

ACCEPTED MANUSCRIPT • OPEN ACCESS

A retrospective study of the 2012-2016 California drought and its impacts on the power sector

To cite this article before publication: Jordan D. Kern *et al* 2020 *Environ. Res. Lett.* in press <https://doi.org/10.1088/1748-9326/ab9db1>

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2020 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence <https://creativecommons.org/licenses/by/3.0>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the [article online](#) for updates and enhancements.

1
2 1 **TITLE:** A Retrospective Study of the 2012-2016 California Drought and its Impacts on the Power
3 2 Sector
4
5
6 3
7
8
9

10 4 **AUTHORS:** Jordan D. Kern, PhD^{1*}; Yufei Su²; Joy Hill²
11
12 5
13
14
15 6 **Corresponding Author*
16
17 7 1. Department of Forestry and Environmental Resources, North Carolina State University,
18 8 Raleigh, NC 27695, United States, jkern@ncsu.edu
19
20 10 2. Department of Environmental Science and Engineering, University of North Carolina-
21 11 Chapel Hill, Chapel Hill, NC 27516, United States
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

28 Abstract

29
30 Over the period 2012-2016, the state of California in the United States (U.S.) experienced
31 a drought considered to be one of the worst in state history. Drought's direct impacts on
32 California's electric power sector are understood. Extremely low streamflow manifests as reduced
33 hydropower availability, and if drought is also marked by elevated temperatures, these can increase
34 building electricity demands for cooling. Collectively, these impacts force system operators to
35 increase reliance on natural gas power plants, increasing market prices and emissions. However,
36 previous investigations have relied mostly on ex post analysis of observational data to develop
37 estimates of increases in costs and carbon dioxide (CO₂) emissions due to the 2012-2016 drought.
38 This has made it difficult to control for confounding variables (e.g. growing renewable energy
39 capacity, volatile natural gas prices) in assessing the drought's impacts. In this study, we use a
40 power system simulation model to isolate the direct impacts of several hydrometeorological
41 phenomena observed during the 2012-2016 drought on system wide CO₂ emissions and wholesale
42 electricity prices in the California market. We find that the impacts of drought conditions on
43 wholesale electricity prices were modest (annual prices increased by \$0-3/MWh, although much
44 larger within-year increases are also observed). Instead, it was an increase in natural gas prices,
45 punctuated by the 2014 polar vortex event that affected much of the Eastern U.S., which caused
46 wholesale electricity prices to increase during the drought. Costs from the drought were much
47 different for the state's three investor owned utilities. Overall, we find that increased cooling
48 demands (electricity demand) during the drought may have represented a larger economic cost
49 (\$3.8 billion) than lost hydropower generation (\$1.9 billion). We also find the potential for
50 renewable energy to mitigate drought-caused increases in CO₂ emissions to be negligible, standing
51 in contrast to some previous studies.

53 Key Words

54 Drought, electricity markets, prices, greenhouse gases, renewable energy

1 2 3 4 75 1. Introduction 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

77 There is growing interest in understanding the effects of hydrometeorological variability,
78 and especially drought, on the economic and environmental performance of bulk power systems
79 and electricity markets (van Vliet et al., 2012; Van Vliet et al., 2016; Voisin et al., 2016). In the
80 United States (U.S.), California is particularly vulnerable to drought due to its reliance on in-state
81 and imported hydropower (California Energy Commission, 2017a). Over the period 2012-2016,
82 California experienced a drought considered to be one of the worst in state history (Belmecheri et
83 al., 2016; Griffin and Anchukaitis, 2014; Lund et al., 2018). During this time, hydrometeorological
84 impacts included extremely low precipitation, snowpack, and streamflow, along with elevated
85 temperatures (AghaKouchak et al., 2014; Mote et al., 2016). The drought is estimated to have
86 caused 10 billion dollars in economic damages across the state (Lund et al., 2018).

87 The lone estimate of the drought's negative economic impact on California's electric power
88 grid is \$2.45 billion (Gleick, 2017), a number that reflects the estimated market value of
89 hydropower that was "lost" over the years 2012-2016. On average, California relies on in-state
90 hydropower to provide 13% of its electricity needs, with most of this generation coming from
91 dams located in the Sierra Nevada Mountains. In the worst year of the drought (2015), in-state
92 hydropower generation decreased to 41% of average (California Energy Commission, 2017b),
93 helping to meet only 6% of California's electricity needs (California Energy Commission, 2017a).

94 This estimated \$2.45 billion in lost hydropower revenues was reported widely (Fracassa,
95 2017; Kasler, 2017), but it likely does not represent the full cost of the drought to electric utilities
96 and their customers. Drought can also impact electricity demand. For example, if drought is
97 associated with elevated air temperatures that increase residential and commercial cooling needs,
98 it can increase the amount of electricity utilities need to purchase on the wholesale market or

1
2
3 99 produce from self-owned resources. Overall, electricity demand in California appears to have
4
5 100 increased mostly along a linear growth trajectory over the years 2010-2018, including during the
6
7 101 drought (California Energy Commission, 2019). However, the effects of the drought on demand
8
9 102 varied across sectors, and across end-uses within sectors. For example, in the residential and
10
11 103 agricultural sectors (the second and fourth largest consumers of electricity in California,
12
13 respectively (California Energy Commission, 2019)), many utilities reported decreased electricity
14
15 104 consumption during the drought years, even as elevated air temperatures increased cooling
16
17 105 demands and irrigation (pumping) requirements on a per crop basis. This has been attributed to
18
19 106 reduced water consumption during the drought, which in turn reduced energy requirements for
20
21 107 water treatment and distribution (Spang et al., 2018).
22
23
24
25
26 109 An addition mechanism for drought to impact costs for utilities is by altering the wholesale
27
28 110 price of electricity. In particular, the combination of reduced hydropower availability (supply) and
29
30 111 increased cooling requirements (demand) that can occur during drought in California may increase
31
32 112 wholesale prices by forcing the market to rely on higher marginal cost generators (i.e. more
33
34 113 expensive natural gas power plants) (Boogert and Dupont, 2005; Gutierrez et al., 2014). If the
35
36 114 2012-2016 drought caused wholesale electricity prices in California to increase, it would have
37
38 115 mitigated some financial pain for hydropower-owning utilities; hydropower production, although
39
40 116 greatly reduced, would have been more valuable. At the same time, however, higher market prices
41
42 117 could have made it more expensive for utilities to meet demand via purchases from the wholesale
43
44 118 market. Wholesale electricity prices in California did increase during the middle of the drought,
45
46 119 reaching an apex in 2014 (Figure 1). However, there has been no attempt to understand how supply
47
48 120 and demand effects from the drought might have contributed to this increase (especially compared
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 121 to other factors known to affect market prices, like natural gas prices); nor has there been an
4 122 attempt to quantify how increased prices influenced the cost of the drought for California utilities.
5
6
7 123 Another open question from the 2012-2016 drought has to do with the role of the state's
8 124 growing reliance on variable renewable energy (wind and solar) in mitigating the environmental
9 125 impacts of drought. In particular, the substitution of natural gas generation for hydropower during
10 126 drought is known to increase carbon dioxide (CO₂) emissions in California (Fulton and Cooley,
11 127 2015; Hardin et al., 2017; Herrera-Estrada et al., 2018). Previous studies have pointed to the state's
12 128 growing fleet of wind and solar capacity as a counterbalancing force that was able to mitigate
13 129 increases in CO₂ emissions that would have occurred during the 2012-2016 drought due to a loss
14 130 of hydropower (Hardin et al., 2017; He et al., 2019; Zohrabian and Sanders, 2018). In fact, carbon
15 131 dioxide (CO₂) emissions from California's electric power sector actually decreased over the years
16 132 2012-2016 (California Air Resources Board, 2018).
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

133 On the surface, these data seem to support the idea that wind and solar power can help
134 reduce the drought-vulnerability of power systems— an idea that has gained more attention in recent
135 years (He et al., 2019; van Vliet et al., 2016). However, the role wind and solar play in reducing
136 drought-caused increases in emissions deserves further examination. Previous studies have relied
137 exclusively on historical data from 2012-2016 to evaluate the California grid's response to drought
138 without accounting for the confounding effects of year-to-year changes in the generation mix.
139 From 2012 to 2016, installed capacity of wind and solar in the state more than doubled, and
140 generation from those resources partially offset losses in hydropower generation, in turn reducing
141 the amount of “replacement” generation needed from natural gas plants. This may (falsely) give
142 the impression that future grid configurations with greater installed wind and solar capacity will
143 be better equipped to replace lost hydropower during a drought, and thus avoid associated increases

1
2
3 144 in carbon emissions. Here, we develop a more nuanced understanding of the role that renewable
4
5 145 energy in California plays in mitigating CO₂ increases caused by drought.
6
7

8 146 In this study, we use newly developed grid simulation software to perform a series of
9
10 147 controlled computational experiments that identify the direct influence of drought (and its
11
12 148 hydrometeorological constituents) on CO₂ emissions, wholesale electricity prices, and costs for
13
14 149 utilities in California. We test different underlying generation mixes, varying the penetration of
15
16 150 variable renewable energy, in order to better understand how the presence of renewable energy
17
18 151 affects the magnitude of drought-caused increases in CO₂ emissions. Our results provide new
19
20 152 insights and important context regarding the economic and environmental impacts of the 2012-
21
22 153 2016 drought, its effect on the California grid, and the vulnerability of California's power system
23
24 154 to drought in the future under alternative grid configurations.
25
26
27

28 155
29
30
31
32 156 **2. Methods**
33
34
35
36 158 **Modeling Approach**
37
38
39 160 We make use of the California and West Coast Power system (CAPOW) model (Su et al.,
40
41 2020), an open source stochastic simulation tool designed specifically for evaluating
42
43 161 hydrometeorological risks in the U.S. West Coast bulk power system. The model accurately
44
45 162 reproduces historical daily price dynamics in California's wholesale market (Figure 1), although
46
47 163 it sometimes fails to capture the highest observed peak prices due to its use of publically available
48
49 164 natural gas "hub" price data. These data are averages of contracted gas prices experienced by
50
51 165 market participants. It is likely that during high demand periods, certain power plants experience
52
53 166 market participants. It is likely that during high demand periods, certain power plants experience
54
55
56
57
58
59
60

1
2
3 167 gas prices much higher than the hub price, causing spikes in the wholesale electricity price that
4
5 168 our model does not capture.
6
7

8 169 The model's geographical scope covers most of the states of Washington, Oregon and
9
10 170 California and the operations of the region's two wholesale electricity markets, the Mid-Columbia
11
12 171 (Mid-C) market in the Pacific Northwest and the California Independent System Operator
13
14 172 (CAISO) in California. Within the CAISO market, we focus on the service areas of the state's
15
16 173 three main investor owned utilities, Pacific Gas & Electric (PG&E), Southern California Edison
17
18 174 (SCE), and San Diego Gas & Electric (SDG&E).
19
20

21 175 CAPOW simulates power system operations using a multi-zone unit commitment and
22
23 176 economic dispatch (UC/ED) model formulated as a mixed integer linear program. The model's
24
25 177 objective function is to minimize the cost of meeting demand for electricity and operating reserves
26
27 178 in the two major markets represented, subject to constraints on individual generators, the capacity
28
29 179 of transmission pathways linking zones, and others. CAPOW takes as inputs time series of air
30
31 180 temperatures and wind speeds at 17 major airports from the NOAA Global Historical
32
33 181 Climatological Network (National Oceanic and Atmospheric Administration, 2019); solar
34
35 182 irradiance at 7 different National Solar Resource Database sites (Sengupta et al., 2018); and
36
37 183 streamflow at 105 different gauges throughout the West Coast ((BPA) Bonneville Power
38
39 184 Administration, 2019; CDEC, 2019). Air temperatures and wind speeds are used to simulate daily
40
41 185 peak electricity demand via multivariate regression; hourly values are conditionally resampled
42
43 186 from the historical record. It is important to note that in this paper we do not directly account for
44
45 187 the effects of reduced water consumption during drought on electricity demand. There is limited
46
47 188 data available that would allow for parameterization of a tight model coupling among hydrologic
48
49 189 triggers, water conservation policies, and electricity demand.
50
51
52
53
54
55
56
57
58
59
60

1
2
3 190 We use daily wind speeds to simulate aggregate zonal wind power production, and daily
4
5 191 solar irradiance to simulate zonal solar power production (both via multivariate regression), before
6
7 192 conditionally resampling down to an hourly time step. Time series of daily streamflow are forced
8
9 193 through hydrologic mass balance models of major hydroelectric dams in the Federal Columbia
10
11 194 River Power System (Pacific Northwest), Willamette River basin (Oregon), Sacramento, San
12
13 195 Joaquin and Tulare Lake basins (California). Hydropower availability is calculated on a daily basis
14
15 196 across every zone in the model, then dispatched optimally on an hourly basis by the UC/ED model.
16
17 197 Model outputs include the least cost generation schedule identified down to the individual
18
19 198 generator level, hourly zonal electricity prices (\$/MWh), and plant level emissions of CO₂ (tons).
20
21
22
23
24 199 For this study, we collected historical daily temperature, solar irradiance, and streamflow
25
26 200 data over the period 1970-2017, and wind data over 1998-2017. Missing wind data (1970-1998)
27
28 201 at each site were filled by bootstrapping from the historical record, conditioned on daily
29
30 202 temperatures. For the purposes of placing the 2012-2016 drought within the larger context of
31
32 203 stationary hydrometeorological uncertainty, we also make use of a 1000-year stochastic dataset of
33
34 204 air temperatures, wind speeds, solar irradiance and streamflow created by the authors and
35
36 205 described in a separate paper (Su et al., 2020).
37
38
39
40 206 Figure 2 compares drought hydrometeorology (2012-2016) with the full 1970-2017
41
42 207 observed record (black) and the 1000-year synthetic dataset (gray). Data shown are averages across
43
44 208 all weather and streamflow monitoring stations. The drought years experienced historically low
45
46 209 stream flows and elevated temperatures, relative to the recent observed record and the synthetic
47
48 210 dataset, while wind speeds and solar irradiance were relatively normal. Even compared alongside
49
50 211 the expanded, 1000-year synthetic dataset, modeled hydropower availability and electricity
51
52 212 demand for 2012-2016 (and especially 2014-2015) indicate extraordinary conditions (Figure 3).
53
54
55
56
57
58
59
60

1
2
3 213 Note again that demand data shown are modeled purely as a function of hydrometeorological data
4 being passed through statistical models. These estimates thus represent scenarios in which
5
6 214 reductions in energy consumption by the water sector do not occur.
7
8 215
9
10 216
11
12 217 **3. Results and Discussion**
13
14
15 218 **Effects of Drought on Market Prices and Emissions**
16
17 219 First, using the 1000-year synthetic dataset, we calculate an average, 365-day profile for
18 every streamflow gauge, wind/temperature station, and solar irradiance site used in the CAPOW
19 model. We pass these average profiles through the CAPOW model, which first translates them
20 into corresponding time series of available hydropower, wind and solar power production, as
21
22 221 well as electricity demand. Then the UC/ED component of the CAPOW model simulates the
23 operation of much of the West Coast grid, including the CAISO market. Representing “non-
24
25 222 drought” hydrometeorological conditions in this manner is unrealistic, in that the 365-day profile
26 does not exhibit any within-year extremes (which do occur even in non-drought years). However,
27
28 223 it does allow for easy assessment of within year anomalies caused by the drought, as well as
29 comparison of the timing of these anomalies with the timing of extreme prices.
30
31 224
32
33 225
34
35 226
36
37 227
38
39 228
40
41 229 Figure 4 compares daily CAISO prices calculated using the 365-day average
42 hydrometeorological profile (turquoise) alongside prices modeled using observed weather and
43 streamflow data from the 2012-2016 drought (magenta). Comparing these two series within a
44
45 230 given panel (year), we see significant differences in daily price dynamics, especially in late
46
47 231 spring/summer during the worst years of the drought (2013-2015), when prices in the drought
48
49 232 simulations are as much as \$10/MWh greater than “average” conditions. Underlying these higher
50
51 233
52
53 234
54
55
56
57
58
59
60

1
2
3 235 prices in the drought simulations are a lack of snowmelt (hydropower) and elevated temperatures
4
5 236 (increased demand), which cause scarcity in the CAISO market.
6
7

8 237 Nonetheless, compared to price differences observed between “average” and drought
9
10 238 conditions within a given year, the differences are much greater *across years* (e.g. 2013 vs. 2014).
11
12 239 This suggests that within year electricity price dynamics, as well as differences in prices across
13
14 240 years, are driven more by fluctuations in the price of natural gas than by weather and streamflow
15
16 241 conditions. Natural gas prices varied continuously over the period 2012-2016, increasing sharply
17
18 242 during 2014, especially at the beginning of the year, when a polar vortex event drastically increased
19
20 243 heating demands in the Eastern U.S., causing natural gas shortages and a spike in the price of fuel
21
22 244 across the entire country (U.S. Energy Information Administration, 2014). Note that during this
23
24 245 period, there is close agreement between estimated prices in “average” and drought conditions.
25
26 246 This strongly suggests that this *other* hydrometeorological extreme – extreme cold weather
27
28 247 occurring thousands of miles away in the Eastern U.S. – was the primary cause of the very high
29
30 248 wholesale electricity prices experienced in early 2014 at the height of the drought. This is
31
32 249 particularly interesting given evidence (Wang et al., 2014) that both dry conditions in California
33
34 250 during 2014 and the occurrence of the polar vortex in the Eastern U.S. were caused by the synoptic
35
36 251 climate event-- a jet stream pattern that created a persistent high pressure “ridge” over the Western
37
38 252 U.S. If these atmospheric conditions become more frequent and/or severe as a result of climate
39
40 253 change (Swain et al., 2014), it could add a significant, new dimension to the vulnerability of
41
42 254 California’s grid in the future.
43
44
45
46
47
48

49 255 We can also isolate the effects of the individual hydrometeorological constituents of
50
51 256 droughts on both prices and emissions (Figure 5). In the top panel, yellow bars show daily CAISO
52
53 257 prices under a 365-day average hydrometeorological profile calculated from the 1000-year
54
55
56
57
58
59
60

1
2
3 258 synthetic dataset. One-by-one, we then add in constituents of the 2012-2016 drought, beginning
4 with historically low streamflow in California, then observed streamflow in the Pacific Northwest
5 (which typically exports a significant amount of hydropower down into California), elevated air
6 temperatures, and finally wind speeds and solar irradiance. The time series labeled “Historical”
7 represent results from the full historic 2012-2016 weather and streamflow dataset.
8
9
10
11
12
13
14
15 263 Power sector CO₂ emissions (bottom panel) appear more sensitive to drought conditions
16 than prices (top panel). Comparing emissions under average hydrometeorology with emissions
17 under 2012-2016 conditions, we see large increases, particularly during the two hottest and driest
18 years, 2014-2015. There are clear differences in the strength of the effect across individual drought
19 constituents. In most years, the two largest contributors to increased emissions are very low
20 streamflow in California (i.e. reduced in-state hydropower production) and high air temperatures
21 (i.e. increased electricity demands for cooling).
22
23
24
25
26
27
28
29
30
31 270 Note as well that the bar graphs in Figure 5 indicate standard errors associated with each
32 price and emissions estimate. For each hydrometeorological scenario (e.g., average conditions +
33 historical CA streamflow), identical weather and streamflow inputs are used in multivariate
34 regression models to create five separate records of power system inputs (time series of wind
35 power, solar power, etc). For a given scenario (bar) shown in Figure 5, the standard errors measure
36 the (limited) influence of randomness in regression residuals on the results.
37
38
39
40
41
42
43
44
45
46
47 277 [The Cost of Drought to Electric Utilities](#)
48
49
50
51
52
53
54
55
56
57
58
59
60

278 A first step in measuring the cost of the 2012-2016 drought for electric utilities in California
279 is to quantify impacts on market prices in CAISO. In Figure 6 (top panel), we compare the
280 electricity price in CAISO under average hydrometeorology (solid bars) and historical 2012-2016

1
2
3 281 hydrometeorology (white bars). We also compare electricity prices resulting from two different
4 model choices regarding the price of natural gas: 1) a static, average natural gas price of
5 \$3.5/MMBtu (orange bars); and 2) the historical 2012-2016 natural gas price regime (pink bars).
6
7 282 The price impacts from drought are equal to the delta of each solid/white bar pair; these results are
8 then plotted in the bottom panel of Figure 6.
9
10 283
11 284
12 285

13
14 286 We find that the drought likely caused average market prices in CAISO to increase between
15 \$0-3/MWh, depending on the year, although within-year price differences could be much greater
16 (see Figure 4). Figure 6 also indicates that natural gas prices influence how the market experiences
17 the effects of drought. For example, in the bottom panel, if a constant, average price of natural gas
18 is assumed for each year (orange bars), the most significant impacts from drought occur in 2015.
19
20 287 288
21 289 290
22 291 292
23 293 294
24 295 296
25 297 298
26 299 300
27 301 302
28 303
29 304
30 305
31 306
32 307
33 308
34 309
35 310
36 311
37 312
38 313
39 314
40 315
41 316
42 317
43 318
44 319
45 320
46 321
47 322
48 323
49 324
50 325
51 326
52 327
53 328
54 329
55 330
56 331
57 332
58 333
59 334
60 335

Accepted

306 Table 1 further explores the potential costs of drought in the service areas of the three main
307 investor owned utilities in California (PG&E, SCE and SDG&E). The first economic cost to grid
308 participants that we consider is the “net” value of lost hydropower. In Table 1, we estimate this as
309 the difference between summed daily hydropower revenues (production in MWh multiplied by
310 market price in \$/MWh) under average hydrometeorological conditions and each drought year.
311 This allows us to capture losses from reduced hydropower production, as well as the benefits to
312 hydropower producers from experiencing higher market prices during the drought. In general, we
313 find that increased prices do relatively little to make up for a loss in hydropower production. Across
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

1
2
3 304 the three utility service areas considered, the net value of lost hydropower over 2012-2016 is
4
5 305 approximately \$1.9 billion. The only previous estimate of the value of lost hydropower generation
6
7 306 during the drought is \$2.45 billion (Gleick, 2017). Our estimate is likely lower due to a few
8
9 307 different factors. First, we only assess hydropower that directly participates within the CAISO
10
11 308 market. A smaller, but still significant amount of hydropower capacity is operated by other utilities
12
13 (e.g. Los Angeles Department of Water and Power, Sacramento Municipal Utility District, San
14
15 Francisco Public Utility Commission, PacifiCorp). Lost hydropower in those areas is not
16
17 310 considered. We also directly account for the economic benefits to hydropower producers from
18
19 311 increased market prices, which helps offsets lost production somewhat.
20
21
22
23
24 313 Next, we determine the costs associated with higher electricity demand due to elevated air
25
26 314 temperatures during the drought. In Table 1, we estimate these additional costs as the difference
27
28 315 between summed daily electricity costs (electricity demand in MWh multiplied by the market price
29
30 316 in \$/MWh) under average hydrometeorological conditions and each drought year. We find that, in
31
32 317 the absence of secondary economic/policy feedbacks (e.g., water conservation efforts in urban
33
34 318 areas), increased electricity demand driven by higher air temperatures could have increased costs
35
36 319 for utilities by more than \$3.8 billion – representing a significantly greater cost than the loss of
37
38 320 hydropower.
39
40
41
42 321 We also find major differences in how the three investor-owned utilities likely fared during
43
44 322 the drought. For example, in the case of PG&E, which is the largest private owner of hydropower
45
46 323 capacity in the U.S., the value of lost hydropower represents a greater cost than increased
47
48 324 consumption. The opposite is true for SCE, which owns less hydropower capacity and has
49
50 325 electricity demands are more sensitive to temperature extremes.
51
52
53
54 326
55
56
57
58
59
60

Accepted

327 Renewable energy and drought-caused emissions increases
328

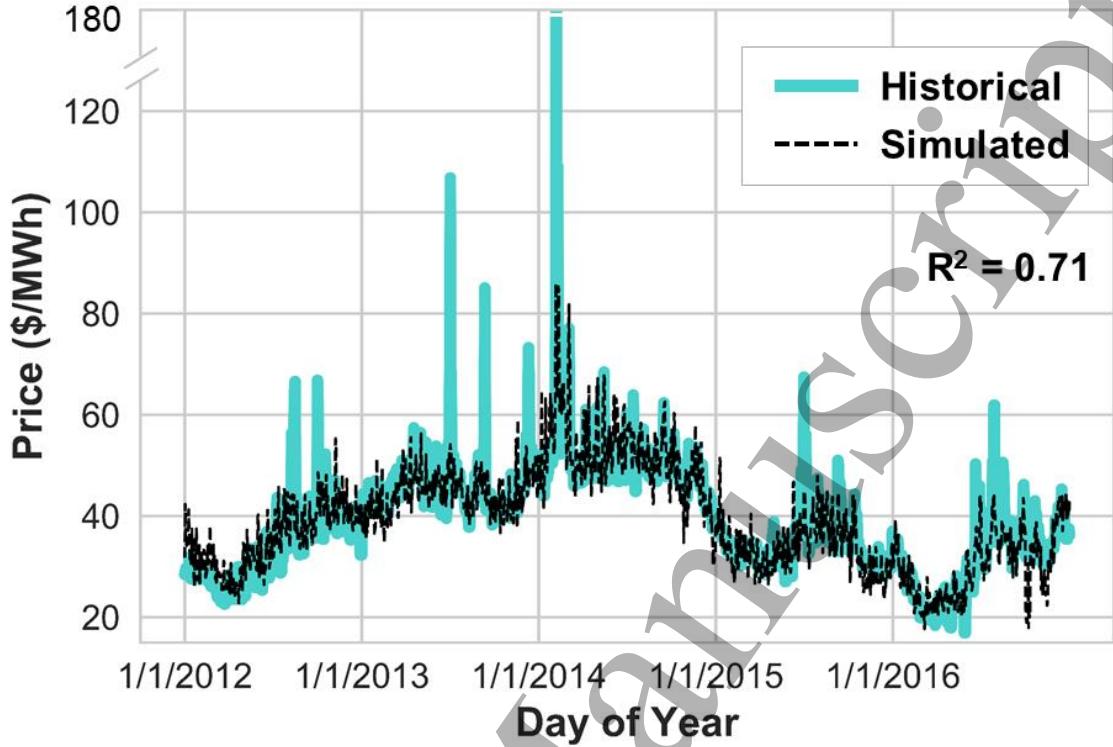
329 The second major objective of this paper is to evaluate the potential for variable renewable
330 energy to mitigate increases in CO₂ emissions caused by drought. To answer this question, we
331 measure the response of two different versions of the CAISO grid to drought. In one version we
332 assume 2012 levels of installed wind and solar capacity, and in another we assume 2015 levels of
333 installed wind and solar capacity (more than double 2012 levels). Figure 7 compares the
334 performance of these two versions of the model when simulated under 2015 hydrometeorological
335 conditions (arguably the most extreme year of the drought). Panel A tracks daily differences in
336 fossil fuel generation over the entire year, confirming that a version of the grid with greater (2015)
337 levels of installed wind and solar power relies on less generation from fossil fuels to meet demand.
338 Nonetheless, having increased wind and solar power capacity in place does not prevent the drought
339 conditions from causing an uptick in the use of fossil fuels.

340 In panel B, we track daily differences in fossil fuel generation caused by drought conditions
341 in 2015 (i.e. relative to average hydrometeorology) under two different levels of installed wind
342 and solar capacity, 2012 (black) and 2015 (orange). Drought conditions in 2015 appear to cause
343 nearly identical responses (increases) in fossil fuel generation under the two different capacity
344 mixes, despite the fact that double the amount of renewable energy capacity is installed in 2015.
345 This is confirmed by panel C, which plots the difference of the two series shown in panel B. The
346 result approximates a stationary noise process, suggesting that differences between the two
347 renewable energy scenarios is due primarily to stochastic model residuals created by CAPOW
348 when translating hydrometeorological time series into corresponding records of wind and solar
349 power production, electricity demand, etc. (see error bars in Figure 5).

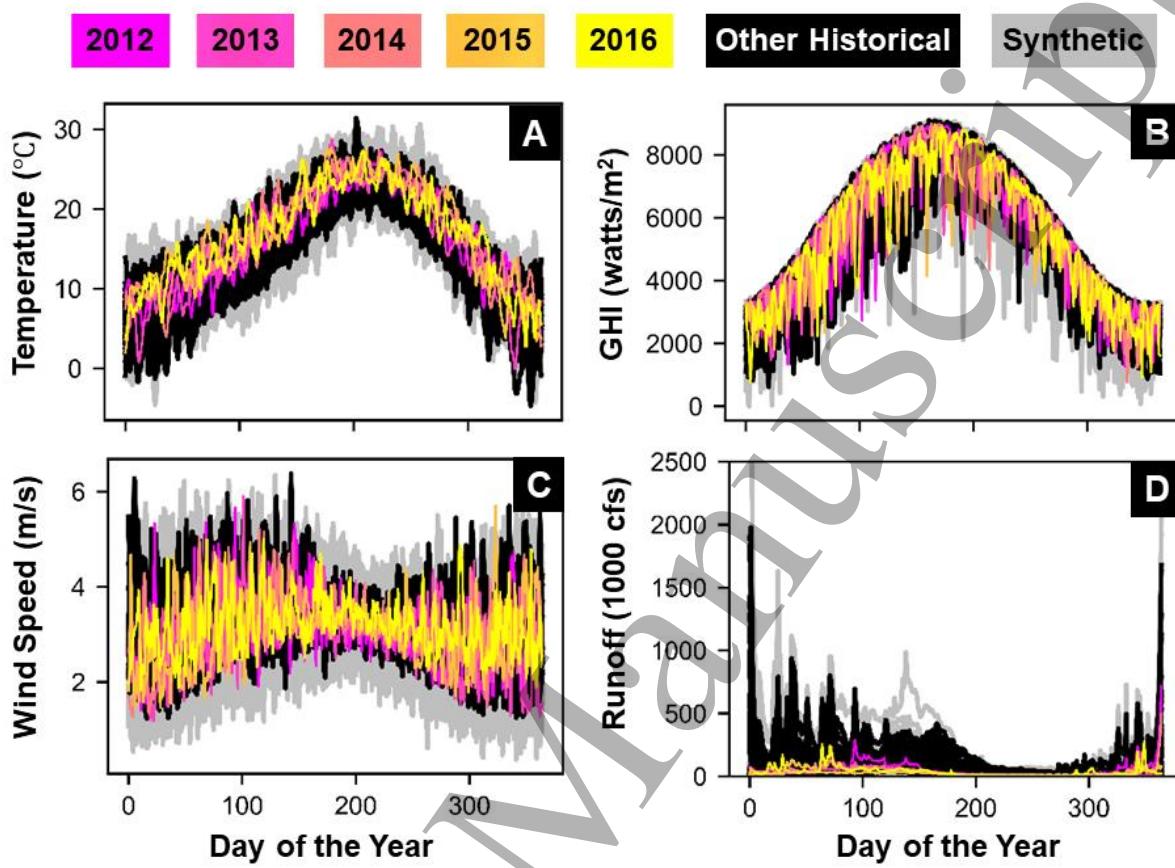
1
2
3 350 Figure 8 confirms that the presence of more renewable energy does very little to prevent
4 increased CO₂ emissions during drought. We track total CO₂ equivalents emitted by power plants
5 in CAISO under historical drought conditions (open bars) and an “average” hydrometeorological
6 year (solid bars). We also control for installed renewable capacity. Black bars represent CO₂
7 emissions in a version of the model that assumes 2012 renewable energy levels. Green bars assume
8 historical capacity levels, which gradually increase over the 5-year period (purple dotted line).
9
10
11
12
13
14
15
16

17 356 As installed renewable energy capacity increases from 2012-2016 (open bars), emissions
18 357 are mostly steady before declining in the last year of the drought; they would have decreased faster
19 under average hydrometeorological conditions (solid bars). However, the deltas in emissions
20 358 between average and historical hydrometeorology look very similar for the two different
21 359 renewable energy scenarios. The bottom panel confirms this; in fact, we see that drought-caused
22 360 increases in CO₂ emissions are actually lower in most years if we assume static 2012 installed
23 361 renewable energy capacity. This could be a sign that the model is relying more on higher emission
24 362 natural gas combustion turbine units (as opposed to slightly less flexible combined cycle units)
25 363 when there is more renewable energy installed. If the latter proves to be true, in the short term it
26 364 raises the possibility that increased renewable energy capacity in CAISO could in fact lead to more
27 365 severe (larger) emissions responses during drought.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4. Conclusion

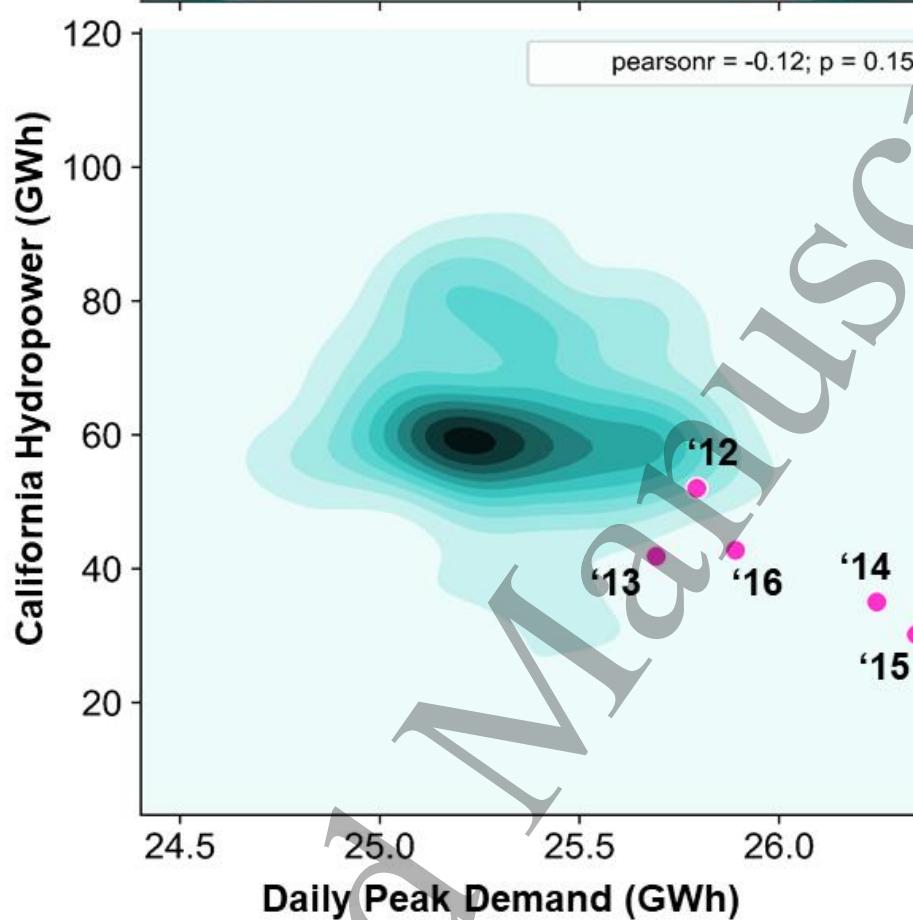

367
368
369 In this paper, we closely examine the impacts of the 2012-2016 drought on California’s
370 electricity grid. For the first time, we isolate the drought’s hydrometeorological constituents and
371 perform a series of controlled experiments in order to understand how weather, streamflow, fuel
372 prices, and renewable energy individually and collectively affected grid outcomes. We first

1
2
3 373 explore the impacts of the drought on wholesale prices for electricity, finding that the drought
4
5 374 increased prices on average by between \$0-3/MWh, with the biggest underlying causes being a
6
7 375 decrease in streamflow (hydropower generation) and elevated temperatures (modeled electricity
8
9 376 demand). While an important impact, our results also make clear that natural gas prices were the
10
11 377 dominant driver of higher electricity prices experienced during the drought, especially during early
12
13 378 2014 when natural gas prices spiked nationwide due to extremely cold weather in the Eastern U.S.
14
15 379 These high gas prices caused a spike in wholesale electricity prices at the height of the drought.
16
17 380 Interestingly, the incidence of extreme cold in the Eastern U.S. and extreme drought in California
18
19 381 were driven by the same synoptic climate event – a persistent high pressure ridge over the U.S.
20
21 382 West Coast.
22
23
24
25
26 383 Our estimates of the cost of the drought in the CAISO system are on the same order of
27
28 384 magnitude as the lone previous estimate. However, we find that the cost of the drought in the
29
30 385 electric power sector could have been much higher than previously reported, with utilities
31
32 386 experiencing significantly increased demand due to higher air temperatures and cooling demands.
33
34
35 387 A limitation of this work, however, is our failure to account for feedbacks from policies aimed and
36
37 388 reducing water consumption, which actually reduced electricity demand in some sectors.
38
39 389 Improving understanding in this area remains an outstanding challenge. We find essentially no
40
41 390 evidence supporting the idea that the presence of greater variable renewable energy capacity *before*
42
43 391 *a drought begins* will help mitigate associated increases in CO₂ emissions caused by water scarcity
44
45 392 and higher temperatures. The results of our controlled experiments show that even when renewable
46
47 393 energy capacity more than doubles from 2012 to 2015 levels, the CAISO grid experiences the
48
49 394 same increase in fossil fuel generation and CO₂ emissions during drought years. In fact, there is
50
51 395 some evidence that drought-caused emissions increases may be more severe under higher installed
52
53
54
55
56
57
58
59
60

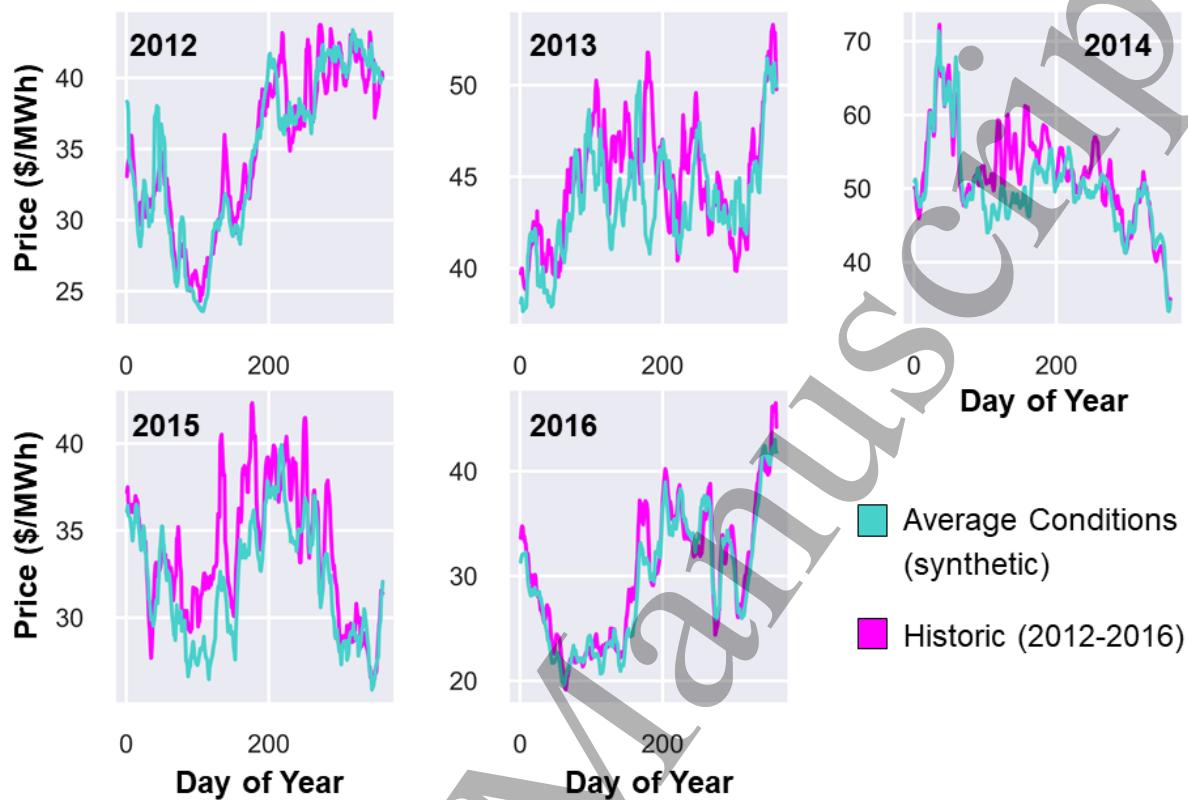

1
2
3 396 renewable energy capacity. This could be caused by increased reliance on flexible but inefficient
4
5 397 natural gas combustion turbines to help integrate renewables.
6
7
8 398
9
10 399 **5. Acknowledgements**
11
12 400 This research was supported by the National Science Foundation INFEWS programs,
13
14 401 awards #1639268 (T2) and #1700082 (T1).
15
16
17 402
18
19
20
21 403 **6. Data availability statement**
22
23 404 The data that support the findings of this study are available upon reasonable request from the
24
25 405 authors.
26
27
28
29 406
30
31 407 **7. References**
32
33 408
34 409 (BPA) Bonneville Power Administration, 2019. Historical Streamflow Data [WWW Document].
35
36 410 URL <https://www.bpa.gov/p/Power-Products/Historical-Streamflow-Data/Pages/Historical->
37 411 Streamflow-Data.aspx (accessed 2.11.19).
38
39 412 AghaKouchak, A., Cheng, L., Mazdiyasni, O., Farahmand, A., 2014. Global warming and
40
41 changes in risk of concurrent climate extremes: Insights from the 2014 California drought.
42
43 413 Geophys. Res. Lett. 41, 8847–8852.
44
45 415 Belmecheri, S., Babst, F., Wahl, E., Stahle, W., Trouet, V., 2016. Multi-century evaluation of
46
47 416 Sierra Nevada snowpack. Nat. Clim. Chang. 6, 2–3.
48
49 417 Boogert, A., Dupont, D., 2005. The nature of supply side effects on electricity prices: The impact
50
51 418 of water temperature. Econ. Lett. 88, 121–125.
52
53 419 California Air Resources Board, 2018. California Greenhouse Gas Emissions for 2000 to 2016:
54
55 420 Trends of Emissions and Other Indicators. Sacramento, CA.
56
57 421 California Energy Commission, 2019. Electricity Consumption by Planning Area [WWW
58
59 422 Document]. Calif. Energy Comm.
60
53
54 423 California Energy Commission, 2017a. Total system electric generation [WWW Document].
55
56 424 URL https://ww2.energy.ca.gov/almanac/electricity_data/total_system_power.html
57
58 425 (accessed 8.2.19).
59
60

1
2
3 426 California Energy Commission, 2017b. California hydroelectric statistics and data [WWW
4 427 Document]. URL
5 428 https://ww2.energy.ca.gov/almanac/renewables_data/hydro/index_cms.php (accessed
6 429 8.2.19).
7
8 430 CDEC, 2019. California Data Exchange Center [WWW Document]. URL
9 431 <https://cdec.water.ca.gov/> (accessed 2.11.19).
10
11 432 Fracassa, D., 2017. How hydroelectric power has roared back in California. San Fr. Chron.
12
13 433 Fulton, J., Cooley, H., 2015. The water footprint of California's energy system, 1990–2012.
14 434 *Environ. Sci. Technol.* 49, 3314–3321.
15
16 435 Gleick, P., 2017. Impacts of California's Five-Year (2012-2016) Drought on Hydroelectricity
17 436 Generation. Oakland, CA.
18
19 437 Griffin, D., Anchukaitis, K.J., 2014. How unusual is the 2012-2014 California drought?
20 438 *Geophys. Res. Lett.* 41, 9017–9023. <https://doi.org/10.1002/2014GL062433>
21
22 439 Gutierrez, L., Piras, F., Roggero, P., 2014. A Global Vector Autoregression Model for the
23 440 Analysis of Wheat Export Prices. *Am. J. Agric. Econ.* <https://doi.org/10.1093/ajae/aau103>
24
25 441 Hardin, E., AghaKouchak, A., Qomi, M., Madani, K., Tarroja, B., Zhou, Y., Yang, T.,
26 442 Samuselsen, S., 2017. California Drought Increases CO₂ Footprint of Energy Production.
27 443 *Sustain. Cities Soc.* 28, 450–452.
28
29 444 He, X., Feng, K., Li, X., Craft, A., Wada, Y., Burek, P., Wood, E., Sheffield, J., 2019. Solar and
30 445 wind energy enhances drought resilience and groundwater sustainabilit. *Nat. Commun.* 10.
31
32 446 Herrera-Estrada, J., Diffenbaugh, N., Wagner, F., Craft, A., Sheffield, J., 2018. Response of
33 447 electricity sector air pollution emissions to drought conditions in the western United States.
34 448 *Environ. Res. Lett.* 13.
35
36 449 Kasler, D., 2017. California's drought is over, but we're still totaling up the costs. Sacramento
37 450 Bee.
38
39 451 Kern, J., Su, Y., 2019. The California and West Coast Power System Model (CAPOW) [WWW
40 452 Document]. URL https://github.com/romulus97/CAPOW_PY36 (accessed 2.5.19).
41
42 453 Lund, J., Medellin, J., Durand, J., Stone, K., 2018. Lessons from California's 2012–2016
43 454 Drought. *J. Water Resour. Plan. Manag.* 144.
44
45 455 Mote, P., Rupp, D., Li, S., Sharp, D., Otto, F., Uhe, P., Xiao, M., Lettenmaier, D., Cullen, H.,
46 456 Allen, M., 2016. Perspectives on the causes of exceptionally low 2015 snowpack in the
47 457 western United States. *Geophys. Res. Lett.* 43, 10980–10988.
48
49 458 National Oceanic and Atmospheric Administration, 2019. Climate Date Online [WWW
50 459 Document].
51
52 460 Sengupta, M., Xie, Y., Lopez, A., Habte, A., Maclaurin, G., Shelby, J., 2018. The National Solar
53 461 Radiation Data Base (NSRDB). *Renew. Sustain. Energy Rev.* 89, 51–60.
54 462 <https://doi.org/10.1016/j.rser.2018.03.003>
55
56 463 Spang, E., Holguin, A., Loge, F., 2018. The estimated impact of California's urban water
57 464 conservation mandate on electricity consumption and greenhouse gas emissions. *Environ.*
58 465 *Res. Lett.* 13.
59
60

1
2
3 466 Su, Y., Kern, J., Denaro, S., Hill, J., Reed, P., Sun, Y., Cohen, J., Characklis, G., 2020. An open
4 467 source model for quantifying risks in bulk electric power systems from spatially and
5 468 temporally correlated hydrometeorological processes. *Environ. Model. Softw.*
6
7 469 Swain, D., Tsiang, M., Haugen, M., Singh, D., Charland, A., Rajaratnam, B., Diffenbaugh, N.,
8 470 2014. The extraordinary California drought of 2013/2014: Character, context, and the role
9 471 of climate change. *Bull. Am. Meteorol. Soc.* 95, S3–S7.
10
11 472 U.S. Energy Information Administration, 2014. Record winter withdrawals create summer
12 473 storage challenges [WWW Document]. U.S. Energy Inf. Adm. URL
13 474 <https://www.eia.gov/naturalgas/review/winterlookback/2013/> (accessed 2.28.20).
14
15 475 van Vliet, M., Wiberg, D., Leduc, S., Riahi, K., 2016. Power-generation system vulnerability and
16 476 adaptation to changes in climate and water resources. *Nat. Clim. Chang.* 6, 375–380.
17
18 477 van Vliet, M., Yearsley, J., Ludwig, F., Vogel, S., Lettenmaier, D., Kabat, P., 2012.
19 478 Vulnerability of US and European electricity supply to climate change. *Nat. Clim. Chang.* 2.
20
21 479 Van Vliet, M.T.H., Sheffield, J., Wiberg, D., Wood, E.F., 2016. Impacts of recent drought and
22 480 warm years on water resources and electricity supply worldwide. *Environ. Res. Lett.* 11.
23 481 <https://doi.org/10.1088/1748-9326/11/12/124021>
24
25 482 Voisin, N., Kintner-Meyer, M., Dirks, J., Skaggs, R., Wu, D., Nguyen, T., Xie, Y., Hejazi, M.,
26 483 2016. Vulnerability of the US western electric grid to hydro-climatological conditions: How
27 484 bad can it get? *Energy* 115, 1–12.
28
29 485 Wang, S., Hipps, L., Gillies, R., Yoon, J., 2014. Probable causes of the abnormal ridge
30 486 accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic
31 487 warming footprint. *Geophys. Res. Lett.* 41, 3220–3226.
32
33 488 Zohrabian, A., Sanders, K., 2018. Assessing the impact of drought on the emissions- and water-
34 489 intensity of California's transitioning power sector. *Energy Policy* 123, 414–420.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



499
500 **Figure 1.** Comparison of historical daily electricity prices in the CAISO market during the 2012-2016 drought (green)
501 alongside prices simulated by the CAPOW model (black). The model is able to capture a significant portion of the
502 variation in daily prices, but struggles in some instances to capture very large price spikes. Note that prices generally
503 increased during the first half of the drought, reaching an apex in 2014, before declining during the last two years.
504
505
506
507
508
509
510
511
512
513



514
515 **Figure 2.** Comparison of historical drought year hydrometeorology (2012-2016) with the longer observed record
516 (1970-2017) (black) and the 1000-year synthetic dataset (gray). While stream flows reached historical lows (panel D)
517 and temperatures were elevated (panel A), the 2012-2016 drought experienced relatively normal wind speeds (panel
518 C) and irradiance (panel D).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

522
523 **Figure 3.** Joint density function of total CAISO hydropower production and average CAISO peak demand for the 1000-
524 year synthetic dataset (green) and the 2012-2016 drought years (pink). Historical data shown is purely a function of
525 observed hydrometeorological data passed through statistical estimation of electricity demand and reservoir
526 operations models. No policy feedbacks (reduced water use) are considered when predicting electricity demand.
527
528

529
530 **Figure 4.** Daily wholesale electricity price dynamics in the CAISO market, 2012-2016. Different colors represent
531 different hydrometeorological scenarios. Natural gas price fluctuations are responsible for most observed within
532 year price dynamics and year-to-year differences. The large price spike in early 2014, at the height of the drought,
533 was not caused by drought conditions in the California. Instead, this was caused by extreme cold conditions in the
534 Eastern U.S. that increased the price of natural gas across the entire U.S.

529

530

531

532

533

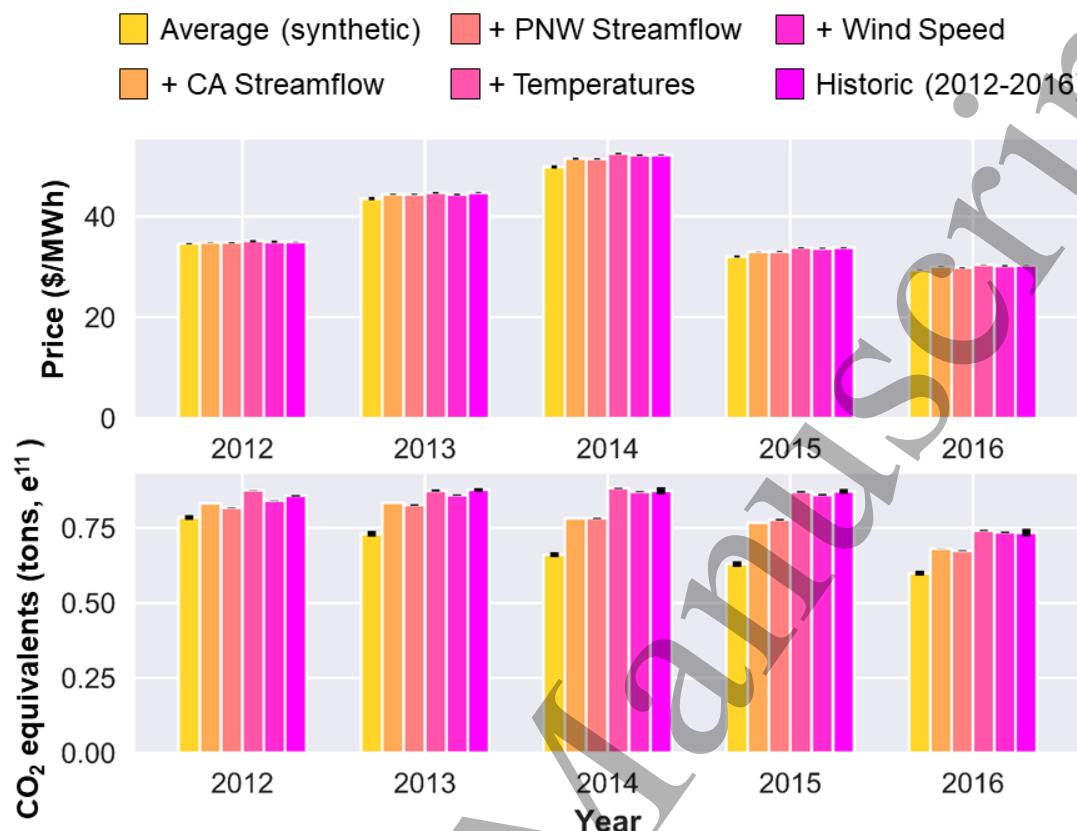
534

535

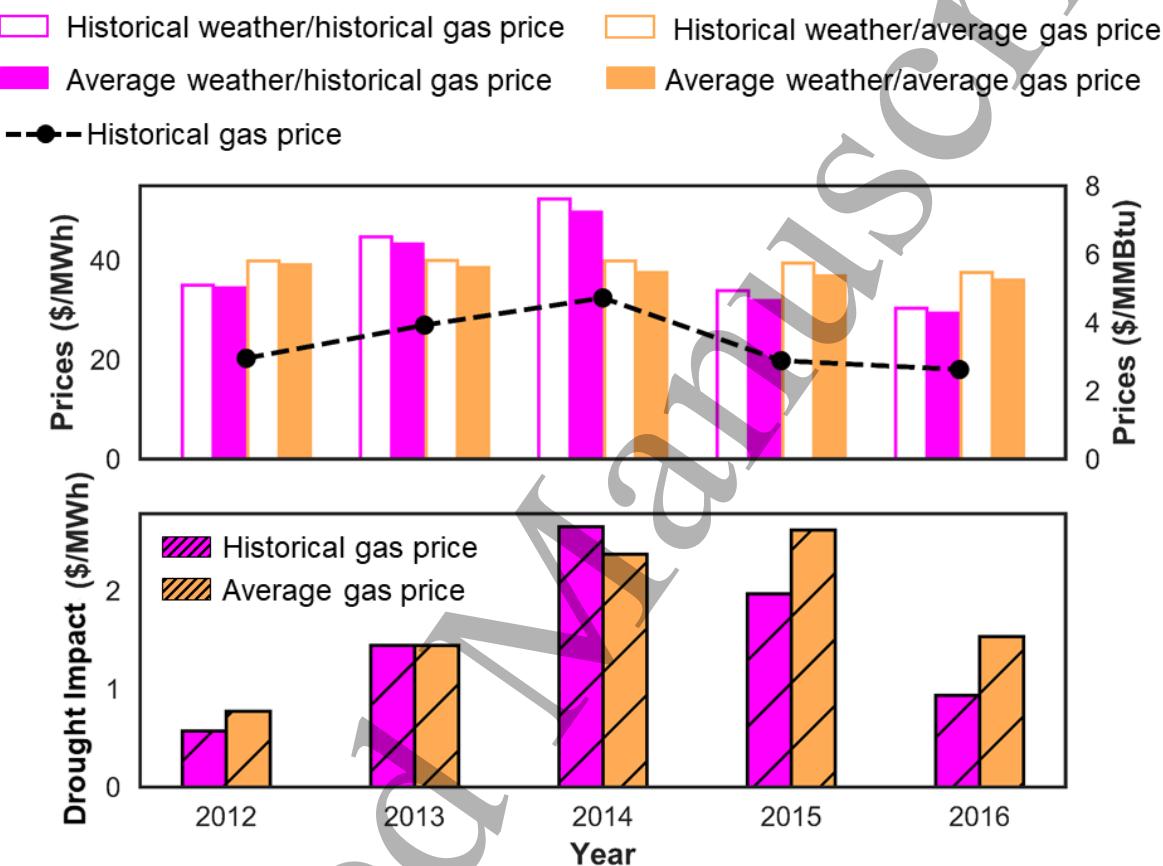
536

54

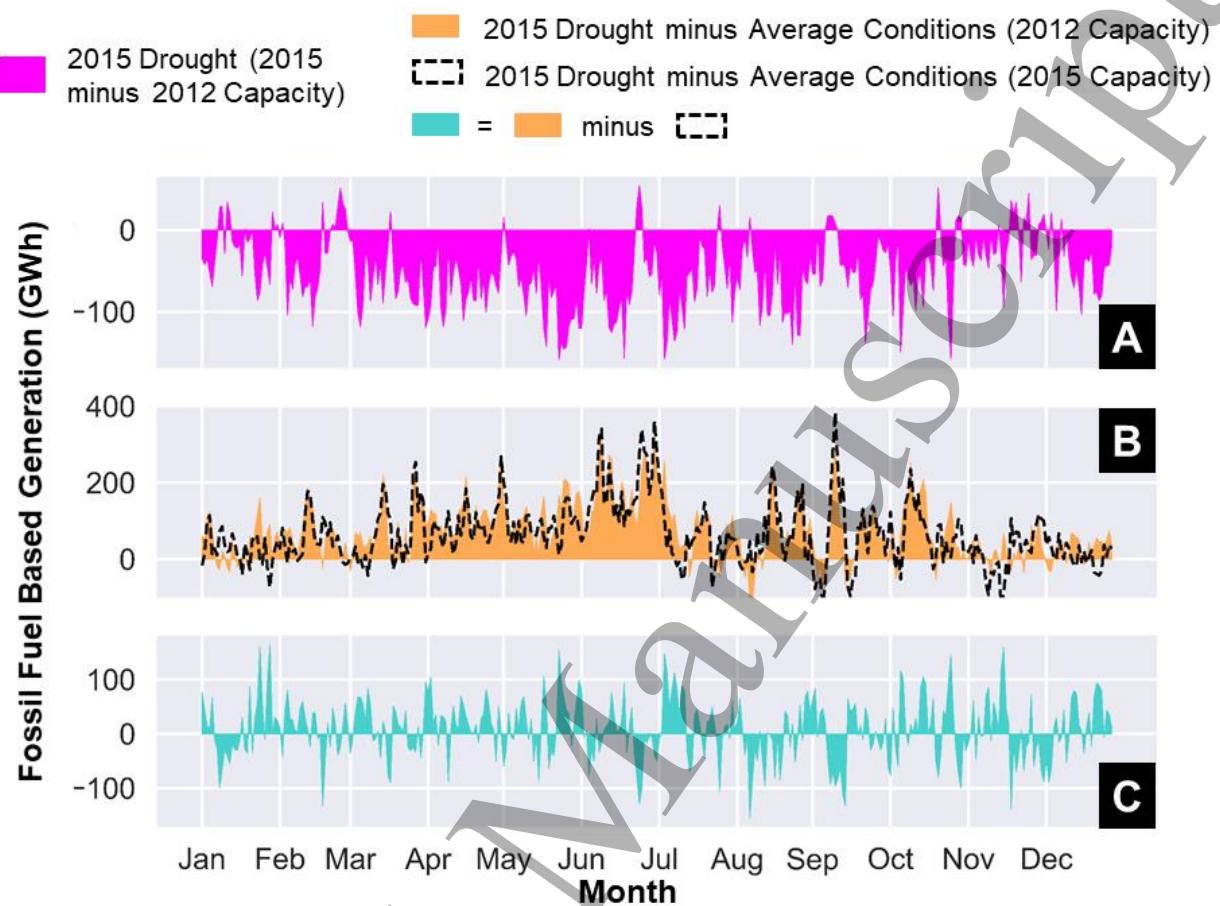
55


56

57


58

59


60

537
538 **Figure 5.** Additive effects of individual hydrometeorological constituents of drought on average electricity prices in
539 the CAISO market (top panel) and CO₂ emissions (bottom panel). Results confirm that year-to-year changes in the
540 price of natural gas (i.e. comparing across years) leads to much more significant changes in price than weather and
541 streamflow conditions (i.e. comparing across scenarios within a single year). In the bottom panel, we see that low
542 streamflow and high temperatures in California result in the largest relative increases in power sector CO₂ emissions.

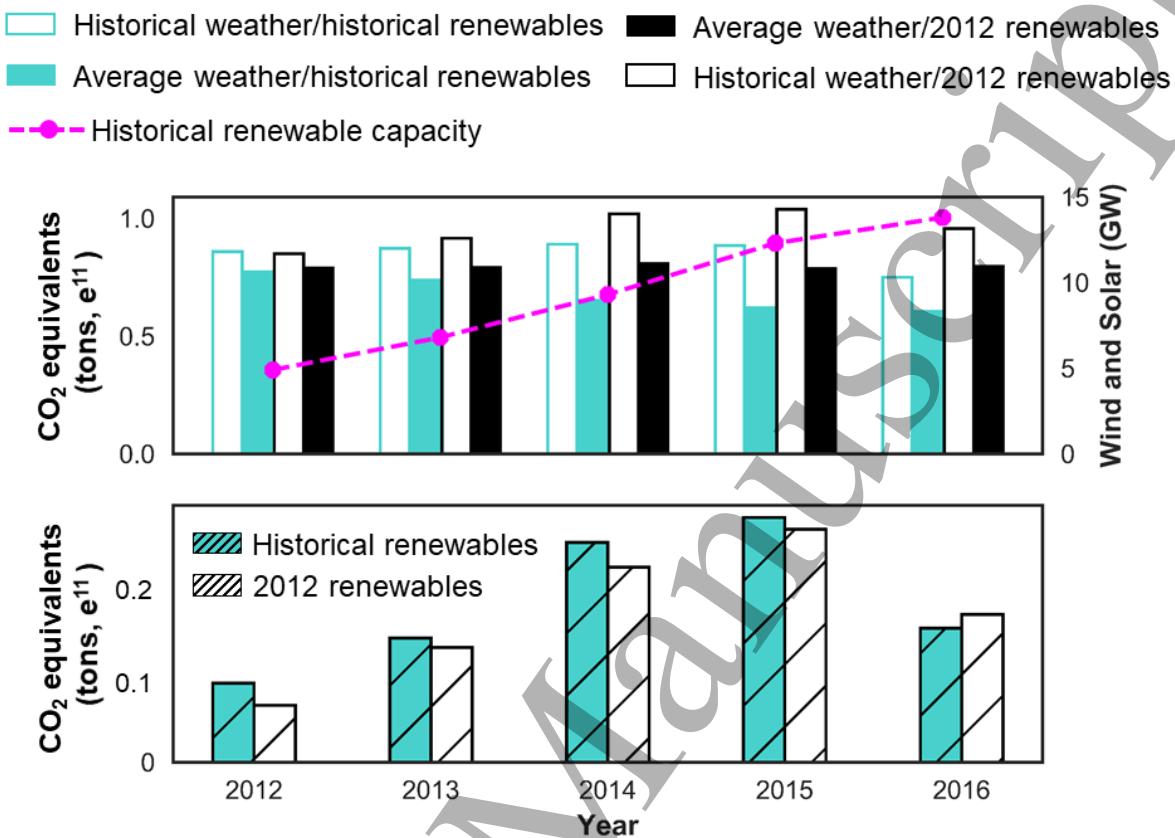


Figure 6. Top panel: Comparison of CAISO electricity prices under historical meteorology (white bars) and average conditions (solid bars), and under historical natural gas prices (pink bars) and average natural gas prices (orange bars). Bottom panel: The drought likely caused wholesale prices to increase between \$0-3/MWh, depending on the year. We also find that the co-occurrence of high natural gas prices (brought about by the polar vortex in the Eastern U.S.) and drought conditions in California caused the biggest price impacts in 2014, even though 2015 experienced the lowest hydropower and highest cooling demands.

565 **Figure 7.** Panel A: Changes in fossil fuel generation during 2015 attributable to more than doubling installed wind
566 and solar capacity. Panel B: Drought caused changes in emissions for the two renewable energy scenarios (2012
567 (orange) and 2015 (black dotted line)). Differences between these two series appear to mostly be due to random
568 model errors (panel C). The presence of more renewable energy does very little to prevent increased reliance on
569 fossil fuel generation during drought.

571

572

573 **Figure 8.** Top panel: CO₂ emissions under historical 2012-2016 hydrometeorology (open bars), average
 574 hydrometeorology (solid bars), 2012 renewable energy capacity (black bars) and historical 2012-2016 renewable
 575 capacity (green bars), which gradually increase over the 5-year period. Bottom panel: CO₂ emissions increases during
 576 the 2012-2016 drought are actually slightly lower under 2012 renewable energy capacity. This is likely due to greater
 577 reliance on higher emission natural gas combustion turbine units when there is more renewable energy installed.

1
2
3 578
4
5 579
6
7 580
8
9 581
10
11 582
12
13 583
14
15 584
16
17 585
18
19 586
20
21 588
22
23 589
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Accepted Manuscript

Table 1. Evaluation of the costs of drought in the CAISO market. Higher temperatures increased modeled electricity demand while low streamflows reduce hydropower. The combined effects are an increase in market prices. PG&E and SCE are shown to be the most strongly affected, with PG&E impacted more by a loss of hydropower, and SCE affected more by a modeled increase in demand.

Average Hydrometeorological Conditions			Drought Impacts			Hydropower Revenues			Demand Costs					
	Demand (GWh)	Hydro (GWh)	Price (\$/MWh)	Demand Increase (GWh)	Lost Hydro (GWh)	Price Increase (\$/MWh)	Average Conditions (\$M)	Drought Year (\$M)	Lost Hydro Value (\$M)	Average Conditions (\$M)	Drought Conditions (\$M)	Increased Demand Costs (\$M)	Net Drought Impact (\$M)	
PG&E	2012	117653	24082	34.70	2411	4882	0.16	784	657	127	4109	4218	108	235
	2013	117623	24082	43.33	3173	8887	1.57	1037	685	352	5115	5451	336	688
	2014	117838	24082	49.71	3913	11228	2.39	1207	671	536	5887	6383	495	1031
	2015	118331	24082	32.30	2028	12926	1.58	759	375	384	3862	4133	272	656
	2016	118250	24082	29.35	2378	8438	1.03	659	466	194	3512	3721	208	402
SCE	2012	119994	4268	34.70	4890	988	0.16	139	106	32	4215	4421	207	239
	2013	118270	4268	43.33	6107	1498	1.57	185	127	58	5152	5621	469	528
	2014	119294	4268	49.71	7954	2290	2.39	213	105	108	5969	6694	725	832
	2015	121210	4268	32.30	4723	2598	1.58	137	55	81	3974	4350	376	457
	2016	120521	4268	29.35	3715	1550	1.03	118	77	41	3606	3858	252	293
SDG&E	2012	25318	0	34.70	635	0	0.16	0	0	0	885	916	31	31
	2013	24901	0	43.33	773	0	1.57	0	0	0	1082	1157	75	75
	2014	25180	0	49.71	1269	0	2.39	0	0	0	1258	1389	130	130
	2015	25315	0	32.30	1055	0	1.58	0	0	0	825	906	81	81
	2016	25370	0	29.35	568	0	1.03	0	0	0	753	801	48	48
			Total (\$M)			5238	3325	1913	50206	54019	3814	5726		

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Accepted Manuscript