
1.  Introduction
Reservoir operations are increasingly important in the water cycle (Hanasaki et al., 2006; Padowski et al., 2015; 
Wada et al., 2017) and support regional growth and development by increasing water availability for various 
economic sectors, contributing renewable electricity production, and reducing flood risks (Billington & Jack-
son, 2017). Recent estimates (Grill et al., 2019) suggest that existing dams control around 50% of the all rivers 
globally. This figure is expected to grow rapidly following the renewed interest in dam construction (World 
Bank, 2009), which poses the challenge of designing their future operations (e.g., Bertoni et al., 2019; Geressu 
& Harou, 2015; Mortazavi-Naeini et al., 2014) to secure water and energy supplies in fast developing African 
and Asian countries (Zarfl et al., 2015). Rapid changes in climate and society suggest an urgent need to reoperate 
existing infrastructures (Benson, 2016), particularly in systems that are failing to produce the expected benefits 
that motivated their construction (Ansar et al., 2014; Sovacool et al., 2014).

The problem of designing optimal reservoir operations has been extensively studied since the seminal works by 
Rippl (1883), Hazen (1914), and Varlet (1923). Over the years, several review papers (e.g., Dobson et al., 2019; Kle-
meš, 1987; Labadie, 2004; Macian-Sorribes & Pulido-Velazquez, 2020; Simonovic, 1992; Stedinger et al., 2013; 
Wurbs, 1993; Yakowitz, 1982; Yeh, 1985) have described the evolving state of the art in the field. Changes in 
societal perceptions of natural resources and increasing environmental awareness are modifying and enlarging 
the number of objectives considered (e.g., Schmitt et al., 2018; Wild et al., 2019; Winemiller et al., 2016). In 
addition, changing climate extremes and societal demands amplify and reshape uncertain stressors, ultimately al-
tering decision makers' preferences and risk perception (e.g., AghaKouchak, 2015; Hall et al., 2014; Mallakpour 
et al., 2019; Mora et al., 2018; Poff et al., 2015). Despite these new demands, today we also have numerous oppor-
tunities for improving reservoir operations, including more information from pervasive monitoring and remote 
sensing (e.g., Hart & Martinez, 2006; Lettenmaier et al., 2015), more skillful forecasts (e.g., Bauer et al., 2015; 
Brunet et al., 2015; Cloke et al., 2017), and more computing power (e.g., Kollet et al., 2010; National Research 
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Council, 2005; Reed & Hadka, 2014). In this review, we contribute an updated analysis of emerging methodo-
logical trends with a focus on optimal control methods, which support the design of closed-loop policies that use 
feedback loops to compensate for system uncertainties (Bennett, 1996). Notably, we discuss how the operation 
design problem is formulated, rather than solved, in order to highlight how recently developed approaches are 
evolving to address global challenges, take advantage of recent innovations, and offer new opportunities.

For decades, analysts have had to frame reservoir operation problems in simplified ways to comply with the 
constraints of specific solution techniques and computational limits. These simplifications include approximated 
models that decompose the reservoir system into smaller and simpler subsystems or aggregate the reservoir sys-
tem, or part thereof, into a single equivalent reservoir to derive composite solutions to be then disaggregated into 
individual policies (e.g., Nandalal & Bogardi, 2007; Pereira & Pinto, 1985; Saad et al., 1992, 1994). Simplified 
models are also adjusted to meet the mathematical requirements of specific solution methods, such as Linear 
Programming (e.g., Revelle et al., 1968; Rheinheimer et al., 2014; Zhang et al., 2016; Zmijewski et al., 2016), 
Linear Quadratic Gaussian control (i.e., a linear system with quadratic costs and Gaussian disturbances; e.g., 
Georgakakos, 1989; Ghorbanidehno et al., 2017), or analytical optimization methods (e.g., Clark, 1950; Ding 
et al., 2017; Hui et al., 2016; Hui & Lund, 2015; Johnson et al., 1991; Lund, 2000; Lund & Guzman, 1999; Zhao 
et al., 2019). Although analytical approaches show promise for gaining useful insights to derive reservoir oper-
ating rules for hypothetical water systems, as noted by Labadie (2005), these methods are primarily relegated to 
academic exercises because the complexity and highly regulated nature of real-world systems strongly limit their 
practical application. Besides, the simplified access to increasing computational power (Rupp, 2020) has now 
enabled the adoption of more and more realistic and decision-relevant problem formulations.

Another common simplification is the definition of search space in terms of either a “rule curve” specifying a 
reference trajectory for the reservoir storage under normal hydroclimatic conditions (e.g., Ahn & Lyu, 2017; Liu 
et al., 2015; Whateley et al., 2014; Zhang, Li, et al., 2017) or an open-loop sequence of release decisions, corre-
sponding to a sequence of decision variables one for each time step under the strong assumption implicit to a de-
terministic problem formulation where future inflows are known at the moment when operational decisions must 
be made (e.g., Bahrami et al., 2017; Bozorg-Haddad et al., 2015; Li et al., 2015; Schardong & Simonovic, 2015; 
Yang et al., 2015). It is, however, important to consider that rule curves, despite being the preferred tool by reser-
voir operators (Loucks & Sigvaldason, 1982; Teegavarapu & Simonovic, 2001), are inherently limited when the 
system deviates from the typical conditions assumed in their design (Howard, 1999), as they would suggest the 
operator to spill water when the storage exceeds the level specified by the rule, and to hope for rain when it falls 
below (Maass et al., 1962). Under increasingly variable hydrologic regimes (e.g., Dai, 2011; Trenberth, 2011), 
these deviations from the typical conditions are larger and more frequent, amplifying errors in the open-loop 
decisions determined by the rule curves. Moreover, the lack of feedback information generates rules that largely 
ignore the potential for adaptive and coordinated strategies, especially in multireservoir systems managing mul-
tiple conflicting objectives (Quinn et al., 2019). An open-loop sequence of decisions provides optimal releases 
only under the strong assumption of a deterministic problem formulation, which implies that the resulting solu-
tions are impossible to implement in the real world (Faber & Stedinger, 2001), and can only be considered in 
benchmarking exercises as a reference performance that is unattainable without perfect knowledge of the future 
(Koutsoyiannis & Economou, 2003b). In addition, traditional open-loop intertemporal optimizations over long 
time horizons yield problematic large decision spaces. Finally, the weak system responses to late period decisions 
strongly limit the possibility of generating high-quality solutions, unless the system is simplified as a linear model 
(Quinn, Reed, & Keller, 2017; Ward et al., 2015).

Stochastic Dynamic Programming (SDP) has been considered, since the ’60s (Hall & Buras,  1961; Maass 
et  al.,  1962), the best method to preserve a realistic problem structure due to mild requirements on systems 
representation (Esogbue, 1989), favoring its adoption in practical applications (e.g., Côté & Leconte, 2015; Dias 
et  al.,  1985; Kelman et  al.,  1988) and its systematic use in the reservoir operation literature (e.g., Anghileri 
et al., 2013; Cheng et al., 2017; Davidsen et al., 2014; Delipetrev et al., 2015; Mabaya et al., 2017; Turner & 
Galelli, 2016). Yet, SDP has several limitations that constrain problem framing in addressing emerging challeng-
es in water system operations: (a) the well-known curse of dimensionality (Bellman, 1957) limits the dimension 
of the system to two or three reservoirs due to the exponential growth of computational cost with the number 
of state variables; (b) the curse of modeling (Tsitsiklis & Van Roy, 1996) requires all variables used as input in 
the operating policy to be described by a dynamic model, contributing additional state variables; (c) the curse of 
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multiple objectives (Powell, 2007) restricts the number of objective functions due to the single-objective nature 
of SDP that requires repeated scalarized single-objective optimizations for every Pareto optimal point, inducing 
a factorial growth of computation cost with the number of objectives (Giuliani, Galelli, & Soncini-Sessa, 2014; 
Reed & Kollat, 2013).

Growing human pressure along with evolving natural and socioeconomic conditions are making these three curs-
es particularly restrictive. The complexity of a real water system, which is generally highly nonlinear, spatially 
heterogenous, and comprises several processes with multiscale time dynamics such as flash floods (e.g., Hapuar-
achchi et al., 2011) and multiannual droughts (e.g., Howitt et al., 2017), poses a major challenge for the identifi-
cation of reliable simulation models relying on a limited number of state variables. The increased variability and 
uncertainty of climatic and socioeconomic drivers motivate the need for more anticipatory capacity, which can 
be provided by broadening the array of information sources that can be used for conditioning reservoir operations 
with additional observational or forecast data (e.g., Giuliani et  al.,  2015). The transition from multiobjective 
problem formulations including two or three objectives (e.g., irrigation supply, flood protection, and hydropower 
production) to many-objective problems, where the number of objectives is four or more (Fleming et al., 2005), is 
accelerating given emerging issues related to environmental flow regulations, water quality targets, recreational 
interests, and energy markets. Many objective formulations also allow for rigorous evaluations of multiple rival 
framing for component objectives, such as minimizing average costs versus minimizing worst-case costs, thus 
addressing the issue of epistemic uncertainty in the formulations of river basin management problems (Quinn, 
Reed, Giuliani, & Castelletti, 2017). Moreover, there is a growing recognition of the need for reservoir operations 
to account for a broader array of uncertainties and their projected long-term changes, particularly in terms of 
extreme events. As the breadth of uncertainties that must be considered grows, there is a higher demand to ex-
plore multiple objectives capturing potentially evolving and heterogeneous stakeholder preferences and attitudes 
toward risk and uncertainty (McPhail et al., 2018). Lastly, the growing interest in implementing participatory 
approaches to water resources planning and management (e.g., Soncini-Sessa, Cellina, et al., 2007) discourages 
using mathematically binding problem formulations (e.g., linear or time-separable objectives) that may not al-
ways allow the representation of the interests elicited from stakeholders and policy makers (i.e., the freedom to 
formulate more credible and relevant versions of problems), for example, when they are interested in the duration 
of a low-flow or high-flow event as required in the Indices of Hydrologic Alteration (Richter et al., 1996).

Over the last years, researchers have developed numerous attempts to support real-world applications by over-
coming SDP's curses and reducing simplifications to reservoir control problems' formulation, which pose the risk 
of misrepresenting important systemic properties, dynamics, and intersectoral interactions. Defining a problem 
formulation that (a) is able to better reproduce the relevant complexities of water system dynamics and variability 
in space and time, (b) ensures a realistic representation of decisions and objectives for discovering key trade-offs 
between multisectoral demands, and (c) can capture a range of heterogeneous stakeholder attitudes toward risk 
and uncertainty is paramount to the design of decision-relevant alternatives as well as to the selection of the most 
appropriate solution method. We argue these challenges are critical for reservoir operation design problems, 
while acknowledging real-time operational contexts face other difficulties in implementing short-term decisions 
(e.g., Cheng et al., 2020; Séguin et al., 2016). Optimal control methods reduce restrictions on the formulation of 
the reservoir operation problems supporting the design of closed-loop policies. A closed-loop policy (see Fig-
ure 2) determines the operational decisions at each time step on the basis of the observed conditions of the system 
(e.g., the reservoir storage), which depend on the decisions made in previous time steps and therefore introduce a 
recursive loop; an open-loop policy instead specifies operational decisions a priori for each time step, regardless 
of the conditions that might occur. Following the methodological classification proposed by Bertsekas (2019) 
and Powell (2019), these optimal control methods can be categorized into two main classes: (a) approximation in 
value space (AVS), which searches an approximation of the value function (Bertsekas, 2005); (b) approximation 
in policy space (APS), which first defines the operating policy within a restricted class of parameterized functions 
and then explores the policy parameter space to optimize the system performance (Deisenroth et al., 2011).

Our review contributes a systematic classification of 337 recent studies on reservoir operation design into six 
distinct categories depending on the adopted problem formulation (Figure 1): Mathematical Programming, Open-
Loop decisions, Rule Curves, Dynamic Programming, Approximation in Value Space, and Approximation in 
Policy Space. These papers were obtained by searching for topic equal to “optimal water reservoir operations” 
in ISI Web of Knowledge (see Figure S1 in Supporting Information S1 for details on the technical principles 



Water Resources Research

GIULIANI ET AL.

10.1029/2021WR029927

4 of 26

for systematic reviews and meta-analyses that have informed the literature search). In particular, we provide a 
critical analysis of the major emerging challenges for optimal reservoir control methods that support the design 
of closed-loop policies, as derived from the 115 publications that use either AVS or AVP methods. We do not 
discuss in detail the other methods (i.e., Mathematical Programming, Open-Loop decisions, and Rule Curves) 
that rely on simplified problem formulations and that have already been well covered in existing review papers 
(e.g., Labadie, 2004; Macian-Sorribes & Pulido-Velazquez, 2020).

The rest of the paper is structured as follows: The next section introduces a traditional formulation of the opti-
mal reservoir operation problem, followed by the presentation of Stochastic Dynamic Programming. We then 
provide a critical analysis of the 115 studies, which attempt to go beyond SDP limitations by using either AVS 

Figure 1.  Annual counts of the 337 publications reviewed in this study (a) and their classification depending on the adopted 
problem formulation (b).
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or APS, and suggest a possible road map for future research directions. The 
last section reports final remarks by clarifying consolidated approaches and 
emerging trends from our analysis.

2.  Traditional Problem Formulation
A generic model of a water reservoir system relies on a mass-balance equa-
tion describing the dynamics of the water stored in the reservoir:

��+1 = �� + ��+1 − ��+1(��, ��, ��+1)� (1)

where st is the reservoir storage at time t, qt+1 and rt+1 are the net inflow (i.e., 
inflow and direct precipitation minus evaporation and seepage losses) and the 
actual release volume in the time interval [t, t + 1), respectively, and ut is the 
release decision. In the adopted notation, the time subscript of a variable indi-
cates the time instant when its value is deterministically known. The reservoir 
storage is measured at time t and thus is denoted as st, while the net inflow 
and the actual release are denoted as qt+1 and rt+1, respectively, because they 
can be known only at the end of the time interval. Note that in the case of 
multireservoir systems, all the variables in Equation 1 become vectors and 
the network topology can be represented by an incidence matrix.

The release volume rt+1 is determined by a nonlinear, stochastic function of the release decision ut (Soncini-Sessa, 
Castelletti, & Weber, 2007), because between the time t at which the decision is taken and the time t + 1 at which 
the release is completed, the uncertain inflow is affecting the reservoir storage. Thus, the actual release may not 
be equal to the decision due to legal and physical constraints on reservoir level and release, including spills when 
the reservoir exceeds maximum capacity.

The net inflow qt+1 is often modeled as a system disturbance (i.e., qt+1 = ɛt+1), which aggregates multiple sources 
of uncertainty, such as main tributaries, distributed inflow runoff, evaporation, and precipitation over the reser-
voir. These processes can also be separately modeled as distinct disturbances. Alternatively, the reservoir inflow 
and the persistence of hydrologic processes can be described using dynamic, process-based, spatially distributed 
hydrological models. However, the resulting complexity of these models may lead to serious computational prob-
lems, favoring the adoption of simpler data-driven statistical models (e.g., Salas et al., 1985; Wang et al., 2009).

Even though the majority of these processes act in continuous time, their representations are often discretized 
to match the decision process made by human operators. According to the sampling theorem (Shannon, 1949), 
this discretization occurs without losing information only if the selected time step is smaller than the time con-
stant of the linearized reservoir model by more than one order of magnitude. This implies that the duration of 
the time step should be short enough to timely adapt the decision to a variation of the system conditions (system 
representability) (Soncini-Sessa, Castelletti, & Weber, 2007). However, it should also be long enough to keep the 
decision unchanged and observe its impact on the system dynamics (social acceptability). For example, a monthly 
time step could be ineffective to design flood control reservoirs operations as floods generally have much faster 
dynamics requiring daily or hourly decisions. Conversely, a short time step may be beneficial for following fast 
inflow or electricity price dynamics, but at subhourly time steps, increasingly detailed hydraulic representation is 
needed, which may be irrelevant to the management decision at hand.

Reservoirs are operated to achieve some objective(s), such as hydropower production, flood control, and water 
supply. An objective function Ji (with i = 1, …, M) is defined to measure the performance in each of the M objec-
tives (assumed to be a cost) over an evaluation horizon [0, h] across an ensemble of K realizations of the system 
disturbances ɛt+1, that is,

𝐽𝐽 𝑖𝑖 = Ψ𝜺𝜺1 ,…,𝜺𝜺𝐾𝐾 [Φ𝑡𝑡=0,…,ℎ(𝑔𝑔𝑖𝑖
0(𝑠𝑠0, 𝑢𝑢0, 𝑞𝑞1),… , 𝑔𝑔𝑖𝑖ℎ(𝑠𝑠ℎ)))] 𝑖𝑖 = 1,… ,𝑀𝑀� (2)

where 𝐴𝐴 𝐴𝐴𝑖𝑖
𝑡𝑡(⋅) is the i-the immediate and time-separable cost function associated to the time transition from t to t + 1, 

𝐴𝐴 𝐴𝐴𝑖𝑖
ℎ(𝑠𝑠ℎ) is a penalty function over the storage reached at the end of the evaluation horizon, Φt is an operator for time 

Figure 2.  Illustration of open-loop (a) and closed-loop (b) policies.
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aggregation (e.g., the cumulative cost), and Ψɛ is a statistic used to filter the noise generated by the disturbances 
(e.g., expected value).

The horizon h can be either finite or infinite. In case of a finite horizon, the system is assumed to cease existing 
after h. Since this is unlikely for most environmental systems, setting a finite horizon generally requires defining 
a penalty function 𝐴𝐴 𝐴𝐴𝑖𝑖

ℎ(𝑠𝑠ℎ) accounting for the future cost after h. Conversely, the long-term performance can be 
considered by setting an infinite evaluation horizon. However, to guarantee the convergence of the cumulated cost 
for h → ∞, it is necessary either to discount future costs using a discounting factor γ ∈ (0, 1] or to estimate the 
average immediate cost (Soncini-Sessa, Castelletti, & Weber, 2007).

The operator Ψɛ reflects the attitude of the water operator in dealing with the uncertainties affecting the system, 
which can be either described by a probability density function (i.e., 𝐴𝐴 𝜺𝜺𝑘𝑘𝑡𝑡+1 ∼ 𝜙𝜙𝑡𝑡 for t = 0, …, h − 1 and k = 1, …, K) 
or in a deterministic and set-membership-based fashion (i.e., 𝐴𝐴 𝜺𝜺𝑘𝑘𝑡𝑡+1 ∈ Ξ𝑡𝑡 for t = 0, …, h − 1 and k = 1, …, K) (Mil-
anese et al., 1996). In this second case, the uncertainty is considered “deep” as the definition of appropriate prior 
probability distributions describing ɛt+1 remains contested (Lempert, 2002). The most common formulations of 
the Ψɛ operator are the expected value (Laplace, 1951) and the worst case (Wald, 1950) across the K realizations 
of ɛt+1, but other alternatives can be considered including higher-order moments, such as variance and skewness 
(Kwakkel et al., 2016), regret-based metrics (Savage, 1951), or satisficing metrics (Simon, 1956) (for a review, 
see McPhail et al., 2018, and references therein).

3.  Stochastic Dynamic Programming
Stochastic Dynamic Programming formulates a Markov decision process (MDP) that requires sequential de-
cisions at each time step that produce an immediate cost and affect the next system state, thereby affecting all 
subsequent costs. The problem is formulated as a series of single-objective problems, where the M objectives are 
aggregated by means of a scalarization function (e.g., convex combination; Gass & Saaty, 1955) and solved via 
SDP by computing the long-term cost of a policy for each possible state of the system xt (generally the reservoir 
storage) at time t by means of the Bellman equation:

𝐻𝐻𝑡𝑡(𝐱𝐱𝑡𝑡) = min
𝐮𝐮𝑡𝑡

Ψ𝜺𝜺𝑡𝑡+1 [Φ𝑡𝑡[𝐺𝐺𝑡𝑡(𝐱𝐱𝑡𝑡, 𝐮𝐮𝑡𝑡, 𝜺𝜺𝑡𝑡+1),𝐻𝐻𝑡𝑡+1(𝐱𝐱𝑡𝑡+1)]]� (3)

where Ht(⋅) is the optimal cost-to-go function defined over a discrete grid of states for the scalarized objective and 
Gt(⋅) represents the corresponding scalarized immediate and time-separable cost function. Equation 3 is restricted 
to only specific combinations of operators Φt and Ψɛ. In particular, if the objective in Equation 2 computes the av-
erage cost over the time horizon h (i.e., Φt = ∑t/h), then the disturbances' uncertainty must be filtered by comput-
ing the expected value (i.e., Ψɛ = Eɛ). Conversely, the computation of the maximum cost in time (i.e., Φt = maxt) 
requires using the maximum also for filtering the disturbances' uncertainty (i.e., Ψɛ = maxɛ).

Given the recursive formulation of Equation 3, its solution is obtained through a backward-looking optimization 
over the period T − 1, …, 0, which first initializes HT(xT) and then iteratively computes Ht(xt) using Equation 3 
until a suitable termination test is satisfied. From the resulting optimal value function 𝐴𝐴 𝐴𝐴∗

𝑡𝑡 (𝐱𝐱𝑡𝑡) , the optimal policy 
is derived as the optimal sequence of control laws p* ≜ [μ0(xt), …, μT−1(xT−1)], where the operating rule ut = μt(xt) 
formalizes mapping between the current system conditions represented by the state vector into release decisions 
and T is the period of the system (e.g., annual period), by solving the following problem

𝜇𝜇∗
𝑡𝑡 (𝐱𝐱𝑡𝑡) = arg min

𝐮𝐮𝑡𝑡
𝐻𝐻∗

𝑡𝑡 (𝐱𝐱𝑡𝑡)� (4)

Note that the operating rule can also be defined as a set-value rule 𝐴𝐴 𝐮𝐮𝑡𝑡 = 𝑡𝑡(𝐱𝐱𝑡𝑡) that provides at each time instant a 
set of decisions providing the same performance in the long term (Orlovski et al., 1983). This formulation, despite 
being seldom adopted, looks promising as it does not fully replace the human operators who remain in charge of 
selecting which decision to implement among the set of equally optimal options returned by the rule.

The MDP formulation has been considered particularly suitable for modeling water resource systems to capture 
nonlinear system dynamics and objective functions, as well as closing the loop between operating decisions and 
evolving system conditions. The MDP requirements of discrete domains of state, decision, and disturbance varia-
bles, along with the time separability of objective functions and constraints, can indeed be applied to many water 
systems by properly enlarging the state space (Castelletti, Pianosi, & Soncini-Sessa, 2012). SDP is expected to 
outperform both Approximation in Value and Policy Space methods for a small system (e.g., one or two reser-
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voirs) where it is possible to use a dense discretization of the modeled variables and rely on an adequate model 
of the reservoir inflows. Yet, the computation of the optimal value function 𝐴𝐴 𝐴𝐴∗

𝑡𝑡 (𝐱𝐱𝑡𝑡) using Equation 3 substantially 
limits the adoption of SDP in complex real-world problems due to limitations that here we group into three major 
curses of dimensionality, modeling, and multiple objectives (see Figure 3).

The curse of dimensionality (Bellman,  1957) means that the computation cost of the optimal value function 
grows exponentially with the state vector dimensionality and SDP becomes intractable when the dimensionality 
of the system exceeds 2 or 3 reservoirs (Loucks et al., 2005). This curse also arises for a single reservoir system 
where inflows are described by dynamic models or when additional variables should be included to account for 
water quality aspects (e.g., Kerachian & Karamouz, 2006; Loucks et al., 1985; Orlob & Simonovic, 1982; Rinaldi 
et al., 1979). Specifically, let nx be the number of state variables with 𝐴𝐴 𝐴𝐴𝑥𝑥𝑖𝑖 the number of elements in the discre-
tized domain of the i-th state variable, the computational complexity of SDP is proportional to 𝐴𝐴 Π𝑛𝑛𝑥𝑥

𝑖𝑖=1𝑁𝑁𝑥𝑥𝑖𝑖 .

The curse of modeling (Tsitsiklis & Van Roy, 1996) refers to the SDP requirement that any variable must be 
explicitly modeled to fully predict the one-step lookahead transition used for the estimation of the value function 
(Equation 3), either as a state variable of a dynamic model or as a stochastic disturbance. In particular, although 
reservoir inflows are often both spatially and temporally correlated and largely driven by the climate system 
dynamics, properly accounting for their temporal correlation or explicitly representing rainfall-runoff hydrolog-

Figure 3.  Schematization of the three curses of SDP with respect to the Bellman equation.
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ical processes requires the use of dynamic models, which contribute additional state variables and exacerbate 
the curse of dimensionality. As a consequence, this curse tends to cause DP application to adopt simplified rep-
resentations of the uncontrolled part of the water system upstream of the reservoir. No exogenous information, 
defined as variables that are observable but are not explicitly modeled in the MDP formulation, can therefore 
be directly used for conditioning the operating policy (Desreumaux et al., 2018). Furthermore, SDP cannot be 
combined with high-fidelity, distributed parameter, process-based simulation models (e.g., hydrodynamic and 
ecologic models Ostfeld & Salomons, 2005), which require a warm-up period to remove the effects of the initial-
ization of unobservable state variables. In fact, simulation models that require initial state variables to undergo 
a warm-up period cannot be employed in the one-step lookahead optimization routine of SDP. This issue has 
strongly limited the integration of water quantity and quality targets into optimal reservoir operations (e.g., Cas-
telletti et al., 2014; Chaves & Kojiri, 2007; Rieker & Labadie, 2012).

The curse of multiple objectives is related to the generation of the full set of Pareto optimal (or approximate) 
solutions to support a posteriori decision making (Cohon & Marks, 1975) in many-objective control problems. 
In this study, we formalize this curse into three distinct limitations: time separability, number of objectives, and 
objective formulations. First, the MDP formulation adopted by SDP requires time-separable objective functions, 
which severely constrains the type of objectives that can be formulated and prevents the use of duration curves or 
resiliency as operating objectives. The second limitation is related to the single-objective nature of SDP, which 
must be repeated for every Pareto optimal point by using different scalarization values (Powell, 2007), such as 
changing the weights used in the convex combination of the objectives (Gass & Saaty, 1955). The overall cost 
of SDP to obtain an approximation of the Pareto optimal set scales factorially with the number of objectives 
(Giuliani, Galelli, & Soncini-Sessa, 2014; Reed & Kollat, 2013). Moreover, using a convex weighting scheme for 
aggregating the multiple objectives often yields gaps in concave regions that are common in nonlinear problems. 
Although concave regions can be explored by using alternative scalarization functions, such as the ɛ-constraint 
method (Haimes et al., 1971), this approach cannot be applied in the SDP framework because it violates the re-
quirement of time separability. Third, the formulation of the Bellman equation (Equation 3) allows only specific 
combinations of operators Φt and Ψɛ, thus making it impossible to explore rival problem framings reflecting 
different risk attitudes with respect to different objectives (e.g., by calculating some objectives in expectation and 
others using a worst-case formulation as in Quinn, Reed, Giuliani, & Castelletti, 2017).

4.  Beyond Stochastic Dynamic Programming
In this section, we classify and analyze 115 recent publications (see Table S1 in Supporting Information S1), 
which attempt to overcome some or all of the SDP curses by adopting a less restrictive problem formulation for 
better reproducing the full complexity of natural and multisector dynamics that characterize most water reservoir 
systems. Following Bertsekas (2019) and Powell (2019), we distinguish two main approaches: (a) Approximation 
in Value Space and (b) Approximation in Policy Space. The mathematical details of these methods are reported 
in the Supporting Information S1, while a list of code repositories providing their implementation is reported in 
Table 1.

Both AVS and APS methods are often considered as suboptimal control schemes due to their use of approxima-
tions for either the value function or the operating policy that are optimal for the formulated Markov Decision 
Process but may not be optimal for the real system. Caution should be taken by considering how the modeling 
simplifications required to attain classical definitions of optimality translate to real-world implications. When the 
SDP curses prevent formulating an MDP that can represent key complexities of real water systems, the formulat-
ed problem might generate solutions that are mathematically optimal but not decision relevant in the real system. 
Approximate solution techniques that permit the use of detailed simulations, broader sources of information, and 
a wider range of candidate objectives in problem formulations that better capture operational contexts may be 
closer to the real, perhaps unknowable optimum, and thus more valuable for the real operators.

4.1.  Approximation in Value Space

The underlying principle of AVS methods is to approximate the optimal value function 𝐴𝐴 𝐴𝐴∗
𝑡𝑡 (⋅) on the right-hand 

side of the Bellman Equation 3. There are two main approaches for estimating an approximated value function 
(Bertsekas, 2005): (a) explicit AVS, which includes continuous function approximation, Reinforcement Learning, 
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and Sampling Stochastic Dynamic Programming; (b) implicit AVS, which solves the problem online (e.g., Model 
Predictive Control). Both explicit and implicit AVS methods require that problems must be formulated as MDPs 
and are often considered approximate dynamic programming methods (Powell, 2007).

4.1.1.  Continuous Function Approximation

The most common explicit AVS approach is a continuous function approximation. Rather than computing the 
optimal value function for all Nx values of state variables' discretized domain, this approach approximates it by 
means of a continuous function interpolated over a smaller number of value function evaluations 𝐴𝐴 𝑁̃𝑁𝑥𝑥 < 𝑁𝑁𝑥𝑥 (see 
the Supporting Information S1 for details about the mathematical formulation). Different continuous function ap-
proximations have been proposed, including piecewise linear polynomials (e.g., Tsitsiklis & Van Roy, 1996), Her-
mite polynomials (Foufoula-Georgiou & Kitanidis, 1988), splines (e.g., Chen et al., 1999; Johnson et al., 1993; 
Lamontagne, 2015), or artificial neural networks (e.g., Castelletti et al., 2007).

In particular, the piecewise linear approximation of the value function is the core of Stochastic Dual Dynamic 
Programming (SDDP, see Pereira & Pinto,  1991), a technique that approximates the value function through 
sampling and decomposition (e.g., Goor et al., 2011; Macian-Sorribes et al., 2017; Pereira-Cardenal et al., 2016; 
Raso et al., 2017; Tilmant et al., 2007). Specifically, SDDP computes an approximation of the value function over 
a state-space domain that is no longer discretized but rather sampled in the form of Bender cuts, corresponding 
to linear approximations of the value function derived from the primal and dual information of the one-stage 
optimization step at time t + 1 (Shapiro, 2011). This approach is structured into two phases. First, a backward 
optimization estimates an upper bound of the true value function for the sampled points. In the second phase, 
the system is simulated forward on a series of synthetic and/or historical hydrologic scenarios to check that the 
estimated Bender cuts approximation is acceptable, otherwise the two phases are iterated.

The main advantage of continuous function approximation with respect to SDP is the reduced computational 
complexity when computing the value function on 𝐴𝐴 𝑁̃𝑁𝑥𝑥 < 𝑁𝑁𝑥𝑥 state values. This enables the solution of much larg-
er problems where the number of reservoirs is higher than 10 (Goor et al., 2010; Macian-Sorribes et al., 2017) 
and where the state vector dimensionality is even higher to include irrigation districts (Tilmant et  al.,  2008) 
and hydrologic information through the use of autoregressive models (Goor et al., 2011; Tilmant et al., 2010), 

Repository Methods Language Website

M3O AVS and APS MATLAB http://mxgiuliani00.github.io/M3O-Multi-
Objective-Optimal-Operations/

SDDP.jl AVS JULIA https://github.com/odow/SDDP.jl

Optimist AVS PYTHON https://github.com/luciofaso/optimist

Policy Tree APS PYTHON https://github.com/jdherman/ptreeopt

VIC-ResOpt APS PYTHON https://github.com/thanhiwer/VICResOpt

LakeComo EMODPS APS CPP https://github.com/mxgiuliani00/LakeComo

LakeProblem DPS APS CPP https://github.com/julianneq/
Lake_Problem_DPS

iRONS APS PYTHON https://github.com/AndresPenuela/iRONS

reservoir_operation_optimization_examples - MATLAB https://github.com/barneydobson/reservoir_
operation_optimization_examples

VIC-Res - PYTHON https://github.com/thanhiwer/VICRes

ReservoirManagement - JULIA https://github.com/dourouc05/
ReservoirManagement.jl

Reservoir - R https://cran.r-project.org/web/packages/
reservoir/index.html

CALFEWS - PYTHON https://github.com/hbz5000/CALFEWS

PySedSim - PYTHON https://github.com/FeralFlows/pysedsim

Table 1 
Code Repositories Implementing AVS and APS Methods Along With Other Useful References for the Broader Problem of 
Reservoir Operations
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which allows for extension to include snow- and precipitation-related variables (Pina et al., 2017). SDDP requires 
the optimization problem to be modeled as linear since linearity ensures cost-to-go function convexity (Raso 
et al., 2017). Finally, all continuous function approximation approaches remain largely constrained by the curse 
of multiple objectives; all of the reviewed studies (Table S2 in Supporting Information S1) consider a single (or 
a priori aggregated) time-separable objective and none explore mixed formulations capturing different risk atti-
tudes across different objectives.

4.1.2.  Reinforcement Learning

Reinforcement Learning (RL) is another explicit AVS approach that relies on the same principle of continuous 
function approximation to reduce the number of value function evaluations needed to explore the state-decision 
space performed by SDP. Specifically, RL is based on the idea of designing the optimal operating policy through 
a trial-and-error process and learning from experience (Sutton & Barto, 1998). The learning experience is gained 
either in the real environment or generated using a system model or historical observations. While the first op-
tion is clearly impractical for real water reservoir systems as it may result in unacceptable social costs (e.g., bad 
decisions producing high damages must be experienced) and the learning process would be too long, offline 
model-based learning offers the opportunity to simulate the system dynamics and generate knowledge of the sto-
chastic environment, including the possibility of avoiding any explicit probabilistic characterization of the system 
disturbances that is instead learned via experience (Castelletti et al., 2002; Lee & Labadie, 2007).

The most popular RL algorithm is Q-learning (Watkins & Dayan, 1992), which optimizes the action-value func-
tion version of the Bellman equation through incremental updates during the learning phase (see the Support-
ing Information S1 for details about the mathematical formulation). In contrast to SDP, Q-learning works online 
and the next state is not estimated by a model, but observed at time t + 1 in the real system or in an external model 
simulation. The action-value function is then updated balancing its current value and the recently experienced 
transition. This procedure alleviates the SDP curse of dimensionality, as the optimization is not exploring the 
entire state-decision space and instead is performed only for the visited states by testing alternative sequences 
of decisions to be generated with a proper design of experiments. Yet, the action-value function still requires a 
discretization of the state-decision space, which yields a computational complexity that grows exponentially with 
the number of state and decision variables.

A more recent approach called fitted Q-iteration (FQI, see Ernst et al., 2005 and Castelletti et al., 2010) combines 
the RL idea of learning from experience with the continuous function approximation scheme illustrated in the 
previous section. This method relies on the experience contained in a sample data set 𝐴𝐴  previously collected either 
from system observations or model simulations, which is used for estimating an approximation of the value func-
tion by means of tree-based regressors (Geurts et al., 2006). FQI replaces the recursive solution of the Bellman 
equation with a sequence of nonlinear regressions over the sample data set 𝐴𝐴  . While Q-learning converges only 
when the value function updates are performed incrementally, FQI processes the full data set 𝐴𝐴  in a batch mode 
for updating the value function, which speeds up algorithm convergence (Kalyanakrishnan & Stone, 2007). An 
extension of this method to multiobjective problems is the Multi-Objective FQI proposed by Pianosi et al. (2013) 
and Castelletti et al. (2013). While using traditional FQI in multiobjective problems would require repeated opti-
mization runs using different scalarizations of the objectives, MOFQI enlarges the continuous approximation of 
the value function to the weight space by including a new state variable (i.e., the weight used in the objectives' 
aggregation) within the arguments of the value function. Including the weight space enables the generation of the 
full Pareto optimal set in a single optimization run while slightly increasing the computational cost of a single 
FQI run due to an enlarged state space (Castelletti et al., 2013).

The continuous tree-based approximation of the value function used by FQI and MOFQI mitigates the SDP curse 
of dimensionality by allowing the use of a coarse grid of state and decision domains. The use of deep RL (Lilli-
crap et al., 2015), albeit still in its infancy, could further reduce the limitations of the curse of dimensionality (e.g., 
Xu et al., 2020, 2021). In addition, the batch-mode learning from the sample data set generated offline combining 
historical observations and model simulations aids RL in overcoming the two limitations related to the curse of 
modeling: First, operating policies can be conditioned upon exogenous information of the uncontrolled part of 
the system or forecast information (Rieker & Labadie, 2012); second, it avoids the one-step lookahead SDP opti-
mization and therefore can be combined with any simulation model, including complex process-based models for 
controlling water quality targets (e.g., Castelletti et al., 2014; Giuliani, Galelli, & Soncini-Sessa, 2014). However, 
RL approaches (Table S2 in Supporting  Information S1) remain largely constrained by the curse of multiple 
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objectives, where the underlying MDP formulation requires time-separable objective functions and the explicit 
approximation of the value function prevents adopting mixed combinations of operators for time aggregation and 
uncertainty filtering in the definition of the objectives. Lastly, most RL applications are either single objective 
(e.g., Castelletti, Galelli, Restelli, & Soncini-Sessa, 2012; Lee & Labadie, 2007; Madani & Hooshyar, 2014; 
Rieker & Labadie, 2012) or rely on the same scalarization techniques adopted by SDP for exploring trade-offs 
across competing objectives (e.g., Castelletti et al., 2014, 2010; Giuliani, Galelli, & Soncini-Sessa, 2014), with 
the notable exception of multiobjective RL algorithms (Castelletti et al., 2013). While the use of multiobjective 
Reinforcement Learning in the reservoir control domain is still limited, there is a growing opportunity to test 
emerging methods developed in other domains (for a review, see Hayes et al., 2021, and references therein). How-
ever, the increasing state-space dimensionality to include the weights used in the objective aggregation suggests 
the need to test the scalability of multiobjective RL to many-objective policy design problems.

4.1.3.  Sampling Stochastic Dynamic Programming

Sampling Stochastic Dynamic Programming (SSDP) is an alternative explicit AVS approach that uses an ap-
proximation of the system's disturbances rather than (or in addition to) an approximation in the state space. 
SSDP replaces the SDP closed-form probabilistic description of system disturbances (e.g., reservoir inflows) 
with multiple scenarios that form an empirical distribution of the disturbances (see the Supporting  Informa-
tion S1 for details about the mathematical formulation). This can better represent flow persistence and spatial 
correlation than in traditional SDP, as intact hydrographs are used rather than explicit probabilistic models (Faber 
& Stedinger, 2001). The scenarios can be either multiple historical time series (Kelman et al., 1990) or ensemble 
streamflow projections (e.g., Côté & Leconte, 2015; Faber & Stedinger, 2001; Kim et al., 2007), with the latter 
providing frequently updated information about the current system conditions.

The use of scenario ensembles primarily combats the curse of modeling (Kim et al., 2007). Traditional SDP re-
quires an explicit probabilistic model of stochastic state transitions, which for large, multireservoir systems would 
necessitate either the addition of many stochastic state variables or the introduction of simplifying representation 
of the inflow processes. In the SSDP formulation, instead, a single state variable implicitly captures all relevant 
stochastic variables and their complex, nonlinear spatial and temporal dependency structures. Furthermore, if his-
torical flows are used as scenarios, the historic relationship between flows and water/energy demands and prices 
can also be included in the optimization (Lamontagne, 2015). For SSDP to perform well, the scenario ensemble 
must provide a good representation of relevant future uncertainties. If this is not the case, for instance, due to 
nonstationarity or inadequate coverage of extremes, then SSDP may perform poorly.

While SSDP addresses the curse of modeling through a compact representation of the stochastic state, the curse 
of dimensionality still limits its applicability to large-scale multireservoir systems. SSDP can be readily paired 
with continuous function approximations to reduce the computational burden of solving large-scale problems 
(e.g., Côté & Leconte, 2015; Lamontagne, 2015; Vicuna et al., 2010). However, this combination of methods 
is prone to the limitations of SDDP described above. Finally, SSDP is also constrained by the curse of multiple 
objectives; to our knowledge, no SSDP study (Table S2 in Supporting Information S1) has considered multiple 
objectives and none have explored nontime separable or mixed objective formulations.

4.1.4.  Model Predictive Control

Model Predictive Control is an implicit AVS approach based on the sequential, online resolution of multiple 
open-loop control problems defined over a finite, receding time horizon (Bertsekas, 2005; Scattolini, 2009). At 
each time t, a forecast over the finite future horizon [t, t + κ] of the external disturbances, generally the inflow 
to the reservoir 𝐴𝐴 𝐴𝐴𝐴𝑡𝑡+1,… , ̂𝑞𝑞𝑡𝑡+𝜅𝜅 , is generated by a model predictor that uses all information available at time t (e.g., 
precipitation, snowpack, and inflow at previous time). The corresponding sequence of optimal decisions is then 
obtained by solving a mathematical programming problem (Maciejowski, 2002), assuming that the realization of 
the disturbances will be equal to the predicted value (i.e., deterministic MPC; see the Supporting Information S1 
for details about the mathematical formulation). Only the first control is actually applied and, at time t + 1, a new 
problem is formulated over the horizon [t + 1, t + 1 + κ] on the basis of the updated information available, namely 
the state of the system at time t + 1 as well as updated forecasts (Mayne et al., 2000). This sequential resolution 
of the problem generates a feedback between the operational decisions and the updated state, which can partially 
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compensate for the effects of the disturbances as it is unlikely that the actual realization of the inflow equals the 
predicted value, with the system actually not evolving as expected.

The availability of good forecasts reduces the distance between expected and actual conditions, resulting in 
near-optimal decisions. However, this deterministic formulation, also referred to as naive feedback control (Bert-
sekas, 1976), ignores uncertainty and thus may fail to hedge against risk appropriately. Stochastic MPC exten-
sions allow some forms of explicit probabilistic characterization of forecast uncertainty. The open-loop feedback 
control (OLFC) describes the future disturbances according to their probability distribution and computes the 
objectives through some function to filter the disturbances (e.g., expected values). The OLFC performance can 
be further improved by adopting a partial open-loop feedback control (POLFC) formulation (e.g., Castelletti 
et al., 2008; Faber & Stedinger, 2001; Howard, 1992; Pianosi & Soncini-Sessa, 2009), which explicitly assumes 
that in the future the state of the system will be measured and a new problem will be reformulated. The POLFC 
problem, therefore, computes at each time step the optimal release decision for the first step reflecting first-step 
uncertainty and the optimal operating policy for the following steps.

Another approach to capture forecast uncertainty is the Tree-Based MPC proposed by Raso et al. (2014). In this 
case, the forecast is provided in the form of an ensemble generated by running the forecast model multiple times 
to account for major sources of forecast uncertainty (Gneiting & Raftery, 2005). This ensemble is then trans-
formed into a tree where similar ensemble members are bundled together into one trajectory (branch) up to the 
point when some of them start to significantly diverge from the others. The tree structure is then used to optimize 
a control tree defining a distinct control sequence for each branch. Control sequences are constrained to be the 
same up to the time when two ensemble members diverge.

MPC provides two main advantages with respect to Stochastic Dynamic Programming: it allows handling mul-
tireservoir systems with more than three reservoirs (e.g., Ficchì et al., 2016; Karimanzira et al., 2016; Kisten-
macher & Georgakakos, 2015), because it avoids computation of the value function by searching the sequence 
of optimal controls over a finite horizon; its structure exploits real-time exogenous information, particularly 
inflow forecasts from hourly (e.g., Galelli et al., 2014, 2015) to seasonal or longer (e.g., Anghileri et al., 2016; 
Raso & Malaterre, 2016) lead times. Moreover, different from other approaches applied at daily or monthly time 
scales, MPC is used to control reservoirs with subdaily decisions in 30% of the reviewed studies (Table S3 in 
Supporting Information S1). The application of MPC in multiobjective problems suffers the same limitations as 
SDP; MPC is a single-objective approach and relies on the same scalarization techniques adopted by SDP for 
exploring trade-offs across competing objectives (e.g., Giuliani & Castelletti, 2013; Karimanzira et al., 2016; 
Pianosi & Soncini-Sessa, 2009), the objectives are formulated as time-separable objective functions, and none 
of the reviewed studies explored mixed formulations to reflect different risk attitudes with respect to different 
objectives. Most MPC studies (Table S3 in Supporting Information S1) consider either a single objective (e.g., 
Ficchì et al., 2016; Xu et al., 2015) or a priori weight-based aggregation of objectives (e.g., Kistenmacher & 
Georgakakos, 2015; Raso et al., 2014; Uysal et al., 2018; Wang et al., 2014).

4.2.  Approximation in Policy Space

The main idea of APS methods is to replace the traditional SDP approach based on the computation of the value 
function with a policy design that directly operates in the policy space. The main APS approach is Direct Policy 
Search (DPS), or explicit APS, a simulation-based optimization also known as parameterization-simulation-op-
timization in the water resources literature (Koutsoyiannis & Economou, 2003a). An alternative approach is the 
Implicit Stochastic Optimization (ISO), or implicit APS, which first solves a deterministic problem and then fits 
a parameterized policy on the trajectory of optimal releases of the deterministic solution.

4.2.1.  Direct Policy Search

Direct Policy Search (Rosenstein & Barto, 2001; Schmidhuber, 2001) is based on the parameterization of the 
operating policy pθ within a given family of functions (e.g., linear, piecewise linear, nonlinear network of sigmoid 
or radial basis functions, etc.) and the exploration of the parameter space Θ to find a parameterized policy that 
optimizes the objective functions vector J (Rückstiess et al., 2010) (see the Supporting Information S1 for details 
about the mathematical formulation).
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As noted in Nalbantis and Koutsoyiannis (1997), DPS can be seen as an optimization-based generalization of 
well-known simulation-based, single-purpose heuristic operating rules (Lund & Guzman,  1999), such as the 
New York City rule (Clark, 1950), the spill-minimizing “space rule” (Clark, 1956; Johnson et al., 1991), or the 
widely used Standard Operating Policy (Draper & Lund, 2004). Selecting a suitable class of function for the 
parameterization of the operating policy is crucial for the discovery of high-performing solutions because this 
choice might restrict the policy search to a subspace of the decision space that might not include the optimal set of 
solutions. Many studies (see Table S4 in Supporting Information S1) apply linear (e.g., Ashrafi & Dariane, 2017; 
Fallah-Mehdipour et al., 2015; Feng et al., 2017) or piecewise linear (e.g., Hu et al., 2016; Pan et al., 2015; Tan 
et  al.,  2017) policy functions, which likely constrain the possibility of conditioning the release decisions on 
multidimensional state vectors (e.g., making the decision dependent on more information than reservoir storage, 
including the time variability of the policy). A nonlinear multi-input multi-output function, such as a nonlinear 
approximating network (Tikk et al., 2003), can provide flexibility to the shape of the operating policy, which is 
particularly important in multireservoir systems that require coordinated operation across the reservoirs (e.g., 
Giuliani, Anghileri, et al., 2016; Biglarbeigi et al., 2018).

DPS offers some substantial advantages over Stochastic Dynamic Programming: First, it avoids the computation 
of the value function and allows handling multireservoir systems larger than three reservoirs (e.g., Geressu & 
Harou, 2015; Karami & Dariane, 2018). Second, DPS allows the direct use of exogenous information through 
a data-driven controller tuning approach (Formentin et al., 2013; Hou & Wang, 2013), where release decisions 
are directly conditioned upon nonmodeled observational data from the climate or hydrologic systems to better 
capture the variability of stochastic processes that cannot be accurately modeled or forecasted. Examples in 
Table S4 in Supporting Information S1 include the use of inflow forecasts (e.g., Adams et al., 2017; Herman & 
Giuliani, 2018; Xu et al., 2017), observations of previous day inflow (e.g., Bozorg-Haddad et al., 2008; Giuliani 
et al., 2015), Snow Water Equivalent (e.g., Denaro et al., 2017; Desreumaux et al., 2018), Sea Surface Temper-
ature (Giuliani et al., 2019), ENSO indexes (Libisch-Lehner et al., 2019), and crowdsourced information (e.g., 
Giuliani, Castelletti, Fedorov, & Fraternali, 2016). Moreover, the simulation-based optimization allows the use 
of models requiring a warm-up period (e.g., Castelletti, Pianosi, Quach, & Soncini-Sessa, 2012; Giuliani, Castel-
letti, Pianosi, et al., 2016), which conflicts with the step-based optimization mode of SDP. Third, coupling DPS 
with multiobjective evolutionary algorithms enables the generation of a Pareto approximate set of solutions in a 
single optimization run, which allows broadening the number and complexity of objectives that can be resolved. 
This feature favors transitioning from multiobjective problems including two or three objectives (e.g., Ahmadi 
et al., 2014; Ashofteh et al., 2015; Labadie & Wan, 2010) to many-objective problems where the number of objec-
tives is four or more (e.g., Giuliani, Herman, et al., 2014; Hurford & Harou, 2014; Libisch-Lehner et al., 2019). In 
addition to exploring multisectoral trade-offs, including a broader suite of objective functions in the policy search 
enables the implementation of a rival framing approach to explore multiple competing problem formulations that 
capture a range of stakeholder attitudes toward risk and uncertainty (e.g., Giuliani & Castelletti, 2016; Quinn, 
Reed, Giuliani, & Castelletti, 2017). As a simulation-based optimization, DPS is not restricted to time-separable 
cost functions and allows formulating more complex objectives such as the resiliency of a hydropower system 
(e.g., Ahmadi et al., 2014) or a flood protection system (e.g., Quinn, Reed, Giuliani, & Castelletti, 2017). Avoid-
ing the restriction to a single value function also relaxes the constraint on the combinations of operators for time 
aggregation and uncertainty filtering in Equation 3, opening up the possibility of mixed objective formulations, 
such as average in time and worst case over disturbances' scenarios (e.g., Giuliani & Castelletti, 2016; Giuliani, 
Herman, et al., 2014; Libisch-Lehner et al., 2019) or maximum cost over time and expected value over distur-
bances' scenarios (e.g., Biglarbeigi et al., 2018; Quinn, Reed, Giuliani, & Castelletti, 2017).

However, some challenges still limit the adoption of DPS approaches. One key issue is the approximation of the 
objective function via simulation of system dynamics over a sufficiently long time series of disturbance realiza-
tions (Pianosi et al., 2011). This approach can overfit the policy parameters to the particular stochastic realiza-
tions experienced during the simulation-based optimization, potentially yielding impressive calibration results 
that can largely degrade when tested on out-of-sample observations. This issue can be overcome by splitting the 
available observations (or an ensemble of synthetically generated records) into two statistically equivalent data 
sets to optimize the policy parameters on the first set of data and test policy performance on the second data set 
(Brodeur et al., 2020). Another often overlooked aspect of DPS is the a priori definition of the policy architecture, 
generally based on intuition, analytical methods, or on few trial-and-error experiments. Yet, the functional class 
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should be tailored to the problem at hand and its selection is crucial, as it determines the search space within 
which solutions can be found as well as their attainable control dynamics (Zaniolo et al., 2021).

4.2.2.  Implicit Stochastic Optimization

Implicit Stochastic Optimization is an implicit APS approach originally proposed by Young (1967) and Kara-
mouz and Houck (1987). ISO is structured in two steps (see the Supporting Information S1 for details about the 
mathematical formulation): first, it solves a deterministic problem to find optimal reservoir releases under several 
inflow scenarios, which are generally synthetically generated to cover a wide range of different hydrologic con-
ditions; the ensemble of optimal release trajectories is then used as a target in a regression problem to identify a 
parameterized policy approximating the deterministic solution.

ISO applications use different optimization algorithms for solving the deterministic problem, including deter-
ministic Dynamic Programming (e.g., Zhou et al., 2019), quadratic programming (e.g., Celeste & Billib, 2009), 
and genetic algorithms (e.g., Sangiorgio & Guariso, 2018). Alternative parameterized functions depending on a 
variable number of policy inputs are used in the policy identification phase, including piecewise linear functions 
(e.g., Zhou et al., 2019), power laws (e.g., Celeste & El-Shafie, 2018), artificial neural networks (e.g., Sangiorgio 
& Guariso, 2018), and extreme learning machines (e.g., Feng et al., 2019).

The main advantage of ISO with respect to Stochastic Dynamic Programming is in terms of mitigating the curse 
of modeling because the identification of the parameterized policy via regression allows the direct use of exog-
enous information among the policy inputs (e.g., Celeste & Billib, 2009; Sangiorgio & Guariso, 2018) as well 
as the use of model warm-up. ISO approaches remain, however, constrained by both the curse of dimensionality 
and the curse of multiple objectives; most ISO works (Table S4 in Supporting Information S1) consider single 
reservoir systems and a single, time-separable objective and despite the use of inflow scenarios, none of these 
studies explores mixed objectives' formulations.

5.  Discussion and Future Research Opportunities
A summary of the critical analysis conducted over the 115 studies reviewed in the previous section is reported in 
Table 2 (for details, see Tables S1–S4 in Supporting Information S1), which illustrates a set of metrics reflecting 
how Approximation in Value Space and Approximation in Policy Space applications cope with the three SDP 
curses and generally outperforms SDP also in terms of computational requirements (e.g., Castelletti et al., 2010; 
Côté & Leconte, 2015; Desreumaux et al., 2018; Galelli et al., 2014; Giuliani, Castelletti, Pianosi, et al., 2016). 
The distribution of the publications across the four approaches suggests that DPS is emerging as the most widely 
adopted method to advance water reservoir control. The table also shows that large multireservoir systems have 
been mostly solved using explicit AVS methods and particularly SDDP that scales far beyond SDP limits. The 
use of exogenous information is instead predominant for implicit AVS methods, which require inflow forecasts 
to solve the multiple open-loop control problems over a finite, receding time horizon; conversely, only SSDP 
among the explicit AVS approaches relies on inflow forecasts for informing the operating policy. Moreover, 
about 60% of APS applications condition operational decisions on exogenous information, mostly in the form 
of observed hydrological variables while the use of forecasts is still limited. It is worth mentioning that MPC 

SDP curse Metric Explicit AVS Implicit AVS Explicit APS Implicit APS

Dimensionality Average number of reservoir 3.56 2.95 1.65 1.60

Modeling % Studies using exogenous information 25% 100% 58% 60%

% Studies using models warm-up 7% 5% 5% 60%

Multiple objectives Average number of objectives 1.4 1.5 2.5 1.2

% Studies using time-separable objectives 100% 100% 87% 100%

% Studies using mixed objective formulations 0% 0% 15% 0%

Number of publications (share of the total) 28 (24.3%) 20 (17.4%) 62 (53.9%) 5 (4.3%)

Table 2 
Summary of the 115 Applications of Approximation in Value Space and Approximation in Policy Space With Respect to the Three Curses of Stochastic Dynamic 
Programming
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introduces stronger requirements than APS regarding forecast skill, as the predicted inflows must be sufficiently 
accurate for simulating the reservoir dynamics over the considered lead time. Conversely, APS methods can be 
informed by biased forecasts as they are more sensitive to forecast anomalies rather than absolute values (Giuliani 
et  al.,  2020). This difference becomes particularly relevant when considering seasonal forecasts that provide 
skillful information in terms of long-term hydroclimatic anomalies (e.g., Crochemore et al., 2020). Focusing on 
the second limitations related to the curse of modeling, we observe that few studies (e.g., Castelletti et al., 2014) 
used high-fidelity, distributed parameter, process-based simulation models that require initial state variables to 
undergo a warm-up period.

A marked difference between DPS and other methods emerges with regard to the number of objectives considered 
in the reviewed applications: AVS methods typically solve problems with 1 or 2 objectives, whereas the average 
number of objectives resolved via DPS is equal to 2.5. Moreover, DPS methods provide the most flexibility in 
terms of objective formulations (concerning both nontime separable and mixed formulations), while all AVS ap-
plications and also ISO methods tend to adopt traditional time-separable objectives evaluated as expected average 
costs. The maximization of expected performance generates solutions that may perform poorly under extreme 
flow quantiles (floods and droughts), while a reduction in average system performance is often considered ac-
ceptable if accompanied by a sufficient reduction in variance (Beyer & Sendhoff, 2007).

It should be noted that addressing many-objective problems to support the exploration of multidimensional trade-
offs is critical in operational design studies, while it becomes less compelling in real-time operational settings. 
We recommend using DPS to negotiate trade-offs and priorities offline, while MPC becomes more appropriate 
for short-term operational decisions. How to bridge the two time scales is still an unsolved problem, which could 
be tackled by using a multiscale MPC approach with a cascade of controllers working at different time scales (see 
Lu, 2015, and references therein).

The results of our analysis suggest a possible road map of the main open research directions to be investigated 
over the next years for further improving existing problem formulations. We argue that, from a systems point of 
view, the traditional formulation focused on the dynamics of the reservoir storage should be enlarged to capture 
other systemic components, including the climate system, the hydrological system, and the downstream system 
as illustrated in Figure 4. Each of the four dynamic systems in Figure 4 has its own state 𝐴𝐴 𝐱𝐱𝑗𝑗𝑡𝑡 (𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) and 

Figure 4.  Illustration the four main dynamic components of a water reservoir system.
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the outputs of one system 𝐴𝐴 𝐲𝐲𝑗𝑗𝑡𝑡+1 generally represent inputs to another system. An example of these interactions is the 
following: the climate conditions (e.g., air, sea, land temperature, humidity, etc.) produce as output of the climate 
system the temperature and precipitation in a river basin, which represent the main drivers of the hydrological 
processes generating the streamflow at the basin outlet. This hydrological system output is then considered as the 
inflow to the reservoir system, which produces the reservoir release. Finally, the volume of water released can be 
used for irrigation in a downstream agricultural district, which returns in outputs the crops' yield at the end of the 
agricultural season. It is worth mentioning that while the reservoir system state is the storage, the hydrological 
and climate states are more complex, spatially distributed, and might be only partially observable. Moreover, the 
downstream system often includes complex multisector dynamics providing diverse and potentially competing 
water-related services.

The composite system evolves over time with dynamics affected by release decisions ut and external disturbances 
ɛt+1, that is,

𝐱𝐱𝑡𝑡+1 = 𝑓𝑓𝑡𝑡(𝐱𝐱𝑡𝑡, 𝐮𝐮𝑡𝑡, 𝜺𝜺𝑡𝑡+1)� (5)

where the release decisions at each time step are determined by an operating rule ut = μt(xt), which formaliz-
es mapping between the current system conditions represented by the state vector into release decisions, with 
the state of the system demonstrated to be sufficient for conditioning optimal operational decisions (Bertse-
kas, 1976). An operating policy p is defined as a periodic sequence of control laws, p ≜ [μ0(xt), …, μT−1(xT−1)], 
where T is the period of the system (e.g., annual period). Given the dynamic model of the system in Equation 5 
and the resulting trajectory over time τ of states, decisions, and outputs variables, the set of Pareto optimal poli-
cies 𝐴𝐴 ∗ is designed by solving the following problem that preserves a more realistic formulation by removing the 
MDP requirements on system representations:

min


𝐉𝐉(𝜏𝜏) = |𝐽𝐽 1(𝜏𝜏),… , 𝐽𝐽𝑀𝑀 (𝜏𝜏)|� (6)

According to Figure 4, the reservoir system (cyan block) is the one directly controlled by the release decisions and 
that indirectly influences the downstream system (orange block) by releasing water that supplies irrigation to the 
downstream agricultural district. Conversely, climate and hydrological systems (green blocks) are uncontrolled 
and partially observable, but may still provide valuable information to the control rule. For example, the snow wa-
ter equivalent is a component of the hydrological system state that can be extremely valuable in snow-dominated 
catchments (e.g., Denaro et al., 2017; Desreumaux et al., 2014). Despite some pioneering studies (e.g., Georga-
kakos et al., 1998; Guariso et al., 1984; Tejada-Guibert et al., 1995) showed the value of inflow forecasts, most 
commonly in the literature to date (e.g., Bozorg-Haddad et al., 2008; Giuliani et al., 2018; Karamouz et al., 2009; 
Labadie & Wan, 2010; Macian-Sorribes et al., 2017; Raso et al., 2017) the hydrological state is approximated as 
the inflow at time t − 1, while the use of the climate state is still largely unexplored.

Today, recent advances in monitoring and forecasting systems are making available a wider range of data that 
represent an untapped resource to better understand water systems' complexity and to improve the predictability 
of their future evolution, ultimately increasing our ability to make better operational decisions. Advances in data 
analytics and machine learning (e.g., Watt et al., 2016) can provide valuable support to the identification of the 
most valuable information, including observations (e.g., Giuliani et al., 2015), medium- to long-term forecasts 
(e.g., Anghileri et  al.,  2016; Kistenmacher & Georgakakos,  2015), and climatic trends (e.g., Herman & Gi-
uliani, 2018). Diversifying the suite of information used to condition operational decisions by capturing the state 
of the hydrologic system (e.g., Denaro et al., 2017; Pina et al., 2017) and, possibly, the climate state (e.g., Giuliani 
et al., 2019; Libisch-Lehner et al., 2019) can be an asset for improving reservoir operations, particularly under 
increasingly variable conditions and more frequent climate extremes. Yet, most of the existing approaches are ef-
fective under stationary hydroclimatic conditions that allow the characterization of the uncertainty of the system's 
disturbances. The resulting solutions are instead vulnerable in a nonstationary environment that would require 
to timely adapt the system operation to the evolving conditions (e.g., Cohen & Herman, 2021; Feng et al., 2017; 
Herman & Giuliani, 2018; Zhang, Liu, et al., 2017). MPC can mitigate this risk as the online approach allows the 
adaptation of the operation to the changing conditions, assuming the updated inflow forecasts are able to capture 
the underlining nonstationary trends. Besides, the nonstationarity and growing uncertainties of future conditions 
will require a careful formulation of the operating objectives (e.g., McPhail et al., 2018; Zhang et al., 2018).
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The enlarged formulation proposed in Figure 4, however, features evident modeling challenges that suggest the 
need of combining policy design methods with emulation modeling. An emulator is a low-order, computationally 
efficient surrogate model identified from an original, complex process-based model. The emulator is then used to 
replace the original model for computationally intensive applications, such as sensitivity analysis, scenario analy-
sis, evolutionary algorithms, and optimal control (Castelletti, Galelli, Ratto, et al., 2012; Razavi et al., 2012). The 
rationale for developing emulators is that while all models inevitable simplify complex systems, we need modeling 
strategies that simplify judiciously with a deeper understanding of the system and the problem at hand because 
not all the process details in the original model are equally important and relevant to the dynamic behaviors that 
affect operational decisions (Castelletti, Galelli, Restelli, & Soncini-Sessa, 2012). This step becomes crucial for 
addressing the balance in the credibility, salience, and legitimacy of the final decision support (Cash et al., 2003). 
There are two broad families of emulator models: response surfaces and dynamic emulators. Response surface 
emulators employ static data-driven function approximation techniques to empirically approximate the perfor-
mance response simulated by the complex model (i.e., approximate objective values) (Kleijnen, 2008). Converse-
ly, dynamic emulators preserve the dynamic nature of the original model when providing computationally fast 
estimates of state dynamics (Castelletti, Galelli, Ratto, et al., 2012). Despite being largely adopted in a number 
of water systems analysis publications especially for groundwater applications (e.g., Asher et al., 2015; Bizzi 
et al., 2015; Müller & Shoemaker, 2014; Regis & Shoemaker, 2007; Siade et al., 2010; Ushijima & Yeh, 2013), 
their use in designing optimal reservoir operations is still in its infancy with few applications using either a 
response surface for simplifying the controlled downstream system dynamics (Galelli & Soncini-Sessa, 2010; 
Giuliani, Anghileri, et al., 2016) or a dynamic emulator for approximating the reservoir's dynamics including 
water quality processes (Galelli et al., 2015). Emulation modeling is then expected to significantly contribute in 
isolating key decision-relevant processes across the four interactive dynamic systems illustrated in Figure 4 for 
accommodating realistic representations of the original system complexity in computationally efficient models.

Advancing the representation of optimal reservoir control will also contribute to the design of diverse portfolios 
of water management actions that combine reservoir operations with groundwater sources (e.g., Macian-Sorribes 
et al., 2017; Nayak et al., 2018; Pulido-Velazquez et al., 2016), water markets (e.g., Erfani et al., 2015; Kasprzyk 
et al., 2012), demand management (e.g., Escriva-Bou et al., 2018; Gonzales & Ajami, 2017), and financial tools 
(e.g., Denaro et al., 2018; Foster et al., 2015) by providing a better understanding of the potential role of reservoir 
operations within a candidate portfolio. Moreover, the portfolio design should include these recent advances in 
reservoir operations to avoid misrepresenting important systemic complexities that could bias the estimation 
of their impacts. Lastly, the ubiquitous presence of dams (Mulligan et  al.,  2020) makes water reservoirs one 
of the most important infrastructures impacting hydrological processes, which should be properly represented 
by including advanced reservoir operation models and closed-loop policies in large-scale hydrological models 
in order to enable the development of reliable and credible projections about the future coevolution of coupled 
human-natural systems and better inform the planning of adaptation options (e.g., Dang et al., 2020; Giuliani, Li, 
et al., 2016; Thompson et al., 2013).

6.  Conclusions and Challenges Ahead
Advancing existing approaches for the design of optimal water reservoir operations is an ongoing relevant re-
search problem aimed at supporting both the reoperation of existing infrastructure and the increasing rate of dam 
construction in fast developing countries. Despite being extensively studied, this topic is still timely due to the 
presence of new challenges, such as changes in societal perception of natural resources and increasing uncer-
tainties altering decision makers' preferences, and emerging opportunities including better information and more 
computing power. For this paper, we reviewed 336 recent publications focusing on how the operation design 
problem is formulated, rather than solved. Moreover, we provide a critical analysis of 114 studies, which attempt 
to overcome some or all of the curses of Stochastic Dynamic Programming.

Our analysis identifies Approximation in Value Space methods as the approach that better copes with the curse 
of dimensionality. It is worth mentioning that AVS applications mostly scale in terms of number of reservoirs 
but generally neglect the state of hydrologic and climate systems. Implicit AVS (i.e., Model Predictive Control) 
and Approximation in Policy Space methods emerge as the best options to overcome the curse of modeling, even 
though the exogenous information used for conditioning the operating policy is generally limited to observed 
or predicted inflow to the reservoir. Lastly, DPS applications are the most effective in dealing with the curse of 
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multiple objectives; studies adopting DPS methods consider, on average, almost three objectives and some works 
scale beyond 6, also allowing nontime separable as well as mixed objective function formulations. Our analysis 
also suggests two promising options for addressing the challenges posed by conflicting human pressure and a 
changing world: enlarging the set of information especially from the hydrologic and climate state contributes 
in better informing reservoir operations under increasingly variable hydroclimatic conditions, and combining 
control policy design methods with emulation modeling allows isolating key decision-relevant processes and 
accommodates more realistic system representations especially in terms of climate and hydrologic dynamics.

Finally, an unresolved challenge affecting most methods reviewed in this paper is their limited uptake by prac-
titioners. Although research efforts on more and more advanced approaches for optimizing reservoir operations 
combined with the growing tendency of developing open-source tools (see Table  1), repeated surveys (e.g., 
Pianosi et  al.,  2020; Rogers & Fiering,  1986; Simonovic,  1992; Teegavarapu & Simonovic,  2001; Whateley 
et al., 2014) find low adoption of these methods in practice (for a recent review focused on this point, see Dobson 
et al., 2019). Operators generally reject optimization models to directly inform actual real-time operations and 
prefer simpler tools, such as rule curves (Loucks & Van Beek, 2017). Among the factors that hinder the uptake 
of research results is the black box perception of system models, which make their recommendations difficult to 
understand and explain (Castelvecchi, 2016). This issue is particularly relevant for APS approaches relying on 
policy parameterized as nonlinear approximating networks, where ongoing research efforts are exploring the pos-
sibility of approximating the optimized policy with if/then/else-based rules fit with machine-learning algorithms, 
such as Classification and Regression Trees.

Acknowledging the resistance of practitioners to use sophisticated optimization methods, the assumption that 
simplified rules are valid alternatives to optimization-based policies in complex multireservoir systems operated 
for meeting multiple objectives over diverse time scales is still to be demonstrated via proper numerical bench-
marking experiments. Besides, traditional rule curves that specify a target storage trajectory are also somehow 
“opaque” policies as they do not completely specify how the operator should track such reference. As a conse-
quence, opening the black box of optimization models may be the best option to facilitate the transition from 
static rule curves to dynamic closed-loop operating policies. Indeed, recent studies suggest that human decisions 
are often outperformed by optimization tools (e.g., Fraternali et al., 2012; Parameswaran et al., 2011; Quinn & 
Bederson, 2011), but few people enjoy being replaced by automatic devices or algorithms (Yates et al., 2003). We 
therefore recommend a hybrid situation as suggested in psychological studies (Kahneman & Klein, 2009), where 
optimized operating policies remain under the reservoir operator supervision to ensure continuous monitoring of 
their performance and of relevant changes in the environment. This transition is not going to reduce the key role 
of water operators as the supervision of the optimized policies will remain a challenging task due to the automa-
tion bias, where human operators risk becoming passive when automatic tools are adopted (Skitka et al., 1999).
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