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ARTICLE INFO ABSTRACT

Keywords: Variability (and extremes) in streamflow, wind speeds, temperatures, and solar irradiance influence supply and
Stochastic hydrology demand for electricity. However, previous research falls short in addressing the risks that joint uncertainties in
Weath.e'r these processes pose in power systems and wholesale electricity markets. Limiting challenges have included the
}E):cc:my markets large areal extents of power systems, high temporal resolutions (hourly or sub-hourly), and the data volumes and

computational intensities required. This paper introduces an open source modeling framework for evaluating
risks from correlated hydrometeorological processes in electricity markets at decision relevant scales. The
framework is able to reproduce historical price dynamics in high profile systems, while also offering unique
capabilities for stochastic simulation. Synthetic generation of weather and hydrologic variables is coupled with
simulation models of relevant infrastructure (dams, power plants). Our model will allow the role of hydrome-
teorological uncertainty (including compound extreme events) on electricity market outcomes to be explored
using publicly available models.

1. Introduction

In recent years, interest has grown in exploring the effects of hy-
drometeorological variability, and especially extreme events, on the
operations of bulk power systems (large, interconnected systems of
generation, transmission and load (demand)) (Collins et al., 2018; For-
ster and Lilliestam, 2011; Franco and Sanstad, 2008; Kern and Char-
acklis, 2017; Staffell and Pfenninger, 2018; Tarroja et al., 2016; Turner
et al., 2019; van Vliet et al., 2016, 2012; Voisin et al., 2018). Both
droughts and floods compromise the operations of hydroelectric dams
(Gleick, 2017; Su et al., 2017; Tarroja et al., 2016), while droughts in
particular can also impact thermal power plants that are dependent on
cooling water (van Vliet et al., 2016, 2012). Air temperatures influence a
range of system components, most notably electricity demand for
heating and cooling (Franco and Sanstad, 2008). In addition, as variable
energy resources like wind and solar expand their share of the power
mix, the grid is becoming more sensitive to fluctuations in wind speeds
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and solar irradiance (Collins et al., 2018; Staffell and Pfenninger, 2018).
By influencing supply and demand for electricity, hydrometeorological
processes have direct impacts on pollution (e.g., increased greenhouse
gas emissions (Collins et al., 2018; Hardin et al., 2017; Tarroja et al.,
2016)), wholesale electricity prices (Boogert and Dupont, 2005; Collins
et al., 2018; Seel et al., 2018), and the financial standing of suppliers of
electricity (e.g., retail utilities, renewable energy producers) and con-
sumers (Bain and Acker, 2018; Boogert and Dupont, 2005; Foster et al.,
2015; Kern and Characklis, 2017; Kern et al., 2015).

However, with few exceptions (Turner et al., 2019), previous in-
vestigations fall short in assessing the holistic influence of hydromete-
orological variability on bulk power systems. Past research efforts assess
operational and financial risks from exposure to variability in a more
limited set of hydrometeorological processes (Collins et al., 2018; Kern
et al., 2015) (e.g., streamflow and temperatures, or wind speeds and
solar irradiance); do not consider these effects within the context of
large, interconnected power systems (Kern and Characklis, 2017);
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and/or do not assess impacts probabilistically (Hardin et al., 2017).
These shortcomings may be partly attributable to the challenges of
modeling bulk electric power systems at sufficient scale and resolution
to simulate system operations in a realistic way, and over sufficient time
horizons to explore joint uncertainty in multiple, correlated input
variables.

Interconnected power systems span areas so large that system op-
erators often have some ability to deal with spatially heterogeneous
stressors. For example, a localized power supply shortfall caused by
drought in one area might be managed by importing power from other
areas where water, and thus electricity from hydropower production
and water-cooled generators, is more abundant. From a modeling
perspective, this necessitates adopting system topologies that extend
beyond a single watershed, state, and region. Hydrometeorological un-
certainty and power system risks can also manifest on different time
scales. Extreme meteorological and hydrological conditions can have
durations on the order of days (floods (Najibi and Devineni, 2017), heat
waves), weeks to months (wind “droughts™), and years (hydrological
droughts (Andreadis et al., 2005)), whereas power system modeling
requires an hourly or sub-hourly time step (Pandzzi¢ et al., 2014).
Although stochastic modeling approaches can be used to create large
synthetic records of hydrometeorological processes in order to explore
risks from extreme events (Brown et al., 2015; Reed et al., 2013), this
poses a direct challenge to the use of computationally expensive integer
programming within power system models (Pandzzi¢ et al., 2014),
making large ensemble Monte Carlo simulations less tractable. Adding
to these challenges is the potential presence of significant spatial and
temporal covariance among key hydrometeorological processes (Jime-
nez et al., 2011; Woodhouse et al., 2016). If significant correlations
exist, an increased number of model runs may be required to charac-
terize the probability of coincident extremes (e.g., widespread simulta-
neous hydrological drought, a wind drought, and a heat wave) that may
be of particular concern to power system operators (Mazdiyasni and
AghaKouchak, 2015; Turner et al., 2019).

The modeling scales, resolutions, and ensemble sizes required in
exploring the risks to bulk electric systems from hydrometeorological
variability present a challenge, and few (if any) models capable of per-
forming this type of analysis are publically available. Given recent
increased interest among the research community in modeling inter-
connected systems (e.g., food-energy-water (Logan, 2015)), a general-
izable and open source modeling framework for simulating the influence
of correlated hydrometeorological processes on power system dynamics
at decision relevant scales would be a valuable addition.

The goal of this paper is to present such a framework: the newly
developed California and West Coast Power (CAPOW) systems model.
CAPOW was designed by the authors to explore a high profile test-bed—
the West Coast of the conterminous United States (U.S.). The bulk
electric power systems covering most of the states of California, Oregon
and Washington are included, as well as the two major wholesale elec-
tricity markets active across these states (current gaps in coverage are
the PacifiCorp West, Sacramento Municipal Utility District, Los Angeles
Department of Water and Power balancing authorities). CAPOW is
comprehensive in its treatment of stochastic weather and streamflow,
simulation of relevant infrastructure (reservoir networks, power sys-
tems), and evaluation of outcomes (system costs, prices, etc.). While
focused on the U.S. West Coast, the steps required in building and
executing the CAPOW model (as well as much of the code) are fairly
generalizable and can be transferred to other systems and in-
terconnections of interest (Chowdhury et al., 2019). Most grid specific
information used in the model is publically available anywhere in the U.
S. (generator size, location, fuel type, prime mover type, average heat
rate, etc.). Hydrometeorological data used to simulate electricity de-
mand, wind, solar and hydropower production are also available
throughout the U.S.; as well as hourly records of renewable energy
production in each balancing authority through the EIA. Analogous
transmission grid information (bi-directional capacities) is publically
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available for all WECC areas, and for many (if not all) sub-regions in the
eastern interconnection. Note that to transfer the model to other regions,
additional capabilities that are not currently in CAPOW may be required
(e.g., representing impacts of extreme cold, air temperatures (Henry and
Pratson, 2016), and a lack of cooling water availability due to low
streamflow and temperatures (Miara et al., 2017; van Vliet et al., 2016,
2012) on thermal power plant functionality). The model is
Python-based; all code and data required to run the CAPOW model, as
well as some documentation of the model, is available at https://github.
com/romulus97/CAPOW _PY36 under the MIT free software license.

2. Methods

Our description of methods parallels the CAPOW model’s work flow
(Fig. 1), beginning with a discussion of surface water and electric power
system topologies, including key physical assets (e.g., power plants,
dams/reservoirs) and their connections (i.e., water routing between
reservoirs, high voltage transmission pathways). This is followed by a
description of CAPOW’s unit commitment and economic dispatch (UC/
ED) model, which is used to simulate actual power system operations.
The methods section ends with a description of our approach for sto-
chastically generating model inputs from historical weather and
streamflow data.

2.1. System topology

2.1.1. Electric power

In order to model the West Coast grid (the case study explored here),
we first adopt a 21-zone topology of the Western Electricity Coordi-
nating Council (WECQC), a regulatory body charged with reducing risks
to the Western grid by enforcing standards and assessing reliability
(Fig. 2). This topology, which has been used in the past by WECC and
other researchers to assist in long term planning exercises (Ho et al.,
2016; Mkarov et al., 2010), groups balancing authorities (utility foot-
prints) into multiple zones that are connected via aggregated trans-
mission pathways throughout the region. Each zone-to-zone
transmission pathway is associated with bi-directional capacities (i.e.,
maximum limits on zone-to-zone transfers of electricity) estimated from
publically available data (Western Electricity Coordinating Council,
2016).

Each zone in the network consists of: 1) the load (electricity de-
mands) of its member balancing authorities, which fluctuate on hourly,
daily, seasonal and annual time scales; and 2) a portfolio of co-located
generation resources with which to meet those demands. Comprehen-
sive databases of generators located in each node of the 21-zone WECC
topology are publically available from multiple sources (US Environ-
mental Protection Agency, 2018; Western Electricity Coordinating
Council System Adequacy Planning Department, 2015). These also
contain information on relevant operating characteristics for each
generator (e.g., fuel type, capacity, average heat rate) that are used to
formulate the UC/ED simulation model.

There are two major trading hubs for wholesale electricity on the U.
S. west coast: 1) the Mid-Columbia (Mid-C) market that serves as a hub
for much of the Pacific Northwest region; and 2) the California Inde-
pendent System Operator (CAISO), a competitive wholesale market that
manages approximately 80% of California’s electricity flow. The 21-
zone WECC topology shown in Fig. 2 includes five nodes (red,
numbered) that directly correspond to these markets: node 1 (Pacific
Northwest) corresponds to the Mid-C market, and nodes 2-5 correspond
to the CAISO market. Nodes 2-5 also represent the service areas of three
major utilities: Pacific Gas and Electric (PG&E), Southern California
Edison (SCE), and San Diego Gas and Electric (SDG&E). Currently only
these five zones (and power flows among them) are modeled mecha-
nistically using a UC/ED model. No UC/ED models exist outside these
five zones. Neighboring zones are considered only in terms of their ex-
changes of electricity with the core UC/ED zones, and these exchanges
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Fig. 1. Model workflow. Topologies of relevant electric power and surface water infrastructure are defined first, and then synthetic time series inputs are used to
drive stochastic simulation of a power system (unit commitment/economic dispatch) model. Model outputs include the least cost generation schedule, total system

costs, estimated wholesale prices, and emissions.
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Fig. 2. Power system topology used in the CAPOW modeling framework. The
five red zones, comprising collections of balancing authorities (load centers and
generation assets), are mechanistically modeled using unit commitment eco-
nomic dispatch (UC/ED) models. Blue lines represent exchanges (imports/ex-
ports) of electricity with adjacent zones that are represented statistically. Black
dots represent zones in the WECC system that are not currently represented in
CAPOW. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)

are modeled statistically (see Supplemental Material).

2.1.2. Dams and reservoirs

Recent analyses of the impacts of drought on power generation in the
Western U.S. (Harto et al., 2011) suggest that cooling water issues from
low streamflow and high water temperatures pose a minor threat to
thermal power plants in the region. Rather, the primary mechanism
through which hydrologic extremes can impact power system opera-
tions is through variability in hydropower generation. Within the WECC
topology shown in Fig. 2, hydropower capacity makes up 58% of
installed generating capacity in zone 1 (Pacific Northwest), 18% of
generating capacity in zone 2 (PG&E Valley), and 4% of capacity in zone
3 (SCE) (US Environmental Protection Agency, 2018). Fig. S2 in the

Supplemental Material section maps major (>5 MW) hydroelectric dams
that participate in balancing authorities located within the five
numbered zones that make up the UC/ED model. These dams primarily
fall within the Columbia River Basin, which spans several Northwestern
U.S. states and Canada, as well as the Sacramento River, San Joaquin
River, and Tulare Lake basins in California.

Publically available hydrologic mass balance models exist for 85% of
the hydropower capacity in the Pacific Northwest (versions of HYSSR,
developed by the U.S. Army Corps of Engineers to simulate the Federal
Columbia River Power System; and a ResSim model that simulates the
operations of Federal dams in the Willamette River Basin). Models exist
for only 12% of the hydropower capacity in California (the ORCA model
(Herman and Cohen, 2019), which simulates the operations of major
storage/flood control dams). In California, much of the state’s hydro-
power capacity is privately owned and located in high altitude areas of
the Sierra Nevada Mountains. Little information about the operation of
these dams is publically available, so hydropower production at these
projects is simulated via an alternative approach in which hydropower
production at upstream dams is predicted using observed streamflow
downstream. First, for major high altitude hydroelectric dam in the Si-
erra Nevada Mountains, a corresponding downstream storage reservoir
or stream gauge on the same river is identified. In order to predict up-
stream hydropower generation at a given dam using observed stream-
flow downstream, the calendar year is broken into four seasons: winter,
spring, summer, and fall. Each season is assumed to follow a different set
of “operating rules” that translate observed downstream flows into es-
timates of upstream hydropower production. Rules are fitted using the
differential evolution algorithm in the SciPy library of Python, based on
root mean squared error (RMSE) between observed and simulated hy-
dropower production for each upstream dam.

About 15% of hydropower capacity in the Pacific Northwest and
20% of hydropower capacity in California are within the five core WECC
zones that make up the UC/ED model but fall outside the four river
basins mentioned above and are not associated with publically available
models. These projects are modeled by scaling hydropower generation
from nearby dams. A more detailed description of how hydropower
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production is simulated on a daily basis can be found in the Supple-
mental Material.

2.2. Unit commitment and economic dispatch model

The power system and reservoir network topologies described above
form the basis of a unit commitment/economic dispatch (UC/ED) model
that we use to simulate the operation of the five numbered WECC zones
in Fig. 2, which include the Mid-C and CAISO markets. Simulating the
UC/ED model for a single year at an hourly time step takes approxi-
mately 6 h using the CPLEX solver on a 16-core machine with 2.5 GHz
processors using a Linux operating system. What follows is a general
overview of the model’s structure and functionality. A mathematical
formulation of the UC/ED model can be found in the Supplemental
Material.

We coded the UC/ED model in Python using the Pyomo mathemat-
ical optimization package, structuring it as an iterative, mixed integer
linear program. Over a user-defined operating horizon (e.g., 48 h),
deterministic optimization is used to minimize the cost of meeting de-
mand for electricity and operating reserves (including unit start costs, no
load costs, fuel costs, and penalties associated with transferring elec-
tricity between zones), subject to constraints on individual generators
and transmission paths. Costs are minimized by strategically “dis-
patching” (scheduling) generation from flexible generation resources
(natural gas power plants, hydroelectric dams and system imports) on an
hourly basis. Variable renewable energy (wind and solar) are not dis-
patchable (they can be consumed only when available); as such, they are
typically treated as “electricity demand reduction” within a zone, but
can be also curtailed during periods of oversupply.

A single iteration of the UC/ED model yields system costs and the
least cost generating schedule over the operating horizon (e.g., hours
1-48); however, only the first 24 h of the solution is stored. The
remaining solution (hours 25-48) is discarded, and the whole process
shifts one day into the future. The next iteration of the model identifies a
solution for the hours 25-48, while again looking 48 h into the future (i.
e., at hours 25-72). This ensures that the model does not have perfect
foresight over unreasonably long time horizons when making decisions
with path dependency (e.g., turning on baseload power plants with high
“minimum up” times).

Simulation of the UC/ED model creates hourly time series outputs
that track provision of electricity and operating reserves by each
generator, the flow of electricity among zones, plant specific and system
wide emissions of CO», total operating costs, and wholesale electricity
prices. CO emissions from each power plant are calculated using his-
torical EPA eGrid data that are used to estimate the kg CO, per MWh
emissions for each plant. Note that total operating costs essentially refers
to the value of the objective function in each hour (the cumulative start,
no load, and fuel costs across every power plant in every hour). On the
other hand, wholesale electricity prices ($/MWh) are dynamic measures
of the marginal value of electricity in each market, i.e., how much
generators would be paid to sell their electricity in each hour. Within the
optimization, wholesale prices are estimated for each zone as the
shadow cost of an energy balance constraint at each zone (i.e., the
change in objective function value associated with a 1 MWh increase in
demand at each zone). Calculating the shadow costs requires the UC/ED
model to first be solved in mixed integer form, and then resolved as a
linear program (keeping all binary variables fixed from the integer so-
lution) in order to access dual values for relevant constraints in Pyomo.
This yields a separate time series of wholesale electricity prices for each
of the five WECC zones represented in the core UC/ED model. Prices in
the Mid-C market are assumed to be equivalent to prices for the Pacific
Northwest zone. To represent the CAISO market, prices for the four
relevant zones in California (PG&E Valley, PG&E Bay, SCE, and SDG&E)
are weighted to determine an overall price for the market, with the
weights fitted via regression (RZ = 0.75, p < 1e-3) on observed values
over the period 2012-2016.
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2.3. Stochastic inputs

The primary stochastic inputs to the UC/ED model are electricity
demand (hourly), wind and solar power production (hourly), and
available hydropower production (daily) for each numbered zone in
Fig. 2. Several hydrometeorological processes (air temperatures, wind
speeds, solar irradiance and streamflow) in turn drive these power sys-
tem inputs. In the following section, we describe our approach for
generating synthetic hydrometeorological time series.

2.3.1. Hydrometeorological variables

2.3.1.1. Air temperatures, wind speeds, and solar irradiance. We collect
observed air temperatures, wind speeds, and solar irradiance data
within major cities (where electricity demand is highest) and in areas
known to have large amounts of installed wind and solar power capac-
ity. Records of daily average temperature and wind speed over the
period 1998-2017 come from NOAA’s Global Historical Climatological
Network (GHCN) for seventeen meteorological stations distributed
throughout the Western U.S. (Table 1). Global horizontal irradiance data
come from the National Renewable Energy Laboratory’s National Solar
Radiation Database (NSRDB) (Sengupta et al., 2018); both “clear sky”
and observed irradiance data are acquired at a 30-min resolution and
then aggregated to daily sums.

Each weather station provides the data necessary to generate 365-
day profiles of average temperature and wind speed for their respec-
tive locations. We use solar irradiance data to created 365-day profiles of
average “clear sky” (cloudless) conditions (Fig. 3).

Y

1
TP, = le T,y €3]
1 Y
WP, =3 > WS,y 2
y=1
1 Y
SPy==> Sy 3)
Y &
Where,

TP, = average temperature on calendar day n across Y years (°C)

T,y = observed temperature on calendar day n in year y (°C)

WP,, = average wind speed on day n across Y years (m/s)

WS, = observed wind speed on day n in year y (m/s)

SP, = average clear sky irradiance on day n across Y years (W/m?)

Sny = observed clear sky irradiance on day n in year y (W/m?)

Synthetic values of air temperatures, wind speeds, and solar irradi-
ance are then generated by combining these average profiles (e.g. blue
series in panel A of Fig. 3) with stochastic representation of the auto-
correlated “residuals” that deviate from these repeating signals (e.g. the
gray series in panel A of Fig. 3). Average temperature and wind profiles
are subtracted from observed temperature and wind speed values; this
yields a daily record of zero-mean residuals (i.e., deviations from
average temperature and wind speed for each calendar day over the
period 1998-2017). Observed irradiance is subtracted from average
clear sky irradiance, yielding a daily record of “losses” due to cloud
effects.

RT,=T, — TP, 4)
RW,;=WS,; — TW, (5)
IL;=SP, — I, (6)
Where,

RT4 = residual temperature on day d (°C)
RW, = residual wind speed on day d (m/s)
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Table 1

Seventeen weather stations in the Global Historical Climatological Network and
National Solar Resource Database that provide daily mean air temperature and
wind speed data used in development of stochastic inputs.

Station ID Name Variables Latitude  Longitude
USW00024232  SALEM AIRPORT Wind/ 44.90° 123.00°
MCNARY FIELD, OR temps N w
USW00024221 EUGENE MAHLON Wind/ 44.12° 123.21°
SWEET FIELD, OR temps N w
USW00024233  SEATTLE TACOMA Wind/ 47.45° 122.30°
INTERNATIONAL temps N w
AIRPORT, WA
USw00024131 BOISE AIR TERMINAL, Wind/ 43.56° 116.22°
D temps N w
USW00024242  PORTLAND Wind/ 45.54° 122.39°
TROUTDALE AIRPORT, temps N w
OR
USW00024157  SPOKANE Wind/ 47.62° 117.53°
INTERNATIONAL temps N w
AIRPORT, WA
USW00024163  PASCO TRI CITIES Wind/ 46.26° 119.11°
AIRPORT, WA temps N w
USWO00093193  FRESNO YOSEMITE Wind/ 36.77° 119.71°
INTERNATIONAL, CA temps N w
USW00023230  OAKLAND METRO Wind/ 37.71° 122.21°
INTERNATIONAL temps N w
AIRPORT, CA
USW00023174  LOS ANGELES Wind/ 33.94° 118.40°
INTERNATIONAL temps N w
AIRPORT, CA
USW00023188  SAN DIEGO Wind/ 32.73° 117.19°
INTERNATIONAL temps N w
AIRPORT, CA
USW00023232  SACRAMENTO Wind/ 38.51° 121.49°
EXECUTIVE AIRPORT, temps N w
CA
USW00023293  SAN JOSE, CA Wind/ 37.33° 121.88°
temps N w
USW00023234  SAN FRANCISCO Wind/ 37.62° 122.37°
INTERNATIONAL temps N w
AIRPORT, CA
USW00023160  TUCSON Wind/ 32.11° 110.93°
INTERNATIONAL temps N w
AIRPORT, AZ
USw00023183 PHOENIX AIRPORT, AZ Wind/ 33.43° 112.00°
temps N w
USW00053123  LAS VEGAS AIR Wind/ 36.21° 115.19°
TERMINAL, NV temps N w
NSRDB NATIONAL SOLAR Irradiance 40.45° 121.66°
154166 RESOURCE DATABASE N w
#1
NSRDB 13631 NATIONAL SOLAR Irradiance 38.57° 121.7° W
RESOURCE DATABASE N
#2
NSRDB NATIONAL SOLAR Irradiance 36.81° 119.38°
111895 RESOURCE DATABASE N w
#3
NSRDB 93873 NATIONAL SOLAR Irradiance 35.09° 117.3° W
RESOURCE DATABASE N
#4
NSRDB 83553 NATIONAL SOLAR Irradiance 34.05° 118.38°
RESOURCE DATABASE N w
#5
NSRDB 82442 NATIONAL SOLAR Irradiance 33.93° 115.9°' W
RESOURCE DATABASE N
#6
NSRDB 77068 NATIONAL SOLAR Irradiance 33.33° 114.7° W
RESOURCE DATABASE N
#7

IL4 = irradiance “losses” on day d (W/m?)

Residual temperatures and wind speeds, as well as irradiance losses,
are then mean-shifted to eliminate negative values and log-transformed
to approximate a Gaussian distribution. The residuals/losses for each
calendar day of the year are then divided by their respective standard
deviations, in order to control for seasonal heteroscedasticity.
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Fig. 3. (A) Daily average and observed temperatures for USW00024232
(Salem, OR). (B) Daily average clear sky conditions and one year of observed
irradiance for NSRDB 11895.

WRT, =RT, /oT, %)
WRW, =RW, /oW, (®)
WIL, = IL, /oIL, 9
Where,

WRT, = whitened residual temperature on day dWRW; = whitened
residual wind speed on day dWIL; = whitened irradiance losses on day

dRT; = mean shifted, log-transformed residual temperature on day d
()]

RW, = mean shifted, log-transformed residual wind speed on day d
(m/s)

Ly = mean shifted, log-transformed irradiance losses on day d (W/
m?)

oT, = standard deviation of transformed temperature residuals on
calendar day neW, = standard deviation of transformed wind speed
residuals on calendar day nolL, = standard deviation of transformed
irradiance losses on calendar day n

We then model the resultant “whitened” residuals and irradiance
losses using a vector autoregressive (VAR) model, in order to capture
observed covariance across variables. VAR models describe the behavior
of a set of k variables over a given time period as a linear function of
their past values and random samples from a multivariate normal dis-
tribution. Simulated values of each variable are stored in a k x 1 vector,
¥, which has as its i element, y;;, the value of the i variable at time t.
The “lag” of the model (i.e., the number of previous time steps that are
accounted for when estimating values in y,) is denoted by the parameter
p-

Y=C+Ay1 +Ayia+ ... +Ay, + & (10)

Where,

C = k x 1 vector of constants

A; = k x k matrix of coefficients

& = k x 1 vector of error terms

t = time period

p = model lag

Simulation of y; proceeds through random sampling of noise (e;)
from a multivariate normal distribution with a covariance matrix esti-
mated from whitened residuals and irradiance losses for the period
1998-2017. The number of lags considered is determined via the Akaike
Information Criteria.

A fitted VAR model is used to simulate daily, whitened temperature
and wind speed residuals and irradiance losses for each GHCN and
NSRDB site considered, for as many years as desired. Simulated values
are then “un-whitened” by reversing Equations (7)-(9) (thus restoring
heteroscedasticity and non-normality); they are then added back to the
365-day profiles (reversing Equations (4)-(6)), yielding synthetic daily
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records of temperature and wind speeds.

2.3.1.2. Streamflow. Streamflow patterns on the west coast of the U.S.
are driven by runoff from precipitation as rain and, largely, the melting
of snow accumulated during the winter. Both total annual streamflow
and the within year distribution of streamflow experienced in this region
are known to be influenced by temperatures (Null et al., 2010). At the
same time, there are significant correlations among the 85 separate,
spatially distributed streamflow gauges that drive CAPOW’s simulation
of dam operations and hydropower production.

We make use of a Gaussian Copula to preserve the relationship be-
tween total annual streamflow and temperatures in stochastically
generated samples. First, observed daily average temperatures
(1953-2008) at the seventeen meteorological stations are converted to
heating and cooling degree days, which measures deviations from 18.33
degrees C (65 degrees F).

HDD,; =max(18.33 — T, 0) an
CDD,;; = max(T,, — 18.33, 0) 12)
Where,

HDD, ; = heating degree days on day d at station s

CDDg4 = cooling degree days on day d at station s

T4 = average near surface air temperature on day d (°C) at station s

Total annual HDDs and CDDs are calculated, providing coarse
measures of the “hotness” of a given year’s summer and the “coldness” of
a given year’s winter. Total annual HDDs and CDDs and total annual
streamflow are then transformed into quantile space by calculating the
empirical cumulative probability distribution for each variable.

P=P(Q=>q) 13)

Where,
Q = total annual streamflow or degree days at a given site
Empirical probabilities are transformed again into a uniform distri-
bution ranging from —1 to 1 as follows, ensuring a mean of 0 across
every variable.

Y=2(P—0.5) 14)

The covariance matrix C across all the variables at every site is
estimated, and then synthetic records of total annual streamflow and
total annual HDDs and CDDs are generated by taking random samples
from a multivariate normal distribution with mean 0 and covariance
matrix C, then back-transforming (reversing equations (13) and (14)).

The next step is to match total annual streamflow and total annual
HDDs and CDDs simulated via the Copula method with the synthetic
daily temperatures generated in the previous section using a vector-
autoregressive (VAR) approach. Synthetic daily temperatures simu-
lated using the VAR approach are converted to total annual HDDs and
CDDs. For each year of synthetic data desired, we select a single year of
total annual HDDs and CDDs generated using the VAR approach, and
then calculate the weighted average across every GHCN station. Weights
are determined by the fraction of average annual flow across the 85
stream gauges that is contained within each GHCN station’s surrounding
area:

G
— >0 AVF,

s 15
AVT (15)

Where,

WT; = weight assigned to meteorological stationsAVF, = average
annual flow at gauge site g closest to stationsAVT = average annual flow
across all 85 stream gauges

The weighted total annual HDDs and CDDs from the VAR model are
compared alongside pairs of weighted total annual HDDs and CDDs
generated using the Copula method. The smallest mean squared error
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difference is identified; then the total annual streamflow values gener-
ated via the Copula method are paired with the corresponding daily
temperatures (and also wind speeds and solar irradiance) generated via
VAR.

Disaggregating total annual streamflow values down to a daily time
step must be done in a manner that considers the potential influence of
temperatures on the timing of streamflow throughout the year. For
example, Fig. 4 shows the relationship between winter and spring
temperatures and the timing of streamflow at two major reservoirs in
California. The top panel (A) shows 19 years (1997-2015) of weighted
average temperatures across the GHCN stations, calculated using
weights from Equation (15). Lines are colored according to the mean
temperature experienced over the first 24 weeks of the year; the dark red
line indicates the year with the hottest temperatures over this period
(2015), and the dark blue line indicates the year with the coolest tem-
peratures (2010). In panels B and C, those same line colors are then used
to plot contemporaneous “full natural” (unregulated) flows at Folsom
Dam (panel B) and Oroville Dam (panel C) in California (two large
storage dams for which there are long historical flow records). Flows are
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Fig. 4. (A) Weighted average temperatures for the period 1997-2015, colored
according to mean temperatures experienced during the first 24 weeks of the
year; (B) associated unregulated daily flow fraction profiles for Folsom Dam,
with a swarm plot indicating the week of maximum unregulated streamflow;
(C) similar data for Oroville Dam.
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shown in terms of standardized “fractions” that are created by dividing
by total annual flows at each site. At the top of panels B and C, swarm
plots identify the week of maximum streamflow. For both dams, years
with higher average winter and spring temperatures (red hued circles)
tend to be associated with earlier peak streamflow, indicating earlier
snowmelt and/or major precipitation events.

In order to capture these dependencies between the timing of
streamflow and temperatures, we follow a nearest neighbor clustering
approach, similar to Nowak et al. (2010). The weights generated in
Equation (15) are used to create composite time series of temperatures
across the 17 GHCN stations, for both historical and simulated temper-
ature data. For each simulated year, the historical record is searched for
a past year that exhibited the most similar winter/spring temperature
profile, in terms of mean squared error. The identified historical year is
then selected as the basis for determining daily flow fractions at each
streamflow gauge site. For the historical year selected, daily flow frac-
tions are calculated as follows:

_DFy,

FFog=—% (16)
8

Where,

FF4s = flow fraction for day d at streamflow gauge site gDF;; =
observed flow on day d at streamflow gauge site gAF, = total annual flow
observed at gauge site g

Flow fractions for each gauge site are then multiplied by simulated
total annual flows to yield a synthetic record of daily flows across the
study area.

2.3.2. Power system inputs

The stochastic scenario generation framework permits the explora-
tion of large ensembles of time series for temperatures, wind speeds,
solar irradiance, and streamflow. These data are then converted to
associated power system inputs for the UC/ED model (time series for
each zone of hourly electricity demand, wind and solar availability,
daily hydropower production and imports of electricity from other areas
in the Western U.S.). Table 2 provides an overview of the different ap-
proaches taken to translate raw hydrometeorological variables into
power system inputs, as well as their accuracies. Multi-variate regression
is used to simulate daily electricity demand, solar and wind power
production, and system imports (power flows along WECC Paths listed
in Table 2). Daily values are disaggregated down to an hourly time step
by sampling from historical profiles. Daily values of available hydro-
power production are created by passing synthetic streamflow records
through mass-balance hydrologic models of dams in the Columbia River
basin and major storage reservoirs in California, as well as through a
machine learning representation of high altitude hydropower produc-
tion in California. Detailed descriptions of all models used to translate
raw hydrometeorological variables into power system inputs can be
found in the Supplemental Material.

3. Results & discussion
3.1. Validation of UC/ED formulation

This paper proceeds with a validation of the UC/ED model’s ability
to reproduce observed power system dynamics (in particular, wholesale
electricity prices). Wholesale prices, which are driven by changes in
supply and demand, can be viewed as aggregate measures of system
performance (high prices can indicate scarcity, and low prices point to
abundance). We focus on an extended period of drought that occurred in
California over the years 2012-2016. During this period, in-state hy-
dropower generation decreased by an average of 40% (Gleick, 2017),
forcing the state to rely significantly more on electricity from natural gas
power plants. There has been considerable interest in exploring the
impacts of this recent drought on pollutant emissions (Hardin et al.,
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Table 2

Model results for power system inputs. R? values are based on daily fit for all
inputs except hydropower production (weekly). In all cases, regression p-values
are less than .01.

Power System R? Predictive/Independent Years
Input Value Variables
CAISO Solar 0.92 Irradiance 2011-2016
Power
Pacific Northwest 0.71 Wind speed 2011-2016
Wind Power
CAISO Wind 0.71 Wind speed 2011-2016
Power
Pacific Northwest 0.89 Temperature, wind speed, day- 2010-2016
Electricity of-week
Demand
PG&E Valley 0.90 Temperature, wind speed, day- 2010-2016
Electricity of-week
Demand
PGE&E Bay 0.79 Temperature, wind speed, day- 2010-2016
Electricity of-week
Demand
SCE Electricity 0.89 Temperature, wind speed, day- 2010-2016
Demand of-week
SDG&E Electricity 0.80 Temperature, wind speed, day- 2010-2016
Demand of-week
WECC Path 8 0.83 Temperature, wind speed, day- 2010-2012
of-week, Pacific Northwest
hydropower
WECC Path 14 0.79 Temperature, wind speed, day- 2010-2012
of-week, Pacific Northwest
hydropower
WECC Path 3 0.63 Temperature, wind speed, day- 2010-2012
of-week, Pacific Northwest
hydropower
WECC Path 65 0.85 Temperature, wind speed, day- 2010-2012
of-week, Pacific Northwest
hydropower, Path 8, Path 14,
Path 3
WECC Path 66 0.89 Temperature, wind speed, day- 2010-2012
of-week, Pacific Northwest
hydropower, Path 8, Path 14,
Path 3
WECC Path 46 0.76 Temperature, wind speed, day- 2010-2012
of-week, Path 65, Path 66
WECC Path 45 0.88 Temperature, wind speed, day- 2010-2012
of-week, Path 46, Path 65, Path
66
WECC Path 24 0.84 Temperature, wind speed, day- 2010-2012
of-week, Path 46, Path 65, Path
66
WECC Path 61 0.85 Temperature, wind speed, day- 2010-2012
of-week, Path 46, Path 65, Path
66
WECC Path 42 0.90 Temperature, wind speed, day- 2010-2012
of-week, Path 46, Path 65, Path
66
Pacific Northwest 0.61 Streamflow 2003-2006
Hydropower
CAISO 0.85 Streamflow 2001, 2005,
Hydropower 2010, 2011

2017), as well as system costs and prices for retail electricity consumers
(Gleick, 2017). Particularly when determining the latter, an under-
standing of impacts on wholesale electricity prices is necessary. Retail
distribution companies in California (PG&E, SCE, and SDGE) all pur-
chase electricity from the CAISO market. If the CAPOW model is able
simulate observed wholesale electricity prices over 2012-2016 with
accuracy, then the model could also be used to conduct controlled ex-
periments designed to isolate the role of drought (and/or other hydro-
metorological extremes) on wholesale prices, revenues/costs for
utilities, and, ultimately, retail prices for consumers. Natural gas price
data used to validate the model (i.e. compare historical CAISO prices
across the years 2012-2016) were obtained from EIA’s natural gas hub
dataset; although these data do not represent the exact price paid by
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power plants, they do represent dynamic prices at major gas trading
hubs. These day-to-day fluctuations in gas prices are extremely impor-
tant to capture. EIA’s data on the delivered price of natural gas for power
plants is typically listed on a monthly/annual time step, which would
not allow us to capture more short term, severe price spikes.

Fig. 5 compares observed daily average electricity prices in the
CAISO market alongside prices simulated by the UC/ED model, showing
strong agreement (R2 = 0.75). For the purposes of validating the UC/ED
model, we used historical records of temperatures, wind speeds, solar
irradiance and streamflow at the sites listed in Table 2. Thus, discrep-
ancies between observed and simulated prices are entirely due to the
UC/ED formulation itself and/or discrepancies in fuel prices experi-
enced. In general, the model accurately captures variation in electricity
prices on daily time scales and above; although model outputs include
hourly prices, hourly price dynamics (e.g., “peak” and “off-peak” pat-
terns) are not as well represented. This is expected for a model reliant on
a somewhat abstracted representation of the transmission network.

3.2. Validation of stochastic inputs

The UC/ED model’s ability to capture more than 70% of daily vari-
ability in CAISO electricity prices suggests that coupling it with sto-
chastic simulations of weather and hydrology would enable
probabilistic assessment of a broad set of hydrometeorological risks in
wholesale electricity markets. Before using CAPOW in this manner,
however, the model’s underlying “stochastic engine” (i.e., the suite of
approaches used to simulate weather and hydrological variables and
relevant power system inputs) must be validated.

3.2.1. Hydrometeorological variables

Given the large geographical extent considered, as well as the highly
interconnected nature of the U.S. West Coast grid, it is important that
stochastically generated meteorological and hydrological inputs exhibit
the same statistical dependencies as the historical record. Fig. 6 shows
correlation matrices calculated using historical data from the 17 GHCN
stations and 7 NSRDB sites (top left), as well as historical data from the
85 stream gauges (bottom left). These are compared alongside correla-
tion matrices calculated using 1000 years of corresponding stochastic
data generated using the approaches described in section 2.3.

Lighter areas show positive correlation (two locations/variables that
are more likely to both experience high/low values simultaneously);
dark areas show negative correlations. In general, results show a high
degree of fidelity between historical and simulated covariance across
variables and space. For example, historical and simulated streamflow
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Fig. 5. Daily observed vs. simulated wholesale electricity prices in the CAISO
market over the period 2012-2016.
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Fig. 6. Historical and simulated covariance matrices for weather variables
(top) across the 17 GHCN stations and streamflow (bottom) across the 85
stream gauges considered. Pockets of high values in the bottom figures indicate
stream gauges within the same watershed.

correlation matrices both show the same pockets of light values, which
are associated with highly correlated stream gauges located within the
same watershed. Overall, these results suggest that CAPOW, when run in
stochastic mode, is able to capture spatial heterogeneities in weather
and hydrological processes (e.g., the likelihood of experiencing high/
low temperatures/wind speeds/irradiance/streamflow simultaneously
at sites distributed across the entire region).

Equally important, the underlying stochastic engine of CAPOW is
able to reproduce observed statistical moments (e.g., mean, standard
deviation) in hydrometeorological conditions. Fig. 7 shows close
agreement between historical and simulated temperatures and wind
speeds across the 17 GHCN stations, in terms of percentile (1st, 50th,
and 99th), while also demonstrating the stochastic model’s ability to
occasionally generate more extreme min/max values than the historical
record.

In Fig. 8, a similar comparison is shown using streamflow data. Each
panel includes historical (blue/red circles) and simulated (black line)
values for each of the 85 stream gauges considered. Red circles represent
gauges in California (mostly the Sierra Nevada Mountains) and blue
circles represent gauges in the Pacific Northwest (mostly the Columbia
River Basin). Each panel represents a different percentile (1st/50th/
99th) as well as min/max values. Note that in some cases, negative
values are shown. This is an artifact of our use of BPA’s modified flow
dataset, which consists of historical flows at gauge sites in the Columbia
River Basin with modern human withdrawals applied. At certain gauge
sites, this results in negative flow values (water is subtracted from
reservoir storage). In general, results suggest close agreement between
the distributions of historical and stochastically generated streamflow
values, while also demonstrating the stochastic model’s ability to oc-
casionally generate more extreme min/max values than the historical
record.

3.2.2. Power system inputs

A suite of models is used to translate raw temperatures, wind speeds,
solar irradiance and streamflows into power system inputs, including
multivariate regression (wind and solar power, electricity demand,
system imports/exports) and hydrologic mass-balance operational
models of reservoirs (hydropower). Coupled with our stochastic weather
and streamflow generation techniques, these models yield realistic time
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considered, distinguished by percentile (1st, 50th, and 99th) and min/
max values.

series of power system inputs that mimic historical data on seasonal,
daily and hour time scales (Table 2).

For example, Fig. 9 (panel A) shows historical (blue) and simulated
(red) seasonality in wind power “capacity factor” (a unitless number
between 0 and 1 corresponding to the average hourly output of a wind
farm as a fraction of installed capacity), aggregated for the entire CAISO
system. The simulated data is produced by coupling stochastically
generated wind speeds at GHCN stations with a multivariate regression
model of system-wide wind power availability based on wind speeds
(Table 2), and then adding in a record of synthetic residuals (model
errors). Results indicate alignment with historical data on a monthly
basis, with highest capacity factors occurring in the summer and lowest
during winter.

This approach is also able to reproduce hourly and daily time series
characteristics for wind power production. Fig. 9 (panel B) shows close
agreement between historical and simulated daily autocorrelation in
wind power production, suggesting the model does an adequate job
preserving any statistically significant “memory” in daily wind power
production.

Fig. 9 (panel C) shows historical and simulated seasonality in solar
power capacity for the CAISO system. The simulated data is produced by
coupling stochastically generated solar irradiance (minus cloud effects)
at seven NSRDB sites with a multivariate regression model of system-
wide solar power availability based on site-specific irradiance. Results
indicate alignment with historical data on a monthly basis, again with
highest capacity factors occurring in the summer months and lowest
during winter. This approach is also able to reproduce hourly and daily
time series characteristics for solar power production. Fig. 9 (panel D)
compares hourly capacity factors produced using historical irradiance
data for a week in Summer 2006 alongside stochastically generated solar
power data for the same calendar week (with differences being due to
simulated cloud effects).

Consideration was also given to volume of simulations required to
achieve statistical “convergence” between historical and simulated
power system inputs. A primary motivating factor in developing the
underlying framework of the CAPOW model is to explore the impacts of
hydrometeorological uncertainty, especially extreme events, on power
systems and electricity markets. To be useful in this regard, the sto-
chastic engine of CAPOW, as well as the UC/ED model, must be run over
a sufficiently large number of years to produce the kind of low proba-
bility, high magnitude “tail” events that are concerning to grid partici-
pants (e.g., episodes of extreme shortfalls or overabundance in supply).
Considering the high computational requirements of the UC/ED model,
which relies on mixed integer programming, a relevant question is “how
many years are enough”?

Fig. 10 explores this question for the CAPOW model. Each panel
shows data for a different input in the CAISO system: hydropower pro-
duction, wind power production, load (electricity demand), and “net
load”, defined here as load minus total renewable energy (wind, solar,
and hydropower) and resources considered to be “must run”, like nu-
clear and geothermal. Net demand is an important metric because it
represents the amount of electricity that would need to be met by dis-
patchable generators (coal and natural gas).

The colored lines measure the absolute difference between the his-
torical record and synthetically generated values as a function of
simulation volume. For example, in the bottom left panel (load), the red
line tracks the difference between the historical record and stochasti-
cally simulated values, in terms of the 99th percentile of hourly elec-
tricity demand. At low simulation volumes, this difference starts at
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around 280 MWh (average hourly demand in the CAISO market is more
than 25,000 MWh, indicating an error of less than 1%). As the number of
simulated years increases, the absolute difference first increases but then
stabilizes, appearing to asymptotically approach a value close to 220
MWh. Stabilization occurs when increasing the number of simulation
years has a negligible impact on the difference between historical and
simulated values. Fig. 10 shows that simulations from CAPOW’s sto-
chastic engine tend to converge statistically after about 1000 years,
suggesting this would be a reasonable lower bound on simulation vol-
ume to run through the UC/ED model.

Overall, our results suggest that CAPOW’s stochastic engine is able to
reproduce historical statistical characteristics across multiple hydro-
meteorological variables and power system inputs, needing

10

approximately 1000 simulation years to achieve stable distributions. A
final validation step is to evaluate whether the stochastic engine creates
an expanded distribution of system states—in other words, does simu-
lation over 1000 years cause extreme events outside the historical record
to emerge from joint uncertainties in individual system processes?
Without directly running the UC/ED model, a preliminary analysis of
this kind can be conducted using net load as a metric of interest, since
this typically correlates strongly with electricity prices and would be a
key indicator of the potential for system shortfalls (extremely high net
demand) and oversupply (extremely low net load).

Fig. 11 evaluates net load in the CAISO system under different sce-
narios. The shaded areas show the distribution of net load over the
period 1953-2008, simulated using historical hydrometeorological
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Fig. 11. Simulated net demand for the California wholesale market. Shaded
areas represent uncertainty driven by historical (1953-2008) hydrometeoro-
logical time series. Actual historical net demand for a single year (2016) is also
shown in black. Enveloping the simulations forced by historical hydrometeo-
rology are minimum and maximum values acquired from 1000 synthetic runs
produced by the stochastic model.
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data. Colors correspond to different percentiles of net load (ranging from
1st to 99th) as well as the min/max values for this time period. Net load
simulated using hydrometeorological data from 1953 to 2008 is then
compared alongside actual historical net load recorded for a recent year,
2016, which is represented with a black line. For the most part, actual
net load for 2016 is enveloped by the distribution of values simulated
using 1953-2008 hydrometeorological data. Fig. 11 also shows mini-
mum and maximum values acquired from 1000 years of synthetic runs
produced by the stochastic engine of CAPOW (blue dotted lines). Min/
max values produced by the stochastic engine suggest that the CAPOW
model, by exploring joint uncertainties in hydrometeorolgical variables
at sufficiently high simulation values, is able to access rare extreme
events outside the historical record. The additional information pro-
vided by stochastic modeling appears to be especially valuable during
late summer, when net load is the highest and the stochastic model
produces maximum values that are considerably larger than the highest
values simulated using weather and hydrology from 1953 to 2008.
These more extreme synthetic values are likely to include rare but
plausible “compound” events in which combinations of high electricity
demand, and low renewable energy availability create extremely high
net load, with associated risks for reliability and high market prices.

4. Conclusions

Despite growing interest in the potential vulnerabilities of bulk
electric power systems to hydrometeorological variability (and ex-
tremes), there are few (if any) open source modelling packages capable
of exploring this issue in a comprehensive manner. This paper presents a
new model, CAPOW, which we specifically designed to explore the in-
fluence of joint uncertainties in temperatures, wind speeds, solar irra-
diance and streamflow on bulk power systems and wholesale electricity
markets. CAPOW couples synthetic generation of hydrometeorological
variables with simulation models of relevant infrastructure (dams,
power plants), allowing for in depth exploration of the role of weather
and hydrology on system outcomes. The model is free and downloadable
via public online repositories.

The CAPOW model uses a topological representation of the conter-
minous U.S. West Coast power system to form a unit commitment and
economic dispatch (UC/ED) model that simulates system operations and
tracks performance (system costs, prices, etc.) on an hourly basis. When
using historical weather and streamflow data as inputs to the model, it is
able to capture 75% of the variability in daily electricity prices in the
CAISO market. Although designed specifically with the U.S. West Coast
in mind, the steps taken to construct CAPOW, as well as much of the
code base, can be extended to other systems of interest. However, some
critical functionalities may need to be added. For example, CAPOW does
not currently represent thermal power plant curtailments due to inad-
equate cooling water supplies caused by low streamflows and high
temperatures.

When run in stochastic mode, CAPOW couples the UC/ED model
with a “stochastic engine” that creates synthetic records of tempera-
tures, wind speeds, solar irradiance and streamflow for a group of 17
meteorological stations, 7 solar resource assessment sites, and 85 stream
gauges distributed throughout the West Coast. Stochastically generated
hydrometeorological variables are used to predict electricity demand
(via temperatures, wind speeds), wind power production (via wind
speeds), solar power production (via irradiance) and hydropower
availability (via streamflows), which then drive the UC/ED model. The
statistical properties (moments, cross correlations, time series charac-
teristics) of synthetic data produced mirror those of the historical record,
while also allowing for the generation of more extreme (but plausible)
events. Exploring the joint uncertainty in relevant hydrometeorological
variables is computationally tractable, with the statistics of stochastic
simulations converging with the historical record after approximately
1000 simulation years. Overall, our framework —which is also easily
transferrable across systems and geographic areas—simulates the
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operations of bulk electric power systems and wholesale markets at
sufficient scales and resolutions to simulate system operations in a
realistic way, and over sufficient time horizons to explore joint uncer-
tainty across multiple, correlated variables of interest. As such, it should
prove to be a valuable future resource for direct grid participants as well
as the research community, particularly in answering questions related
to the vulnerability of the grid to future changes in hydroclimate, as well
as the sensitivity of variable renewable energy dominated grids to sta-
tionary hydrometeorological uncertainty.

Software and data availability

All code and data required to run the CAPOW model, as well as some
documentation of the model, is available at https://github.com/r
omulus97/CAPOW_PY36 under the MIT free software license.
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