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A B S T R A C T   

Variability (and extremes) in streamflow, wind speeds, temperatures, and solar irradiance influence supply and 
demand for electricity. However, previous research falls short in addressing the risks that joint uncertainties in 
these processes pose in power systems and wholesale electricity markets. Limiting challenges have included the 
large areal extents of power systems, high temporal resolutions (hourly or sub-hourly), and the data volumes and 
computational intensities required. This paper introduces an open source modeling framework for evaluating 
risks from correlated hydrometeorological processes in electricity markets at decision relevant scales. The 
framework is able to reproduce historical price dynamics in high profile systems, while also offering unique 
capabilities for stochastic simulation. Synthetic generation of weather and hydrologic variables is coupled with 
simulation models of relevant infrastructure (dams, power plants). Our model will allow the role of hydrome-
teorological uncertainty (including compound extreme events) on electricity market outcomes to be explored 
using publicly available models.   

1. Introduction 

In recent years, interest has grown in exploring the effects of hy-
drometeorological variability, and especially extreme events, on the 
operations of bulk power systems (large, interconnected systems of 
generation, transmission and load (demand)) (Collins et al., 2018; For-
ster and Lilliestam, 2011; Franco and Sanstad, 2008; Kern and Char-
acklis, 2017; Staffell and Pfenninger, 2018; Tarroja et al., 2016; Turner 
et al., 2019; van Vliet et al., 2016, 2012; Voisin et al., 2018). Both 
droughts and floods compromise the operations of hydroelectric dams 
(Gleick, 2017; Su et al., 2017; Tarroja et al., 2016), while droughts in 
particular can also impact thermal power plants that are dependent on 
cooling water (van Vliet et al., 2016, 2012). Air temperatures influence a 
range of system components, most notably electricity demand for 
heating and cooling (Franco and Sanstad, 2008). In addition, as variable 
energy resources like wind and solar expand their share of the power 
mix, the grid is becoming more sensitive to fluctuations in wind speeds 

and solar irradiance (Collins et al., 2018; Staffell and Pfenninger, 2018). 
By influencing supply and demand for electricity, hydrometeorological 
processes have direct impacts on pollution (e.g., increased greenhouse 
gas emissions (Collins et al., 2018; Hardin et al., 2017; Tarroja et al., 
2016)), wholesale electricity prices (Boogert and Dupont, 2005; Collins 
et al., 2018; Seel et al., 2018), and the financial standing of suppliers of 
electricity (e.g., retail utilities, renewable energy producers) and con-
sumers (Bain and Acker, 2018; Boogert and Dupont, 2005; Foster et al., 
2015; Kern and Characklis, 2017; Kern et al., 2015). 

However, with few exceptions (Turner et al., 2019), previous in-
vestigations fall short in assessing the holistic influence of hydromete-
orological variability on bulk power systems. Past research efforts assess 
operational and financial risks from exposure to variability in a more 
limited set of hydrometeorological processes (Collins et al., 2018; Kern 
et al., 2015) (e.g., streamflow and temperatures, or wind speeds and 
solar irradiance); do not consider these effects within the context of 
large, interconnected power systems (Kern and Characklis, 2017); 

* Corresponding author. 
E-mail addresses: yufeisu@live.unc.edu (Y. Su), jkern@ncsu.edu (J.D. Kern).  

Contents lists available at ScienceDirect 

Environmental Modelling and Software 

journal homepage: http://www.elsevier.com/locate/envsoft 

https://doi.org/10.1016/j.envsoft.2020.104667 
Received 9 October 2019; Received in revised form 31 January 2020; Accepted 12 February 2020   



Environmental Modelling and Software 126 (2020) 104667

2

and/or do not assess impacts probabilistically (Hardin et al., 2017). 
These shortcomings may be partly attributable to the challenges of 
modeling bulk electric power systems at sufficient scale and resolution 
to simulate system operations in a realistic way, and over sufficient time 
horizons to explore joint uncertainty in multiple, correlated input 
variables. 

Interconnected power systems span areas so large that system op-
erators often have some ability to deal with spatially heterogeneous 
stressors. For example, a localized power supply shortfall caused by 
drought in one area might be managed by importing power from other 
areas where water, and thus electricity from hydropower production 
and water-cooled generators, is more abundant. From a modeling 
perspective, this necessitates adopting system topologies that extend 
beyond a single watershed, state, and region. Hydrometeorological un-
certainty and power system risks can also manifest on different time 
scales. Extreme meteorological and hydrological conditions can have 
durations on the order of days (floods (Najibi and Devineni, 2017), heat 
waves), weeks to months (wind “droughts”), and years (hydrological 
droughts (Andreadis et al., 2005)), whereas power system modeling 
requires an hourly or sub-hourly time step (Pandz!zi"c et al., 2014). 
Although stochastic modeling approaches can be used to create large 
synthetic records of hydrometeorological processes in order to explore 
risks from extreme events (Brown et al., 2015; Reed et al., 2013), this 
poses a direct challenge to the use of computationally expensive integer 
programming within power system models (Pandz!zi"c et al., 2014), 
making large ensemble Monte Carlo simulations less tractable. Adding 
to these challenges is the potential presence of significant spatial and 
temporal covariance among key hydrometeorological processes (Jime-
nez et al., 2011; Woodhouse et al., 2016). If significant correlations 
exist, an increased number of model runs may be required to charac-
terize the probability of coincident extremes (e.g., widespread simulta-
neous hydrological drought, a wind drought, and a heat wave) that may 
be of particular concern to power system operators (Mazdiyasni and 
AghaKouchak, 2015; Turner et al., 2019). 

The modeling scales, resolutions, and ensemble sizes required in 
exploring the risks to bulk electric systems from hydrometeorological 
variability present a challenge, and few (if any) models capable of per-
forming this type of analysis are publically available. Given recent 
increased interest among the research community in modeling inter-
connected systems (e.g., food-energy-water (Logan, 2015)), a general-
izable and open source modeling framework for simulating the influence 
of correlated hydrometeorological processes on power system dynamics 
at decision relevant scales would be a valuable addition. 

The goal of this paper is to present such a framework: the newly 
developed California and West Coast Power (CAPOW) systems model. 
CAPOW was designed by the authors to explore a high profile test-bed– 
the West Coast of the conterminous United States (U.S.). The bulk 
electric power systems covering most of the states of California, Oregon 
and Washington are included, as well as the two major wholesale elec-
tricity markets active across these states (current gaps in coverage are 
the PacifiCorp West, Sacramento Municipal Utility District, Los Angeles 
Department of Water and Power balancing authorities). CAPOW is 
comprehensive in its treatment of stochastic weather and streamflow, 
simulation of relevant infrastructure (reservoir networks, power sys-
tems), and evaluation of outcomes (system costs, prices, etc.). While 
focused on the U.S. West Coast, the steps required in building and 
executing the CAPOW model (as well as much of the code) are fairly 
generalizable and can be transferred to other systems and in-
terconnections of interest (Chowdhury et al., 2019). Most grid specific 
information used in the model is publically available anywhere in the U. 
S. (generator size, location, fuel type, prime mover type, average heat 
rate, etc.). Hydrometeorological data used to simulate electricity de-
mand, wind, solar and hydropower production are also available 
throughout the U.S.; as well as hourly records of renewable energy 
production in each balancing authority through the EIA. Analogous 
transmission grid information (bi-directional capacities) is publically 

available for all WECC areas, and for many (if not all) sub-regions in the 
eastern interconnection. Note that to transfer the model to other regions, 
additional capabilities that are not currently in CAPOW may be required 
(e.g., representing impacts of extreme cold, air temperatures (Henry and 
Pratson, 2016), and a lack of cooling water availability due to low 
streamflow and temperatures (Miara et al., 2017; van Vliet et al., 2016, 
2012) on thermal power plant functionality). The model is 
Python-based; all code and data required to run the CAPOW model, as 
well as some documentation of the model, is available at https://github. 
com/romulus97/CAPOW_PY36 under the MIT free software license. 

2. Methods 

Our description of methods parallels the CAPOW model’s work flow 
(Fig. 1), beginning with a discussion of surface water and electric power 
system topologies, including key physical assets (e.g., power plants, 
dams/reservoirs) and their connections (i.e., water routing between 
reservoirs, high voltage transmission pathways). This is followed by a 
description of CAPOW’s unit commitment and economic dispatch (UC/ 
ED) model, which is used to simulate actual power system operations. 
The methods section ends with a description of our approach for sto-
chastically generating model inputs from historical weather and 
streamflow data. 

2.1. System topology 

2.1.1. Electric power 
In order to model the West Coast grid (the case study explored here), 

we first adopt a 21-zone topology of the Western Electricity Coordi-
nating Council (WECC), a regulatory body charged with reducing risks 
to the Western grid by enforcing standards and assessing reliability 
(Fig. 2). This topology, which has been used in the past by WECC and 
other researchers to assist in long term planning exercises (Ho et al., 
2016; Mkarov et al., 2010), groups balancing authorities (utility foot-
prints) into multiple zones that are connected via aggregated trans-
mission pathways throughout the region. Each zone-to-zone 
transmission pathway is associated with bi-directional capacities (i.e., 
maximum limits on zone-to-zone transfers of electricity) estimated from 
publically available data (Western Electricity Coordinating Council, 
2016). 

Each zone in the network consists of: 1) the load (electricity de-
mands) of its member balancing authorities, which fluctuate on hourly, 
daily, seasonal and annual time scales; and 2) a portfolio of co-located 
generation resources with which to meet those demands. Comprehen-
sive databases of generators located in each node of the 21-zone WECC 
topology are publically available from multiple sources (US Environ-
mental Protection Agency, 2018; Western Electricity Coordinating 
Council System Adequacy Planning Department, 2015). These also 
contain information on relevant operating characteristics for each 
generator (e.g., fuel type, capacity, average heat rate) that are used to 
formulate the UC/ED simulation model. 

There are two major trading hubs for wholesale electricity on the U. 
S. west coast: 1) the Mid-Columbia (Mid-C) market that serves as a hub 
for much of the Pacific Northwest region; and 2) the California Inde-
pendent System Operator (CAISO), a competitive wholesale market that 
manages approximately 80% of California’s electricity flow. The 21- 
zone WECC topology shown in Fig. 2 includes five nodes (red, 
numbered) that directly correspond to these markets: node 1 (Pacific 
Northwest) corresponds to the Mid-C market, and nodes 2–5 correspond 
to the CAISO market. Nodes 2–5 also represent the service areas of three 
major utilities: Pacific Gas and Electric (PG&E), Southern California 
Edison (SCE), and San Diego Gas and Electric (SDG&E). Currently only 
these five zones (and power flows among them) are modeled mecha-
nistically using a UC/ED model. No UC/ED models exist outside these 
five zones. Neighboring zones are considered only in terms of their ex-
changes of electricity with the core UC/ED zones, and these exchanges 
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are modeled statistically (see Supplemental Material). 

2.1.2. Dams and reservoirs 
Recent analyses of the impacts of drought on power generation in the 

Western U.S. (Harto et al., 2011) suggest that cooling water issues from 
low streamflow and high water temperatures pose a minor threat to 
thermal power plants in the region. Rather, the primary mechanism 
through which hydrologic extremes can impact power system opera-
tions is through variability in hydropower generation. Within the WECC 
topology shown in Fig. 2, hydropower capacity makes up 58% of 
installed generating capacity in zone 1 (Pacific Northwest), 18% of 
generating capacity in zone 2 (PG&E Valley), and 4% of capacity in zone 
3 (SCE) (US Environmental Protection Agency, 2018). Fig. S2 in the 

Supplemental Material section maps major (>5 MW) hydroelectric dams 
that participate in balancing authorities located within the five 
numbered zones that make up the UC/ED model. These dams primarily 
fall within the Columbia River Basin, which spans several Northwestern 
U.S. states and Canada, as well as the Sacramento River, San Joaquin 
River, and Tulare Lake basins in California. 

Publically available hydrologic mass balance models exist for 85% of 
the hydropower capacity in the Pacific Northwest (versions of HYSSR, 
developed by the U.S. Army Corps of Engineers to simulate the Federal 
Columbia River Power System; and a ResSim model that simulates the 
operations of Federal dams in the Willamette River Basin). Models exist 
for only 12% of the hydropower capacity in California (the ORCA model 
(Herman and Cohen, 2019), which simulates the operations of major 
storage/flood control dams). In California, much of the state’s hydro-
power capacity is privately owned and located in high altitude areas of 
the Sierra Nevada Mountains. Little information about the operation of 
these dams is publically available, so hydropower production at these 
projects is simulated via an alternative approach in which hydropower 
production at upstream dams is predicted using observed streamflow 
downstream. First, for major high altitude hydroelectric dam in the Si-
erra Nevada Mountains, a corresponding downstream storage reservoir 
or stream gauge on the same river is identified. In order to predict up-
stream hydropower generation at a given dam using observed stream-
flow downstream, the calendar year is broken into four seasons: winter, 
spring, summer, and fall. Each season is assumed to follow a different set 
of “operating rules” that translate observed downstream flows into es-
timates of upstream hydropower production. Rules are fitted using the 
differential evolution algorithm in the SciPy library of Python, based on 
root mean squared error (RMSE) between observed and simulated hy-
dropower production for each upstream dam. 

About 15% of hydropower capacity in the Pacific Northwest and 
20% of hydropower capacity in California are within the five core WECC 
zones that make up the UC/ED model but fall outside the four river 
basins mentioned above and are not associated with publically available 
models. These projects are modeled by scaling hydropower generation 
from nearby dams. A more detailed description of how hydropower 

Fig. 1. Model workflow. Topologies of relevant electric power and surface water infrastructure are defined first, and then synthetic time series inputs are used to 
drive stochastic simulation of a power system (unit commitment/economic dispatch) model. Model outputs include the least cost generation schedule, total system 
costs, estimated wholesale prices, and emissions. 

Fig. 2. Power system topology used in the CAPOW modeling framework. The 
five red zones, comprising collections of balancing authorities (load centers and 
generation assets), are mechanistically modeled using unit commitment eco-
nomic dispatch (UC/ED) models. Blue lines represent exchanges (imports/ex-
ports) of electricity with adjacent zones that are represented statistically. Black 
dots represent zones in the WECC system that are not currently represented in 
CAPOW. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Y. Su et al.                                                                                                                                                                                                                                       



Environmental Modelling and Software 126 (2020) 104667

4

production is simulated on a daily basis can be found in the Supple-
mental Material. 

2.2. Unit commitment and economic dispatch model 

The power system and reservoir network topologies described above 
form the basis of a unit commitment/economic dispatch (UC/ED) model 
that we use to simulate the operation of the five numbered WECC zones 
in Fig. 2, which include the Mid-C and CAISO markets. Simulating the 
UC/ED model for a single year at an hourly time step takes approxi-
mately 6 h using the CPLEX solver on a 16-core machine with 2.5 GHz 
processors using a Linux operating system. What follows is a general 
overview of the model’s structure and functionality. A mathematical 
formulation of the UC/ED model can be found in the Supplemental 
Material. 

We coded the UC/ED model in Python using the Pyomo mathemat-
ical optimization package, structuring it as an iterative, mixed integer 
linear program. Over a user-defined operating horizon (e.g., 48 h), 
deterministic optimization is used to minimize the cost of meeting de-
mand for electricity and operating reserves (including unit start costs, no 
load costs, fuel costs, and penalties associated with transferring elec-
tricity between zones), subject to constraints on individual generators 
and transmission paths. Costs are minimized by strategically “dis-
patching” (scheduling) generation from flexible generation resources 
(natural gas power plants, hydroelectric dams and system imports) on an 
hourly basis. Variable renewable energy (wind and solar) are not dis-
patchable (they can be consumed only when available); as such, they are 
typically treated as “electricity demand reduction” within a zone, but 
can be also curtailed during periods of oversupply. 

A single iteration of the UC/ED model yields system costs and the 
least cost generating schedule over the operating horizon (e.g., hours 
1–48); however, only the first 24 h of the solution is stored. The 
remaining solution (hours 25–48) is discarded, and the whole process 
shifts one day into the future. The next iteration of the model identifies a 
solution for the hours 25–48, while again looking 48 h into the future (i. 
e., at hours 25–72). This ensures that the model does not have perfect 
foresight over unreasonably long time horizons when making decisions 
with path dependency (e.g., turning on baseload power plants with high 
“minimum up” times). 

Simulation of the UC/ED model creates hourly time series outputs 
that track provision of electricity and operating reserves by each 
generator, the flow of electricity among zones, plant specific and system 
wide emissions of CO2, total operating costs, and wholesale electricity 
prices. CO2 emissions from each power plant are calculated using his-
torical EPA eGrid data that are used to estimate the kg CO2 per MWh 
emissions for each plant. Note that total operating costs essentially refers 
to the value of the objective function in each hour (the cumulative start, 
no load, and fuel costs across every power plant in every hour). On the 
other hand, wholesale electricity prices ($/MWh) are dynamic measures 
of the marginal value of electricity in each market, i.e., how much 
generators would be paid to sell their electricity in each hour. Within the 
optimization, wholesale prices are estimated for each zone as the 
shadow cost of an energy balance constraint at each zone (i.e., the 
change in objective function value associated with a 1 MWh increase in 
demand at each zone). Calculating the shadow costs requires the UC/ED 
model to first be solved in mixed integer form, and then resolved as a 
linear program (keeping all binary variables fixed from the integer so-
lution) in order to access dual values for relevant constraints in Pyomo. 
This yields a separate time series of wholesale electricity prices for each 
of the five WECC zones represented in the core UC/ED model. Prices in 
the Mid-C market are assumed to be equivalent to prices for the Pacific 
Northwest zone. To represent the CAISO market, prices for the four 
relevant zones in California (PG&E Valley, PG&E Bay, SCE, and SDG&E) 
are weighted to determine an overall price for the market, with the 
weights fitted via regression (R2 ¼ 0.75, p < 1e-3) on observed values 
over the period 2012–2016. 

2.3. Stochastic inputs 

The primary stochastic inputs to the UC/ED model are electricity 
demand (hourly), wind and solar power production (hourly), and 
available hydropower production (daily) for each numbered zone in 
Fig. 2. Several hydrometeorological processes (air temperatures, wind 
speeds, solar irradiance and streamflow) in turn drive these power sys-
tem inputs. In the following section, we describe our approach for 
generating synthetic hydrometeorological time series. 

2.3.1. Hydrometeorological variables 

2.3.1.1. Air temperatures, wind speeds, and solar irradiance. We collect 
observed air temperatures, wind speeds, and solar irradiance data 
within major cities (where electricity demand is highest) and in areas 
known to have large amounts of installed wind and solar power capac-
ity. Records of daily average temperature and wind speed over the 
period 1998–2017 come from NOAA’s Global Historical Climatological 
Network (GHCN) for seventeen meteorological stations distributed 
throughout the Western U.S. (Table 1). Global horizontal irradiance data 
come from the National Renewable Energy Laboratory’s National Solar 
Radiation Database (NSRDB) (Sengupta et al., 2018); both “clear sky” 
and observed irradiance data are acquired at a 30-min resolution and 
then aggregated to daily sums. 

Each weather station provides the data necessary to generate 365- 
day profiles of average temperature and wind speed for their respec-
tive locations. We use solar irradiance data to created 365-day profiles of 
average “clear sky” (cloudless) conditions (Fig. 3). 

TPn ¼
1
Y
XY

y¼1
Tn;y (1)  

WPn ¼
1
Y
XY

y¼1
WSn;y (2)  

SPn ¼
1
Y
XY

y¼1
Sn;y (3)  

Where, 
TPn ¼ average temperature on calendar day n across Y years ("C) 
Tn;y ¼ observed temperature on calendar day n in year y ("C) 
WPn ¼ average wind speed on day n across Y years (m/s) 
WSn;y ¼ observed wind speed on day n in year y (m/s) 
SPn ¼ average clear sky irradiance on day n across Y years (W/m2) 
Sn;y ¼ observed clear sky irradiance on day n in year y (W/m2) 
Synthetic values of air temperatures, wind speeds, and solar irradi-

ance are then generated by combining these average profiles (e.g. blue 
series in panel A of Fig. 3) with stochastic representation of the auto-
correlated “residuals” that deviate from these repeating signals (e.g. the 
gray series in panel A of Fig. 3). Average temperature and wind profiles 
are subtracted from observed temperature and wind speed values; this 
yields a daily record of zero-mean residuals (i.e., deviations from 
average temperature and wind speed for each calendar day over the 
period 1998–2017). Observed irradiance is subtracted from average 
clear sky irradiance, yielding a daily record of “losses” due to cloud 
effects. 

RTd ¼ Td # TPn (4)  

RWd ¼WSd # TWn (5)  

ILd ¼ SPn # Id (6)  

Where, 
RTd ¼ residual temperature on day d ("C) 
RWd ¼ residual wind speed on day d (m/s) 
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ILd ¼ irradiance “losses” on day d (W/m2) 
Residual temperatures and wind speeds, as well as irradiance losses, 

are then mean-shifted to eliminate negative values and log-transformed 
to approximate a Gaussian distribution. The residuals/losses for each 
calendar day of the year are then divided by their respective standard 
deviations, in order to control for seasonal heteroscedasticity. 

WRTd ¼ dRTd=σTn (7)  

WRWd ¼ dRWd=σWn (8)  

WILd ¼ cILd=σILn (9)  

Where, 
WRTd ¼ whitened residual temperature on day dWRWd ¼ whitened 

residual wind speed on day dWILd ¼ whitened irradiance losses on day 
ddRTd ¼ mean shifted, log-transformed residual temperature on day d 
("C) 

dRWd ¼ mean shifted, log-transformed residual wind speed on day d 
(m/s) 

cILd ¼ mean shifted, log-transformed irradiance losses on day d (W/ 
m2) 

σTn ¼ standard deviation of transformed temperature residuals on 
calendar day nσWn ¼ standard deviation of transformed wind speed 
residuals on calendar day nσILn ¼ standard deviation of transformed 
irradiance losses on calendar day n 

We then model the resultant “whitened” residuals and irradiance 
losses using a vector autoregressive (VAR) model, in order to capture 
observed covariance across variables. VAR models describe the behavior 
of a set of k variables over a given time period as a linear function of 
their past values and random samples from a multivariate normal dis-
tribution. Simulated values of each variable are stored in a k $ 1 vector, 
yt, which has as its ith element, yi;t, the value of the ith variable at time t. 
The “lag” of the model (i.e., the number of previous time steps that are 
accounted for when estimating values in yt) is denoted by the parameter 
p. 

yt ¼C þ A1yt#1 þ A2yt#2 þ … þ Apyt#p þ εt (10)  

Where, 
C ¼ k x 1 vector of constants 
Ai ¼ k x k matrix of coefficients 
εt ¼ k x 1 vector of error terms 
t ¼ time period 
p ¼ model lag 
Simulation of yt proceeds through random sampling of noise (εt) 

from a multivariate normal distribution with a covariance matrix esti-
mated from whitened residuals and irradiance losses for the period 
1998–2017. The number of lags considered is determined via the Akaike 
Information Criteria. 

A fitted VAR model is used to simulate daily, whitened temperature 
and wind speed residuals and irradiance losses for each GHCN and 
NSRDB site considered, for as many years as desired. Simulated values 
are then “un-whitened” by reversing Equations (7)–(9) (thus restoring 
heteroscedasticity and non-normality); they are then added back to the 
365-day profiles (reversing Equations (4)–(6)), yielding synthetic daily 

Table 1 
Seventeen weather stations in the Global Historical Climatological Network and 
National Solar Resource Database that provide daily mean air temperature and 
wind speed data used in development of stochastic inputs.  

Station ID Name Variables Latitude Longitude 

USW00024232 SALEM AIRPORT 
MCNARY FIELD, OR 

Wind/ 
temps 

44.90"

N 
123.00"

W 
USW00024221 EUGENE MAHLON 

SWEET FIELD, OR 
Wind/ 
temps 

44.12"

N 
123.21"

W 
USW00024233 SEATTLE TACOMA 

INTERNATIONAL 
AIRPORT, WA 

Wind/ 
temps 

47.45"

N 
122.30"

W 

USW00024131 BOISE AIR TERMINAL, 
ID 

Wind/ 
temps 

43.56"

N 
116.22"

W 
USW00024242 PORTLAND 

TROUTDALE AIRPORT, 
OR 

Wind/ 
temps 

45.54"

N 
122.39"

W 

USW00024157 SPOKANE 
INTERNATIONAL 
AIRPORT, WA 

Wind/ 
temps 

47.62"

N 
117.53"

W 

USW00024163 PASCO TRI CITIES 
AIRPORT, WA 

Wind/ 
temps 

46.26"

N 
119.11"

W 
USW00093193 FRESNO YOSEMITE 

INTERNATIONAL, CA 
Wind/ 
temps 

36.77"

N 
119.71"

W 
USW00023230 OAKLAND METRO 

INTERNATIONAL 
AIRPORT, CA 

Wind/ 
temps 

37.71"

N 
122.21"

W 

USW00023174 LOS ANGELES 
INTERNATIONAL 
AIRPORT, CA 

Wind/ 
temps 

33.94"

N 
118.40"

W 

USW00023188 SAN DIEGO 
INTERNATIONAL 
AIRPORT, CA 

Wind/ 
temps 

32.73"

N 
117.19"

W 

USW00023232 SACRAMENTO 
EXECUTIVE AIRPORT, 
CA 

Wind/ 
temps 

38.51"

N 
121.49"

W 

USW00023293 SAN JOSE, CA Wind/ 
temps 

37.33"

N 
121.88"

W 
USW00023234 SAN FRANCISCO 

INTERNATIONAL 
AIRPORT, CA 

Wind/ 
temps 

37.62"

N 
122.37"

W 

USW00023160 TUCSON 
INTERNATIONAL 
AIRPORT, AZ 

Wind/ 
temps 

32.11"

N 
110.93"

W 

USW00023183 PHOENIX AIRPORT, AZ Wind/ 
temps 

33.43"

N 
112.00"

W 
USW00053123 LAS VEGAS AIR 

TERMINAL, NV 
Wind/ 
temps 

36.21"

N 
115.19"

W 
NSRDB 

154166 
NATIONAL SOLAR 
RESOURCE DATABASE 
#1 

Irradiance 40.45"

N 
121.66"

W 

NSRDB 13631 NATIONAL SOLAR 
RESOURCE DATABASE 
#2 

Irradiance 38.57"

N 
121.7" W 

NSRDB 
111895 

NATIONAL SOLAR 
RESOURCE DATABASE 
#3 

Irradiance 36.81"

N 
119.38"

W 

NSRDB 93873 NATIONAL SOLAR 
RESOURCE DATABASE 
#4 

Irradiance 35.09"

N 
117.3" W 

NSRDB 83553 NATIONAL SOLAR 
RESOURCE DATABASE 
#5 

Irradiance 34.05"

N 
118.38"

W 

NSRDB 82442 NATIONAL SOLAR 
RESOURCE DATABASE 
#6 

Irradiance 33.93"

N 
115.9" W 

NSRDB 77068 NATIONAL SOLAR 
RESOURCE DATABASE 
#7 

Irradiance 33.33"

N 
114.7" W  

Fig. 3. (A) Daily average and observed temperatures for USW00024232 
(Salem, OR). (B) Daily average clear sky conditions and one year of observed 
irradiance for NSRDB 11895. 
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records of temperature and wind speeds. 

2.3.1.2. Streamflow. Streamflow patterns on the west coast of the U.S. 
are driven by runoff from precipitation as rain and, largely, the melting 
of snow accumulated during the winter. Both total annual streamflow 
and the within year distribution of streamflow experienced in this region 
are known to be influenced by temperatures (Null et al., 2010). At the 
same time, there are significant correlations among the 85 separate, 
spatially distributed streamflow gauges that drive CAPOW’s simulation 
of dam operations and hydropower production. 

We make use of a Gaussian Copula to preserve the relationship be-
tween total annual streamflow and temperatures in stochastically 
generated samples. First, observed daily average temperatures 
(1953–2008) at the seventeen meteorological stations are converted to 
heating and cooling degree days, which measures deviations from 18.33 
degrees C (65 degrees F). 

HDDd;s ¼maxð18:33#Td;s; 0Þ (11)  

CDDd;s ¼maxðTd;s # 18:33; 0Þ (12)  

Where, 
HDDd;s ¼ heating degree days on day d at station s 
CDDd;s ¼ cooling degree days on day d at station s 
Td;s ¼ average near surface air temperature on day d ("C) at station s 
Total annual HDDs and CDDs are calculated, providing coarse 

measures of the “hotness” of a given year’s summer and the “coldness” of 
a given year’s winter. Total annual HDDs and CDDs and total annual 
streamflow are then transformed into quantile space by calculating the 
empirical cumulative probability distribution for each variable. 

P¼PðQ( qÞ (13)  

Where, 
Q ¼ total annual streamflow or degree days at a given site 
Empirical probabilities are transformed again into a uniform distri-

bution ranging from #1 to 1 as follows, ensuring a mean of 0 across 
every variable. 

Y ¼ 2ðP# 0:5Þ (14) 

The covariance matrix C across all the variables at every site is 
estimated, and then synthetic records of total annual streamflow and 
total annual HDDs and CDDs are generated by taking random samples 
from a multivariate normal distribution with mean 0 and covariance 
matrix C, then back-transforming (reversing equations (13) and (14)). 

The next step is to match total annual streamflow and total annual 
HDDs and CDDs simulated via the Copula method with the synthetic 
daily temperatures generated in the previous section using a vector- 
autoregressive (VAR) approach. Synthetic daily temperatures simu-
lated using the VAR approach are converted to total annual HDDs and 
CDDs. For each year of synthetic data desired, we select a single year of 
total annual HDDs and CDDs generated using the VAR approach, and 
then calculate the weighted average across every GHCN station. Weights 
are determined by the fraction of average annual flow across the 85 
stream gauges that is contained within each GHCN station’s surrounding 
area: 

WTs ¼
PG

g¼1AVFg

AVT (15)  

Where, 
WTs ¼ weight assigned to meteorological stationsAVFg ¼ average 

annual flow at gauge site g closest to stationsAVT ¼ average annual flow 
across all 85 stream gauges 

The weighted total annual HDDs and CDDs from the VAR model are 
compared alongside pairs of weighted total annual HDDs and CDDs 
generated using the Copula method. The smallest mean squared error 

difference is identified; then the total annual streamflow values gener-
ated via the Copula method are paired with the corresponding daily 
temperatures (and also wind speeds and solar irradiance) generated via 
VAR. 

Disaggregating total annual streamflow values down to a daily time 
step must be done in a manner that considers the potential influence of 
temperatures on the timing of streamflow throughout the year. For 
example, Fig. 4 shows the relationship between winter and spring 
temperatures and the timing of streamflow at two major reservoirs in 
California. The top panel (A) shows 19 years (1997–2015) of weighted 
average temperatures across the GHCN stations, calculated using 
weights from Equation (15). Lines are colored according to the mean 
temperature experienced over the first 24 weeks of the year; the dark red 
line indicates the year with the hottest temperatures over this period 
(2015), and the dark blue line indicates the year with the coolest tem-
peratures (2010). In panels B and C, those same line colors are then used 
to plot contemporaneous “full natural” (unregulated) flows at Folsom 
Dam (panel B) and Oroville Dam (panel C) in California (two large 
storage dams for which there are long historical flow records). Flows are 

Fig. 4. (A) Weighted average temperatures for the period 1997–2015, colored 
according to mean temperatures experienced during the first 24 weeks of the 
year; (B) associated unregulated daily flow fraction profiles for Folsom Dam, 
with a swarm plot indicating the week of maximum unregulated streamflow; 
(C) similar data for Oroville Dam. 
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shown in terms of standardized “fractions” that are created by dividing 
by total annual flows at each site. At the top of panels B and C, swarm 
plots identify the week of maximum streamflow. For both dams, years 
with higher average winter and spring temperatures (red hued circles) 
tend to be associated with earlier peak streamflow, indicating earlier 
snowmelt and/or major precipitation events. 

In order to capture these dependencies between the timing of 
streamflow and temperatures, we follow a nearest neighbor clustering 
approach, similar to Nowak et al. (2010). The weights generated in 
Equation (15) are used to create composite time series of temperatures 
across the 17 GHCN stations, for both historical and simulated temper-
ature data. For each simulated year, the historical record is searched for 
a past year that exhibited the most similar winter/spring temperature 
profile, in terms of mean squared error. The identified historical year is 
then selected as the basis for determining daily flow fractions at each 
streamflow gauge site. For the historical year selected, daily flow frac-
tions are calculated as follows: 

FFd;g ¼
DFd;g

AFg
(16)  

Where, 
FFd;s ¼ flow fraction for day d at streamflow gauge site gDFd;s ¼

observed flow on day d at streamflow gauge site gAFg ¼ total annual flow 
observed at gauge site g 

Flow fractions for each gauge site are then multiplied by simulated 
total annual flows to yield a synthetic record of daily flows across the 
study area. 

2.3.2. Power system inputs 
The stochastic scenario generation framework permits the explora-

tion of large ensembles of time series for temperatures, wind speeds, 
solar irradiance, and streamflow. These data are then converted to 
associated power system inputs for the UC/ED model (time series for 
each zone of hourly electricity demand, wind and solar availability, 
daily hydropower production and imports of electricity from other areas 
in the Western U.S.). Table 2 provides an overview of the different ap-
proaches taken to translate raw hydrometeorological variables into 
power system inputs, as well as their accuracies. Multi-variate regression 
is used to simulate daily electricity demand, solar and wind power 
production, and system imports (power flows along WECC Paths listed 
in Table 2). Daily values are disaggregated down to an hourly time step 
by sampling from historical profiles. Daily values of available hydro-
power production are created by passing synthetic streamflow records 
through mass-balance hydrologic models of dams in the Columbia River 
basin and major storage reservoirs in California, as well as through a 
machine learning representation of high altitude hydropower produc-
tion in California. Detailed descriptions of all models used to translate 
raw hydrometeorological variables into power system inputs can be 
found in the Supplemental Material. 

3. Results & discussion 

3.1. Validation of UC/ED formulation 

This paper proceeds with a validation of the UC/ED model’s ability 
to reproduce observed power system dynamics (in particular, wholesale 
electricity prices). Wholesale prices, which are driven by changes in 
supply and demand, can be viewed as aggregate measures of system 
performance (high prices can indicate scarcity, and low prices point to 
abundance). We focus on an extended period of drought that occurred in 
California over the years 2012–2016. During this period, in-state hy-
dropower generation decreased by an average of 40% (Gleick, 2017), 
forcing the state to rely significantly more on electricity from natural gas 
power plants. There has been considerable interest in exploring the 
impacts of this recent drought on pollutant emissions (Hardin et al., 

2017), as well as system costs and prices for retail electricity consumers 
(Gleick, 2017). Particularly when determining the latter, an under-
standing of impacts on wholesale electricity prices is necessary. Retail 
distribution companies in California (PG&E, SCE, and SDGE) all pur-
chase electricity from the CAISO market. If the CAPOW model is able 
simulate observed wholesale electricity prices over 2012–2016 with 
accuracy, then the model could also be used to conduct controlled ex-
periments designed to isolate the role of drought (and/or other hydro-
metorological extremes) on wholesale prices, revenues/costs for 
utilities, and, ultimately, retail prices for consumers. Natural gas price 
data used to validate the model (i.e. compare historical CAISO prices 
across the years 2012–2016) were obtained from EIA’s natural gas hub 
dataset; although these data do not represent the exact price paid by 

Table 2 
Model results for power system inputs. R2 values are based on daily fit for all 
inputs except hydropower production (weekly). In all cases, regression p-values 
are less than .01.  

Power System 
Input 

R2 

Value 
Predictive/Independent 
Variables 

Years 

CAISO Solar 
Power 

0.92 Irradiance 2011–2016 

Pacific Northwest 
Wind Power 

0.71 Wind speed 2011–2016 

CAISO Wind 
Power 

0.71 Wind speed 2011–2016 

Pacific Northwest 
Electricity 
Demand 

0.89 Temperature, wind speed, day- 
of-week 

2010–2016 

PG&E Valley 
Electricity 
Demand 

0.90 Temperature, wind speed, day- 
of-week 

2010–2016 

PGE&E Bay 
Electricity 
Demand 

0.79 Temperature, wind speed, day- 
of-week 

2010–2016 

SCE Electricity 
Demand 

0.89 Temperature, wind speed, day- 
of-week 

2010–2016 

SDG&E Electricity 
Demand 

0.80 Temperature, wind speed, day- 
of-week 

2010–2016 

WECC Path 8 0.83 Temperature, wind speed, day- 
of-week, Pacific Northwest 
hydropower 

2010–2012 

WECC Path 14 0.79 Temperature, wind speed, day- 
of-week, Pacific Northwest 
hydropower 

2010–2012 

WECC Path 3 0.63 Temperature, wind speed, day- 
of-week, Pacific Northwest 
hydropower 

2010–2012 

WECC Path 65 0.85 Temperature, wind speed, day- 
of-week, Pacific Northwest 
hydropower, Path 8, Path 14, 
Path 3 

2010–2012 

WECC Path 66 0.89 Temperature, wind speed, day- 
of-week, Pacific Northwest 
hydropower, Path 8, Path 14, 
Path 3 

2010–2012 

WECC Path 46 0.76 Temperature, wind speed, day- 
of-week, Path 65, Path 66 

2010–2012 

WECC Path 45 0.88 Temperature, wind speed, day- 
of-week, Path 46, Path 65, Path 
66 

2010–2012 

WECC Path 24 0.84 Temperature, wind speed, day- 
of-week, Path 46, Path 65, Path 
66 

2010–2012 

WECC Path 61 0.85 Temperature, wind speed, day- 
of-week, Path 46, Path 65, Path 
66 

2010–2012 

WECC Path 42 0.90 Temperature, wind speed, day- 
of-week, Path 46, Path 65, Path 
66 

2010–2012 

Pacific Northwest 
Hydropower 

0.61 Streamflow 2003–2006 

CAISO 
Hydropower 

0.85 Streamflow 2001, 2005, 
2010, 2011  
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power plants, they do represent dynamic prices at major gas trading 
hubs. These day-to-day fluctuations in gas prices are extremely impor-
tant to capture. EIA’s data on the delivered price of natural gas for power 
plants is typically listed on a monthly/annual time step, which would 
not allow us to capture more short term, severe price spikes. 

Fig. 5 compares observed daily average electricity prices in the 
CAISO market alongside prices simulated by the UC/ED model, showing 
strong agreement (R2 ¼ 0.75). For the purposes of validating the UC/ED 
model, we used historical records of temperatures, wind speeds, solar 
irradiance and streamflow at the sites listed in Table 2. Thus, discrep-
ancies between observed and simulated prices are entirely due to the 
UC/ED formulation itself and/or discrepancies in fuel prices experi-
enced. In general, the model accurately captures variation in electricity 
prices on daily time scales and above; although model outputs include 
hourly prices, hourly price dynamics (e.g., “peak” and “off-peak” pat-
terns) are not as well represented. This is expected for a model reliant on 
a somewhat abstracted representation of the transmission network. 

3.2. Validation of stochastic inputs 

The UC/ED model’s ability to capture more than 70% of daily vari-
ability in CAISO electricity prices suggests that coupling it with sto-
chastic simulations of weather and hydrology would enable 
probabilistic assessment of a broad set of hydrometeorological risks in 
wholesale electricity markets. Before using CAPOW in this manner, 
however, the model’s underlying “stochastic engine” (i.e., the suite of 
approaches used to simulate weather and hydrological variables and 
relevant power system inputs) must be validated. 

3.2.1. Hydrometeorological variables 
Given the large geographical extent considered, as well as the highly 

interconnected nature of the U.S. West Coast grid, it is important that 
stochastically generated meteorological and hydrological inputs exhibit 
the same statistical dependencies as the historical record. Fig. 6 shows 
correlation matrices calculated using historical data from the 17 GHCN 
stations and 7 NSRDB sites (top left), as well as historical data from the 
85 stream gauges (bottom left). These are compared alongside correla-
tion matrices calculated using 1000 years of corresponding stochastic 
data generated using the approaches described in section 2.3. 

Lighter areas show positive correlation (two locations/variables that 
are more likely to both experience high/low values simultaneously); 
dark areas show negative correlations. In general, results show a high 
degree of fidelity between historical and simulated covariance across 
variables and space. For example, historical and simulated streamflow 

correlation matrices both show the same pockets of light values, which 
are associated with highly correlated stream gauges located within the 
same watershed. Overall, these results suggest that CAPOW, when run in 
stochastic mode, is able to capture spatial heterogeneities in weather 
and hydrological processes (e.g., the likelihood of experiencing high/ 
low temperatures/wind speeds/irradiance/streamflow simultaneously 
at sites distributed across the entire region). 

Equally important, the underlying stochastic engine of CAPOW is 
able to reproduce observed statistical moments (e.g., mean, standard 
deviation) in hydrometeorological conditions. Fig. 7 shows close 
agreement between historical and simulated temperatures and wind 
speeds across the 17 GHCN stations, in terms of percentile (1st, 50th, 
and 99th), while also demonstrating the stochastic model’s ability to 
occasionally generate more extreme min/max values than the historical 
record. 

In Fig. 8, a similar comparison is shown using streamflow data. Each 
panel includes historical (blue/red circles) and simulated (black line) 
values for each of the 85 stream gauges considered. Red circles represent 
gauges in California (mostly the Sierra Nevada Mountains) and blue 
circles represent gauges in the Pacific Northwest (mostly the Columbia 
River Basin). Each panel represents a different percentile (1st/50th/ 
99th) as well as min/max values. Note that in some cases, negative 
values are shown. This is an artifact of our use of BPA’s modified flow 
dataset, which consists of historical flows at gauge sites in the Columbia 
River Basin with modern human withdrawals applied. At certain gauge 
sites, this results in negative flow values (water is subtracted from 
reservoir storage). In general, results suggest close agreement between 
the distributions of historical and stochastically generated streamflow 
values, while also demonstrating the stochastic model’s ability to oc-
casionally generate more extreme min/max values than the historical 
record. 

3.2.2. Power system inputs 
A suite of models is used to translate raw temperatures, wind speeds, 

solar irradiance and streamflows into power system inputs, including 
multivariate regression (wind and solar power, electricity demand, 
system imports/exports) and hydrologic mass-balance operational 
models of reservoirs (hydropower). Coupled with our stochastic weather 
and streamflow generation techniques, these models yield realistic time 

Fig. 5. Daily observed vs. simulated wholesale electricity prices in the CAISO 
market over the period 2012–2016. 

Fig. 6. Historical and simulated covariance matrices for weather variables 
(top) across the 17 GHCN stations and streamflow (bottom) across the 85 
stream gauges considered. Pockets of high values in the bottom figures indicate 
stream gauges within the same watershed. 

Y. Su et al.                                                                                                                                                                                                                                       



Environmental Modelling and Software 126 (2020) 104667

9

series of power system inputs that mimic historical data on seasonal, 
daily and hour time scales (Table 2). 

For example, Fig. 9 (panel A) shows historical (blue) and simulated 
(red) seasonality in wind power “capacity factor” (a unitless number 
between 0 and 1 corresponding to the average hourly output of a wind 
farm as a fraction of installed capacity), aggregated for the entire CAISO 
system. The simulated data is produced by coupling stochastically 
generated wind speeds at GHCN stations with a multivariate regression 
model of system-wide wind power availability based on wind speeds 
(Table 2), and then adding in a record of synthetic residuals (model 
errors). Results indicate alignment with historical data on a monthly 
basis, with highest capacity factors occurring in the summer and lowest 
during winter. 

This approach is also able to reproduce hourly and daily time series 
characteristics for wind power production. Fig. 9 (panel B) shows close 
agreement between historical and simulated daily autocorrelation in 
wind power production, suggesting the model does an adequate job 
preserving any statistically significant “memory” in daily wind power 
production. 

Fig. 9 (panel C) shows historical and simulated seasonality in solar 
power capacity for the CAISO system. The simulated data is produced by 
coupling stochastically generated solar irradiance (minus cloud effects) 
at seven NSRDB sites with a multivariate regression model of system- 
wide solar power availability based on site-specific irradiance. Results 
indicate alignment with historical data on a monthly basis, again with 
highest capacity factors occurring in the summer months and lowest 
during winter. This approach is also able to reproduce hourly and daily 
time series characteristics for solar power production. Fig. 9 (panel D) 
compares hourly capacity factors produced using historical irradiance 
data for a week in Summer 2006 alongside stochastically generated solar 
power data for the same calendar week (with differences being due to 
simulated cloud effects). 

Consideration was also given to volume of simulations required to 
achieve statistical “convergence” between historical and simulated 
power system inputs. A primary motivating factor in developing the 
underlying framework of the CAPOW model is to explore the impacts of 
hydrometeorological uncertainty, especially extreme events, on power 
systems and electricity markets. To be useful in this regard, the sto-
chastic engine of CAPOW, as well as the UC/ED model, must be run over 
a sufficiently large number of years to produce the kind of low proba-
bility, high magnitude “tail” events that are concerning to grid partici-
pants (e.g., episodes of extreme shortfalls or overabundance in supply). 
Considering the high computational requirements of the UC/ED model, 
which relies on mixed integer programming, a relevant question is “how 
many years are enough”? 

Fig. 10 explores this question for the CAPOW model. Each panel 
shows data for a different input in the CAISO system: hydropower pro-
duction, wind power production, load (electricity demand), and “net 
load”, defined here as load minus total renewable energy (wind, solar, 
and hydropower) and resources considered to be “must run”, like nu-
clear and geothermal. Net demand is an important metric because it 
represents the amount of electricity that would need to be met by dis-
patchable generators (coal and natural gas). 

The colored lines measure the absolute difference between the his-
torical record and synthetically generated values as a function of 
simulation volume. For example, in the bottom left panel (load), the red 
line tracks the difference between the historical record and stochasti-
cally simulated values, in terms of the 99th percentile of hourly elec-
tricity demand. At low simulation volumes, this difference starts at 

Fig. 7. Historical and simulated temperatures and wind speeds across the 17 GHCN stations, distinguished by percentile (1st, 50th, and 99th) and min/max value.  

Fig. 8. Historical and simulated streamflows across the 85 stream gauges 
considered, distinguished by percentile (1st, 50th, and 99th) and min/ 
max values. 
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around 280 MWh (average hourly demand in the CAISO market is more 
than 25,000 MWh, indicating an error of less than 1%). As the number of 
simulated years increases, the absolute difference first increases but then 
stabilizes, appearing to asymptotically approach a value close to 220 
MWh. Stabilization occurs when increasing the number of simulation 
years has a negligible impact on the difference between historical and 
simulated values. Fig. 10 shows that simulations from CAPOW’s sto-
chastic engine tend to converge statistically after about 1000 years, 
suggesting this would be a reasonable lower bound on simulation vol-
ume to run through the UC/ED model. 

Overall, our results suggest that CAPOW’s stochastic engine is able to 
reproduce historical statistical characteristics across multiple hydro-
meteorological variables and power system inputs, needing 

approximately 1000 simulation years to achieve stable distributions. A 
final validation step is to evaluate whether the stochastic engine creates 
an expanded distribution of system states—in other words, does simu-
lation over 1000 years cause extreme events outside the historical record 
to emerge from joint uncertainties in individual system processes? 
Without directly running the UC/ED model, a preliminary analysis of 
this kind can be conducted using net load as a metric of interest, since 
this typically correlates strongly with electricity prices and would be a 
key indicator of the potential for system shortfalls (extremely high net 
demand) and oversupply (extremely low net load). 

Fig. 11 evaluates net load in the CAISO system under different sce-
narios. The shaded areas show the distribution of net load over the 
period 1953–2008, simulated using historical hydrometeorological 

Fig. 9. (A) Capacity factors for aggregate wind power production in the CAISO market; (B) daily autocorrelation in daily wind power production in the CAISO 
market; (C) capacity factors for aggregate solar power production in the CAISO market; (D) hourly capacity factors for a sample period in the CAISO market. Red ¼
simulated; blue ¼ historical. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. Absolution deviations between historical and simulated inputs to the 
CAISO system in terms of their 1st and 99th percentile values, tracked as a 
function of the volume of simulation years. 

Fig. 11. Simulated net demand for the California wholesale market. Shaded 
areas represent uncertainty driven by historical (1953–2008) hydrometeoro-
logical time series. Actual historical net demand for a single year (2016) is also 
shown in black. Enveloping the simulations forced by historical hydrometeo-
rology are minimum and maximum values acquired from 1000 synthetic runs 
produced by the stochastic model. 
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data. Colors correspond to different percentiles of net load (ranging from 
1st to 99th) as well as the min/max values for this time period. Net load 
simulated using hydrometeorological data from 1953 to 2008 is then 
compared alongside actual historical net load recorded for a recent year, 
2016, which is represented with a black line. For the most part, actual 
net load for 2016 is enveloped by the distribution of values simulated 
using 1953–2008 hydrometeorological data. Fig. 11 also shows mini-
mum and maximum values acquired from 1000 years of synthetic runs 
produced by the stochastic engine of CAPOW (blue dotted lines). Min/ 
max values produced by the stochastic engine suggest that the CAPOW 
model, by exploring joint uncertainties in hydrometeorolgical variables 
at sufficiently high simulation values, is able to access rare extreme 
events outside the historical record. The additional information pro-
vided by stochastic modeling appears to be especially valuable during 
late summer, when net load is the highest and the stochastic model 
produces maximum values that are considerably larger than the highest 
values simulated using weather and hydrology from 1953 to 2008. 
These more extreme synthetic values are likely to include rare but 
plausible “compound” events in which combinations of high electricity 
demand, and low renewable energy availability create extremely high 
net load, with associated risks for reliability and high market prices. 

4. Conclusions 

Despite growing interest in the potential vulnerabilities of bulk 
electric power systems to hydrometeorological variability (and ex-
tremes), there are few (if any) open source modelling packages capable 
of exploring this issue in a comprehensive manner. This paper presents a 
new model, CAPOW, which we specifically designed to explore the in-
fluence of joint uncertainties in temperatures, wind speeds, solar irra-
diance and streamflow on bulk power systems and wholesale electricity 
markets. CAPOW couples synthetic generation of hydrometeorological 
variables with simulation models of relevant infrastructure (dams, 
power plants), allowing for in depth exploration of the role of weather 
and hydrology on system outcomes. The model is free and downloadable 
via public online repositories. 

The CAPOW model uses a topological representation of the conter-
minous U.S. West Coast power system to form a unit commitment and 
economic dispatch (UC/ED) model that simulates system operations and 
tracks performance (system costs, prices, etc.) on an hourly basis. When 
using historical weather and streamflow data as inputs to the model, it is 
able to capture 75% of the variability in daily electricity prices in the 
CAISO market. Although designed specifically with the U.S. West Coast 
in mind, the steps taken to construct CAPOW, as well as much of the 
code base, can be extended to other systems of interest. However, some 
critical functionalities may need to be added. For example, CAPOW does 
not currently represent thermal power plant curtailments due to inad-
equate cooling water supplies caused by low streamflows and high 
temperatures. 

When run in stochastic mode, CAPOW couples the UC/ED model 
with a “stochastic engine” that creates synthetic records of tempera-
tures, wind speeds, solar irradiance and streamflow for a group of 17 
meteorological stations, 7 solar resource assessment sites, and 85 stream 
gauges distributed throughout the West Coast. Stochastically generated 
hydrometeorological variables are used to predict electricity demand 
(via temperatures, wind speeds), wind power production (via wind 
speeds), solar power production (via irradiance) and hydropower 
availability (via streamflows), which then drive the UC/ED model. The 
statistical properties (moments, cross correlations, time series charac-
teristics) of synthetic data produced mirror those of the historical record, 
while also allowing for the generation of more extreme (but plausible) 
events. Exploring the joint uncertainty in relevant hydrometeorological 
variables is computationally tractable, with the statistics of stochastic 
simulations converging with the historical record after approximately 
1000 simulation years. Overall, our framework –which is also easily 
transferrable across systems and geographic areas—simulates the 

operations of bulk electric power systems and wholesale markets at 
sufficient scales and resolutions to simulate system operations in a 
realistic way, and over sufficient time horizons to explore joint uncer-
tainty across multiple, correlated variables of interest. As such, it should 
prove to be a valuable future resource for direct grid participants as well 
as the research community, particularly in answering questions related 
to the vulnerability of the grid to future changes in hydroclimate, as well 
as the sensitivity of variable renewable energy dominated grids to sta-
tionary hydrometeorological uncertainty. 

Software and data availability 

All code and data required to run the CAPOW model, as well as some 
documentation of the model, is available at https://github.com/r 
omulus97/CAPOW_PY36 under the MIT free software license. 
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