?

90
T 2

mpl
. (4.15)

In the SM entropy density,

sSM(T ) = 2π2

45 g
(s)
? T 3, (4.16)

we neglect the small difference between g(s)
? and g(ρ)

? , and use g? ≈ g
(s)
? ≈ g

(ρ)
? . In addition,

we treat g? as a constant inside the integral. When we compute the derivative s′SM(T ) and
the integral, the mean value 〈g?〉 is used instead of g?.

For the following power-law form of CνR ,

CνR(T ) ≈ Λn−1T 6−n, (n > 0), (4.17)

the integral in eq. (4.6) converges for T → ∞. This can be seen from power counting:
sSM ∼ T 3, s′SM ∼ T 2, H ∼ T 2, CνRs′SM/(Hs

7/3
SM) ∼ 1/Tn+1. To make the integral

∫∞ 1
Tn+1dT

converge for T →∞, we need n > 0. Therefore, in the freeze-in mechanism when T increases
to sufficiently large vales, CνR should increase slower than T 6. Indeed, one can see that both
eqs. (4.10) and (4.14) satisfy this requirement.

Substituting eqs. (4.10) and (4.14–4.16) in eq. (4.6), we obtain

ρνR
ρSM

∼ NνRS|M|
2 15
√

5g1/3
? mpl

16π13/2〈g?〉11/6 ×

T
−3 (T & m1/3)

(m1/3)−3 (T . m1/3)
, for B/F decay, (4.18)
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and

ρνR
ρSM

∼ NνR |gν |
4 45
√

5g1/3
? mpl

64π17/2〈g?〉11/6


1
T

mX√
2 . T

4
√

2
3mX −

4T 3

3m4
X

m1
3 . T . mX√

2
4
√

2
3mX −

4m3
1

81m4
X

T . m1
3

, for B/F annihilation.

(4.19)
Note that g? = g?(T ) is a T -dependent quantity and 〈g?〉 is the effective mean value used in
the integral. As an approximation, one can take 〈g?〉 ∼ g?(T = mX) in eq. (4.19) or 〈g?〉 ∼
g?(T = m1) in eq. (4.18), because νR is the most efficiently produced at this temperature.

We further translate the results of ρνR/ρSM into ∆Neff according to eq. (2.8), which
results in

∆Neff ∼ 2.7mplS|M|2

〈g?〉11/6m3
1
∼ 0.1×

( 100
〈g?〉

)11/6 (700 GeV
m1

) ∣∣∣∣ gν10−7

∣∣∣∣2 , (4.20)

for B or F decay, and

∆Neff ∼ 1.4× 10−2 mpl|gν |4

〈g?〉11/6mX
∼ 0.1×

( 100
〈g?〉

)11/6 (400 GeV
mX

) ∣∣∣∣ gν10−3

∣∣∣∣4 , (4.21)

for B or F annihilation.
Eqs. (4.20) and (4.21) are our final results for the approximate estimation. Here m1 is

the initial particle mass and mX is mF for case (II-2) and mB for case (III-2). We stress that
the results presented here are based on several approximations which might deviate from the
exact result by one or even two orders of magnitude — see figure 1 for example. The results
should only be used to qualitatively estimate the order of magnitude. In particular, since
we ignored the back-reaction, it would be incorrect to apply eqs. (4.20) and (4.21) to large
∆Neff due to saturated production rates. If the freeze-in process happens at temperatures
well above the electroweak scale and νR has been decoupled since then, we know that ∆Neff
should be smaller than 0.14 [7, 10]. This provides a useful criterion to check whether the
back-reaction can be neglected or not.

In the next section, we will discuss an example in which our approximate result is
compared with the exact one, namely when Dirac neutrino masses are generated by the SM
Higgs mechanism.

5 The SM Higgs as an example

Let us assume neutrinos are Dirac particles and their masses originate from tiny Yukawa
couplings with the SM Higgs (flavor indices are ignored here),

L ⊃ YνLH̃νR, (5.1)

where L = (νL, eL)T , H̃ = iσ2H
∗ and H = 1√

2(0, v + h)T in the unitary gauge. Here h is
the Higgs boson and v ≈ 246GeV. Eq. (5.1) gives rise to neutrino masses mν = v√

2Yν , which
implies that the Yukawa couplings should be

Yν =
√

2mν

v
= 5.7× 10−13

(
mν

0.1 eV

)
. (5.2)
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Figure 2. The SM Higgs as an example. Taking the Yukawa coupling in eq. (5.2), we compute the
effect of the Higgs-νR–νL coupling on the νR abundance in the early Universe and obtain ∆Neff ≈ 7.5×
10−12. The blue curve is obtained by numerically solving the Boltzmann equation and invoking Monte-
Carlo integration of the phase space. The orange curve is obtained using the power-law approximation
— see eq. (4.18). The green curve assumes Maxwell-Boltzmann statistics, so that the collision term
can be analytically formulated as a Bessel function in eq. (5.4).

In the unitary gauge νR couples to the SM only via L ⊃ Yν√
2hνLνR. According to our discussion

in section 2, the dominant process7 for νR production is Higgs decay: h→ νR+νL. According
to table 1, the squared amplitude is

|M|2 = 1
2Y

2
ν m

2
h, (5.3)

where mh ≈ 125GeV is the Higgs mass. In the Maxwell-Boltzmann (MB) approximation,
the collision term of h→ νR + νL can be computed analytically according to appendix A —
see also ref. [20]. The result reads:

CνR ≈ NνR |M|
2 m2

h

64π3TK2

(
mh

T

)
, (MB approximation), (5.4)

where K2 is a K-type Bessel function of order 2. Since K2(x) ≈ 2x−2 for x� 1 and K2(x) ∼
e−x for x � 1, eq. (5.4) is approximately consistent with the power-law approximation in
eq. (4.10).

To obtain the exact result using Bose-Einstein and Fermi-Dirac distributions, one has to
invoke Monte-Carlo integration, which is detailed in appendix B. In figure 2, we present the
results obtained from exact numerical calculations and the aforementioned approximations
(MB and power-law).

7At low temperatures (T � mh), other processes such as νL + νL → νR + νR have higher production rates
than h → νR + νL because the latter is exponentially suppressed. However, the overall contribution of the
former to the accumulated ρνR is still negligible, which can be estimated using the power-law approximation
in section 4.

– 15 –



J
C
A
P
0
3
(
2
0
2
1
)
0
8
2

Taking the low-temperature value of the blue curve in figure 2 and using eq. (2.8), we
obtain

∆Neff ≈ 7.5× 10−12
(

mν

0.1 eV

)2
. (5.5)

This is a precise result on ∆Neff that originates from the SM Higgs interaction with Dirac
neutrinos.

6 Numerical approach

In this section, we numerically solve8 the Boltzmann equations (2.3) and (2.6) to investigate
the evolution of the νR abundance for all cases outlined in table 1. Although solving the
differential equation itself is not difficult, computing the collision term CνR which is a 9-
or 12-dimensional integral is computationally expensive. In some simple cases, the collision
term is analytically calculable assuming that all thermal species obey the Maxwell-Boltzmann
statistics. Known examples include decay of a massive particle to two massless particles (used
in section 5) and 2 → 2 scattering of four massless particles with contact interactions. The
analytical expressions can be derived following the calculations in appendix A of ref. [34] and
appendix D of ref. [35], and the results can be found, e.g., in appendix A of this paper (for
1→ 2) or appendix C in ref. [10] (for 2→ 2). More complicated collision terms with Fermi-
Dirac/Bose-Einstein statistics and/or with more massive states and/or with and non-contact
interactions, can only be evaluated accurately via numerical approaches.

For numerical evaluation of high-dimensional integrals, usually one has to adopt the
Monte-Carlo method. Monte-Carlo integration of multi-particle phase space is often used in
collider phenomenology studies and has been implemented in a variety of packages including
CalcHEP [36] and similar other tools. However, since the Monte-Carlo module in CalcHEP
is more dedicated to calculations of cross sections, in order to compute the collision terms
more conveniently and efficiently,9 we develop our own Monte-Carlo module using similar
techniques to that in appendix I of the CalcHEP manual.10 The details are presented in
appendix B. As aforementioned, for both 1→ 2 and 2→ 2 processes, there are special cases
with known analytical results. We have checked that our Monte-Carlo module can accurately
reproduce those results.

It it important to note that when the νR temperature TνR is much smaller than the
SM temperature T , the collision term CνR(T, TνR), as a function of T and TνR , is almost
exclusively determined by T , i.e., CνR(T, TνR) ≈ CνR(T, 0). When TνR is approaching T , in
order to take the back-reaction into account, we use

CνR(T, TνR) ≈ CνR(T, 0)− CνR(TνR , 0), (6.1)

which, as we have numerically checked, turns out to be a rather accurate approximation.
Note that CνR(T, TνR) constructed in this way satisfies the condition of thermal equilibrium:
CνR(T, TνR) = 0 when T = TνR . Furthermore, this treatment can be justified from analytical
results as well. Taking subcase (III-2) for example, we know that when mF � T � mB

8The code is publicly available at https://github.com/xuhengluo/Thermal_Boltzmann_Solver.
9In a thermal distribution, the particle energy in principle can be infinitely large, though this is expo-

nentially suppressed. To improve the efficiency of computation, we include this property of collision terms
directly in the Monte-Carlo module.

10See http://theory.npi.msu.su/∼pukhov/CALCHEP/calchep_man_3.3.6.pdf.
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there is an analytical result: CνR ∝ T 9 − T 9
νR

[10], which indeed can be decomposed in the
form of eq. (6.1).

We comment here that when νR is not in thermal equilibrium, the temperature TνR is not
well defined. Actually particles produced by freeze-in usually have non-thermal distributions
very different from the Fermi-Dirac one (see e.g. [37, 38]). Nevertheless, we find that in our
case using the Fermi-Dirac distribution for νR causes very little deviation from the true value
because the shapes of f3 and f4 affect the result mainly via the backreaction term which is
negligible when ρνR is small. When ρνR saturates the upper bound of thermal equilibrium, it
enters the freeze-out regime where the Fermi-Dirac distribution with a well-defined TνR can
be used. Only in a quite narrow window when ρνR/ρνL is approaching 1 (i.e. in the transition
from the freeze-in to freeze-out regimes), the specific form of backreaction matters. We leave
possible refinements in this window to future work.

By applying the Monte-Carlo procedure to each process in table 1 with the assumption
of eq. (6.1), we obtain the numerical values of the collision terms which will be passed to the
differential equation solver to solve ρνR . Theoretically, the Boltzmann equations should be
solved starting from the initial point at T = ∞ with ρνR = 0. According to our power-law
analyses in section 4, if we set the initial point at a finite T with ρνR = 0, the deviation δρνR
from the true value is

δρνR/ρνR ∼
{
O(m3

B,F /T
3) for decay

O(mB,F /T ) for annihilation
, (6.2)

where mB,F = max(mB,mF ). Therefore to limit the error within, e.g., 1%, one only needs
to set T > O(102mB,F ).

Last, we note that the Boltzmann equations (2.3) and (2.6) can be combined as

dρνR
dρSM

= 4HρνR − C
(ρ)
νR

3H(ρSM + PSM) + C
(ρ)
νR

. (6.3)

We use eq. (6.3) to avoid involving the time parameter t for the sake of stability of the
Boltzmann equation solver. Occasionally (when νR is strongly coupled to the SM plasma),
we use dTνR/dTSM instead of dρνR/dρSM and impose an upper bound TνR ≤ TSM in the
Boltzmann equation solver.

In the upper panels of figure 3 we present the solutions obtained from eq. (6.3) for several
selected samples for decay (left) and annihilation (right) processes. The former includes four
subcases: (I-1), (I-2), (II-1) and (III-1); and the later includes two subcases: (II-2) and
(III-2). Their collision terms are computed according to eq. (6.1) with CνR(T, 0) given as
follows:

C(I-1)
νR

(T, 0) = S|M|2
∫
dΠ1dΠ3dΠ4

E3
eE1/T − 1

[
1− 1

eE4/T + 1

]
(2π)4δ4, (6.4)

C(I-2)
νR

(T, 0) = S|M|2
∫
dΠ1dΠ3dΠ4

E3
eE1/T + 1

[
1 + 1

eE4/T − 1

]
(2π)4δ4, (6.5)

C(II-1)
νR

(T, 0) = S|M|2
∫
dΠ1dΠ3dΠ4

E3
eE1/T − 1

(2π)4δ4, (6.6)

C(III-1)
νR

(T, 0) = S|M|2
∫
dΠ1dΠ3dΠ4

E3
eE1/T + 1

(2π)4δ4, (6.7)
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Figure 3. Upper panels: the energy density of right-handed neutrinos ρνR obtained by numerically
solving the Boltzmann equations (2.3) and (2.6) for all cases listed in table 1. Lower panels: contri-
butions of νR to Neff for varying gν . Here m1 is the initial particle mass of the decay process and mX

is the internal propagator mass of the annihilation process. Other relevant parameters are specified
in the text.

C(II-2)
νR

(T, 0) =
∫
dΠ1dΠ2dΠ3dΠ4

(2π)4δ4E3S|M|2(
eE1/T − 1

) (
eE2/T − 1

) , (6.8)

C(III-2)
νR

(T, 0) =
∫
dΠ1dΠ2dΠ3dΠ4

(2π)4δ4E3S|M|2(
eE1/T + 1

) (
eE2/T − 1

) . (6.9)

Here δ4 is short for δ4(p1 − p3 − p4) or δ4(p1 + p2 − p3 − p4). For S|M|2, we take the scalar
results from table 1. Note that despite S|M|2 being the same for subcases (I-1) and (II-1),
or for subcases (I-2) and (III-1), the above expressions of CνR for these cases are different.
The initial particle mass, m1, should be either mF or mB, as already specified in table 1
for each subcase. We select in figure 3 three representative values of m1: 1 TeV, 1GeV, and
100MeV, with gν = 10−8 (2.8× 10−4), 1.6× 10−10 (4.4× 10−5), and 2× 10−11 (1.8× 10−5)
in the left (right) panel, respectively. In figure 3, we set mF = 0 if mF < mB or mB = 0 if
mB < mF ; the effect of nonzero mF or mB is shown in figure 4.

In the lower panels of figure 3, we show the contribution to Neff according to eqs. (2.8)
or (2.9) as a function of gν with mF and mB being the same as in the upper panel. Results
for subcases (II-1) and (III-1) are not presented in the lower left panel because, as already
suggested by the upper left panel, they would be in between subcases (I-1) and (I-2). We
confront the results with current and future experimental bounds on ∆Neff from Planck
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Figure 4. Similar to figure 3 but in order to illustrate the effect of min(mF , mB) 6= 0, we compare
curves of mF = mB/2 with mF = 0, assuming subcases (I-1) and (III-2) in the left and right panels,
respectively. Other relevant parameters are specified in the text.

2018 [21, 22], the Simons Observatory (SO) [24], the South Pole Telescope (SPT-3G) [23],
and CMB-S4 [25, 26]. The Planck 2018 measurement gives Neff = 2.99±0.17 (1σ) which after
subtracting the νL contribution (2.99−3.045 = −0.055) is recast as ∆Neff < 0.17×2−0.055 =
0.285 at 2σ C.L. The SO and SPT-3G sensitivities are similar (∆Neff < 0.12 at 2σ C.L.),
labeled together as SO/SPT-3G. Finally, the future CMB-S4 limit is expected to reach 0.06,
also at 2σ C.L.

As shown in figure 3, for decay processes the production of νR is most efficient when
the temperature is lower than the initial particle mass m1. Typically most νR are produced
within 0.1m1 . T . m1. For annihilation processes, the production is most efficient around
T ∼ mX , the mass of the internal particle in the process. After that, the ρνR/ρSM curves
would remain stable if the composition of the SM plasma was not changed. However, at low
temperatures due to many heavy SM species annihilating or decaying into light ones, the
comoving energy density of SM increases and hence ρνR/ρSM decreases when νR is no longer
effectively produced. The most significant decrease in the curve appears during 100 MeV .
T . 1GeV, where g? becomes substantially smaller. This feature holds for GeV or TeV
masses, for lighter particles νR has not been produced yet in significant amounts.

The differences between dashed and solid curves in figure 3 are caused by differences of
CνR in eqs. (6.4)–(6.9), or more specifically, by the difference between Fermi-Dirac and Bose-
Einstein statistics. The “±” and “∓” signs in eqs. (2.4) and (2.5) can lead to enhancement
or suppression of ρνR by a factor of R with R . 1.5 (decay) or R . 4 (annihilation).
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Consequently, the effect on ∆Neff-gν in the lower panels is approximately a horizontal shift
by a factor of R1/2 (decay) or R1/4 (annihilation) because in the freeze-in mechanism we
have ∆Neff ∝ g2

ν and ∆Neff ∝ g4
ν for decay and annihilation processes respectively. The

effect of nonzero min(mB, mF ) is quite similar, as shown in figure 4. Taking subcases (I-1)
and (III-2) as examples, in which mB is assumed to be larger than mF , we plot curves for
both mF = mB/2 and mF = 0. The difference can be accounted for also by the R factor
which is typically around 2 or 3, leading to a R1/2 or R1/4 horizontal shift of the ∆Neff-gν
curves. Note that the case of mF = 0 could correspond to F being the left-handed component
of the Dirac neutrinos.

Here we comment on a noteworthy behavior of large gν when mX , the propagator mass
in the annihilation case, is above the electroweak scale. For sufficiently large gν , νR can
reach thermal equilibrium at a temperature well above the electroweak scale. If the initial
particle mass m1 = min(mB, mF ) is also above the electroweak scale, then at a lower (yet
still above the electroweak scale) temperature νR will leave thermal equilibrium because the
collision term is exponentially suppressed at T � m1. Therefore, in this case, νR reaches and
leaves thermal equilibrium at temperatures above the electroweak scale, leading to a constant
∆Neff ≈ 0.14 [7, 10]. If m1 is below the electroweak scale, the decoupling temperature
generally depends on gν . As shown by the blue dashed and solid curve in the lower right
panel in figure 4, larger gν may or may not increase ∆Neff , depending on whether m1 is below
or above the electroweak scale.

In figure 5, we further explore the dependence of ∆Neff on even larger gν . Here we take
subcase (III-2) with mB = 1TeV and m1 = mF = {0,mB/2}. For more general values of m1
below the electroweak scale, the result would be between the blue solid and dashed curves.
As has been expected, for larger gν , the blue solid curve further increases and eventually
reaches the maximal value (∆Neff = 3) that νR could produce (in this case we assume F is
νL); while the blue dashed curve is insensitive to gν , approximately keeping a constant value
of ∆Neff at 0.14.

Figure 5 also shows explicitly the transition of the freeze-in to freeze-out regimes. Ac-
tually, for strong couplings νR had been in thermal equilibrium, thus its relic abundance
depends on how late it would decouple from the SM plasma rather than how fast it was ini-
tially produced. As indicated by the lower panel, (TνR/T )4

max, defined as the maximal value
of (TνR/T )4 during the entire evolution, reaches 1 when gν & 2 × 10−3 (the orange dashed
line). This is a good measure for the transition from the freeze-in to the freeze-out regime.

Finally, by requiring that the contribution of νR to Neff does not exceed the current
limit or future sensitivities of the aforementioned CMB experiments, we can obtain upper
bounds on gν . They are presented in figure 6, where we select subcases (I-1) and (III-2)
for the decay and annihilation curves, respectively. Here we set min(mB,mF ) = 0 and
max(mB,mF ) ≥ 102 MeV. The latter is to ensure that the calculation is not affected by
νL decoupling. As previously discussed, for decay processes most νR are produced within
0.1 . T/max(mB,mF ) . 1. For min(mB,mF ) = 0, we assume that B and F do not con-
tribute to ∆Neff significantly (e.g. F may be νL). One can also set min(mB,mF ) to 10MeV
for example to suppress their contributions to ∆Neff . This causes very insignificant changes
in the final results. As we have demonstrated in figures 3 and 4, selecting other cases or
using nonzero values of min(mB,mF ) typically increases or reduces ∆Neff by a factor of
R ≈ 2 ∼ 4 and hence the bounds on gν by a factor of R1/2 or R1/4. However, since the
Planck 2018 limit on ∆Neff is above 0.14, for large masses the bounds can be weakened
drastically and become more mass dependent. In fact, if νR production and decoupling (if
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Figure 5. Transition from the freeze-in to freeze-out regimes when gν increases to sufficiently large
values. The shown example takes mB = 1TeV in subcase (III-2). In the lower panel, the maximal
temperature ratio (TνR/T )4

max indicates whether νR had been in thermal equilibrium. In the upper
panel, the two plateaus at ∆Neff ≈ 0.14 and ∆Neff ≈ 3 correspond to νR decoupling above the
electroweak scale and around the MeV scale, respectively. The latter does not exist for the dashed
curve because with mF = mB/2, the collision term becomes exponentially suppressed below the
electroweak scale — see the text for more discussions.

it ever reached thermal equilibrium) are all well beyond the electroweak scale (this leads to
∆Neff ≤ 0.14), Planck 2018 cannot provide a valid constraint on it. For the SO/SPT-3G and
CMB-S4 curves, because these future experiments will be probing the freeze-in regime for
large masses, the curves will not be significantly changed if nonzero values of min(mB,mF )
are used. Generally, we can draw the conclusion that for max(mB,mF ) < 1GeV, the current
CMB measurement excludes gν & 10−9 or gν & 10−3 via the decay or annihilation processes,
respectively. For larger masses, the Planck 2018 bounds are more mass-dependent (depend-
ing on both min(mB,mF ) and max(mB,mF )), while the SO/SPT-3G and CMB-S4 bounds
mainly depend on max(mB,mF ), where power-law extrapolations according to eqs. (4.20)
and (4.21) can be used.

7 Conclusion

Dirac neutrinos with new interactions can have a measurable effect on the effective number of
relativistic neutrino species Neff in the early Universe, courtesy of a possible thermalization of
the right-handed components νR. We have computed here the effect of new vector and scalar
interactions of right-handed neutrinos with new bosons and chiral fermions. Various special
cases of this framework exist, depending on which particle is in equilibrium and which one is
heavier, see table 1. We focused on freeze-in of the right-handed neutrinos, and confronted
the results with present and upcoming precise determinations of ∆Neff .

Approximate analytical results are given in eqs. (4.20) and (4.21); the outcome of a
numerical solutions of the relevant equations is given in figures 3 to 6. For instance, if
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Figure 6. Upper bounds on gν obtained from the requirement that ∆Neff does not exceed the current
measurement of Planck 2018 [21, 22] or the sensitivity of future CMB experiments including SO [24],
SPT-3G [23], and CMB-S4 [25, 26].

decay (scattering) of new particles is the dominating freeze-in process, limits on the new
coupling constants of order 10−4 (10−9) may be constrained for new particle masses around
GeV. Chiral fermions being in equilibrium and massless can correspond to SM neutrinos.
This also allows to consider the case of Dirac neutrino masses generated by the SM Higgs
mechanism, which gives (see figure 2) ∆NSM

eff ≈ 7.5× 10−12 (mν/(0.1 eV))2.
The results of this paper cover a wide range of possibilities, and demonstrate once more

that cosmological measurements can constrain fundamental properties of particle physics, in
particular neutrino physics.
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A Analytical results of 3-particle phase space integrals

Since in many 1 → 2 processes the squared amplitudes |M|2 are energy-independent, it is
useful to present the analytical results of the following integrals:

I(n) ≡
∫
dΠ1dΠ3dΠ4(2π)4δ4(p1 − p3 − p4)e−E1/T , (A.1)

I(ρ) ≡
∫
dΠ1dΠ3dΠ4(2π)4δ4(p1 − p3 − p4)e−E1/TE3, (A.2)

where m1 6= 0 and m3 = m4 = 0.
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The results are

I(n) ≡ 1
32π3m1TK1

(
m1
T

)
, (A.3)

I(ρ) ≡ 1
64π3m

2
1TK2

(
m1
T

)
, (A.4)

where K1 and K2 are K-type Bessel functions of order 1 and 2 respectively. Next we derive
these two analytical results.

First, we substitute (2π)3δ3(p1 − p3 − p4) =
∫
ei(p1−p3−p4)·λd3λ and dΠi = p2

i dpidΩi
(2π)32Ei in

eqs. (A.1) and (A.2):

I ≡ 1
(2π)9

∫
p2

1dp1
2E1

p2
3dp3
2E3

p2
4dp4
2E4

2πδ(E1 − p3 − p4)e−E1/TUIΩ, (A.5)

where U = E3 for I(ρ) or 1 for I(n), and IΩ contains the angular part of the integral:

IΩ =
∫
d3λ

∫
dΩ1e

ip1·λ
∫
dΩ3e

−ip3·λ
∫
dΩ4e

−ip4·λ. (A.6)

Since
∫
dΩie

±ipi·λ =
∫
dcidφie

±ipiλci = 4π sin(piλ)
piλ

, we further get

IΩ = (4π)3
∫
d3λ

sin(p1λ)
p1λ

sin(p3λ)
p3λ

sin(p4λ)
p4λ

= (4π)4
∫ ∞

0

dλ

p1p3p4λ

∑
η1,η3,η4

−η1η3η4
8 sin (η1p1λ+ η3p3λ+ η4p4λ)

= 32π5

p1p3p4

[
p1 − p3 + p4
|p1 − p3 + p4|

+ p1 + p3 − p4
|p1 + p3 − p4|

− p1 − p3 − p4
|p1 − p3 − p4|

− p1 + p3 + p4
|p1 + p3 + p4|

]
, (A.7)

where in the second line ηi = ±1 denotes positive/negative signs, and in the last line we have
used

∫ dλ
λp sin(λp) = 1/|p|.

Using eq. (A.7), it is straightforward to integrate out p3 and p4 in eq. (A.5), leading to

I(n) = 1
(2π)9

∫ 16π6p2
1

E1
e−E1/Tdp1 = 1

32π3

∫ ∞
m1

p1e
−E1/TdE1, (A.8)

I(ρ) = 1
(2π)9

∫
8π6p2

1e
−E1/Tdp1 = 1

64π3

∫ ∞
m1

p1E1e
−E1/TdE1. (A.9)

The above integrals can be expressed in terms of the Bessel functions, as already given in
eqs. (A.3) and (A.4).

B Monte-Carlo integration of general collision terms

In this appendix, we introduce the techniques we use to numerically evaluate the phase space
integrals of collision terms. The method is based on Monte-Carlo integration and in principle
applies to any m→ n (m,n = 1, 2, 3, · · · ) processes.

Consider the following integral

I[F ] ≡
∫
dΠ1dΠ2 · · · dΠm+n(2π)4δ4(p1 + p2 + · · · pm− pm+1−· · · pm+n)F(p1, p2, · · · ), (B.1)
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where p1, p2, · · · , pm (pm+1, · · · , pm+n) are momenta of initial (final) particles,

dΠi = d3pi
(2π)32Ei

, (B.2)

and F is a general function of all the momenta. For simplicity, we denote p1 + p2 + · · · pm −
pm+1 − · · · − pm+n−2 by q, and the last two momenta pm+n and pm+n−1 by p1̄ and p2̄,
respectively.

There are two technical problems in the Monte-Carlo integration that we need to deal
with properly, otherwise the Monte-Carlo integration would converge very slowly. The first
one concerns the δ function, which will be removed by integrating out some part of the
momenta. The second problem is that the integration domain is infinitely large, which can
be avoided by a proper transformation of variables.

To remove the δ function, we first integrate out p1̄ so that

I =
∫
dΠ1dΠ2 · · · dΠm+n−1

2π
2E1̄

δ(Eq − E2̄ − E1̄)F , (B.3)

where Eq, E2̄ and E1̄ are the energies of the on-shell momenta q, p1̄ and p2̄, respectively.
Note that since p1̄ has already been integrated out in eq. (B.3), instead of being a function
of p1̄, E1̄ should be interpreted as a function of q and p2̄:

E1̄ =
√
m2

1̄ + |q − p2̄|2. (B.4)

Next, we integrate out |p2̄| in eq. (B.3) and obtain

I =
∫
dΠ1dΠ2 · · · dΠm+n−2

|p2̄|2dc2̄dφ2̄
(2π)32E2̄

2π
2E1̄

J−1FΘ, (B.5)

where c2̄ = cos θ2̄, θ2̄ and φ2̄ are the polar and azimuthal angles in a spherical coordinate
system with the zenith direction aligned with q (hence p2̄ · q = |p2̄||q|c2̄), and

J−1 =
∣∣∣∣∂(E2̄ + E1̄)

∂|p2̄|

∣∣∣∣−1
=
∣∣∣∣ |p2̄|
E2̄

+ |p2̄| − |q|c2̄
E1̄

∣∣∣∣−1
, (B.6)

according to the property of δ function: δ(g(x)) = δ(x − x0) |g′(x0)|−1 with x0 being a root
of g(x0) = 0.

The Heaviside theta function Θ takes either 1 or 0 depending on whether qµ and c2̄ lead
to physical kinematics or not. Technically, it is computed as follows:

Θ =
{

1 if q2 > (m1̄ +m2̄)2 & ∆ > 0
0 otherwise

, (B.7)

where
∆ ≡ m4

2̄ +
(
m2

1̄ − q
2
)

2 − 2m2
2̄

[
q2 + 2

(
1− c2

2̄

)
|q|2 +m2

1̄

]
. (B.8)

Note that in the above expression q2 = E2
q − |q|2 is different from |q|2. The condition

q2 > (m1̄ + m2̄)2 enforces that q provides sufficient energy to generate particles 2̄ and 1̄.
This can be derived in the center-of-mass frame of particles 2̄ and 1̄, where q = 0 and it is
obvious that near the threshold both particles should be almost at rest. Slightly above the
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threshold, we need Eq to be slightly larger than m1̄ +m2̄ to produce the two particles. So in
the center-of-mass frame, Eq > m1̄ +m2̄ is necessary and sufficient for q to produce the two
particles. In other frames with nonzero values of |q|, by applying a Lorentz transformation,
we get q2 − (m1̄ +m2̄)2 > 0. The other requirement ∆ > 0 puts a further constraint on the
angles, which will be derived in eq. (B.10).

Next, we need to reconstruct p2̄ from given values of Eq, q, and θ2̄. In principle, |p2̄| in
eq. (B.5) should be interpreted as an implicit function of these quantities and φ2. However,
φ2 turns out to be irrelevant here.

Given Eq, q, and c2̄, |p2̄| is determined by

Eq =
√
m2

2̄ + |p2̄|2 +
√
m2

1̄ + |q − p2̄|2, (B.9)

which can be solved as a quadratic equation of |p2̄| and gives

|p2̄| =
c2̄|q|

(
q2 −m2

1̄ +m2
2̄

)
+ Eq

√
∆

2
(
E2
q − c2

2̄|q|
2
) . (B.10)

Eq. (B.10) implies that ∆ cannot be negative otherwise eq. (B.9) would have no real solution.
This sets a constraint on c2̄. As can be seen from eq. (B.8), for a fixed value of q2, one can
boost |q|2 to an arbitrarily large value so that the

(
1− c2

2̄

)
|q|2 term is dominant and leads

to ∆ < 0, unless 1− c2
2̄ is suppressed. So generally speaking, for very large |q|2 and nonzero

m2
2̄, the physically allowed region for 1− c2

2̄ is small. This feature could be used to improve
the efficiency of Monte-Carlo integration by limiting the sampling space of c2

2̄, though it has
not been implemented in our code.

Once |p2̄| is determined from eq. (B.10), we can readily compute E2̄, E1̄, and |p1̄|.
The second problem concerns the infinitely large domain of integration (each |pi| is

integrated from 0 to ∞). We make the following variable transformation for each |pi|:

xi ≡ exp (−|pi|/Λi) , or |pi| = −Λi log(xi), (B.11)

and integrate xi from 0 to 1. In our code we usually take Λi = 4Ti, which usually leads
to efficient convergence of the Monte-Carlo integration. The transformation also generates
another Jacobian:

Ji ≡ dxi/dpi = −xi/Λ , (B.12)

which should be included in the integration via dpi → dxi/Ji.
In summary, the Monte-Carlo integration of I can be implemented as follows:

• Randomly generate values of (xi, ci, φi) with i = 1, · · · , n + m − 2, xi ∈ (0, 1), ci ∈
(−1, 1), and φi ∈ (0, 2π);

• Construct the spatial parts of the first n+m− 2 momenta (p1, p2, · · · , pn+m−2) from
(xi, ci, φi);

• Compute their respective energies E1, E2, · · · , En+m−2 according to the on-shell con-
dition;

• Construct q = (Eq, q) with Eq = ∑n+m−2
i=1 Ei and q = ∑n+m−2

i=1 pi;

• Randomly generate c2̄ and φ2̄ in eq. (B.5);
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• Compute |p2̄| according to eq. (B.10) so that the second last momentum p2̄ = (E2̄,p2̄)
can be reconstructed;

• Reconstruct the last momentum according to p1̄ = q − p2̄;

• Evaluate the integrand in eq. (B.5) and proceed with the standard Monte-Carlo proce-
dure.11 Note that in addition to the Jacobian in eq. (B.6), there is also another Jacobian
Ji in eq. (B.12) that needs to be included.

B.1 Example: 1 → 2 processes

As the simplest example, let us apply the above method to 1→ 2 processes,

I ≡
∫
dΠ1dΠ2dΠ3(2π)4δ4(p1 − p2 − p3)F(p1, p2, p3) . (B.13)

Following the above notation, the q momentum is identical to p1 and hence q2 = m2
1 which

implies that in the Θ function the q2 > (m2 +m3)2 condition (equivalent to m1 > m2 +m3)
can be ignored. The integral is computed as follows:

I =
〈
|p1|2

(2π)32E1

|p2|2

(2π)32E2

2π
2E3

J−1J1FΘ
〉
V, (B.14)

where 〈〉 stands for the mean value after a large number of evaluations of the inside quantity,
J1 is given in eq. (B.12), and V = 1× 22 × (2π)2 is the volume of the sampling space: x1 ∈
(0, 1), c1,2 ∈ (−1, 1), φ1,2 ∈ (0, 2π). Let us apply the Monte-Carlo method to eq. (A.2), which
has a known analytical result. Taking T = m1 = 1GeV and assuming other particles are
massless, the Bessel-form expression in eq. (A.2) gives I = 8.188×10−4 GeV3. Performing the
Monte-Carlo evaluation of eq. (B.14) with 107 samples for ten times, we get I/(10−4 GeV3) =
{8.196, 8.197, 8.203, 8.190, 8.164, 8.174, 8.186, 8.176, 8.195, 8.185}, which is consistent with
the analytical result. Each evaluation with 107 samples takes about three seconds using our
code currently implemented in Python.

B.2 Example: 2 → 2 processes

Consider a 2→ 2 process with the kinematics p1 +p2 = p3 +p4 and q = p1 +p2. In this case,
we have

I =
∫
dΠ1dΠ2

|p3|2dc3dφ3
(2π)32E3

2π
2E4

J−1FΘ, (B.15)

where F contains statistical distribution functions and a scattering amplitude. The scattering
amplitude usually can be expressed in terms of p1 · p2, p1 · p3 and p2 · p3. If it contains scalar
products of p4, then we can replace p4 with p1 + p2 − p3. For example, p1 · p4 can be written
as p1 · (p1 + p2 − p3) = m2

1 + p1 · p2 − p1 · p3.
To facilitate the calculation of scalar products, it would be better to define all the

polar angles (i.e. θ’s) with respective to q. But since q is constructed from p1 and p2,
such definitions would be conceptually confusing. We perform the variable transformation:

11In principle, one can also apply more advanced methods such as adaptive Monte Carlo integration, but
we find such methods in our case often lead to biased results when the number of samples is not sufficiently
large.
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(p1,p2) → (q,p2) = (p1 + p2,p2) to avoid this confusion. Since the Jacobian of this trans-
formation is 1, after the transformation eq. (B.15) becomes

I =
∫ |q|2d|q|dcqdφq

(2π)32Eq
|p2|2d|p2|dc2dφ2

(2π)32E2

|p3|2dc3dφ3
(2π)32E3

2π
2E4

J−1FΘ, (B.16)

where c2 = cos θ2 and θ2 is defined as the angle between p2 and q.
With the proper definition of c2 (similar to c3), we have

q · p2 = EqE2 − |q||p2|c2, q · p3 = EqE3 − |q||p3|c3, (B.17)

and
p2 · p3 = E2E3 − |p2||p3| [s2s3 cos(φ2 − φ3) + c2c3] , (B.18)

where (s2, s3) ≡ (sin θ2, sin θ3). From eqs. (B.17) and (B.18), it is straightforward to obtain
any scalar products of p1, p2, p3, and p4.

It is also known that in the MB approximation, the collision terms of contact interactions
of four massless fermions are analytically calculable. For example, given

F = exp(−E1/T ) exp(−E2/T )(p1 · p2)(p3 · p4), (B.19)

the analytical result is (see table III in ref. [10]):

I = 3T 8

8π5 ≈ 1.225× 10−3 T 8. (B.20)

Performing the Monte-Carlo integration described above with 106 samples, we find that the
numerical factor typically varies from 1.22× 10−3 to 1.23× 10−3, which is in agreement with
the analytical result.
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