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Hydropower generation in the Hetch Hetchy Power System is strongly tied to snowmelt dynamics in the central
Sierra Nevada and consequently is particularly financially vulnerable to changes in snowpack availability and
timing. This study explores the Hetchy Hetchy Power System as a representative example from the broader class
of financial risk management problems that hold promise in helping utilities such as SFPUC to understand the
tradeoffs across portfolios of risk mitigation instruments given uncertainties in snowmelt dynamics. An evolution-
ary multi-objective direct policy search (EMODPS) framework is implemented to identify time adaptive stochastic
rules that map utility state information and exogenous inputs to optimal annual financial decisions. The resulting
financial risk mitigation portfolio planning problem is mathematically difficult due to its high dimensionality
and mixture of nonlinear, nonconvex, and discrete objectives. These features add to the difficulty of the problem
by yielding a Pareto front of solutions that has a highly disjoint and complex geometry. In this study, we con-
tribute a diagnostic assessment of state-of-the-art multi-objective evolutionary algorithms’ (MOEAs’) abilities to
support a DPS framework for managing financial risk. We perform comprehensive diagnostics on five algorithms:
the Borg multi-objective evolutionary algorithm, Non-dominated Sorting Genetic Algorithm I (NSGA-II), Non-
dominated Sorting Genetic Algorithm III (NSGA-III), Reference Vector Guided Evolutionary Algorithm (RVEA),
and the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D). The MOEAs are evaluated to
characterize their controllability (ease-of-use), reliability (probability of success), efficiency (minimizing model
evaluations), and effectiveness (high quality tradeoff representations). Our results show that newer decomposi-
tion, reference point, and reference vector algorithms are highly sensitive to their parameterizations (difficult
to use), suffer from search deterioration (losing solutions), and have a strong likelihood of misrepresenting key
tradeoffs. The results emphasize the importance of using MOEAs with archiving and adaptive search capabilities
in order to solve complex financial risk portfolio problems in snow-dependent water-energy systems.

1. Introduction

The Western United States (US) is strongly dependent on a com-
plex and highly interdependent suite of water and energy infrastruc-
ture systems (Voisin et al., 2018; O’Connell et al., 2019; Liu et al,,
2019). The hydrologic variability of the region coupled with growing
pressures from increasingly variable climate extremes poses risks to the
financial stability of these systems, which must find ways to cope with
the variable revenues associated with lost hydropower generation as
well as the potential need to supplement hydropower with more expen-
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sive thermal generation (Foster et al., 2015; Clarke et al., 2018). Snow-
dependent hydropower generation within California (CA) provides an
excellent example case. There is a growing need for improved deci-
sion support frameworks that are capable of helping utilities to dis-
cover and navigate the complex tradeoffs that are emerging as they
confront hydro-climatic extremes that strongly impact power generation
and their financial stability. In CA, hydropower primarily comes from
snowpack runoff stored in high-altitude reservoirs in the Sierra Nevada
mountain range. The historic 2012-2016 drought, brought on by sub-
sequent years of low precipitation and high temperatures, drastically
reduced water availability for hydropower production and uncharacter-
istically warm winters in 2014 and 2015 led to the lowest snowpack
on record in CA (Gonzalez et al., 2018). Low snowpack corresponded
to less runoff and consequently, the worst years of the drought reduced
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CA’s average hydropower production from 13% to 5% of the state’s to-
tal energy mix (Lund et al., 2018). However, in the winters of 2016
and 2017, the Sierra Nevada saw historical snowfall from a series of
strong atmospheric rivers (Gonzalez et al., 2018) that ended the per-
sistent drought and brought the percentage of hydropower production
in 2017 to 14.7% of California’s total generation mix (California En-
ergy Commission, 2018). This degree of inter-annual snowpack and
hydro-climatic variability poses a significant management challenge for
hydropower-reliant utilities Gonzalez et al. (2018). Variability in hy-
dropower generation due to fluctuations in snowpack can affect the fi-
nancial stability of hydropower-dependent utilities which often receive
revenue proportional to electricity generated while incurring fixed costs
every year, such as payments related to debt service, operations and
maintenance, and personnel. In dry periods, decreases in net revenue
can lead to an inability to make these payments, ultimately resulting in
credit rating downgrades or even bankruptcy (Kern et al., 2015; Foster
et al., 2015).

In an effort to mitigate financial volatility, hydropower-dependent
utilities can manage their hydrological risks by investing in financial
risk instruments such as hedging contracts to supplement revenue with
payouts in dry years (Foster et al., 2015). It is common for a utility to
also maintain a reserve fund to be used as a buffer in years that result
in unanticipated losses. Hamilton et al. (2020) introduces a financial
hedging instrument based on an index derived from a weighted aver-
age of February 1st and April 1st snow water equivalent depth (SWE)
observations in the Sierra Nevada. The contract, termed a contract for
differences (CFD), provides the buyer of the contract with payouts in
years of low SWE, when revenue shortfalls are likely. In return, the
buyer makes payments to the contract seller in years of high SWE,
when the utility expects to have ample revenue. The study shows that
the CFD, especially when combined with a reserve fund, is an effective
tool for managing financial risk associated with variable hydropower
revenues. Hamilton et al. (2020) apply these tools in the context of a
stochastic simulation model for the hydropower generation and rev-
enues of San Francisco Public Utilities Commission’s (SFPUC) Power
Enterprise Division. SFPUC supplies electricity, primarily produced from
hydropower, to San Francisco’s International Airport, municipal build-
ings, and a variety of customers classes (San Francisco Public Utilities
Commission, 2016).

SFPUC and power utilities in general, have a growing interest in de-
signing and optimizing portfolios of financial risk management tools.
Bolton et al. (2011) suggests that the key to effective risk management
requires consideration of both hedging tools and financial liquidity man-
agement in a state-aware and dynamic context. Traditionally, dynamic
risk management has been framed as a stochastic dynamic programming
problem (Mulvey and Shetty, 2004) but more recent studies suggest
that simulation-optimization approaches hold promise to better capture
the complex nature of real-world financial applications requiring fre-
quent and adaptive decisions that are robust to a wide variety of poten-
tial futures (Better et al., 2008). The challenge with these simulation-
optimization financial portfolio formulations, beyond being stochastic,
is that their resulting mathematical formulations are typically severely
nonlinear and must consider a broad array of objectives that encom-
pass the financial interests of the institution, such as maximizing an-
nual and minimum cash flow and minimizing portfolio complexity as
well as a reserve fund’s size. Moreover, their decision structure is analo-
gous to high dimensional control problems (Powell, 2019). These math-
ematical properties have motivated a transition towards using heuris-
tic global search algorithms such as multi-objective evolutionary algo-
rithms (MOEAs) to discover optimal tradeoff solutions.

MOEAs are population-based stochastic search tools that use mat-
ing, mutation, and selection operators to evolve a candidate popula-
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a portfolio of financial assets that minimize risk and maximize return
(Markowitz, 1952; Steinbach, 2001). However, the Markowitz model is
characterized by simplistic assumptions and has brought to light the
necessity of increasing the complexity of financial models to better
represent the dynamic conditions that real-world decision-makers face
by moving towards formulations that are highly adaptive and state-
aware (Ponsich et al., 2013). Direct Policy Search (DPS), first intro-
duced by Rosenstein and Barto in the robotic control theory litera-
ture, is classified as a simulation-based policy approximation control
formulation (Rosenstein and Barto, 2001; Powell, 2019). In short, time
sequences of decisions are abstracted as parameterized policies using
universal approximators such as radial basis functions or neural net-
works. The parameters of these policies are then optimized through
simulation-optimization to meet system objectives. The DPS approach
has a significant history in the water resources literature where it is
also known as parameterization-simulation-optimization and was first
used to model single-objective reservoir operations (Koutsoyiannis and
Economou, 2003).

The DPS methodology has been extended to the multi-objective
context with the Evolutionary Multi-Objective Direct Policy Search
(EMODPS) framework formalized by Giuliani et al. (2014) and
Giuliani et al. (2016). The EMODPS framework has, since its inception,
garnered a broad array of applications including multi-sector reservoir
operations (Desreumaux et al., 2018; Biglarbeigi et al., 2018; Quinn
et al., 2019) and energy systems (Giudici et al., 2019). Building off
of these successes, a 4-objective stochastic application of EMODPS is
formulated to create dynamic and adaptive financial risk management
strategies for SFPUC’s snowpack-dependent hydropower generation.
The financial portfolio planning policies abstract SFPUC as a state-aware
agent planning a 20-year horizon of decisions for the optimal value of
hedging contracts that the utility should buy each year and the amount
of money that should be withdrawn or deposited into the utility’s re-
serve fund. A 20-year time horizon is utilized to capture both a typical
planning period for a utility and system dynamics in response to dry and
wet years that tend to persist beyond single years. The resulting policies
take key portfolio planning input concerns and recommend a balanced
set of actions. Policy performance can be monitored and re-optimized if
performance substantially deviates from what was projected.

While offering many advantages, the success of the EMODPS ap-
proach for addressing SFPUC's financial risks is highly contingent
on the ability of the chosen MOEA to solve the highly challeng-
ing 4-objective stochastic formulation. Over the past decade of the-
oretical developments, MOEAs can now be classified into four cate-
gories of methods: (1) Pareto dominance techniques, (2) decomposition-
based population search, (3) reference vector and reference point di-
rected search, and (4) hyper-heuristics. Pareto dominance-based MOEAs
such as the Non-Dominated Sorting Genetic Algorithm II (NSGA-II)
(Deb et al., 2002), sort a population into a sequence of fronts that
are ranked to determine the next generation population. This class
of algorithms faces challenges when solving multi-objective problems
that have many objectives. As the number of objectives grow, so
does the potential for solutions to be non-dominated with respect to
one another which results in a lack of selection pressure when at-
tempting to drive the search towards convergence (Palakonda and
Mallipeddi, 2017). Decomposition-based approaches, such as a multi-
objective evolutionary algorithm based on decomposition (MOEA/D)
(Zhang and Li, 2007) use an approach such as a Tchebycheff decom-
position to break down a multi-objective problem into populations of
single-objective subproblems. Decomposition algorithms do not utilize
a dominance-based approach and therefore tend to scale more effec-
tively with increasing objective counts. However, as the number of
objectives increases, the number of corresponding subproblems grows

8/15/20, 7:14 PM

Page 2 of 23



Can modern multi-objective evolutionary algorithms discover high-d

R.S. Gupta, A.L. Hamilton and P.M. Reed et al.

™~

&
San Francisco *
R
Bay Division Pipelines \
RN

No. 1and 2

\,r;
=y

\

~N

\

No. 3 and 4

f\\’_\\

...or snow-dominated water-energy systems? | Elsevier Enhanced Reader

S

Advances in Water Resources 145 (2020) 103718

/

PowerhoUse

Moccasin (169 MW)

Powethouses

Tuolumne River e Don Pedro

Viodesto & Turloc!
Irrigation gjrycts)

Fig. 1. The high-altitude reservoirs of Hetch Hetchy, Cherry Lake, and Lake Eleanor drive the hydropower turbines at the Holm, Kirkwood, Moccasin, and Moccasin
Low-Head Powerhouses to generate electricity for the city of San Francisco and other retail customers. Some surplus power is sold to irrigation districts, and SFPUC
also buys and sells power on the wholesale market (Map adapted from San Francisco Public Utilities Commission (2018)).

erence point or reference vector based-algorithms. These algorithms
such as the Non-dominated Sorting Genetic Algorithm III (NSGA-III)
(Deb and Jain, 2014) and the Reference Vector-Guided Evolutionary
Algorithm (RVEA) (Cheng et al., 2016), target search to a reduced finite
set representation of problems’ tradeoffs or, if appropriate, a specific
sub-region of focus in the objective space to reduce computational over-
head. All of the aforementioned algorithms are non-adaptive and exploit
largely the same suite of search operators which can cause them to be
limited in generalizing to new classes of problems due to their utiliza-
tion of fixed population sizes and static operators (Burke et al., 2013).
Hyper-heuristic approaches and frameworks were created to automati-
cally generate cooperative combinations of alternative search heuristics
or operators as a means of extending their applicability across a wide va-
riety of problems. The Borg MOEA (Hadka and Reed, 2013) implements
an adaptive population sizing strategy to escape local optima and main-
tain diversity and can adaptively adjust its utilization of recombination
operators to favor those that maximize its progress during search.
Studies to date have benchmarked MOEAs’ abilities to approximate
the tradeoffs of suites of highly challenging mathematical test functions
and water resources applications (Hadka and Reed, 2012; Reed et al.,
2013; Ward et al., 2015; Zatarain Salazar et al., 2016), but have not
comprehensively considered the latest innovations in MOEAs. More-
over, there remains a dearth of studies focused on addressing the ability
of state-of-the-art MOEAs to solve high dimensional financial risk man-
agement problems, especially for complex western US water and en-
ergy systems. The SFPUC benchmarking application therefore is a valu-
able test case to provide insight into advancing our understanding of
the capabilities of state-of-the-art MOEAs to represent the tradeoffs for
these complex systems. The SFPUC test case is characterized by a high-
dimensional decision space (36 decision variables) as well as a combina-
tion of risk-neutral (mean-focused) and risk-averse stochastic objectives.
The objectives are nonlinear, non-convex, and discretely discontinuous,
yielding a Pareto front that has a severely disjoint geometry that has
not been represented in previous water resources benchmarking stud-
ies. The policy representations for the financial decisions are inherently
complex due to the utilization of constraints and multiple sets of infor-
mational inputs to inform the annual decisions that comprise the overall
optimized policy. Thus, this study broadens the suite of MOEAs tested
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of algorithms: NSGA-II, MOEA/D, the Borg MOEA, NSGA-III, and RVEA.
More broadly, this study highlights inherent mathematical challenges
posed in balancing the tradeoffs in coupled water and energy financial
risk management problems.

2. San Francisco Public Utilities Commission benchmark

As discussed in the introduction, the purpose of this study is to
contribute a comprehensive diagnostic benchmarking study to assess
the ability of modern MOEAs to solve challenging financial risk mit-
igation problems that are emerging for coupled water-energy systems
given growing hydroclimatic uncertainties. The assessment is centered
around optimizing a portfolio of annual financial instruments for Hetch
Hetchy Power Enterprise, the electricity division of SFPUC, represented
in Fig. 1. The Hetch Hetchy Power enterprise operates three high alti-
tude reservoirs: Hetch Hetchy Reservoir, Cherry Lake, and Lake Eleanor,
in the headwaters of the Tuolumne River, that are fed by snowmelt from
the central Sierra Nevada mountain range. Water from these reservoirs
drives hydropower turbines at the Holm, Kirkwood, Moccasin, and Moc-
casin Low-Head Powerhouses. The generated power is sold to customers
such as the San Francisco International Airport, municipal buildings in
San Francisco, and a small number of other retail customer classes. Sur-
plus power is often sold to irrigation district customers at a lower fixed
rate and on the wholesale market (Western Systems Power Pool) at pre-
vailing market rates. When hydropower production is insufficient to
meet firm contractual obligations to retail customers, SFPUC must pur-
chase the deficit on the wholesale market San Francisco Public Utilities
Commission (2016).

2.1. Overview of the Hetch Hetchy financial risk model

The financial stability of SFPUC’s Hetch Hetchy Power Division
is tied to the variability of snowpack in the Sierra Nevada moun-
tain range. Therefore, the utility could benefit from implementing fi-
nancial risk management tools that help to hedge against this hy-
drologic uncertainty and stabilize inter-annual hydropower revenue.
Hamilton et al. (2020) introduce a snow water equivalent (SWE) based
index contract, termed a contract for differences (CFD), as a financial
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Fig. 2. Schematic of the evolutionary multi-objective di-
rect policy search (EMODPS) approach. Stochastic in-
puts feed into the system model that simulates annual
utility operations. The utility’s financial decisions are
represented as policies whose parameters are optimized
by an MOEA. Figure adapted from Giuliani et al., 2016.

Calculate
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financial risk, especially when used in conjunction with an appropriately
sized reserve fund.

SFPUC’s use of CFD contracts in tandem with a reserve fund is
optimized using an evolutionary multi-objective direct policy search
(EMODPS) framework that utilizes closed-loop feedback and state in-
formation to inform multi-year sequences of optimal financial portfolio
decisions. Fig. 2 shows a schematic of the stochastic EMODPS frame-
work for the SFPUC benchmarking test case. The framework has four
main components: (1) stochastic scenario sampling for uncertain simu-
lation model inputs, (2) a coupled hydropower and financial risk simu-
lation model, (3) candidate parameterized policies (or rules that guide
state-aware financial decision sequences, and (4) an external MOEA that
searches the space of candidate policies for Pareto-optimal solutions that
characterize the financial risk tradeoffs for the SFPUC system.

The stochastic scenario sampling supports Monte Carlo simulations
that account for three primary sources of uncertainty: snow water equiv-
alent (SWE), power price indices, and hydropower revenue. Each sample
of these factors are input into the system model which simulates annual
utility operations and estimates revenue dynamics. The EMODPS for-
mulation of the SFPUC system informs the utility’s two major financial
decisions every water year that dictate their annual cash flow. The first
decision entails determining how much money the utility should deposit
or withdraw from the reserve fund at the end of the year, after revenues
and contract payouts or payments are observed. Then, the utility must
determine the value of the CFD contract that it should enter into for
the next water year. As illustrated in Fig. 2, these decisions are formu-
lated as decision policies whose parameters, ¢, represent the decision
variables of the optimization problem. The MOEA, shown below the
system model in Fig. 2, optimizes the policy parameters to approximate
the Pareto front (or tradeoffs) across four financial objectives. In this
study, we carefully benchmark how well state-of-the-art MOEAs solve
the EMODPS formulation of the SFPUC test case, which is representative
of the class of financial risk management problems that snow-dominated
hydropower utilities are facing.

Each of the core components of the Hetch Hetchy EMODPS problem
formulation are presented in greater detail in the remainder of Section 2.

2.2. Stochastic scenarios

For the SFPUC test case, the stochastically generated exogenous in-
puts that characterize each state of the world (SOW) are a SWE index,
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Table 1
Stochastic inputs, &,, into the simulation model.

Stochastic Input Variable  Units
SWE Index £ m
Power Price Index &l $/MWh
Hydropower Revenue  &X $

data to model key trends while better capturing rare extreme condi-
tions that may not be observed in historical records. Considering only
historical SWE, for instance, would severely underestimate the impacts
of hydrologic variability and extremes on SFPUC operations and lead to
myopic solutions that do not perform well if conditions arise that have
not been observed historically.

Synthetic SWE, ef , is the amount of water that is stored in snow-
pack that the utility can use to produce hydropower. It is generated
by first fitting historic February 1st and April 1st SWE measurements,
which are available for all years from 1952 to 2016, excluding 1963, to
gamma distributions. Then, a Gaussian copula is fit to capture the cor-
relation between the months and used to generate synthetic February
1st and April 1st SWE measurements. A weighted average of the two
measurements is used to develop an index that accounts for the relative
importance of each of the months to capturing the timing of hydropower
production. The SWE index is used to determine the net CFD payout. The
payout function, h, illustrated in Fig. 3, dictates a contract payout or pay-
ment, termed c. If SWE measurements are below a specified threshold
(e5 < 0.63 m), the utility receives compensation (¢, = h(e¥) > 0). How-
ever, for this compensation, the utility will make payments to the con-
tract seller (¢, = h(ef ) < 0) in years when SWE measurements are above
the threshold (¢ > 0.63 m).

The power price index, ef’ , represents the utility’s best guess of the
generation-weighted power price for the upcoming water year, ¢ + 1. The
generation-weighted average power price for a water year, t, is shown
in Eq. (1).

.
pren-ur _ 1 Tt OnPus o
4 12 12 A
it O

In Eq. (1), G,, represents the average excess generation sold to the
wholesale market for a given month m and P, , represents the wholesale
power price for month m in water year t, generated synthetically accord-
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Fig. 3. (top) Probability density for the SWE index using a weighted average
of February 1, and April 1, observations. (bottom) Contract payout function,
h. When stochastically generated SWE is below 0.63 m, the utility receives a
payout. If SWE is above 0.63 m, the utility makes payments to the contract
seller.

t can then be defined in Eq. (2)

ef = PEITY = fy + B PETT 4 By Py, @
where P"fl""”' is the generation-weighted average power price for the
upcoming water year, as predicted by linear regression where the predic-
tors are P5"~"", the current year’s generation-weighted average power
price, and the power price in September of the current water year, Py 5.
The p; are the coefficients of the linear regression.

The last stochastic input is yearly hydropower revenue, £, which
is calculated from synthetic hydropower generation. Historical hy-
dropower generation is first fit to a series of linear models that capture
dependence on snowpack based on the month of the year. An autoregres-
sive (AR) model is fit to the de-seasonalized residuals of the linear mod-
els. The residuals of the AR model resemble a normal distribution. Thus,
a synthetic time series of hydropower generation can then be generated
by first sampling points from a normal distribution of the same vari-
ance and running these points through the AR model to obtain synthetic
residuals. These residuals are then fed into the linear models in order to
produce a hydropower generation time series that maintains correlation
with SWE. The synthetic revenue, R, is determined by combining the
synthetic hydropower generation with a financial model. First, SFPUC
must satisfy the demand of their retail customer base, which includes the
San Francisco International Airport and government buildings. Then, if
hydropower generation is in excess of the retail demand, a portion of the
power is sold to irrigation district customers. Any additional surplus gen-
eration is sold into the Western Systems Power Pool (wholesale power
market) at prevailing prices, which vary stochastically. In months where
hydropower generation is insufficient to meet retail electricity demand,
the utility must purchase the balance on the wholesale power market.

For the SFPUC test case, 1000-member ensembles of 20-year se-
quences of the exogenous drivers are generated. The hydropower and
SWE inputs are generated concurrently in order to preserve histori-
cal correlation while the power price input is generated independently
using a seasonal autoregressive-moving average (SARMA) model. A
20-year simulation period is chosen because it represents a typical
planning period for a utility and can capture system dynamics in re-
sponse to dry and wet years which tend to persist beyond single years.
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stochastic inputs can be found in Figure S1 of the Supporting Informa-
tion to give readers an indication of the statistical characteristics of each
input. Some limitations of this approach include that the independent
generation of power price neglects to take into consideration the po-
tential correlation between hydrology and power price. Furthermore,
the stochastic inputs are generated as stationary stochastic processes in-
formed by limited time series of historical data. In reality, longer records
capturing more extreme events would potentially add more stochastic
variability and pose an even larger challenge to modern MOEAs.

2.3. Defining financial flows and decision policies

The next stage of the EMODPS framework uses the synthetically gen-
erated stochastic samples and current state information to inform the an-
nual financial decision policies for the utility. These candidate decisions
policies are parameterized and direct policy search (DPS) is employed to
discover the solutions that comprise SFPUC’s optimal financial tradeoffs
(i.e, the Pareto front). More formally, the policies are generally repre-
sented by a family of functions (e.g. linear, piecewise linear, radial basis
functions, artificial neural networks) whose parameters, 6, are then op-
timized with respect to an objective vector, J. In the SFPUC test case,
the component policies are formulated using Gaussian radial basis func-
tions (RBFs) to provide the flexibility necessary to represent complex
financial portfolio decision dynamics while also providing flexibility for
optimizing heterogeneous performance objectives.

SFPUC’s cash flow for a given year, y,, can be broken down into three
stages in Eq. (3), represented by superscripts: s;, 55, and s3 respectively.
At the end of a water year, September 30, the utility enters a hedging
contract and proceeds through the next year, generating hydropower.
The evaluation of the cash flow and all financial decisions takes place at
the end of the year. The first stage of the cash flow, ;" , is the value of the
revenue received by the utility from the year’s hydropower generation,
represented by the stochastic input, . The second stage of the cash
flow, 2, adds in the contract payout received for the year. The payout
is represented as the value of the hedging contract, u” , determined at
the end of the previous water year, multiplied by the contract payout
for that year, c,. The final stage of the utility’s cash flow, y;* or uf is
the utility’s first decision for the year. It is determined by either adding
a withdrawal to the second stage of the cash flow or subtracting a de-
posit. A withdrawal or a deposit is represented by v,. A value of v, < 0
represents that a deposit was made from the current cash flow into the
reserve fund while a value of v, > 0 represents that a withdrawal was
made from the reserve fund to be added into the cash flow. The utility’s
second and final decision of the year is to determine the value of the
hedging contract, u, to enter into for the upcoming water year. The
process is repeated for a T year simulation period.

s R
¥ &
5 5
Y = ¥ ={n'+ “ﬁlcr 3)
5 5
yt’or(u,F) ¥+,

The two decisions that the utility must make during the year are
represented by the control variables, urH and uf , whose superscripts, H
and F designate a Hedge and Final Cash Flow policy respectively. The
parameters that define each policy will carry the corresponding super-
script henceforth and a further summary of notation can be found in
Appendix A. The control decisions are outputs of the overall policy P
which is a function of some informational inputs (state variables) and
of the parameter vectors 8y and 0y as shown in Eq. (4).

P 0, uf @) @)
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Eq. (5).

H = pHC| pHN H+Ew exp _Z((x )b_c )2 5)

1

Eg. (5) can be decomposed into an intermediary normalized contract
slope, 4, before the normalization and constraint functions, ¢#N and
¢C, are applied to obtain the unnormalized contract value, u,.

H _ +Zw exp —MZ<(XH) ~ S, )2 (6a)

=¢"Nah (6b)
il = "™ (6c)

In the intermediary Eq. (6a), a is an applied constant shift, and le )
Cijs and b; ,j are the weights, centers, and radii of n RBFs that represent
the hedging contract slope policy, and (xF ); is the value of the jth of m
input characteristics at time t. The mf = 1 informational input into this
policy is the current normalized balance i 111 the reserve fund, denoted
by f, Therefore, for a given water year t, x¥ = [ ft, 0,0]. Because there
is only one input to this policy, but three inputs to the final cash flow
policy, xF, the number of inputs, m, must be three. Therefore, two of
the 1nputs are inactive and set to two zeros at the end of Jcr

Then, shown in Egs. (6b), and (6¢) the ¢* function unnormalizes the
intermediary policy and ¢"C applies a constraint transformation. The
unnormalization function, ¢*V, scales the contract value to the range
[0, 2kf] as shown in Eq. (7).

"N @y = kM )
The functional form of ¢*'C is represented in Eq. (8).

¢HC(HH*) _ {H,H*, ithH* > kT gH
t 0,

otherwise
This constraint dictates that the contract slope before constraints are
applied, utH *, must be greater than or equal to some threshold constant,
k' dH, otherwise the contract is not purchased. The threshold variable,
d", is set during optimization.

Given how the formulation implements RBFs and utilizes a different
subset of inputs for each decision, the hedging policy is implicitly influ-
enced by the centers and radii of the full set of inputs even after they are
set to zero. This is an important consideration when trying to interpret
how an input into the hedging policy will map to the policy’s output.
The current representation of the RBF network does effectively mitigate
financial risks dynamically and adaptively while yielding a challenging
benchmarking problem that can lead to different families of solutions
in the hedging objective space. Furthermore, an alternative formulation
that utilizes separate RBF networks for each decision was tested and
the similarity of the resulting Pareto front of solutions between the two
formulations is displayed in Figure S5 of the Supporting Information.

The last step in the utility’s annual cash flow is to decide if money
should be withdrawn or deposited into the reserve fund. This value is
determined implicitly by first fitting a policy that determines the utility’s
final cash flow, u . This decision is represented in Eq. (9).

n mF (xF)_ —c .
F _ ¢F0 ¢FI ¢FN aF +Zw:’:exp _Z( 1 ;i'j !»J)Z (9)

i=1 j=1

®)

Eq. (9) can be decomposed into an intermediary normalized final cash
flow, & u , before a normalization function ¢V, inner constraint ¢!, and
an outer constraint ¢f© are applied.

)2] (102)

n mf (F
X\ )i — ¢
~F _ F F t ) L
u, =a +Zw, exp[—Z(h—

https://reader.elsevier.com/reader/sd/pii/S03091708203011847?t..D88998E24277B25F9B8614A67F04934BA711B35D19382DA5C23D15A9BA932

Advances in Water Resources 145 (2020) 103718

In Eq. (10a), df is an applied constant shift, and wr, ¢ ,j» and b;; are
the weights, centers, and radii of n RBFs that represent the annual cash
flow policy and (xF )J, is the value of the jt of mf inputs at time t. The
informational inputs corresponding to this decision are the normalized
current power price index, &’ s , the most recent normalized reserve fund
balance, f,_,, and the current normalized cash flow at this point in the
year, 3';‘:2. Since the decisions at this point are being made prior to updat-
ing the reserve fund, the balance from the year ¢ — 1 is used. Therefore,

the mF =3 policy inputs for a given year, t, are x7 [ AN ]

The normalized final cash flow, #’ ut , is unnormalized to the scale [0,
2kR], using a constant unit value for revenue, kR, as shown in Eg. (11).

WG =K av

We apply both an inner constraint, ¢!, and an outer constraint ¢*©, to
ensure that the resulting policy is feasible. The function, ¢, defined
in Eq. (12), ensures that the reserve fund never exceeds the maximum
allotted size represented by kfdF, where dF is a decision variable that
is set during optimization. That is, a deposit cannot be larger than the
available space left in the reserve fund.

u

12
e otherwise a2

The inner function, ¢, constrains the amount of money that can be
withdrawn from or deposited into the fund balance and is defined in
Eq. (13).

™! (UF*) = { ( F

max (]

,y, + /1) if,20

.32 —max (32,0)) ifo, <0 a3

The first case of Eq. (13) represents the constraint that if any withdrawal,
represented as v, > 0, is made, it cannot be greater than the balance in
the reserve fund. The second case enforces that deposits can only occur
when the incoming cash flow is positive and that the deposit cannot be
larger than the cash flow.

Finally, the amount of money that has been withdrawn or deposited
into the fund, v, can be determined by subtracting the unnormalized
cash flow before the withdrawal or deposit was made from the final
cash flow, as shown in Eq. (14).

v, —u —y! (14)

The decision variables for each of the decisions are represented by the
parameter vectors 8 and 6. Each vector is composed of a constant
shift parameter, the RBF centers, radii, and weights, and a variable de-
noting either a minimum contract value threshold, dH, or a maximum
reserve fund balance threshold, d*. These parameter vectors are shown
in Egs. (15) and (16).

Oy = [aH, w; b; a'H] a1s)

]’ ij?

O = [all?,w'i ,c”,b dF] (16)

i,j*

The weights are constrained to be positive (wiH >0 and w'F >0) and
sum to wnity (37, wH =1and 3wl =1). The centers and radii
of each RBF are constrained between -1 and 1 and 0 and 1 respectively
(-1<¢ <L, 0<h; < 1) and are shared across the two decisions. Com-
bining the policy parameters from the two decisions in Egs. (15) and
(16) results in the overall vector of decision variables ©.

Four RBFs were chosen to represent each decision. Following the rec-
ommendations from prior EMODPS work, we set the number of RBFs
equal to one more than the sum of the number of inputs and outputs
(Giuliani et al., 2016). In our study, the first decision requires one in-
put for one output, which corresponds to three RBFs. The second de-
cision requires three inputs for one output, which corresponds to five
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to 2n(m + 1) + 4 = 36 decision variables for the overall policy vector ©.
Here, m = 3 and is set to max(m", mF), the maximum number of pol-
icy inputs between the two decisions. The optimal policy parameters,
©*, in Eq. (17), are solved for with respect to the objectives defined in
Section 2.4.

B8y, 0F) = [(31,1; ey C,,,,,,),(bllla ,b,,',,,)a
W, .. wl wF, . wh), (@, af), (@, ")) a7

2.4. Summary of financial performance objectives

The SFPUC benchmarking problem explores tradeoffs between four
objectives that capture the utility’s financial interests and stability. Each
evaluation of the system’s objectives are modeled over a simulation time
horizon, T, of 20 years and across 1000 Monte Carlo simulations of the
key uncertainties vector: [e‘f, e}’, e{‘]. The resulting matrix of 1000 sam-
ples of the vector of key uncertainties is denoted &.

Maximize expected annualized final cash flow (Annualized-
Cash)

SFPUC wants to maximize their annualized final cash flow to meet
their annual fixed costs which consume, on average, over 90% of their
yearly revenue (Hamilton et al., 2020). As formulated in Eq. (18) be-
low, this objective maximizes the expected value of the final cash flow,
uf’, experienced in a given year, ¢, over a T-year period. This objective
maximizes the sum of all discounted cash flow over the T years and the
present value of the reserve fund, fy, at the beginning of year T + 1.
This sum is divided by an annualization factor, using a discount rate of
r4 = 0.96. The expectation operator, E_, calculates the expectation of the
objective over the 1000 Monte Carlo simulations of the key uncertainties
vector, €.

T
JArmuaszdCash F s = Es 1 Ayt F + ANT+1
O e LR )|
(18)

Maximize expected minimum final cash flow (MinCash)

SFPUC also may be interested in maximizing the worst-case final
cash flow that they could receive in any given year to further hedge
against a situation where they cannot pay their fixed costs. This objec-
tive is formulated to maximize the expected value of the minimum final
cash flow, u;F , attained over the T years and the expectation of the ob-
jective is calculated over the 1000 Monte Carlo simulations of the key
uncertainties vector, &.

MinCash( , F _ : F
J (“re(l ..... T)) - EE [,E(l}?ET) [“r ]] 19)

Minimize expected maximum hedging frequency (Hedge)

SFPUC and utilities would prefer to limit buying into portfolios that
utilize frequent hedging in order to limit transaction costs and addi-
tional fees associated with writing contracts. Therefore, this objective,
formulated in Eq. (20) is implemented to minimize the expected hedging
frequency across the 1000 Monte Carlo simulations of the key uncertain-
ties vector, £. For any given stochastic sample, the indicator function,
lu;q, defined in Eq. (21), returns a 1 if a non-zero hedging contract was

used at any point over the T years, and zero otherwise.

Hedge| , H _
Jress (”re(O ..... T—l)) =E, [,E(UT%E_D [lu,h'>0]] (20)
1, if utH >0
1“5" - {0, otherwise @n

This objective is, therefore, a measure of the likelihood that a utility will
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tinuous decisions has the potential for generating similar features (e.g.,
see the disjoint water portfolios tradeoffs in Kasprzyk et al. (2009)).

Minimize expected maximum reserve fund balance (Reserve)

As power utilities in the United States are typically regulated by
elected or politically appointed Public Utilities Commissions, it may be
difficult to gain approval to hold a very a large sum of money in their
reserve fund. Therefore, this objective is formulated to minimize the
maximum reserve fund balance, f;, seen over the T years and across the
1000 Monte Carlo simulations of the key uncertainties vector, &.

JR“"'"e(frg(o,_..,T)) =E, [ maxT) [fr]] (22)

The optimal parameters of the financial policies, ®*, can now be deter-
mined by solving the following multi-objective problem:

0 = arg min [_IAnnuulizedCash((_)L _JMinCush((_)L IHedge(e)’ JReserue(e)]
o

(23)

All maximization objectives are multiplied by negative one to convert
the optimization into a minimization problem.

3. Methods
3.1. Diagnostic framework

This study contributes a comprehensive diagnostic assessment of the
ability of current state-of-the-art MOEAs to solve complex water-energy
financial risk portfolio planning problems as represented by the SFPUC
benchmarking test case. The diagnostic assessment framework utilized
in this study is illustrated in Fig. 4. MOEAs are heuristic search tools
that use different types of parameterized search operators to mimic the
natural processes of mating, mutation, and selection in order to evolve
and improve a population of solutions (Coello et al., 2007). The default
parameters of an MOEA tend to be set to values that give the best perfor-
mance for a specific test instance. However, these values are not neces-
sarily generalizable to other problems. Ideally, MOEAs should perform
well under a wide range of parameterizations (Goldberg, 2002). There-
fore, the diagnostic framework illustrated in Fig. 4 tests the sensitivity
of the MOEAs to their parameterizations by sampling their full feasible
parameter spaces using a Latin hypercube sample (LHS). Each sample,
signified as a point in the parameter block of Fig. 4, represents one fully
specified parameter instance of an MOEA. In this benchmarking study,
each instance is used to solve the SFPUC optimization problem defined
in Eq. (23) to obtain a Pareto approximate set of solutions. Given that
MOEAs are stochastic global search tools that can be strongly sensitive
to their pseudo-random sequences of initial random population genera-
tion and probabilistic search operators, each sampled parameterization
in the benchmarking framework is run for 25 replicate random seed
trials to account for these effects. The quality of the Pareto approxi-
mate set is assessed by comparison to a reference set that is obtained
by merging the best solutions found across all algorithms. Performance
metrics are then calculated with respect to this reference set. These per-
formance metrics can be visualized to assess an MOEA’s effectiveness,
reliability, and controllability. "Effectiveness" refers to an MOEA’s abil-
ity to attain high quality approximation sets. An MOEA is considered
"reliable" if it can attain these sets with minimal variability across para-
metric and/or random seed trials. "Controllability" is a measure of the
sensitivity of an MOEA to its parameterization. A highly controllable
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Fig. 4. Diagnostic assessment framework used to evaluate the performance of each MOEA tested in the study (adapted from Zatarain Salazar et al. (2016)). The
parameters for each MOEA are sampled across their full ranges using Latin Hypercube Sampling. The approximation sets for each MOEA parameterization are assessed
through metrics measuring the convergence, consistency, and diversity of approximation sets. Each MOEA parameter set is run for 25 random seed trials to account

for the random initialization of populations and random components in the MOEAs’

3.2. Performance metrics

The metrics calculated in this study are generational distance, hyper-
volume, and additive epsilon indicator. These metrics give an indication
of the convergence and diversity of the Pareto approximate set. Conver-
gence indicates how close the approximate set is to the reference set.
Diversity indicates how well the approximate set spans across the refer-
ence set (Coello et al., 2007).

Generational Distance: Generational distance is a measure of con-
vergence of the approximate set to the best-known reference set. In order
to calculate generational distance, the Euclidean distance between each
test point and the closest point in the reference set is calculated. Then the
average distance is calculated considering all generated Pareto points.
Therefore, the goal is to minimize this metric. Generational distance is
considered the most basic metric to meet as a near perfect value can be
achieved if the reference set contains only one solution that is close to
the best approximate reference set. Therefore, this metric is meaningful
primarily to identify that when an algorithm cannot meet this metric, it
has exhibited poor performance (Van Veldhuizen and Lamont, 1998b;
1998a).

Additive Epsilon Indicator: Additive epsilon indicator is a measure
of the worst-case distance that the approximation set has to be translated
to dominate the reference set. Thus, the goal is to minimize this metric
value. If an approximate set has many gaps, then solutions from farther
regions must be translated a large distance to dominate the best known
approximation. Thus, this will lead to a high additive epsilon indicator
value. This metric is a good measure of an MOEA’s consistency, or ability
to capture all parts of the Pareto front (Zitzler et al., 2003; Hadka and
Reed, 2012; Reed et al., 2013).

Hypervolume: Hypervolume measures the volume of the objec-
tive space that is dominated by the approximation set. Hypervolume
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search.

ized relative to the reference set hypervolume when metric results are
reported.

3.3. Multi-objective evolutionary algorithms

MOEAs are popular tools for multi-objective optimization of com-
plex, non-linear problems because their population-based approach re-
quires less knowledge of the topology of a problem than their deter-
ministic counterparts. Therefore, they are particularly suited towards
and successful in water resources applications which tend to be charac-
terized by non-convexity, stochasticity, nonlinearity, and high dimen-
sionality (Nicklow et al., 2010; Maier et al., 2014). The capabilities of
MOEAs have expanded over time to accommodate increasingly relevant
and challenging water application problems, a review of which is pro-
vided in Reed et al. (2013). While there have been many new MOEA
search advances over the last decade, many of the more modern algo-
rithms have not been rigorously tested on their ability to solve chal-
lenging real-world problems such as the SFPUC financial risk test case.
Consequently, this study contributes a benchmark of five state-of-the-
art evolutionary algorithms on the highly non-convex and discrete, four
objective financial decision test case. These algorithms are summarized
below.

NSGA-II: First proposed by Deb et al. (2002), the NSGA-II is an eli-
tist algorithm that dramatically advanced the capabilities of MOEAs to
address challenging problems through three key innovations: elitism,
efficient non-domination sorting, and incorporation of a diversity main-
tenance that does not require a user-specified parameter. The NSGA-IL
was one of the first algorithms to use the Pareto dominance relation-
ship to search for an entire Pareto front in a single run (Coello et al.,
2007). As an elitist algorithm, it first sorts a population, composed of an
equal number of parents and children, into a sequence of fronts. Mem-
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in the next generation, it employs a crowding distance operator that
maximizes diversity by giving priority to solutions in sparser regions of
the objective space. NSGA-II's incorporation of elitism helps to prevent
non-dominated solutions from being lost through the search, but when
used in conjunction with a fixed population size, this greatly limits the
algorithm’s ability to incorporate new solutions into the population. Fur-
thermore, NSGA-II does not have an archive to store non-dominated so-
lutions and while innovative at the time, its crowding distance operator
was later found to have limitations beyond two objectives (Deb et al.,
2002). In cases where NSGA-II only finds one front, selection is only
based on this crowding operator. Thus, valid solutions may be dropped,
resulting in deterioration. Deterioration occurs when an MOEA’s solu-
tion set contains one or more solutions dominated by another member
solution. In the extreme, deterioration can cause an MOEA to diverge
away from the Pareto front (Hadka and Reed, 2012). Still, NSGA-II re-
mains the most popular algorithm used today and is an appropriate his-
torical baseline algorithm to include in the diagnostic study.

MOEA/D: Zhang and Li introduced MOEA/D, a decomposition based
multi-objective evolutionary algorithm, in 2007. MOEA/D reformulates
the multi-objective optimization problem into N single-objective opti-
mization subproblems that are solved simultaneously. The decomposi-
tion is performed using methods such a weighted sum, Tchebycheff de-
composition, or a Boundary Intersection approach to formulate each of
the N sub-problems as a linear or non-linear aggregation of the prob-
lem objectives. Each sub-problem is given a different weighting vector
to maximize diversity of search that results in N solutions. The next
generation population is determined by mating each of the N popu-
lation members with other members that reside within a pre-defined
neighborhood around the point. Therefore, this algorithm solves each
optimization problem using information from neighboring subproblems
(Zhang and Li, 2007). However, one limitation of this algorithm is the
necessity of the user to specify the size of the neighborhood around each
solution, which can be subjective. Nevertheless, MOEA/D was chosen
as a representative of an emerging class of decomposition-based algo-
rithms (Giagkiozis and Fleming, 2014) and won the 2009 IEEE Congress
on Evolutionary Computation (CEC 2009) competition (Zhang and Sug-
anthan, 2009). This study implements the winning version of MOEA/D
that utilizes a Tchebycheff decomposition approach and proposes a strat-
egy for allocating the computational resources to different subproblems
(Zhang et al., 2009).

The Borg MOEA: The Borg MOEA is a unified optimization frame-
work that represents a class of self-adaptive algorithms whose varia-
tional operators are adaptively selected through search based on the
problem’s local topology. The Borg MOEA contains many novel compo-
nents that build off of its parent algorithm, e-MOEA (Deb et al., 2005),
including implementation of epsilon dominance archiving to maintain
non-dominated solutions during the search process and an adaptive pop-
ulation size. It also utilizes adaptive time continuation through epsilon
progress, a metric used to monitor for stagnation in the search process
and to escape local optima. If the algorithm fails to make progress dis-
covering solutions that dominate members of the archive, it will imple-
ment a randomized restart to inject more diversity into a population.
The population is emptied and repopulated with all archived solutions
and a uniform mutation is applied to archive solutions to fill any re-
maining spots (Hadka and Reed, 2013). The Borg MOEA’s self-adaptive
characteristics allow it to be to less sensitive to underlying parameter-
izations than algorithms without these capabilities and thus has been
shown to have applicability across a wide set of problem classes (Hadka
and Reed, 2012; Reed et al., 2013).

NSGA-III: In 2014, Deb proposed NSGA-III to bridge the frameworks
of NSGA-II and MOEA/D. NSGA-III utilizes the same non-dominated
sorting as NSGA-II but implements a different niching strategy that in-
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tive. A hyperplane is determined from extreme points and then reference
points are evenly spaced across an (M — 1) - dimensional simplex. Refer-
ence lines are specified for each reference point and population members
are assigned to the closest reference line. If no new population members
are associated with the reference vector, the former population member
with the closest perpendicular distance to the reference vector is chosen
to be added to the new population. If a prospective population member
is associated with a vector that already has a member specified, then a
random member is picked to move into the next generation population,
P, .. After P, is formed, it is then used to create an offspring popula-
tion, Q,,;, with usual crossover and mutation operators. NSGA-III suffers
from the inability to preserve non-dominated solutions due to the lack
of an archive, like its NSGA-II counterpart (Deb and Jain, 2014).

RVEA: RVEA is a reference vector-based algorithm similar to NSGA-
III and motivated by decomposition-based approaches like MOEA/D.
The reference vectors not only can be used to decompose the multi-
objective problem into single-objective subproblems but also can also
be tuned to target search in a user-preferred region of the Pareto front.
RVEA adopts an elitism strategy similar to NSGA-II where a parent pop-
ulation is combined with an offspring population that is generated us-
ing traditional crossover and mutation operations. The prospective pop-
ulation is split into N subpopulations by associating each population
member with one of N reference vectors. The main new contribution
proposed is the implementation of an Angle-Penalized Distance (APD)
metric to select which solution member associated with each reference
vector will pass on to the next generation of the population. The metric
seeks to balance convergence and diversity by taking into account both
the distance between a solution and the reference vector along with mea-
suring the acute angle the solution makes with its reference direction.
The metric formulation prioritizes convergence early in the search and
diversity is emphasized in the later stages of the search (Cheng et al.,
2016). As the most modern algorithm in the suite, RVEA has been min-
imally benchmarked on variety of applications.

4. Computational experiment

As described in the Section 2.3, we introduce a DPS framework for
abstracting SFPUC’s yearly financial decisions. Gaussian radial basis
functions are used to represent well-informed policies that map current
utility state information and exogenous inputs to optimal contract val-
ues and end-of-the-year cash flow. Each radial basis function has three
parameters: a radius, center, and weight. Four radial basis functions are
used for this test case that is characterized by 36 decision variables.
The candidate policies that inform yearly financial decisions over a 20-
year time period are optimized with respect to these decision variables.
Five state-of-the-art MOEAs are used to discover optimal policies with
respect to the four objectives outlined in Section 2.4. The diagnostic as-
sessment is performed using MOEA Framework, a free and open source
Java library that allows users to design, execute, and assess the perfor-
mance of a variety of popular MOEAs. The following subsections discuss
the computational experiments that are executed through MOEA Frame-
work to conduct the diagnostic assessment. First, Section 4.1 elaborates
on the procedure for sampling of algorithm parameterizations. Then
Section 4.2 describes the process of generating and verifying reference
sets.

4.1. Sampling of algorithm parameterizations

The experimental setup for the diagnostic assessment requires test-
ing MOEAs in both their default parameterizations and across 100 Latin
hypercube samples from their full feasible suite of parameter ranges (dis-
played in Table 2). The default instance of each MOEA is first used to
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Table 2
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Latin hypercube sampling of MOEASs’ operators and their associated parameter ranges as well as the MOEAs’
default parameterizations. D corresponds to the number of decision variables (36).

Parameter LHS range Default Algorithms
Crossover SBX rate 0-1 1.0 Borg, NSGA-II,
RVEA, NSGA-III
SBX distribution index 0-100 15 Borg
30 NSGA-II
RVEA, NSGA-III
DE crossover rate 0-1 0.1 All algorithms
DE step size 0-1 0.5 Borg, MOEA/D
PCX parents 2-10 3 Borg
PCX offspring 1-10 2 Borg
PCX eta 0-1 0.1 Borg
PCX zeta 0-1 0.1 Borg
UNDX parents 2-10 3 Borg
UNDX offspring 1-10 2 Borg
UNDX eta 0-1 0.5 Borg
UNDX zeta 0-1 0.35 Borg
SPX parents 2-10 3 Borg
SPX offspring 1-10 2 Borg
SPX epsilon 0-1 0.5 Borg
Mutation PM rate 0-1 1/D All algorithms
PM distribution index 0-100 20 All algorithms
UM rate 0-1 1/D Borg
Selection Neighborhood Size 0-0.2 0.2 MOEA/D
Delta 0-1 0.9 MOEA/D
Eta 0-0.02 0.02 MOEA/D
Injection Rate 0.1-1 0.25 Borg
Population Size 10-250 100 Borg, NSGA-II
MOEA/D
Divisions 4-9 8 NSGA-III, RVEA
NFE 200,000 All algorithms

Latin hypercube samples are taken from the range of acceptable param-
eter values for each MOEA. Each sample is an instance of the MOEA
and represented by a single point in the parameter block in Fig. 4. Each
MOEA instance is replicated for 25 random seeds and evaluated over
200,000 function evaluations. Archive output and runtime dynamics are
reported every 5000 function evaluations to understand how algorithm
performance evolves through the search. Performance metrics are calcu-
lated from the results of the optimization and then visualized in figures
that serve to demonstrate algorithm behavior across search time and
parameterization.

4.2. Generation and verification of reference sets

Five MOEAs outlined in Section 3.3 are used to discover optimal poli-
cies with respect to the four objectives outlined in Section 2.4. The best
solutions that each MOEA finds individually comprise the algorithm’s
individual reference set. In order to compare algorithms, performance
is assessed relative to the best known reference set for the SFPUC test
case which is found by merging the best solutions across the algorithms
using consistent epsilon sorting. An epsilon precision that dictates nu-
merical precision for each objective must be specified for algorithms that
utilize epsilon box dominance. For NSGA-II, this requires transforming
point dominance to epsilon-box dominance to ensure consistent com-
parisons across MOEAs (Hadka and Reed, 2012). The epsilon values are
0.05 for the expected annualized final cash flow ($M/year) and the ex-
pected hedging frequency objectives (unitless) and 0.1 for the expected
minimum final cash flow ($M) and the expected maximum fund balance
objective ($M).

As stated in Section 2.2, the optimized objective values that define
each solution in the reference set are averaged across 1000 simulations
of 20-year periods defined by three different stochastic inputs: a SWE
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wider variety of potential worlds that would not be possible if using a
fixed ensemble. The validity of the approximate sampling approach is
confirmed by re-evaluating the solutions on a larger set of 100,000 in-
dependent stochastic samples and verifying that solution performance
is stable. The re-evaluated reference sets can be found in the Supporting
Information Figure S2. Re-calculating runtime dynamics with respect to
the new verified reference set is computationally intractable. Therefore,
Sections 5.1-5.4 display results and metrics with respect to the reference
set determined from the optimization. Verified overall and default refer-
ence sets are only used in Section 5.5 of the results. As further empirical
support for the selected sample size, Figures S3 and 5S4 in the Supporting
Information show the resulting Pareto fronts from optimizing the SFPUC
test case using the default parameterization of each algorithm and a 500
and 10,000-member sample, respectively. Given the equivalent perfor-
mance, a 1,000-member sample is chosen for its sufficient convergence
and computational efficiency to facilitate the demands of our diagnostic
study. Prior studies provide more background on evolutionary optimiza-
tion under uncertainty (e.g. Smalley et al., 2000, Gopalakrishnan et al.,
2003, Chan Hilton and Culver, 2005, Beyer and Sendhoff, 2007, Deb
et al., 2009, Kasprzyk et al., 2009, and Kasprzyk et al., 2012).

5. Results
5.1. Analysis of reference sets

Fig. 5 shows the overall best known reference set of Pareto approx-
imate solutions that represent the financial risk tradeoffs for the SF-
PUC test case. As noted in Section 4.2, these solutions are the result of
epsilon non-domination sorting across all trial runs performed for all
of the tested algorithms. The theoretical ideal solution is represented
by a black star. The SFPUC financial risk problem poses a challenge to
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Fig. 5. The overall best known reference set and resulting tradeoffs for the SFPUC test case, attained by merging the best solutions found across all MOEA runs.
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Fig. 6. Histograms of the range of the expected maximum fund balance, expected annualized final cash flow, and expected minimum final cash flow objective values
associated with reference set solutions that have either a minimum or maximum value of the expected hedge frequency objective. The purple color indicates where
the two histograms overlap. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

expected minimum final cash flow objective and the expected annual-
ized final cash flow objective. The color gradient with lighter colored
points in the lower front portion of the plot highlights that increasing
expected minimum final cash flow usually necessitates the presence of
a larger reserve fund balance. However, the lack of lighter points in the
rightmost highest hedging frequency lobe of solutions suggests that a
larger reserve fund balance is not necessary if a portfolio structure that
utilizes more hedging is implemented.

Formalizing these relationships, the paneled histogram in Fig. 6
shows the range of values for the expected annualized final cash flow,
expected minimum final cash flow, and the expected maximum reserve
fund balance objectives for the reference set solutions that utilize a mini-
mum and maximum hedging frequency. As seen in Fig. 6a, the minimum
hedging frequency solutions implement a wider range of reserve fund
balances while solutions that utilize the greatest hedging frequency do
not require a reserve fund larger than $40 million. The maximum hedg-
ing contract structures reduce the potential self-insurance opportunity
costs that SFPUC face when they have to fix a large amount of their
money in a reserve fund. The hedging objective is a measure of the like-
lihood that a utility will enter into at least 1 contract over the 20-year
neriod for anv given realization of states of the world. This obiective can

https://reader.elsevier.com/reader/sd/pii/S03091708203011847?t...88998E24277B25F9B8614A67F04934BA711B35D19382DA5C23D15A9BA932

that there are zones of highly concentrated solutions corresponding to
extremes of the hedging frequency objective (i.e., probability equal to
0 or 1). An intermediate objective value between 0 and 1 indicates the
fraction of the 1000 statistical 20-year replicate samples in which the
solution implemented at least one contract during the planning period.
Fig. 6b and c indicate that solutions that utilize a lower hedging fre-
quency on average results in a larger expected annualized final cash
flow whereas solutions that utilize a higher hedging frequency see a
higher expected minimum final cash flow.

Fig. 7 builds on Fig. 5 by quantifying the reference set contribu-
tions for each of the tested MOEAs. The percentages displayed in the
bar graph take into consideration solutions that are identified by mul-
tiple algorithms as well as solutions identified uniquely by specific al-
gorithms. As seen in Fig. 7, the Borg MOEA contributed 81% of the
reference set solutions, while RVEA contributed only 0.8% of reference
set solutions. Notably, the reference vector and decomposition MOEAs
contributed the least to the reference set. The NSGA-II had the second
highest rate of contribution at 8.8% of the reference set solutions. The
Borg MOEA and NSGA-II found a similar number of solutions. The Borg
MOEA found 2700 non-dominated solutions while NSGA-II found 2000.
Durine the sort to nroduce the overall reference set. manv of NSGA-II’s

8/15/20, 7:14 PM

Page 11 of 23



Can modern multi-objective evolutionary algorithms discover high-d...or snow-dominated water-energy systems? | Elsevier Enhanced Reader

R.S. Gupta, A.L. Hamilton and P.M. Reed et al.

80

701

60

504

401

301

20+

10+

Contribution to the Reference Set (%)

Oﬁ

Borg NSGA-Il  NSGA-llL  RVEA  MOEA/D

Fig.7. The percent of the reference set contributed by each algorithm. The Borg
MOEA single-handedly produced over 80% of the reference set while the newer
algorithms struggled to discover solutions that were not dominated by Borg or
NSGA-IIL.

pressure, and variational operators as more of the problem’s decision
space is explored through the search (Hadka and Reed, 2013). These
characteristics allowed the Borg MOEA to discover more non-dominated
solutions in more diverse areas than the other algorithms.

The five panels in Fig. 8 show the best attained reference sets ob-
tained by each algorithm after completing 200,000 function evaluations.
Each algorithm’s reference set was attained across all of its trial runs.

127.5

126.5

Expected Annualized
Final Cash Flow ($M)

1255

ncy
¢) NSGA-II
127.5 127.5
126.5 126.5
125.5 . 125.5
0

a) Borg

Advances in Water Resources 145 (2020) 103718

The Borg MOEA (Fig. 8a) and NSGA-II (Fig. 8b) are the only algorithms
that obtain reference solution sets that closely replicate the geometry of
the overall best known reference set in Fig. 5. The decomposition strat-
egy of MOEA/D (Fig. 8e) as well as the reference point-based search
of NSGA-III (Fig. 8c) and RVEA (Fig. 8d) all yield significantly fewer
solutions that are biased toward the two extreme lobes of the hedging
objective. This can be attributed to the underlying strategies employed
by reference point, reference vector, and decomposition approaches to
maintain solution diversity. MOEA/D’s decomposition-based approach
assigns uniform weighting to sub-problems and NSGA-III and RVEA im-
plement uniformly distributed reference vectors and points to aid in
search. Both approaches assume that the targeted Pareto front is smooth
and continuous. This is not the case for optimization problems with a
discontinuous Pareto front such as the SFPUC test case. Hence, if any ref-
erence points or vectors cannot locate a new population member, they
are disregarded, reducing the density of solutions that can be discovered
(Cheng et al., 2016). Potential fixes for the reference point techniques
have been proposed in Cheng et al. (2016) and Deb and Jain (2014) that
suggest adaptively regenerating or re-locating reference points and vec-
tors rather than removing them completely. A key challenge for these
proposed fixes remains: a generalized open-source accessible version of
the algorithm codes that is scalable to real-world problems with more
than three objectives does not exist at present.

5.2. Algorithmic effectiveness and reliability

Successful tradeoff analyses in decision support applications require
that MOEAs are able to effectively discover high quality approximations
of the Pareto front. Moreover, they should do so reliably across their

b) NSGA-II

e) MOEA/D

0 10 20 30
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Fig. 9. Attainment plots that capture the best overall metric values achieved by each MOEA (white circles) as well as their success probabilities in attaining
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legend, the reader is referred to the web version of this article.)

candidate parameterizations and random seed trials. That is, an MOEA
should be both effective and reliable for any given run. The attainment
plots in Fig. 9 provide a probabilistic assessment of MOEA performance.
Each MOEA'’s best single trial run’s overall performance in hypervolume,
generational distance, and additive epsilon indicator is designated by a
white dot in Fig. 9. For each of the metrics, the probability of attain-
ment is defined as the percentage of an MOEA'’s trial runs (across all
parameterizations and random seed trials) that attain a given level of
the best single run metric value. Ideal performance would be indicated
by a dark blue bar with a white dot at 100% indicating that the algo-
rithm can attain ideal performance 100% of the time. A white dot below
the 100% mark indicates that the algorithm was unable to attain ideal
performance for the metric (i.e. achieving the reference set hypervol-
ume or a value of zero for generational distance and additive epsilon
indicator).

From Fig. 9a, it is clear that all of the algorithms were able to ob-
tain high levels of performance for generational distance consistently.
Generational distance is the easiest of the three metrics to satisfy, as a
near perfect value can be achieved if the reference set contains only one
solution that is close to the best approximate reference set. Therefore,
poor performance in this metric would denote abject failure of an algo-
rithm. Additive epsilon indicator is a more challenging metric, measur-
ing the worst-case distance that the reference set has to be translated to
dominate a given approximation set. All of the MOEAs show a degrada-
tion in their attainment performance for the additive epsilon indicator.
This is not surprising given that additive epsilon indicator is particularly
sensitive to gaps where the approximation set is missing solutions that
are present in the best known reference set. The visualizations of the
best reference sets for each of the MOEAs shown Fig. 8 highlight that
several algorithms never identify solutions in the intermediate hedging
objective compromise region. The worst case translation distances grow
very rapidly given these gaps (see the discussions in Hadka and Reed,
2012; Hadka and Reed, 2013). Fig. 9b indicates that the Borg MOEA
achieves the highest level of attainment for the additive epsilon indica-
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ment performance in both the additive epsilon indicator and hypervol-
ume. In Fig. 9b and ¢, it is apparent that MOEA/D, NSGA-II, NSGA-III,
and RVEA are able to obtain acceptable metric values for their single
best performing trial run but are not likely to obtain these values con-
sistently. The reference point (NSGA-III and RVEA) and decomposition
(MOEA/D) algorithms also have the steepest decline in their single trial
run attainments overall. In a practical context, the attainment results in
Fig. 9 highlight that the SFPUC benchmarking problem is difficult and
that all of the algorithms would struggle to reliably attain ideal addi-
tive epsilon indicator and hypervolume results with single random seed
trials.

5.3. Algorithmic controllability and efficiency

MOEAs should provide consistent performance across any of their
candidate parameterizations (i.e., ease-of-use). Often in algorithmic
studies, the capabilities of MOEAs are reported after a trial-and-error
analysis establishes a single best performing parameterization, espe-
cially when default parameterizations struggle (see Deb and Jain, 2014;
Cheng et al., 2016; Qi et al., 2019). However, the single best parame-
terization is typically highly test-case dependent and under emphasizes
the difficulty for users in trying to parameterize the algorithms while
maintaining high levels of performance.

The control maps, shown in Fig. 10, are used to assess an algo-
rithm’s "sweet spot" or how sensitive that algorithm is to its param-
eterization. Each map shows the hypervolume attained as a function
of NFE and proxies of population size, since these parameters consis-
tently have dominant effects on MOEA performance and computational
demand (Hadka and Reed, 2012; Reed et al., 2013). The color leg-
end indicates the percent of the expected hypervolume that each al-
gorithm attained by averaging across 25 random seed trials used to
evaluate each parameterization. In short, this represents what would
be expected from a single trial run of one of the algorithms solv-
ing the SFPUC test case. Ideal performance would be indicated by a
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Fig. 10. Hypervolume performance control maps for the SFPUC test case capturing the controllability and efficiency of each MOEA. The color scale represents the
percent of the best known global reference set’s hypervolume captured by each local 25-seed reference approximation set for each tested parameterization. Ideal
performance is shown in zones of dark blue and poor performance is designated by dark red. The control maps are a sub-space based on the full set of Latin hypercube
samples of the parameters for each algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

The uniform blue shading in the Borg MOEA control map (Fig. 10a)
indicates that the algorithm is less sensitive to its parameterization.
The Borg MOEA also typically requires less than 25,000 function eval-
uations to achieve 80% of the best known hypervolume. The control
map for NSGA-II (Fig. 10b) displays a high sensitivity to its popula-
tion size, shown by the abrupt threshold for hypervolume performance,

https://reader.elsevier.com/reader/sd/pii/S0309170820301184?t...88998E24277B25F9B8614A67F04934BA711B35D19382DA5C23D15A9BA932

fore have a reduced ability to incorporate newer non-dominated so-
lutions in every generation. Peak performance for NSGA-II is contin-
gent on the user specifying a population size greater than 200, which
is not the default specification for the algorithm or apparent to any
user in advance. The control map for MOEA/D (Fig. 10c) exhibits a
nonlinear sensitivity to both population size and search duration. Al-
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Fig. 11. Runtime dynamics of hypervolume performance across 50 seeds of each algorithm’s default parameterization. The solid line represents the mean hypervol-
ume achieved through the search process and the shading bounds the 5th and 95th percentile confidence interval. A hypervolume of 1 with thin shading is preferred

(i.e., high performance reliability).

While MOEA/D has been shown to be successful in solving test func-
tions, its sensitivity to the relative scaling of objective functions makes
it more difficult to predict if it will be successful for other water re-
sources applications. Moreover, MOEA/D’s algorithmic computational
time grows very rapidly with population size due to its neighborhood
decomposition. Surprisingly, these computational demands can grow to
an extent that they are no longer negligible relative to the normal de-
mands for the function evaluations required in search (Hadka and Reed,
2012).

The control maps for NSGA-III and RVEA (Fig. 10d and e) show sig-
nificant failure to attain an acceptable hypervolume for any range of
parameterizations. Furthermore, deterioration in the algorithms is ap-
parent by the color fluctuations along any given vertical segment of the
control map. These color variations signify a non-monotonic variation
in hypervolume as the number of function evaluations increases (i.e.,
solutions that are important to hypervolume progress have been lost).
Overall, the Borg MOEA displays the strongest performance by consis-
tently achieving high hypervolume over the suite of its parameteriza-
tions, highlighting that it would be difficult to make the algorithm fail.
This lack of sensitivity to parameterization is due to the Borg MOEA’s
adaptive search techniques which have shown to be successful for a va-
riety of benchmarking problems (Hadka and Reed, 2012; Reed et al.,
2013; Ward et al., 2015; Zatarain Salazar et al., 2016). The Borg MOEA
implements operators that can adaptively adjust through the evolution-
ary process and adaptive population sizing helps the algorithm to be
insensitive to initial population size. The non-adaptive algorithms’ lack
of these mechanisms and consequent strong sensitivity to their param-
eterizations makes them difficult to use in real-world applications. The
control maps emphasize that more effort should be directed towards de-
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well for specific parameterizations that are challenging to discover do
not help to facilitate this goal.

5.4. Default parameterization runtime and operator dynamics

The default runtime analyses in Fig. 11 capture the expected perfor-
mance of each of the MOEAs using their author-recommended default
parameterizations summarized in Table 2. The hypervolume runtime dy-
namics allows the user to visualize how quickly and reliably each of the
algorithms achieve hypervolume performance. Reliability is assessed by
running 50 random seed replicate trials for each of the algorithm’s de-
fault parameterizations. In Fig. 11, the solid lines represent the mean
hypervolume achieved over the 50 trial runs for each algorithm. The
shading bounds in the figure designate the 5th and 95th percentile con-
fidence interval. The default runtime dynamics show that most of the
algorithms achieve their best hypervolume performance after 10,000
function evaluations. For NSGA-III, RVEA, and MOEA/D, that found rel-
atively few solutions, these results suggest that the algorithms converged
on the two extreme disjoint regions of the objective space very quickly
but were unable to discover the interior solutions (see Fig. 8). MOEA/D
exhibits the largest variability across its random seed trial runs, which
corroborates the results displayed in the attainment plots in Fig. 9. All
of the algorithms aside from the Borg MOEA exhibit clear deteriora-
tion, which was first identified in the control maps in Section 5.3. In
Fig. 11 deterioration (or loss of solutions) is shown with the fluctuat-
ing, non-monotonic hypervolume dynamics. This deterioration is espe-
cially prominent in RVEA and NSGA-III. Both algorithms achieve high
hypervolume early in the search, but then non-linearly decrease in their
hypervolume performance.
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could be attributed to how they exploit their reference points and
reference vectors. NSGA-III normalizes objectives in every generation,
which means that solutions that are associated with a reference point
in one generation may become located farther away from that refer-
ence point in a subsequent generation. Thus, while still a valid solu-
tion, the point may be excluded from the population if a new popula-
tion member becomes associated with the reference point. For smooth
Pareto fronts, this will likely not be an issue because normalization will
be consistent across generations. However, if part of a disjoint set is
encountered that has not been found yet, this can drastically change
the normalization scheme and cause divergent deterioration. RVEA im-
plements a vector adaptation strategy that, unlike NSGA-III’s objective
normalization, is not performed during every generation with the in-
tent of stabilizing convergence (Cheng et al., 2016). However, as seen in
Fig. 11, even with this solution strategy in place, RVEA still suffers from
deterioration.

The smooth convergence of the Borg MOEA’s hypervolume shown
in Fig. 11 can be attributed to its employment of a closed-loop feed-
back where the effectiveness in generating new solutions informs auto-
adaptive multi-operator search dynamics. While the other algorithms
benchmarked in this study utilize a static parameterization and a sin-
gle pre-specified suite of exploratory operators, the Borg MOEA’s op-
erators as well as key parameters are adaptively modified without any
user input. The Borg MOEA'’s operators are initially equally likely to be
used and then these operator likelihoods are adjusted through the search
progress feedbacks to favor operators that contribute more solutions to
the archive (Hadka and Reed, 2012). Fig. 12 shows how the operator dy-
namics of the Borg MOEA’s six operators evolve across 50 random seed
trial runs of the algorithm using its default parameterization and for
200,000 function evaluations. The solid lines represent the mean opera-
tor probabilities achieved over the 50 seeds and the shading bounds the
5th and 95th percentile confidence interval. Fig. 12 demonstrates how
the Borg MOEA utilizes multiple exploratory operators, but primarily
cooperatively utilizes simulated binary crossover (SBX), parent-centric
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crossover (PCX), and uniform mutation (UM). PCX emerges as the dom-
inant operator and is employed upwards of 70% of the time in the latter
half of the search. While SBX is known to work best for mathemati-
cally separable (i.e., independent) decision variables, it is interesting to
note that in dynamic collaboration, SBX, PCX, and UM generate an en-
semble of new exploration strategies (a non-specified hyper-variational
search operator) that does not require strict separability. PCX is a rota-
tionally invariant operator, meaning that it does not require strict de-
cision variable independence and can generate translational moves in
any direction. Fig. 12 clearly highlights that the SFPUC benchmarking
test case is characterized by strong decision variable interdependence
and non-separability (Deb et al., 2002; Hadka and Reed, 2012). Even
though some of the operators have a smaller probability of use com-
pared to PCX or SBX, it is the cooperative use of all operators that con-
tribute to the overall success of the search. The significant use of the
highly randomized UM operator signals a designed feedback within the
Borg MOEA that allows the algorithm to escape local optima or attrac-
tors. In this study, the extreme lobes in the SFPUC test case’s Pareto
front clearly trap most modern MOEAs and the UM-driven exploratory
search of the Borg MOEA aids the algorithm in discovering solutions in
the sparse compromise region of the space. This cooperative behavior
is demonstrated in previous studies (Hadka and Reed, 2012; Vrugt and
Robinson, 2007; Vrugt et al., 2009).

5.5. Decision making implications of algorithmic choice

The prior results diagnose the algorithm’s search performance. It is
also interesting to explore how a typical user would perceive the SF-
PUC system’s financial risk tradeoffs. Fig. 13 simulates a hypothetical
interactive decision support exploration in which SFPUC stakeholders
specify a performance criteria that the expected minimum final cash
flow should be no less than 90% of the expected annualized final cash
flow. This criterion represents reasonable expectations that could be set
by the utility in order to be in an advantageous position to meet fixed
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Fig. 13. Parallel axis plots highlighting the tradeoff reference sets that would be attained across the 50 random seed trial runs for the algorithms’ default param-
eterizations. Each vertical axis in the panels represent an objective where the preferred direction is down. Each line in the figure represents a candidate solution
whose re-evaluated performance meets the specified performance criteria. The background dark lines represent the best known overall reference set from all runs of
all algorithms. The color gradient ranging from light to dark corresponds to high and low expected annualized final cash flow respectively.

every axis. Each line in the figure represents a candidate solution whose
performance meets the specified performance criterion. The overall best

annual costs. MOEAs facilitate this type of interactive a posteriori trade-
off analysis where decision makers view the full suite of possible solu-

tions and then brush, or eliminate, solutions that don’t meet the specified
performance requirements. Less attention in literature is spent recogniz-
ing that the choice of algorithm can distort the decision maker’s percep-
tion of their tradeoffs and the suite of solutions available to them. This
issue is illustrated in Fig. 13 by showing how the perception of trade-
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known reference set is included in gray to provide context to what
is the actual best set of possible solutions. Fig. 13a shows that when
the criterion is imposed, a wide variety of solutions that utilize varying
hedging frequencies remain. In focusing on the individual algorithms,
it becomes clear that when the performance requirement is imposed,
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Fig. 14. Three example polices, portrayed in yellow, purple, and blue, were chosen from the overall reference set and re-evaluated in a characteristically wet and dry
state of the world. Diamonds represent the time series of stochastic inputs or system states across the 20-year wet period, while stars represent the time series in the
20-year dry period. The first row of the figure shows the stochastic inputs across the 20 years in the wet and dry states. The subsequent rows show the performance of
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Fig. 13c shows that NSGA-II finds solutions that most closely resemble
the set of solutions remaining in the overall reference set in Fig. 13a.
Shown in Fig. 13d, NSGA-III finds significantly fewer solutions in the
interior space between the two lobes. Furthermore, most of these solu-
tions are spaced quite closely together, offering close to equivalent per-
formance on the expected annualized final cash flow and expected max-
imum fund balance objectives. Therefore, these solutions likely would
not be deemed substantially different to the decision maker. Fig. 13e
shows that RVEA can only locate two solutions in the interior region of
the reference set, one of which leads to the worst performance in the ex-
pected maximum reserve fund balance objective. Fig. 13f demonstrates
that MOEA/D is unable to preserve any interior solutions.

From a decision-making standpoint, these results suggest that that
the choice of algorithm can strongly limit the perception of both the
number and variety of solutions available. For instance, a decision
maker that uses the default parameterization of MOEA/D may erro-
neously assume that the only contract structures which meet the mini-
mum final cash flow requirement either utilize a minimum or maximum
hedging frequency. However, the rest of the algorithms suggest other-
wise. Using MOEA/D in this instance would severely constrain the num-
ber of options available to the decision maker while algorithms such as
the Borg MOEA and NSGA-II would offer a more flexible set of solutions.
Moreover, although NSGA-II happens to perform well for the SFPUC test
case here using its default parameterization, this is not a generalized ex-
pectation as several studies have shown that non-adaptive MOEAs can
yield drastically different behavior even for modest changes in water
resources problems (Ward et al., 2015). Fig. 13 ultimately highlights
that depending on performance requirements that are imposed, choice
of algorithm can severely constrain the utility’s perception of the choices
that are available to them.

5.6. Stochastic input implications on policy behavior

When SFPUC establishes their preference and ultimately chooses a
policy to implement, they will likely be interested in understanding how
the policy will operate in a variety of potential SOWs. Fig. 14 explores
how three policies representing alternative tradeoff preferences operate
in a representative dry and wet 20-year simulation realization. Fig. 14a
shows the three highlighted solutions in the context of SFPUC'’s trade-
offs. The yellow solution represents a scenario in which the utility re-
ceives a high expected annualized final cash flow and does not use a re-
serve fund or snow-driven hedging. The purple solution applies hedging
in 70% of the SOWs and utilizes a reserve fund. The blue point repre-
sents a solution that provides the highest minimum final cash flow in
any given year, which the utility might implement to hedge against sit-
uations where they cannot meet fixed annual costs. Each of these policy
solutions are then evaluated in relatively dry and wet 20-year simulation
periods. These periods were selected by identifying the 20-year period
from the independent 100,000-member sample of stochastic inputs that
had the least and most total SWE accumulation, respectively. Fig. 14b—d
show the time series of stochastic inputs: yearly SWE index, power price
index, and hydropower revenue. Blue diamonds and red stars distin-
guish the wet and dry time series, respectively. As expected, the wet
period is characterized by greater SWE accumulation and consequently
higher hydropower revenue. In these states of the world, the wet and
dry periods have similar power price indices.

The three solutions, when evaluated in the wet and dry scenarios,
show strong behavioral differences in how their reserve fund, final cash
flows, and hedging evolve over the respective 20-year periods being
simulated. The three bottom rows of Fig. 14 show the objective per-
formance for the yellow (Fig. 14e and g), purple (Fig. 14h and j) and
blue solutions (Fig. 14k and m), respectively. In these figure panels, the
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Fig. 14f is, therefore, equivalent to the hydropower revenue generated
for the specific scenario inputs. Thus, this solution illustrates the diffi-
cult position that utilities are currently experiencing where their rev-
enues are problematically tied to the potentially large swings in annual
snowpack. The purple compromise solution uses both the reserve fund
and hedging to yield very different behavior and adapts according to the
SOW. As shown in Figures 14h and 14i, in the wet SOW, SFPUC main-
tains a stable and high reserve fund balance and cash flow from the
hydropower generation. Hedging is not implemented in this wet period
due to the consistently high reserve fund. However, in the dry period,
hedging is applied in 10 of the 20 years where the utility keeps a low
reserve fund. In Figure 14i, through careful use of hedging and supple-
ments from the reserve fund, the revenue is generally stabilized. There
are a few extreme years characterized by particularly low hydropower
revenue and power prices. It should be noted that the final cash flow
in these years is still higher than if no financial instruments were being
used. The blue highest minimum cash flow solution (Figures 14k-14m),
unlike the purple compromise solution, requires hedging in every year
of both the wet and dry simulation periods. Through very active use
of the reserve fund in Figure 14k, the solution has a higher stabilized
final cash flow in the drier period relative to the purple compromise
solution (Figure 14i), and d also a less erratic cash flow in the wet
period.

Fig. 14 emphasizes the strong diversity of SFPUC’s capacity to im-
plement hedging and use a reserve fund to navigate the complex dy-
namics of their snow-dominated hydro-climatology. These results also
further emphasize the importance of the interior solutions, which use
state-aware closed loop feedbacks to adjust hedging behavior appropri-
ately depending on the SOW being experienced. While the blue solu-
tion may be ideal with respect to the minimum final cash flow objec-
tive, it requires the utility to engage in the higher transactional costs
and institutional challenges associated with hedging every year while
accepting a more variable reserve fund, which may not be preferable.
If an algorithm is unable to discover these compromise solutions, this
once again could present more expensive and limiting options for the
utility.

6. Conclusions

The volatile dynamics of snow-dependent hydrology in the West-
ern US poses a significant financial risk management challenge for hy-
dropower utilities. There is a growing need to develop risk mitigation
policies that can incorporate the complex dynamics of these systems
in tandem with emerging solution tools that can represent the result-
ing tradeoffs across alternative financial management strategies. The
state-aware adaptive actions that are enabled by the EMODPS frame-
work hold significant promise in addressing these challenges. However,
the resulting financial risk portfolio simulation-optimization problems
pose significant challenges to modern evolutionary multi-objective op-
timization tools. Our capability to access the advantages of EMODPS
is highly contingent on the ability of MOEAs to solve for the resulting
stochastic financial risk portfolios, including allowing users the flexi-
bility to rapidly iterate across alternative formulations if stakeholders
want to adapt their formulations (models, uncertainties, financial instru-
ments) as they gain insights. However, highly flexible decision framing
and support assumes that the underlying MOEA has four key proper-
ties: reliability across random trials and parameterizations, effectiveness
in attaining high quality approximations of tradeoff solution sets, effi-
ciency in minimizing computational demands, and high controllability
(i.e., insensitive to algorithmic parameters).

Our study focuses on a highly challenging test case of using EMODPS
to optimize policies that represent the major financial decisions for San
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by a highly disjoint Pareto front of tradeoffs. Overall, the Borg MOEA
was the only algorithm to display consistently high levels of perfor-
mance across all assessments. Through the use of adaptive variational
operators and population size, the Borg MOEA was able to represent
the extent of the geometry of the overall reference set and contribute
the most solutions relative to the other algorithms. Furthermore, it reli-
ably attained high levels of generational distance, additive epsilon indi-
cator, hypervolume performance, and demonstrated controllability, or
ease of use, across all tested parameterizations. The rest of the suite of
algorithms were unable to consistently achieve high levels of perfor-
mance. While NSGA-II was also able to discover acceptable representa-
tions of the SFPUC application’s tradeoffs, many of its solutions were
ultimately dominated by other algorithms and it displayed a strong sen-
sitivity to initial population size. The more modern NSGA-III, RVEA,
and MOEA/D algorithms proved to struggle with solving the SFPUC
test case. These reference point and decomposition techniques pose
problem-specific challenges if the tradeoff solution sets are not uni-
form and convex. Given the complex disjoint, non-convex solution set
for the SFPUC benchmarking test case, NSGA-III, RVEA, and MOEA
were unable to locate interior compromise points. Furthermore, while
achieving high best possible metric values, all the algorithms struggled
to attain these values reliably. The control maps highlight MOEA/D’s
poor controllability and the abject failure of NSGA-III and RVEA to
attain an acceptable hypervolume across any of their tested feasible
parameterizations.

Most concerning is that the more modern algorithms displayed clear
deterioration, or the tendency to lose solutions during the search. De-
terioration can result due to a combination of algorithm characteris-
tics: (1) the algorithm’s lack of an archive to preserve non-dominated
solutions and (2) the implementation of a normalization scheme in ev-
ery generation which leads to instability in convergence towards the
Pareto front. These characteristics along with a utilization of a static
set of search operators renders these algorithms ineffective for solving
the SFPUC test case. The success of the Borg MOEA lies in its adaptive
search operators which allows it to adjust parameterizations to favor
those that advance search progress and an adaptive population size op-
erator to help maintain diversity and escape local optima. Furthermore,
its implementation of an epsilon-dominance archive ensures both di-
versity and preservation of strong non-dominated solutions. The results
from this benchmarking study suggest that not all algorithms can ef-
fectively and reliably approximate the tradeoffs of the SFPUC test case,
and by extension, the classes of optimization problems that are char-
acterized by complex and disjoint tradeoffs. A complex solution topol-
ogy can result due to the presence of discrete objectives, as in the SF-
PUC test case, or discrete decision variables. For example, this behavior
could manifest in capital investment infrastructure optimization prob-
lems that introduce capital costs within the simulation period. After
a disaster, a resource-limited water resource system may seek tempo-
rary capacity expansion solutions that maximize safe water supply in
a minimal time frame. A renewable energy company could aim to op-
timize placement of wind turbines across a section of farmland. Only
the Borg MOEA has shown the ability to effectively approximate a com-
plex and disjoint solution space. It should be stated that the formula-
tion of optimization problems in financial risk or other areas can be as
simple as a two-objective formulation to minimize risk and maximize
return to a more complex EMODPS framework as demonstrated in this
study. Furthermore, the specific benchmarked DPS formulation chosen
for the study can be extended to consider many alternative formulations
that feature different objectives, information inputs, and configurations
of policy basis functions. A hyper-heuristic algorithm such as the Borg
MOEA can adaptively adjust parameterization to accommodate diverse
problem framings (Quinn et al.,, 2017), and shows the ability to dis-
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has been shown to be false in this and prior controllability benchmark-
ing efforts. This work highlights that potential future extensions need
to be considered carefully and jointly with sufficiently adaptive solu-
tion tools that do not show the failure mechanisms highlighted in this
work.

While the test case focuses on SFPUC and the Tuolumne Basin,
many other snow-dominated hydropower systems are characterized by
strong annual and interdecadal snowpack variability, from the Andes
(Masiokas et al., 2006) to the Atlas Mountains (Boudhar et al., 2016).
Utilities in these areas could benefit from an EMODPS framework for fi-
nancial risk management and policies that utilize financial instruments
to stabilize cash flow in hydroclimatic extremes. In order to find these
solutions that offer a variety of hedging options and tend to lie in the
interior of the space, it is important to utilize algorithms that are able
to discover these solutions. Only the Borg MOEA has shown the ability
to discover these solutions reliably, effectively, efficiently, and across
broad ranges of its parameterization space. In order to realize the po-
tential for using an EMODPS framework for financial risk management
and other applications outside of the financial sector that require state-
adaptive decision making across a range of alternative problem formu-
lation hypotheses, more attention must be paid to the development of
self-adaptive MOEAs. Future search tools need to effectively generalize
well across a variety of applications and problem formulations. There-
fore, focus should be spent developing new self-adaptive hyper-heuristic
algorithms, like the Borg MOEA, that perform stably, require little user
interaction, and therefore will facilitate easier and more effective deci-
sion support. Advancements in algorithm capabilities coupled with par-
allel and cloud computing to increase efficiency and size of experimen-
tation, visual analytics to enhance interpretation of solutions, and effec-
tive use of state and exogenous information to inform state-aware man-
agement actions will ultimately provide the best means to approach the
growing complexity of confronting snow-dominated hydropower sys-
tems and other complex water resources systems problems in the coming
decades.
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Appendix A. Notation Guide

Variable  Definition

tlifj index value for a given year/RBF/information input
Y cash flow for year ¢
' ¥y stage 1/2(3 cash flow for year ¢

v deposit or withdrawal for year ¢

1 reserve fund balance for year ¢

¢ net contract payout for year ¢

wh [wF weight of RBF (hedge/final cash flow policy)

center of RBF i for input j
. radii of RBF i for input j
(xf");/(x{"); information input j for hedge/final cash flow policy in year

<y

ull uf hedge contract slope/final cash flow for year ¢
uf [ar policy values before normalization in year ¢
uf” [ul"  policy values before constraint application in year ¢

N [¢"™  hedge/final cash flow normalization
pHC hedge constraint

¢™T|¢™  innerfouter final cash flow constraint

da[af hedge/final cash flow constant threshold variable

a¥ |aF hedge/final cash flow constant shift variable

04 [g* hedge/final cash flow parameter vector

[¢] overall policy vector

P overall policy representation

rt discount rate=0.96

kH Normalization for hedge contract slope=$4 million/inch (0.025 m)
kR Normalization for revenues and cash flows=$250 million

I Normalization for reserve fund=$150 million
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