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1  |  INTRODUC TION

As the climate warms, droughts are getting hotter, more extreme, 
and more frequent (Dai, 2013; Touma et al., 2015; Trenberth et al., 
2014). Forests respond to drought by reducing photosynthesis and 
transpiration (Liu et al., 2020; Short Gianotti et al., 2019; Trugman 
et al., 2018) and exhibiting increased mortality (Adams et al., 2017; 
Choat et al., 2018). Their response to drought is mediated by the flow 
and distribution of water in the soil-plant-atmosphere continuum 
(Tyree & Sperry, 1989), but is also affected by stand-scale processes 

such as belowground redistribution of water, composition, compe-
tition, and demography. These processes have been studied at fine 
scales (Brodribb et al., 2020; Sperry & Love, 2015), but aggregated 
processes controlling ecosystem response to droughts remain poorly 
understood (Allen et al., 2015; Gazol et al., 2018; Levine et al., 2016). 
Thus, we are challenged to understand forest resilience in response 
to the major disturbances brought by climate change (Anderegg et al., 
2013; Brodribb et al., 2020), including effects on forest ecosystem 
services such as carbon sequestration (Anderegg et al., 2020) and 
water cycling (Mastrotheodoros et al., 2020; Tague et al., 2019).

27Delft University of Technology, Delft, The Netherlands
28University of Arizona, Tucson, AZ, USA
29University of Missouri, Columbia, MO, USA
30Cornell University, Ithaca, NY, USA
31Wageningen University, Wageningen, The Netherlands

Correspondence
Alexandra G. Konings, Stanford University, 
Stanford, CA, USA.
Email id: konings@stanford.edu

Funding information
W.M. Keck Institute for Space Studies

Abstract
Droughts in a warming climate have become more common and more extreme, mak-
ing understanding forest responses to water stress increasingly pressing. Analysis of 
water stress in trees has long focused on water potential in xylem and leaves, which 
influences stomatal closure and water flow through the soil-plant-atmosphere con-
tinuum. At the same time, changes of vegetation water content (VWC) are linked to a 
range of tree responses, including fluxes of water and carbon, mortality, flammability, 
and more. Unlike water potential, which requires demanding in situ measurements, 
VWC can be retrieved from remote sensing measurements, particularly at microwave 
frequencies using radar and radiometry. Here, we highlight key frontiers through 
which VWC has the potential to significantly increase our understanding of forest re-
sponses to water stress. To validate remote sensing observations of VWC at landscape 
scale and to better relate them to data assimilation model parameters, we introduce 
an ecosystem-scale analog of the pressure–volume curve, the non-linear relationship 
between average leaf or branch water potential and water content commonly used in 
plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume 
curves and their relationship to forest response to water stress are discussed. We 
further show to what extent diel, seasonal, and decadal dynamics of VWC reflect 
variations in different processes relating the tree response to water stress. VWC can 
also be used for inferring belowground conditions—which are difficult to impossible 
to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne ob-
servational system for VWC, when combined with existing datasets, can capture diel 
and seasonal water dynamics to advance the science and applications of global forest 
vulnerability to future droughts.
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drought response, drought-induced tree mortality, microwave remote sensing, pressure–
volume, vegetation optical depth, vegetation water content, water potential
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Understanding the aggregated effects of drought on forests is 
difficult, particularly due to extensive heterogeneity in plant traits 
(Anderegg, 2015; Skelton et al., 2015), edaphic conditions, and to-
pography (Goulden & Bales, 2019). Remote sensing tools naturally 
provide aggregate observations across ecosystems at local to global 
scales. Commonly used retrievals of surface temperature, leaf area, 
or solar-induced fluorescence provide information on the conse-
quences of forest drought responses (Deshayes et al., 2006; West 
et al., 2019), but they do not directly capture the drought stress 
affecting the trees themselves. These measurements also do not 
provide information on belowground processes affecting water re-
distribution and root access, a critical influence on forest drought re-
sponse (Agee et al., 2021; Hagedorn et al., 2016; Phillips et al., 2016).

Microwave remote sensing of vegetation water content has 
become an increasingly popular alternative for studying forest re-
sponses to drought (Anderegg et al., 2018; Rao et al., 2019; Saatchi 
et al., 2013; Schroeder et al., 2016). For decades, numerous stud-
ies of forest–water interactions have focused on plant water po-
tential. However, recently there has been a renewed interest in the 
role of vegetation water content (VWC) in influencing water and 
carbon fluxes, tree mortality, and fire risk (Martinez-Vilalta et al., 
2019; Matheny et al., 2015; Nolan et al., 2020). Microwave remote 
sensing-based estimates of VWC (and proxies of VWC) may thus 
transform studies of forest responses to drought stress. However, 
because VWC is a relatively new remote sensing product, its optimal 
interpretation and use, as well as its relation to water stress, has not 
been comprehensively explored.

Here, we review key frontiers through which remotely sensed 
observations of VWC can be used to significantly increase our un-
derstanding of forest ecosystem response to droughts. We pose 
questions and raise challenges to maximize the utility of microwave 
remote sensing for studies of forest drought responses. While we 
focus on forests, many of the ideas in this paper also apply to other 
natural biomes, and particularly to detecting water stress in crop-
lands (Steele-Dunne et al., 2017; Togliatti et al., 2019). In Section 
2, we introduce and compare plant water potential and plant water 
content at the tree scale, including a description of measurement 
challenges for each. We argue that observations of ecosystem-
scale VWC would inform a number of ecological applications and 
overcome several existing in situ measurement challenges. The 
ecosystem-scale VWC measurements that are feasible from re-
mote sensing are then introduced in Section 3. This section aims 
to provide some background on the theoretical basis of microwave 
remote sensing of VWC, in order to clarify how it informs measure-
ment characteristics such as the canopy depth represented. This 
section also includes a description of challenges for improved esti-
mation of VWC, including how additional in situ observations may 
help improve estimation accuracy. Having introduced both the in 
situ and remotely sensed conceptualizations of VWC, Sections 4–6 
of the paper then discuss the ways that remotely sensed VWC can 
be used to study forest response to droughts. Section 4 discusses 
how the current generation of remotely sensed VWC estimates can 
be interpreted at different timescales to provide information about 

different drought response processes (e.g., disturbance dynamics, 
canopy dehydration, etc) and the ways VWC datasets can be com-
bined with other observations and plant hydraulic models. Because 
using VWC to constrain plant hydraulic models requires determin-
ing how VWC changes translate to the water potential variables 
that plant hydraulic models simulate, Section 5 discusses whether 
VWC observations can be linked to the concept of an ecosystem-
scale water potential, how such a variable could be interpreted and 
used, and what controls these linkages. Section 6 then discusses 
a specific component of forest drought response for which VWC 
observations can be particularly useful: determining belowground 
processes based on model inversion and the analysis of phase dy-
namics. Lastly, Section 7 considers the mismatch between available 
remote sensing data for VWC and the dataset properties that this 
paper identifies as particularly useful for studies of forest drought 
response (high spatial resolution, capturing diel variations). It then 
presents an alternative concept for a new satellite mission to ad-
dress these data gaps.

2  |  FOREST DROUGHT RESPONSES—
PHYSIOLOGY, POTENTIAL ,  AND WATER 
CONTENT

2.1  |  Water potential gradients influence forest 
drought response

The movement of water through trees (and other vascular plants) is 
dictated by a continuum of water potential gradients from the soil 
through the various plant components to the atmosphere. Variations 
in the magnitude of the gradient dictate how trees respond to water 
stress. Under dry conditions, water loss through stomata causes leaf 
water potential declines. As a result, stomata close, reducing the 
water loss but also decreasing photosynthesis. Under a drying at-
mosphere and/or soil, xylem water potential also decreases. At very 
large negative pressure (tension) in the xylem, embolisms can form, 
blocking water flow within the xylem vessels (Tyree & Sperry, 1989). 
Such embolisms reduce conductance to water transport, largely re-
ducing the capacity to transport water from the soil to leaves. High 
conductance losses can potentially lead to tree mortality (Brodribb, 
2009). Long-term reductions in photosynthesis due to water stress 
can also make trees more vulnerable to death from some combi-
nation of biotic attack and physiological failure (McDowell, 2011; 
Trugman, Detto, et al., 2018; Wu et al., 2018).

2.2  |  VWC as an indicator of plant water status

While studies of plant water relations predominantly focus on quanti-
fying water potential variations across the soil-plant-atmosphere con-
tinuum, there is significant evidence that water content itself can also 
be an informative metric of water status. For example, plant water stor-
age forms a significant fraction of transpiration (Goldstein et al., 1998; 
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Matheny, Fiorella, et al., 2017; Phillips et al., 2003). In addition, the rela-
tive water content (defined by normalizing VWC by its maximum value) 
also provides a threshold-based predictor for wilting and mortality under 
drought (Bartlett et al., 2012; Rao et al., 2019; Sapes et al., 2019). Unlike 
for leaf water potential, the threshold of relative water content at the wilt-
ing point was found to be relatively conservative across species (Bartlett 
et al., 2012). Lastly, VWC is directly related to live fuel moisture content 
(Konings et al., 2019; Rao et al., 2020), which is defined as the VWC per 
unit dry biomass and is a widely used indicator of fire risk. LFMC shows 
threshold-like impacts on fire ignition probability (Chuvieco et al., 2011; 
Dimitrakopoulos & Papaioannou, 2001) and fire size (Argañaraz et al., 
2018; Dennison & Moritz, 2009). Overall, improved quantification of 
VWC will likely contribute to better assessment of forest drought re-
sponses including transpiration, mortality, and wildfire risk (Figure 1). 
Given the large variations of VWC and relative water content within dif-
ferent tree components and across species, this quantification must take 
into account variations in VWC across vertical and horizontal scales.

2.3  |  Measurement challenges for plant 
water status

For decades, manual plant water potential observations (e.g., using a pres-
sure chamber, Scholander et al., 1965) have played a central role in our un-
derstanding and quantification of tree water status, especially at the site 
level (Cavender-Bares & Bazzaz, 2000; Tardieu & Simonneau, 1998; Tyree 
& Sperry, 1988). However, they are destructive measurements that are par-
ticularly challenging in tall forests where access to canopies leaves is lim-
ited. Consequently, these data are typically collected at weekly to monthly 

temporal resolutions, which may be sufficient to resolve dynamics linked 
to soil water drying, but are too coarse to capture variability in plant water 
status at diurnal timescales. Continuous, automated measurement of stem 
and leaf water potential is possible for some species with psychrometry 
(e.g., Guo et al., 2020), but these instruments are expensive, require sub-
stantial maintenance, and their use is not yet widespread. Moreover, unlike 
observations of water fluxes possible using micrometeorological and sap 
flux approaches, time series of plant water potential have yet to be col-
lected and standardized in databases and networks, hindering synthesis 
of information across sites. Finally, even within a site, leaf and stem water 
potential measurements are also generally limited to individual trees, and 
scaling to the entire stand can be challenging, particularly in ecosystems 
with multiple species across multiple edaphic conditions. This difficulty in 
scaling hinders efforts to harmonize species-specific observations to those 
from eddy covariance flux towers (which typically have footprints on the 
orders of 103–107 m2, Chu et al., 2021). These measurement difficulties 
also determine the scarcity of information about water potential–water 
content relationships (usually determined using pressure–volume curves 
or P-V curves) across species and tree components. Because P-V curves 
are most often determined destructively, information on P-V curves is rela-
tively abundant only for leaves, while very little is known about the equiva-
lent properties of bark tissues and roots.

Direct measurements of vegetation water content can be less 
labor intensive and more cost effective, facilitating increased spa-
tial and temporal observation. For wood water content, micron-
scale dendrometers can be automated and used to infer water 
content after detrending (Peters et al., 2021; Pfautsch et al., 2015). 
Reflectometry (TDR and FDR) and capacitance-style sensors can 
provide automated measurements of dielectric permittivity, which 
can be directly converted to water content (Holbrook & Sinclair, 
1992; Matheny et al., 2015; Wullschleger et al., 1996). However, 
these sensors are sensitive to differences in wood density, and 
should be calibrated for use in different species (Matheny et al., 
2017). Unlike for woody tree components, there is no commonly 
used direct, non-destructive measurement technique to determine 
leaf water content. In situ spectroscopy is sensitive to leaf water 
content (Browne et al., 2020; de Jong et al., 2014), but also requires 
species-specific calibration. At larger scales, VWC from microwave 
remote sensing could be used instead of ground measurements.

3  |  MICROWAVE REMOTE SENSING OF 
V WC

Several remote sensing techniques allow monitoring VWC or proxy 
measures of VWC with different levels of precision. These measure-
ments cover a wide range of the electromagnetic spectrum, ranging 
from optical spectral imaging (Asner et al., 2016; Ustin et al., 2012) 
to thermal infrared imaging (Jones et al., 2009), to active (radar) 
and passive (radiometer) microwave sensing (Konings et al., 2019; 
Vermunt et al., 2020). Microwave frequencies are arguably the most 
useful for systematic measurement of VWC because of their all-time 

F I G U R E  1  Changes in water content drive forest changes at 
diurnal (inner ring), seasonal (middle ring), and decadal (outer ring) 
timescales. Across decadal-scale responses, declines in VWC can 
lead to mortality and/or fire. VWC will also increase in concert with 
successional dynamics. Across dry and wet seasons, forest VWC 
evolves through both phenology and de-/rehydration. Lastly, VWC 
has a strong diurnal cycle driven by the diurnal cycle of ET [Colour 
figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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observational capabilities during day and night and irrespective of 
cloud cover, and the ability to penetrate beyond the top few millim-
eters of the forest canopy. This avoids systematic biases that would 
occur if only cloud-free periods can be measured. Observations il-
lustrating the sensitivity of microwave remote sensing observations 
of VWC at different timescales are shown in Figure 2. However, no 
current spaceborne system is dedicated to systematically observing 
VWC and its changes due to water stress. We discuss prospects 
for a new spaceborne system, with the aim to provide estimates 
of VWC at sub-daily temporal resolutions to resolve the dynamic 
physiological response of vegetation to water stress, in Section 7.

3.1  |  Theoretical basis

Microwave remote sensing measurements respond directly to 
changes in VWC due to their sensitivity to the dielectric constant 
and thus to free water volume (i.e., water that is not chemically 
bound) in vegetation (including leaves, branches, stems) (Ulaby & 
El-rayes, 1987). Depending on the electromagnetic frequency, the 
depth of penetration of microwaves into the forest canopy may vary 
(Figure 3). The sensitivity to VWC is expressed as the mass of water 
per ground area (i.e., in units of kg water/m2) (Schmugge & Jackson, 
1992). The main observation of VWC from active and passive micro-
wave remote sensing is through the vegetation optical depth (VOD), 
which is a measure of how much the VWC attenuates the microwave 
signal from the soil surface (Frappart et al., 2020; Konings et al., 
2019). The theoretical basis for this relationship and typical retrieval 
approaches are reviewed extensively in Frappart et al. (2020).

Vegetation optical depth is a dimensionless quantity, with 
higher values indicating more attenuation and hence a larger 
quantity of VWC. VOD is often assumed to be linearly related 
to VWC (Jackson & Schmugge, 1991) with a coefficient depend-
ing on the frequency of observation, forest type, and structure 
(height, biomass density, and gap size). Studies comparing micro-
wave sensing to in situ measurements of VWC have been able to 
establish the linear relation for a wide range of vegetation types 
(van Emmerik et al., 2015; Jackson & Schmugge, 1991; Sharma 
et al., 2020). Note that direct retrieval of VWC—rather than a 
quantity proportional to VWC—has not yet been performed at 
global scale. Nevertheless, the linear relationship between VOD 
and VWC has enabled a range of applications such as detection 
of water stress in forest ecosystems (Frolking et al., 2011; Rao 
et al., 2019; Saatchi et al., 2013), quantification of the diel cycle 
of VWC (van Emmerik et al., 2015; Konings, Yu, et al., 2017; 
Schroeder et al., 2016), and estimation of seasonal changes of 
VWC related to phenology (Tian et al., 2016; Wang et al., 2020; 
Xu et al., 2015).

3.2  |  Challenges and opportunities for 
estimation of VWC from remote sensing

While applications of microwave vegetation remote sensing 
are growing rapidly, some long-standing challenges remain. At 
ecosystem-scale resolutions, VWC depends not only on water 
stress but also on seasonal to interannual changes in biomass 
(Brandt et al., 2018; Konings et al., 2021; Liu et al., 2015). Changes in 

F I G U R E  2  Variations of radar 
backscatter measurements across 
the Amazon Basin. Radar backscatter 
coefficients at Ku-band are used as 
a proxy for changes of canopy water 
content showing: (a) spatial variations as 
an RGB color composite of QuikSCAT 
(QSCAT) radar backscatter in the months 
of April, July, and October capturing 
regional and seasonal changes, (b) 
seasonal cycle of QSCAT backscatter 
averaged across two regions in southwest 
and northeast of the Amazon, (c) diurnal 
cycle of the same regions detected by the 
RapidSCAT satellite observations onboard 
International Space Station from 2014 
to 2016, and (d) time series of QSCAT 
backscatter capturing seasonal and 
interannual variations including extreme 
droughts of 2005 in the southwest of the 
Amazon [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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relative water content can be disentangled from changes in phenol-
ogy and biomass by considering diel or other short-term timescales, 
as further discussed in Section 4. Nevertheless, this complicates in-
terpretation of VWC observations.

Because microwave remote sensing is sensitive to both VWC 
and soil moisture, retrieval algorithms are needed to separate 
these two factors. However, most operational retrieval algo-
rithms represent the VWC as consisting of a homogenous cloud 
of water droplets, which neglects the roles of vertical and hor-
izontal variations in water content, canopy gaps, surface water 
from dew and rainfall interception (Xu et al., 2021), etc. Not only 
do these simplifications risk incurring retrieval or interpretation 
errors for both existing datasets and future VOD retrievals, they 
also cause a missed opportunity. Because the sensitivity of mi-
crowave observables to these factors varies based on frequency 
and polarization (Baur et al., 2019), heterogeneity in water con-
tent across different heights in the canopy could in theory be 
accounted for. If overlapping observations at multiple electro-
magnetic frequencies are available, these could then be com-
bined to determine water content across different heights in 
the canopy. However, doing so will require more sophisticated 
electromagnetic models (Saatchi & Moghaddam, 2000; Steele-
Dunne et al., 2017), which in turn require detailed information 
about tree and forest structure. Recent progress in remote 
sensing-derived vegetation structure information may be able to 
help fill this gap (Dubayah et al., 2020; Quegan et al., 2019; Yu & 
Saatchi, 2016). A more mechanistic understanding of microwave 

observations will also offer more synergies with optical and 
spectroscopic methods (Bohn et al., 2019), which are most sensi-
tive to the upper layers of the canopy and can therefore provide 
complementary information to deeper microwave observations. 
In the case of passive microwave observations, it may also enable 
better accounting for changes in temperature across the canopy, 
and associated improvements in retrieval accuracy (Parinussa 
et al., 2016). However, further development of more advanced 
retrieval approaches will require coordinated field campaigns 
for calibration and validation, including non-destructive ground-
based samples of water content such as those in Section 2.3. If 
the relationship between water content and (leaf or xylem) water 
potential can be quantified (Section 5), existing water potential 
measurements—while sparse—could also be used in validation 
field campaigns. Indeed, given the sparsity of ecosystem VWC 
measurements, additional validation field campaigns would also 
be useful for validating existing VOD retrieval methods.

Lastly, existing satellite observations of VOD from radiome-
ters (Du et al., 2017; Konings et al., 2017; Moesinger et al., 2020; 
Wigneron et al., 2021) and scatterometers (Frolking et al., 2006) 
can be noisy when only individual measurements are considered. 
Furthermore, they have coarse spatial resolution (25–50  km) and 
cannot reliably separate changes of VWC from other disturbance 
and recovery processes associated with canopy cover and biomass. 
The applications of these measurements will improve substantially 
if the spatial resolution of the observations reaches the landscape 
scale (100–1000 m) (Martínez-Vilalta & Lloret, 2016).

F I G U R E  3  Microwave remote sensing is able to observe water content in forests. The canopy layers represented in each measurement 
(the penetration depth) varies across different microwave frequency bands (and thus different wavelengths), as show through different red 
and blue electromagnetic waves. Observations represent deeper areas of the canopy as wavelengths increase (and frequencies decrease) 
from Ku-band across X-, C-, and L-bands to P-band. Higher frequencies are most sensitive to leaves and branches while lower frequencies 
also have increasing sensitivity to trunks and soils. Red waves represent transmissions on a radar system while blue waves represent the 
returns, with dots at the end of each wave representing different magnitude backscatter coefficient measurements depending on the water 
content (colorbar) of the different vegetation components each wavelength is sensitive to. If only the blue waves are considered and the 
dots are interpreted as measurements of VOD, the figure is representative of a radiometer system instead [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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3.3  |  Past and future sensors for VWC 
observations

Despite the challenges above, our ability to monitor VWC dynam-
ics with microwave remote sensing is currently constrained by sen-
sor availability, not by technology. Existing and planned passive 
microwave observations (e.g., AMSR-E, SMAP, and CIMR) and scat-
terometers (e.g., QuikScat and ASCAT) at different electromagnetic 
frequencies provide long-term coarse resolution observations to 
monitor soil and vegetation water status regionally, while less fre-
quent but high-resolution synthetic aperture radar measurements 
(e.g., Sentinel-1 (Torres et al., 2012), NISAR (Kumar et al., 2016)) help 
to quantifying landscape-scale variations of VWC. However, the 
greatest limitation of existing spaceborne measurements from sun-
synchronous orbits is the lack of diel observations of VWC that can 
be directly linked to the plant physiology and to water and carbon ex-
change. At such timescales, there is minimal influence from changes 
in phenology and forest structure on the total ecosystem-scale VWC 
(Section 4). Microwave observations from RapidScat onboard the 
International Space Station (van Emmerik et al., 2017; Konings, Yu, 
et al., 2017) and from ground-based tower systems (Holtzman et al., 
2021; Monteith & Ulander, 2018; Schneebeli et al., 2011; Vermunt 
et al., 2020) have demonstrated the feasibility of quantifying the 
VWC dynamics throughout the day. Thus, the ability to monitor the 
diel signal of VWC is driven by the orbital choices of the existing sen-
sors, not by limitations of the microwave observations’ intrinsic sen-
sitivity. Section 4 further discusses the ways different timescales of 
analysis enable study of different aspects of forest drought response.

4  |  DERIVING PROCESS UNDERSTANDING 
FROM V WC

4.1  |  VWC information depends on analysis 
timescales

Remote measurements of VWC can extend process-level under-
standing in forests by leveraging variation in VWC in space and time. 
VWC integrates processes associated with water storage and fluxes 
of different forest water reservoirs (leaf, wood, soil) at different 
timescales. We therefore posit that measuring VWC dynamics can 
be crucial for understanding, quantifying, and modeling ecological 
and hydrological processes at roughly three timescales (Figure 4).

At the timescale of multiple years to decades (Figure 4e), VWC 
patterns largely reflect forest biomass and structure (Konings et al., 
2019; Liu et al., 2013, 2015). Thus, spatial patterns in VWC can shed 
light on variation in biomass, canopy structure, biome boundaries, 
and species-level traits that influence water content (e.g., wood 
density (Gentine et al., 2016; Araújo et al., 1999)). The sensitivity of 
VWC to aboveground biomass can inform disturbance and land-use 
change dynamics (Liu et al., 2015; Pugh et al., 2019) and potentially 
slower, non-disturbance shifts in demographic rates such as succes-
sion or climate-driven increases in mortality that lead to changes in 

species composition (Anderegg et al., 2020; Trugman et al., 2020; 
van Mantgem et al., 2009). Multi-year averaged measurements of 
VWC can therefore provide a powerful set of measurements for spa-
tial scaling and quantifying ecological dynamics—particularly those 
related to biomass, rather than water content or physiology alone 
per se—at biome, continent, and global scales.

At the timescale of multiple weeks to months (Figure 4a-c), VWC 
dynamics may reflect progressive dehydration of multiple tissues 
of trees associated with changes in soil water potential and xylem 
function, as well as changes in forest leaf area index caused by leaf 
shedding or leaf flushing (Frolking et al., 2011; Jones et al., 2011; 
Konings et al., 2019; Tian et al., 2017). Assuming a threshold-type 
response (Section 2.2), VWC may therefore be useful to assess the 
risk of drought-induced forest mortality and flammability risk. The 
slope of VWC curves during prolonged droughts and after post-
drought precipitation events may also be used as metrics to compare 
community-level drought resistance and recovery capacity (Asefi-
Najafabady & Saatchi, 2013; Suding & Hobbs, 2009). More gradual 
slopes likely means that the tree cover has more mechanisms that 
minimize dehydration, indicating higher resistance.

At diel timescales (Figure 4d), changes in biomass are slow and 
VWC dynamics reflect the balance of transpiration and root water 
uptake, as well as redistribution of water through trees (van Emmerik 
et al., 2017; Konings, Yu, et al., 2017). These timescales are thus 
most closely affected by root, xylem, and stomatal responses to dry-
ing soil and air. As a result, VWC observations at diel timescales are 
arguably best able to isolate the effects of water stress. VWC vari-
ations across the diel cycle are also closely related to belowground 
processes, which are difficult to disentangle at other timescales (see 
Section 6). The shape of the diel cycle of VWC can be used to de-
tect water stress (Nelson et al., 2018), before it is detectable through 
other leaf properties. Therefore, the diel dynamics of VWC also hold 
promise as an early warning signal for forest risks.

4.2  |  Complementary measurements to improve 
VWC interpretation

By combining VWC measurements with complementary field and 
remote sensing data, we can vastly improve process-level under-
standing in forests across multiple timescales. At the timescales 
of multiple years to decades, data on species composition, forest 
structure and biomass, demography, and disturbance history could 
be used to test for species-, age-, or disturbance-dependent re-
sponses to drought in forests (Hanson & Weltzin, 2000; Zhang et al., 
2018). Disentangling the sources of within- and cross-ecosystem 
variability in patterns of VWC is facilitated by observations of fac-
tors such as soils and topography and canopy structural attributes 
like leaf area index and vertical architecture. At the intermediate 
timescales of multiple weeks to a month, soil moisture and meteoro-
logical conditions and phenology are the major constraints on VWC 
dynamics. Additional measurements such as volumetric soil mois-
ture, temperature, precipitation, and vapor pressure deficit, along 
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with phenology-related data, can provide crucial context. At diel 
timescales, complementary measurements related to canopy com-
position and biomass dynamics are less necessary and less useful. 
Surface soil moisture dynamics and evapotranspiration estimates 
(or more directly, thermal imagery sensitive to evapotranspiration) 
may provide complementary information about the water distribu-
tion through the soil-plant-atmosphere continuum at remote sens-
ing scales. Observations and estimates of canopy water content 
from dew or rainfall interception will also be useful, to remove these 
signals from the observed VWC proxies (Binks et al., 2021; Vermunt 
et al., 2020; Xu et al., 2021). Additionally, analyses based on diel 
variations in VWC may be constrained based on functional trait data 
(i.e., hydraulic traits), where available (Trugman et al., 2020).

Beyond complementary datasets, process models are a necessary 
counterpart to VWC measurements to enable interpretation of VWC 
patterns and its underlying mechanisms (Xu et al., 2021). Models can 
also benefit from the constraints that VWC can place upon their inter-
pretation, and thus model-measurement integration is a win-win sit-
uation. The type of models that can integrate VWC information most 
effectively are hydraulically enabled (e.g., Christoffersen et al., 2016; 
Kennedy et al., 2019; Li et al., 2020; Mencuccini et al., 2019), and 
would be able to simulate water pools (Martinez-Vilalta et al., 2019). 

Such models can operate over a range of spatial scales and on times-
cales that span minutes to years, enabling process understanding of 
VWC over short to long timescales. Examples of model-data benefits 
include the opportunity to examine the role of community-scale plant 
water storage and capacitance (simulated via models) in regulating 
the observed VWC variation, understanding how transpiration rates 
may drive variation in observed VWC, or understanding belowground 
controls on water uptake (as further discussed in Section 6). To link 
models and data, an ecosystem-scale water release curve could be 
generated in which VWC is the dependent variable and simulated 
community-scale water potential is the independent variable. Such 
curves are further discussed in the next section.

5  |  SC ALING WATER CONTENT TO 
ECOSYSTEM SC ALE

5.1  |  An ecosystem-scale pressure–volume curve

In order to use VWC as a constraint on plant hydraulic models that 
simulate the dynamics of water potential (Ψ), the relationship be-
tween Ψ and VWC must be known at the ecosystem scale. As a 

F I G U R E  4  What can vegetation water content tell us about plant stress? The absolute value of VWC (panel a, shown as mid-day values) 
is difficult to interpret without context about its maximum and critically limiting values (e.g., the VWCcritical). For example, while Ecosystem 
B initially has higher absolute VWC than Ecosystem A, its VWCcritica is also higher. When VWC is expressed as a relative value compared to 
the seasonal maximum (panel b), Ecosystem B emerges as consistently more stressed than A, with the difference between the two reflecting 
traits, structure, as well as environmental states (soil water potential, VPD). The time derivative of relative VWC (panel C) illustrates that the 
time change in VWC can be zero for both very stressed and very unstressed ecosystems, but the change in d|VWC|/dt over periods of weeks 
to months is highly informative of the ecosystem water status. On the right side, panel (d) shows differences in the diurnal amplitude of relative 
VWC for ecosystems experiencing little stress (A), intermediate (A1), and more severe stress (B). Panel (e) shows long-term (interannual) changes 
in absolute VWC attributable to succession, disturbance, and demographic shifts [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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thermodynamic property of the water itself (i.e., its free energy), the 
Ψ can be averaged at any scale and across media, enabling the con-
sideration of an instantaneous Ψ for a cell, a leaf, a shoot, a branch, 
or a tree (Pallardy et al., 1991; Scholander et al., 1964), or potentially, 
the whole ecosystem. Given the spatial scale of remote sensing ob-
servations, estimating Ψ from orbit would require ecosystem-scale 
Ψ-WC curves (eco Ψ-WC; pronounced, ecopsych). Such curves can 
be conceived as large-scale analogs of tissue-scale P-V curves: 
graphical plots of the relationship between relative or absolute 
water content and Ψ, commonly constructed by dehydrating leaves 
or stems (Richter, 1978; Scholander et al., 1964; Tyree & Hammel, 
1972). They are also analogous to soil water retention curves (Hillel 
2013). The earliest conceptualization of a P-V curve was applied to 
twigs and leaves, and recognized the potentially large variability in 
water retention properties of the constituent living cells, but showed 
that cellular-level P-V curves follow a remarkably similar form to that 
of the bulk P-V curve (Tyree & Hammel, 1972). We argue that the 
scale jump from organ-level P-V curves to the canopy is no greater 
than from cells to organs, and as such, the eco Ψ-WC concept is more 
than possible, it is inevitable.

Notably, even for one ecosystem at any moment in time, the 
eco Ψ-WC would consist of a family of curves, each dependent on 
the spatial scale being used to average Ψ and VWC, and on fluxes 
through the system that influence the relative distribution of water 
among individual trees, and within trees, among cells and organs. 
When modeled comprehensively and given enough spatial resolu-
tion, the eco Ψ-WC could enable a full three-dimensional suite of 
Ψ-WC relationships, at a range of scales (per leaf area, ground area, 
volume, or mass; by canopy layers, plant organs, sizes or species; 
scanning layers vertically vs. integrating across volume). Across the 
suite of possible eco Ψ-WC curves, some may be especially powerful 

for particular applications, which there are potentially a wide range 
of (Table 1, see also Section 2). Indeed, the fine-scale distribution 
of canopy VWC and Ψ gained from eco Ψ-WC curves would allow 
assessing (1) the allocation of water throughout the forest includ-
ing shifts in storage (e.g., wood swelling (Pfautsch et al., 2015)); 
(2) water status thresholds for loss of function throughout the 
ecosystem (Martinez-Vilalta et al., 2019; Sack et al., 2018; Trueba 
et al., 2007), (3) the driving forces for water movement; and (4), with 
knowledge of hydraulic conductances and capacitances, the water 
flows throughout the ecosystem (Figure 5). Furthermore, there is 
potential to extract parameters from eco Ψ-WC curves, analogous to 
those extracted from leaf P-V curves, to enable the consideration of 
how whole ecosystem drought resilience and its determinants shift 
over the course of the day and seasonally, and how ecosystem-level 
drought responses vary across ecosystems of different diversity, cli-
mate, or soil type.

The time of day considered affects the utility of eco Ψ-WC curves. 
At predawn and midday or early afternoon, they may provide espe-
cially informative snapshots. Eco Ψ-WC curves estimated at predawn 
have the advantages of simplicity and stability because, at equilibrium, 
flows through the system will not affect the distribution of water, and 
the root-zone soil Ψ will also be indicated. Predawn Ψ may best yield 
certain thresholds for determining ecosystem function (e.g., wood 
growth, plant maximum hydraulic conductance) (Cabon et al., 2020). 
By contrast, midday or early afternoon eco Ψ-WC curves include the 
near minimum Ψ and WC values, corresponding to the strongest diel 
drought stress (with the exact time of greatest stress variable de-
pending on ecosystem type and meteorological conditions). Because 
the ways in which eco Ψ-WC curves can be used vary by time of day, 
diurnally variable observations of VWC may be particularly useful for 
forest drought stress studies analyzing ecosystem-scale Ψ variations.

TA B L E  1  Applications of remotely sensed vegetation water content, relative water content at ecosystem scale (VWCeco, normalized by its 
maximum value), water potential (Ψ), and the ecosystem Ψ-WC curve (eco Ψ-WC)

VWC VWCeco Ψ Eco Ψ-WC

· Estimation of water 
distribution 
throughout the 
ecosystem and its 
dynamics with time, 
and environmental 
change

· Can be directly 
converted to an 
ecosystem-scale live 
fuel moisture content 
for fire risk estimation, 
by dividing VWC by 
aboveground dry 
biomass.

· VWC may also predict 
drought-induced 
mortality in trees

· Thresholds for stomatal control, 
photosynthesis, wood growth, 
embolism, hydraulic dysfunction, 
mortality, etc., for a given tree or 
tissue and potentially ecosystems.

· Thresholds for stomatal 
control, photosynthesis, 
wood growth, embolism, 
hydraulic dysfunction, 
mortality, etc., for a 
given tree or tissue and 
potentially ecosystems

· Overall driving forces for 
water flows at landscape, 
community, and 
ecosystem scale

· Additional signal regarding 
tissues and belowground 
soil water potential

· Given known hydraulic 
conductances and 
capacitances, estimates 
of flows through given 
components of the system 
at any scale

· Scaling up phenomena from cells to 
organs, to plants, to ecosystem

· Determination of water allocation 
throughout the forest including 
shifts in storage

· Transfer function for data assimilation 
of remotely sensed VWC or VWC 
validation campaigns

· Clarification of the most informative 
water status thresholds for loss of 
function throughout the ecosystem

· May yield ecosystem Ψ-WC 
parameters useful for comparative 
assessment of drought tolerance 
and water relations across space 
and time
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5.2  |  Determining eco Ψ-WC curves

To derive the eco Ψ-WC, one must apply a modeling approach to 
the P-V curves of tree tissues at given times (considering each tis-
sue's water storage capacity and elastic properties), and scale these 
up based on forest structure (tree volume; tree sizes; allometries 
for roots, stems, and leaves; water content distribution) (Figure 5). 
Furthermore, the model must be dynamic, as Ψ will depend on the 
flow rate and hydraulic conductances and capacitances throughout 
the soil-plant-atmosphere continuum. While VWC is usually meas-
ured as the mass of water in vegetation per unit ground area, the 
relative water content (RWC), which normalizes tissue water content 
by the maximum (i.e., turgid) water-holding capacity of vegetation, 
better allows comparisons across organs, species, growth stages, 
and scales, and may thus be the more useful quantity for use in an 
eco Ψ-WC curve. To determine relative water content from abso-
lute water content, a saturation water content must be estimated. 
One approach to measuring canopy RWC is to normalize VWC by 
its annual or seasonal maximum (resulting in a relative vegetation 
water content at ecosystem-scale, VWCeco; Rao et al., 2019) while 
accounting for changes in aboveground biomass, for example, from 
leaf abscission during a drought event. This accounting requires 
ancillary information on phenology. It is also important to consider 
whether leaf surface water is included in the eco Ψ-WC curve, or 
separated during the remote sensing retrieval of VWC (see Section 

3.2). Along with tissue-level scaling (including for components such 
as bark or roots, for which P-V curves may not be as readily available 
as for leaves, see Section 2.3), information about canopy structure 
and diversity is needed to scale from trees to ecosystems. Structure 
and diversity information may be derived from a combination of for-
est inventories and remote sensing, including from ground, airborne, 
or space-based lidar.

In order to relate eco Ψ-WC curves to microwave retrievals 
of VWC, we need information on the vertical structure of the 
canopy and the frequency-dependent penetration depth of VWC 
observations (Figure 4e–h). Because, at a given electromagnetic 
frequency, microwaves also pass farther through canopies with 
less water (Section 3.1), the effective depth that a given VWC 
measurement represents is likely to vary in space and time, par-
ticularly during a drought. To account for penetration depth vari-
ations, different eco Ψ-WC curves be built to apply to specific 
electromagnetic frequencies. Once created, eco Ψ-WC curves 
should then enable linking remotely sensed VWC to models, 
leading to improved quantification of plant traits, belowground 
variables (as further discussed below), and other factors affecting 
ecosystem drought response.

6  |  INFERRING BELOWGROUND 
AC TIVIT Y FROM ABOVEGROUND V WC 
OBSERVATIONS

A complete description of forest responses to drought requires ac-
counting for several belowground factors, including the regulation of 
root water uptake, its three-dimensional distribution, or competition 
among differing rooting systems, among others (Manoli et al., 2017). 
However, remote sensing measurements are currently unable to 
measure soil water or water fluxes in the root-zone directly. Instead, 
belowground conditions must be inferred from aboveground infor-
mation, such as VWC observations. This can be achieved through an 
inverse approach based on the analysis of aboveground conditions 
linked to belowground processes. When doing so, the complexity 
of the belowground mechanisms that are accounted for can span 
a wide range (Figure 6). Conventional ecohydrological models that 
seek to infer belowground conditions without considering VWC 
(assuming a single land surface water pool, e.g., n=1 in Figure 6) 
implicitly consider root water uptake to be in balance with transpira-
tion (Chitra-Tarak et al., 2018; Dralle et al., 2020; Fan et al., 2017; 
Kleidon, 2004), and therefore cannot resolve root water uptake vari-
ations that deviate from transpirational demand (Chuang et al., 2006; 
Hollinger et al., 1994; Phillips et al., 1997). Even non-linear models 
that account for, for example, rooting depth changes with soil water 
content or the influence of biomass are not able to separate out root 
water uptake from transpiration if they do not account for VWC. 
We therefore argue that accounting for VWC (n ≥ 2 in Figure 6) is 
a necessary first step in inferring belowground conditions. If VWC 
observations across different vegetation layers are available (n ≥ 3 in 
Figure 6), this will enable greater detail in the inferred belowground 

F I G U R E  5  Vertical distributions of tissue-specific water 
retention properties (RWC – Ψ curves), biomass, and sensor 
penetration depth all jointly determine remotely sensed water 
content and its temporal variation. Several hypothesized curves 
delineating gradients of capacitance, defined as the change 
in relative water content relative to that of water potential 
(C = ΔRWC/ΔΨ) are shown. Therefore, temporal variation in 
remotely sensed metrics of VWC will be determined not only by 
temporal variation in Ψ, but by potentially large differences in 
the exchangeability of water in response to changes in Ψ across 
different plant tissues, and the response of sensor penetration 
depth to changes in water content [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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conditions, such as soil water content variations across different 
depth layers and hydraulic redistribution.

Inferring belowground activity from VWC dynamics requires 
solving the complex interactions between water pools and water 
fluxes. One approach for doing so relies on building plant hydrau-
lic models and using data assimilation or optimization methods to 
constrain the parameters and states of these models (Liu et al., 
2020; Mirfenderesgi et al., 2016). As with any data assimilation/
optimization method, innovations in the assimilation/optimization 
technique and cost function specification (i.e., which mathematical 
function is optimized) may further improve the ability to accurately 
make belowground inferences (Dietze et al., 2011; Trudinger et al., 
2007). Ensuring a reasonable balance between model parsimony 
(e.g., making sure the number of degrees of freedom of the model 
is not much greater than that of the observations) and model com-
plexity (to ensure realistic dynamics can be captured) is also key 
for accurate assimilation methods. Ultimately, the accuracy of such 
inferences likely inherently depends on the relative sensitivity and 
information content of different observations, including the VWC 
estimates. Nevertheless, some early applications of data assimilation 

with remotely sensed VWC estimates show this approach has prom-
ise (Liu et al., 2021; Liu et al., 2021). In each of these studies, obser-
vations at two times a day were used, but a more complete diel cycle 
may act as an even stronger constraint.

As an alternative to computationally expensive data assimila-
tion methods, additional information may be gained by considering 
the phase dynamics of soil and VWC (Figure 6). At any given time, 
the evolution of both soil and VWC is influenced by sap flow, plant 
water storage (in particular VWC) and other factors (i.e., precipita-
tion, transpirational losses). The sap flow, in turn, depends on both 
the soil and vegetation water content (both through the potential 
gradient between each, and through VWC's influence on xylem con-
ductance). Thus, for each of soil water content and VWC, the evolu-
tion of one water pool depends on the value of the other pool at any 
given amount of time. This state dependence inherently generates a 
hysteresis across diel timescales, as illustrated in Figure 7 (Lin et al., 
2019; Zhang et al., 2014). With increasing data availability of VWC 
and (surface) soil water dynamics from remote sensing products, 
analysis of this hysteresis and the phase dynamics more generally 
can be used for detecting lags and tipping points. A specific example 

F I G U R E  6  Conceptual diagram showing the complexity of vegetation–soil water dynamics viewed in the dimensionality–nonlinearity 
plane. The red dashed box shows the near-term research direction for inferring belowground dynamics enabled by new observations of 
VWC from remote sensing. A diurnal hysteresis between VWC and soil water cannot be captured with traditional ecohydrological models 
that consider a single land surface water pool (n=1) and can only be explained with a two (or greater) pool framework (n≥2), which further 
allows for inference of vegetation water uptake based on the timing and magnitude of the hysteresis. Figure adapted from Strogatz (2015) 
[Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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of such a phase dynamical analysis is mathematically illustrated 
through an analogy with the much-studied predator–prey (also 
known as Lotka–Volterra) ecological model (Wangersky, 1978) in the 
Data S1 (where VWC is the predator in the Lotka–Volterra analogy, 
which preys on root-zone water content). Development of simplified 
mathematical models such as these will enable more sophisticated 
phase dynamics interpretations using VWC or even multi-layer VWC 
datasets, if those become available (Section 3.2). Taken together in a 
suite of work with data assimilation and inference approaches, VWC 
analyses can therefore generate significant progress in determining 
belowground hydrological activity with remote sensing at global 
scale.

7  |  THE NEED FOR SPACEBORNE DIEL 
OBSERVATIONS

In this section, we reflect on the value of current satellite measure-
ments of VWC and then consider what satellite observational strat-
egy might be most useful for understanding how forest ecosystems 
respond to drought in a changing climate. As discussed in Section 3, 
existing observations of VWC from space are mainly based on op-
portunistic analyses of measurements originally designed and used 
for other science applications. These datasets have been used for 
many studies of forest drought responses. However, they are all lim-
ited by a particular set of measurement characteristics. For example, 
most of these satellites are in sun-synchronous orbits, which results 
in an overpass at each location on earth at a consistent time of the 
day, which is usually around 6:00 AM and PM or around 1:30 AM 
and PM, depending on the sensor. The sensor revisits every loca-
tion on earth every 2–3 days, but only two particular times of day 
are ever observed. This prevents a full view of the diurnal cycle. In 
terms of spatial scale, available microwave remote sensing datasets 
of VWC exist at a range of resolutions (tens of meters to tens of 
kilometers), depending on the sensor type (radiometers, scatterom-
eter, synthetic aperture radar (SAR)). However, a trade-off exists. 
Relatively coarser datasets from radiometers and scatterometers 
have spatial resolutions of tens of kilometers, but are designed 
such that they revisit each location every few (2–3) days. By con-
trast, SAR sensors are able to obtain observations at scales of tens 
of meters, but only revisit a given location infrequently, often in an 
irregular fashion and usually averaging only a few (1–3) observa-
tions per month in any given location. Some sensor combinations 
provide observations more frequently, but only over small areas 
(e.g., Sentinel-1 over Europe (Torres et al., 2012)). Furthermore, not 
all SAR instruments measure multiple polarizations in all observing 
modes. Measurements of different polarizations are required to 
disentangle the contributions of soil moisture and vegetation to ob-
served backscatter. Additional polarizations may also further be use-
ful to separate VWC from vegetation structural changes. Although 
VWC has been successfully retrieved from different combinations 
of possible polarizations (e.g., VV and VH from Sentinel-1 (Han et al., 
2019; Rao et al., 2020; Vreugdenhil et al., 2018), or VV and HH from 

QuikScat (Oveisgharan et al., 2018)), more research is needed to bet-
ter understand the relative value of different polarizations and the 
optimal design of retrieval algorithms.

We recommend, at a high level, alternative satellite observations 
that can address several scientific measurement requirements to de-
tect forest water stress and response to droughts. First, to predict 
how transpiration responds to droughts, it is necessary to quantify 
the influence of vegetation water content on stomatal conductance. 
This requires measurements of VWC throughout the day because 
the time of maximum vegetation water stress varies significantly 
from day to day, and because the shape of the diurnal cycle of VWC 
allows differentiation between the effects of limitations in root water 
uptake, transpiration, and redistribution of water storages through 
the canopy. Therefore, frequent observations of VWC throughout 
the day, at least every few hours, will allow for quantifying the re-
sponse of plant stomatal conductance to water stress. Moreover, 
as discussed in Section 2.2, tree mortality and forest flammability 
have been shown in a few studies to have a threshold-like response 
to declines in VWC. Whether such threshold-like behavior holds 
at ecosystem scale and how such thresholds vary across biomes is 
unknown. Again, observations of the diel cycle will ensure that the 
periods of maximum VWC stress—where VWC is most likely to de-
crease below any thresholds—are determined. Beyond capturing the 
diel cycle, the revisit times between days of observations should also 
be sufficiently small so as to ensure periods of maximum stress are 
observed. Additionally, the temporal observations of VWC must ex-
tend across seasonal cycles of water availability to allow separation 
of the impacts of long-term droughts from climatological seasonal-
ity, and must include multiple years of observations to capture both 
episodic climate extremes, interannual variability of forest canopy 
dynamics, and long-term gradual climate stress. A long enough inter-
annual observational record across large (e.g., continental to global) 
scales would enable determination of the factors driving how well 
and how fast biomes adapt to shifts in climate and seasonality.

The needs identified above—for diel observations with fre-
quent revisit and over an extended period of time—suggest that a 
geostationary platform (rather than the typical sun-synchronous 
orbits previously used for microwave satellites) would be needed to 
better quantify forest responses to drought. Furthermore, for each 
of the above applications, observational datasets would be partic-
ularly useful if they were able to distinguish landscape-scale (e.g., 
kilometer-scale) spatial variations, to allow detection of landscape-
scale variations of forest ecosystem response to water stress that 
depend on edaphic conditions, topography, forest structure, and 
land use history. At the high altitude of geostationary orbits, pas-
sive microwave radiometer systems cannot provide the required 
spatial resolutions. However, recent developments in radar tech-
nology, particularly at X- and Ku-band frequencies (1–3 cm wave-
length) provide an excellent opportunity for relatively high-spatial 
resolution observations from a geostationary platform (Rodríguez 
et al., 2019; Xiao et al., 2020). Alternatively, a collection of small-
sats (cubesats or other similar size classes) with different daily 
observation times could also potentially achieve the required 
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temporal and spatial resolution (e.g., the Capella Space constel-
lation (Stringham et al., 2019)). Each individual satellite could be 
placed in a sun-synchronous orbit, but combining observations 

from multiple instruments would still enable observations of the 
full diurnal cycle. This approach has been successfully used to in-
crease observational frequency by the Cyclone Global Navigation 
Satellite System (CYGNSS) (Ruf et al., 2019). Given the multiple 
potential approaches for developing spaceborne observations 
of VWC at diurnal cycles (although note the remaining technical 
challenges associated with retrieval algorithms, see Section 3.2), 
further research is needed to determine the best technological 
solution. Using the relatively high X-band or Ku-band frequencies 
will enable higher spatial resolution and reduce the effect of soil 
moisture on the radar backscatter observations, increasing retrieval 
accuracy. RapidScat radar observations at Ku-band have previously 
been shown to successfully capture diel dynamics of VWC (van 
Emmerik et al., 2017; Konings, Yu, et al., 2017). Furthermore, at 
X-band, cross-comparison with existing sun-synchronous datasets 
at times of near overlap (Du et al., 2017; Moesinger et al., 2020) 
could be used for calibration of the VWC retrieval algorithm. If 
technologically feasible, multiple electromagnetic frequencies 
could also be combined in a single observing platform to enable de-
termination of VWC across multiple layers of the canopy (Section 
3.2). We note that a geostationary platform would not be able to 
observe the entire globe, but continental coverage can neverthe-
less probe forest behavior across a range of biomes. A focus on the 
Americas may be particularly useful given the diversity of biomes 
and vegetation types spanned by this region and the relatively 
larger number of available field measurements compared to many 
other regions. Diel microwave observations of the Americas could 

F I G U R E  7  Example phase diagram of simulated dynamics 
of VWC and root-zone soil moisture content for a model test 
bed site in an Amazon moist forest using a hydraulics-enabled 
terrestrial biosphere model (ED-2.2-hydro, Xu et al., 2021). The 
diurnal hysteresis (closed curves in black between VWC and soil 
water cannot be captured with traditional ecohydrological models 
that consider a single land surface water pool (n=1 in Figure 6). 
Such hysteresis can only be explained with a two(or more)-pool 
framework (n>=2 in Figure 6), which further allows for inference of 
vegetation water uptake based on the timing and magnitude of the 
hysteresis [Colour figure can be viewed at wileyonlinelibrary.com]

TA B L E  2  Relationship between science and application goals and instrument functional requirements (as driven by the measurement 
requirements and science and application objectives necessary to meet the science and application goals) for a proposed set of new satellite 
observations

Science and application 
goals

Science and applications 
hypotheses Measurement requirements

Instrument functional 
requirements

Science question:How 
do forest ecosystems 
respond to droughts 
in a changing climate?

There is a water content 
threshold beyond which 
tree mortality and 
flammability increase and 
productivity decline

Science requirements

Landscape-scale VWC of 
forest ecosystems at 
1σ < 1-kg/m2 accuracy

Radar reflectivity at 
spatial resolutions 
of 1–3 km

X-band, Ku-band, or multiple 
frequency (Ku- & L-band) 
scatterometer or SAR

Multiple polarization (HH, 
VV, HV)

geostationary platform 
or collection of 
smallsats that provides 
observations several 
times a day

Large swath to cover North 
and South Americas

(50oN - 50oS)
at 1–3 day repeat cycle

Major resistance to water 
flux in forests is 
determined by changes 
in top-canopy water 
content and its link to 
available soil water.

Diel changes of VWC at 
relative accuracy of 1σ 
< 10%

Radar reflectivity 
during day and 
night at multiple 
times throughout 
the day

Available soil water and the 
atmospheric environment 
will drive how well and 
how fast biomes adapt to 
climate change and shifts 
in seasonality

Seasonal changes of VWC 
at 1σ < 10% relative 
accuracy

Radar reflectivity at 
1–3 day repeat 
cycle over 
minimum 3–5 years

Application 
goal:Forecasting 
wildfires in forests and 
impacts of droughts 
on agriculture systems

VWC determines fire 
fuel risk and drought 
resilience of crops

Application requirements

Daily to interstorm 
changes of VWC at 
1σ < 10% relative 
accuracy

Radar reflectivity at 
1–3 km spatial 
resolution

X- or Ku-band
Multiple polarizations (HH, 

VV, HV)
1–3 day repeat cycle
< 1-km spatial resolution

https://onlinelibrary.wiley.com/
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also benefit from existing and future geostationary measurements 
covering the same area, such as solar-induced fluorescence from 
the Geostationary Carbon Cycle Observatory (GeoCARB, Moore 
et al., 2018) and land surface temperature from the Geostationary 
Operational Environmental Satellites (Khan et al., 2021). A satellite 
mission with the above characteristics could be used not only to 
address the specific hypotheses discussed in the previous para-
graph, but could also be used for a number of operational applica-
tions, such as predicting crop yields in the face of water stress, or 
improving fire risk models. The satellite design proposals above are 
summarized in Table 2.

8  |  SUMMARY

We described the potential benefits of spatially extensive and fre-
quent microwave remote sensing-based VWC measurements for 
studying forest responses to drought, including for prediction of mor-
tality and fire risk. Although such data have been increasingly used to 
characterize forests and their water relations, we identified several 
technical and scientific developments which could significantly ac-
celerate the utility of these data. Specific recommendations include:

1.	 Analysis methods that consider VWC at different timescales 
depending on the ecosystem process of interest: multiple years 
to decades for forest biomass and structure, multiple weeks 
to months for changes in leaf area and multi-day trends of 
relative water content, and diel for changes in relative water 
content due to plant water uptake, redistribution, and loss.

2.	 Development of Ψ-WC curves analogous to branch-scale 
pressure–volume curves, to relate ecosystem-scale VWC to an 
effective canopy-scale water potential

3.	 Data assimilation and optimization methods that can use integrate 
VWC into plant hydraulic models for determination of xylem and 
stomatal traits as well as belowground activity

4.	 Investigation of phase dynamics for characterization of below-
ground activity

5.	 Development of retrieval algorithms that account for surface 
water and vertical variations of VWC within the canopy, rather 
than retrieving only the vertically integrated, average water 
content.

The approaches above should greatly accelerate the use of VWC 
for forest drought responses studies even with existing datasets. 
Nevertheless, to make the most progress, additional field campaigns 
are necessary for validating (multi-layer) VWC retrieval algorithms 
in a wide range of data types, for testing eco Ψ-WC curves, and 
for improved understanding of how VWC-based thresholds for 
fluxes, mortality, and fire risk scale across the ecosystem. Finally, 
a new geostationary mission concept providing diurnally variable 
measurements of VWC, which can be integrated with existing mea-
surements, would dramatically expand the scope of available forest 
drought response studies.
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