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1 | INTRODUCTION

Abstract

Droughts in a warming climate have become more common and more extreme, mak-
ing understanding forest responses to water stress increasingly pressing. Analysis of
water stress in trees has long focused on water potential in xylem and leaves, which
influences stomatal closure and water flow through the soil-plant-atmosphere con-
tinuum. At the same time, changes of vegetation water content (VWC) are linked to a
range of tree responses, including fluxes of water and carbon, mortality, flammability,
and more. Unlike water potential, which requires demanding in situ measurements,
VWC can be retrieved from remote sensing measurements, particularly at microwave
frequencies using radar and radiometry. Here, we highlight key frontiers through
which VWC has the potential to significantly increase our understanding of forest re-
sponses to water stress. To validate remote sensing observations of VWC at landscape
scale and to better relate them to data assimilation model parameters, we introduce
an ecosystem-scale analog of the pressure-volume curve, the non-linear relationship
between average leaf or branch water potential and water content commonly used in
plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume
curves and their relationship to forest response to water stress are discussed. We
further show to what extent diel, seasonal, and decadal dynamics of VWC reflect
variations in different processes relating the tree response to water stress. VWC can
also be used for inferring belowground conditions—which are difficult to impossible
to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne ob-
servational system for VWC, when combined with existing datasets, can capture diel
and seasonal water dynamics to advance the science and applications of global forest

vulnerability to future droughts.

KEYWORDS
drought response, drought-induced tree mortality, microwave remote sensing, pressure-
volume, vegetation optical depth, vegetation water content, water potential

such as belowground redistribution of water, composition, compe-

As the climate warms, droughts are getting hotter, more extreme,
and more frequent (Dai, 2013; Touma et al., 2015; Trenberth et al.,
2014). Forests respond to drought by reducing photosynthesis and
transpiration (Liu et al., 2020; Short Gianotti et al., 2019; Trugman
et al., 2018) and exhibiting increased mortality (Adams et al., 2017,
Choat et al., 2018). Their response to drought is mediated by the flow
and distribution of water in the soil-plant-atmosphere continuum
(Tyree & Sperry, 1989), but is also affected by stand-scale processes

tition, and demography. These processes have been studied at fine
scales (Brodribb et al., 2020; Sperry & Love, 2015), but aggregated
processes controlling ecosystem response to droughts remain poorly
understood (Allen et al., 2015; Gazol et al., 2018; Levine et al., 2016).
Thus, we are challenged to understand forest resilience in response
to the major disturbances brought by climate change (Anderegg et al.,
2013; Brodribb et al., 2020), including effects on forest ecosystem
services such as carbon sequestration (Anderegg et al., 2020) and
water cycling (Mastrotheodoros et al., 2020; Tague et al., 2019).
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Understanding the aggregated effects of drought on forests is
difficult, particularly due to extensive heterogeneity in plant traits
(Anderegg, 2015; Skelton et al., 2015), edaphic conditions, and to-
pography (Goulden & Bales, 2019). Remote sensing tools naturally
provide aggregate observations across ecosystems at local to global
scales. Commonly used retrievals of surface temperature, leaf area,
or solar-induced fluorescence provide information on the conse-
quences of forest drought responses (Deshayes et al., 2006; West
et al., 2019), but they do not directly capture the drought stress
affecting the trees themselves. These measurements also do not
provide information on belowground processes affecting water re-
distribution and root access, a critical influence on forest drought re-
sponse (Agee et al., 2021; Hagedorn et al., 2016; Phillips et al., 2016).

Microwave remote sensing of vegetation water content has
become an increasingly popular alternative for studying forest re-
sponses to drought (Anderegg et al., 2018; Rao et al., 2019; Saatchi
et al., 2013; Schroeder et al., 2016). For decades, numerous stud-
ies of forest-water interactions have focused on plant water po-
tential. However, recently there has been a renewed interest in the
role of vegetation water content (VWC) in influencing water and
carbon fluxes, tree mortality, and fire risk (Martinez-Vilalta et al.,
2019; Matheny et al., 2015; Nolan et al., 2020). Microwave remote
sensing-based estimates of VWC (and proxies of VWC) may thus
transform studies of forest responses to drought stress. However,
because VWC is a relatively new remote sensing product, its optimal
interpretation and use, as well as its relation to water stress, has not
been comprehensively explored.

Here, we review key frontiers through which remotely sensed
observations of VWC can be used to significantly increase our un-
derstanding of forest ecosystem response to droughts. We pose
questions and raise challenges to maximize the utility of microwave
remote sensing for studies of forest drought responses. While we
focus on forests, many of the ideas in this paper also apply to other
natural biomes, and particularly to detecting water stress in crop-
lands (Steele-Dunne et al., 2017; Togliatti et al., 2019). In Section
2, we introduce and compare plant water potential and plant water
content at the tree scale, including a description of measurement
challenges for each. We argue that observations of ecosystem-
scale VWC would inform a number of ecological applications and
overcome several existing in situ measurement challenges. The
ecosystem-scale VWC measurements that are feasible from re-
mote sensing are then introduced in Section 3. This section aims
to provide some background on the theoretical basis of microwave
remote sensing of VWC, in order to clarify how it informs measure-
ment characteristics such as the canopy depth represented. This
section also includes a description of challenges for improved esti-
mation of VWC, including how additional in situ observations may
help improve estimation accuracy. Having introduced both the in
situ and remotely sensed conceptualizations of VWC, Sections 4-6
of the paper then discuss the ways that remotely sensed VWC can
be used to study forest response to droughts. Section 4 discusses
how the current generation of remotely sensed VWC estimates can
be interpreted at different timescales to provide information about
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different drought response processes (e.g., disturbance dynamics,
canopy dehydration, etc) and the ways VWC datasets can be com-
bined with other observations and plant hydraulic models. Because
using VWC to constrain plant hydraulic models requires determin-
ing how VWC changes translate to the water potential variables
that plant hydraulic models simulate, Section 5 discusses whether
VWC observations can be linked to the concept of an ecosystem-
scale water potential, how such a variable could be interpreted and
used, and what controls these linkages. Section 6 then discusses
a specific component of forest drought response for which VWC
observations can be particularly useful: determining belowground
processes based on model inversion and the analysis of phase dy-
namics. Lastly, Section 7 considers the mismatch between available
remote sensing data for VWC and the dataset properties that this
paper identifies as particularly useful for studies of forest drought
response (high spatial resolution, capturing diel variations). It then
presents an alternative concept for a new satellite mission to ad-
dress these data gaps.

2 | FOREST DROUGHT RESPONSES—
PHYSIOLOGY, POTENTIAL, AND WATER
CONTENT

2.1 | Water potential gradients influence forest
drought response

The movement of water through trees (and other vascular plants) is
dictated by a continuum of water potential gradients from the soil
through the various plant components to the atmosphere. Variations
in the magnitude of the gradient dictate how trees respond to water
stress. Under dry conditions, water loss through stomata causes leaf
water potential declines. As a result, stomata close, reducing the
water loss but also decreasing photosynthesis. Under a drying at-
mosphere and/or soil, xylem water potential also decreases. At very
large negative pressure (tension) in the xylem, embolisms can form,
blocking water flow within the xylem vessels (Tyree & Sperry, 1989).
Such embolisms reduce conductance to water transport, largely re-
ducing the capacity to transport water from the soil to leaves. High
conductance losses can potentially lead to tree mortality (Brodribb,
2009). Long-term reductions in photosynthesis due to water stress
can also make trees more vulnerable to death from some combi-
nation of biotic attack and physiological failure (McDowell, 2011;
Trugman, Detto, et al., 2018; Wu et al., 2018).

2.2 | VWC as an indicator of plant water status

While studies of plant water relations predominantly focus on quanti-
fying water potential variations across the soil-plant-atmosphere con-
tinuum, there is significant evidence that water content itself can also
be an informative metric of water status. For example, plant water stor-

age forms a significant fraction of transpiration (Goldstein et al., 1998;
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Matheny, Fiorella, et al., 2017; Phillips et al., 2003). In addition, the rela-
tive water content (defined by normalizing VWC by its maximum value)
also provides a threshold-based predictor for wilting and mortality under
drought (Bartlett et al., 2012; Rao et al., 2019; Sapes et al., 2019). Unlike
for leaf water potential, the threshold of relative water content at the wilt-
ing point was found to be relatively conservative across species (Bartlett
et al., 2012). Lastly, VWC is directly related to live fuel moisture content
(Konings et al., 2019; Rao et al., 2020), which is defined as the VWC per
unit dry biomass and is a widely used indicator of fire risk. LFMC shows
threshold-like impacts on fire ignition probability (Chuvieco et al., 2011;
Dimitrakopoulos & Papaioannou, 2001) and fire size (Argafaraz et al.,
2018; Dennison & Moritz, 2009). Overall, improved quantification of
VWC will likely contribute to better assessment of forest drought re-
sponses including transpiration, mortality, and wildfire risk (Figure 1).
Given the large variations of VWC and relative water content within dif-
ferent tree components and across species, this quantification must take
into account variations in VWC across vertical and horizontal scales.

2.3 | Measurement challenges for plant
water status

For decades, manual plant water potential observations (e.g., using a pres-
sure chamber, Scholander et al., 1965) have played a central role in our un-
derstanding and quantification of tree water status, especially at the site
level (Cavender-Bares & Bazzaz, 2000; Tardieu & Simonneau, 1998; Tyree
& Sperry, 1988). However, they are destructive measurements that are par-
ticularly challenging in tall forests where access to canopies leaves is lim-
ited. Consequently, these data are typically collected at weekly to monthly

FIGURE 1 Changes in water content drive forest changes at
diurnal (inner ring), seasonal (middle ring), and decadal (outer ring)
timescales. Across decadal-scale responses, declines in VWC can
lead to mortality and/or fire. VWC will also increase in concert with
successional dynamics. Across dry and wet seasons, forest VWC
evolves through both phenology and de-/rehydration. Lastly, VWC
has a strong diurnal cycle driven by the diurnal cycle of ET

temporal resolutions, which may be sufficient to resolve dynamics linked
to soil water drying, but are too coarse to capture variability in plant water
status at diurnal timescales. Continuous, automated measurement of stem
and leaf water potential is possible for some species with psychrometry
(e.g., Guo et al., 2020), but these instruments are expensive, require sub-
stantial maintenance, and their use is not yet widespread. Moreover, unlike
observations of water fluxes possible using micrometeorological and sap
flux approaches, time series of plant water potential have yet to be col-
lected and standardized in databases and networks, hindering synthesis
of information across sites. Finally, even within a site, leaf and stem water
potential measurements are also generally limited to individual trees, and
scaling to the entire stand can be challenging, particularly in ecosystems
with multiple species across multiple edaphic conditions. This difficulty in
scaling hinders efforts to harmonize species-specific observations to those
from eddy covariance flux towers (which typically have footprints on the
orders of 108-10” m?, Chu et al., 2021). These measurement difficulties
also determine the scarcity of information about water potential-water
content relationships (usually determined using pressure-volume curves
or P-V curves) across species and tree components. Because P-V curves
are most often determined destructively, information on P-V curves is rela-
tively abundant only for leaves, while very little is known about the equiva-
lent properties of bark tissues and roots.

Direct measurements of vegetation water content can be less
labor intensive and more cost effective, facilitating increased spa-
tial and temporal observation. For wood water content, micron-
scale dendrometers can be automated and used to infer water
content after detrending (Peters et al., 2021; Pfautsch et al., 2015).
Reflectometry (TDR and FDR) and capacitance-style sensors can
provide automated measurements of dielectric permittivity, which
can be directly converted to water content (Holbrook & Sinclair,
1992; Matheny et al., 2015; Wullschleger et al., 1996). However,
these sensors are sensitive to differences in wood density, and
should be calibrated for use in different species (Matheny et al.,
2017). Unlike for woody tree components, there is no commonly
used direct, non-destructive measurement technique to determine
leaf water content. In situ spectroscopy is sensitive to leaf water
content (Browne et al., 2020; de Jong et al., 2014), but also requires
species-specific calibration. At larger scales, VWC from microwave

remote sensing could be used instead of ground measurements.

3 |
vwc

MICROWAVE REMOTE SENSING OF

Several remote sensing techniques allow monitoring VWC or proxy
measures of VWC with different levels of precision. These measure-
ments cover a wide range of the electromagnetic spectrum, ranging
from optical spectral imaging (Asner et al., 2016; Ustin et al., 2012)
to thermal infrared imaging (Jones et al., 2009), to active (radar)
and passive (radiometer) microwave sensing (Konings et al., 2019;
Vermunt et al., 2020). Microwave frequencies are arguably the most
useful for systematic measurement of VWC because of their all-time
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observational capabilities during day and night and irrespective of
cloud cover, and the ability to penetrate beyond the top few millim-
eters of the forest canopy. This avoids systematic biases that would
occur if only cloud-free periods can be measured. Observations il-
lustrating the sensitivity of microwave remote sensing observations
of VWC at different timescales are shown in Figure 2. However, no
current spaceborne system is dedicated to systematically observing
VWC and its changes due to water stress. We discuss prospects
for a new spaceborne system, with the aim to provide estimates
of VWC at sub-daily temporal resolutions to resolve the dynamic
physiological response of vegetation to water stress, in Section 7.

3.1 | Theoretical basis

Microwave remote sensing measurements respond directly to
changes in VWC due to their sensitivity to the dielectric constant
and thus to free water volume (i.e., water that is not chemically
bound) in vegetation (including leaves, branches, stems) (Ulaby &
El-rayes, 1987). Depending on the electromagnetic frequency, the
depth of penetration of microwaves into the forest canopy may vary
(Figure 3). The sensitivity to VWC is expressed as the mass of water
per ground area (i.e., in units of kg water/m?) (Schmugge & Jackson,
1992). The main observation of VWC from active and passive micro-
wave remote sensing is through the vegetation optical depth (VOD),
which is a measure of how much the VWC attenuates the microwave
signal from the soil surface (Frappart et al., 2020; Konings et al.,
2019). The theoretical basis for this relationship and typical retrieval
approaches are reviewed extensively in Frappart et al. (2020).

FIGURE 2 Variations of radar
backscatter measurements across

the Amazon Basin. Radar backscatter
coefficients at Ku-band are used as

a proxy for changes of canopy water
content showing: (a) spatial variations as
an RGB color composite of QuikSCAT
(QSCAT) radar backscatter in the months
of April, July, and October capturing
regional and seasonal changes, (b)
seasonal cycle of QSCAT backscatter (d)
averaged across two regions in southwest
and northeast of the Amazon, (c) diurnal

QSCAT backscatter
RGB: April, July, October Jan Apr Jul Oct Jan
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Vegetation optical depth is a dimensionless quantity, with
higher values indicating more attenuation and hence a larger
quantity of VWC. VOD is often assumed to be linearly related
to VWC (Jackson & Schmugge, 1991) with a coefficient depend-
ing on the frequency of observation, forest type, and structure
(height, biomass density, and gap size). Studies comparing micro-
wave sensing to in situ measurements of VWC have been able to
establish the linear relation for a wide range of vegetation types
(van Emmerik et al., 2015; Jackson & Schmugge, 1991; Sharma
et al., 2020). Note that direct retrieval of VWC—rather than a
quantity proportional to VWC—has not yet been performed at
global scale. Nevertheless, the linear relationship between VOD
and VWC has enabled a range of applications such as detection
of water stress in forest ecosystems (Frolking et al., 2011; Rao
et al., 2019; Saatchi et al., 2013), quantification of the diel cycle
of VWC (van Emmerik et al.,, 2015; Konings, Yu, et al., 2017;
Schroeder et al., 2016), and estimation of seasonal changes of
VWC related to phenology (Tian et al., 2016; Wang et al., 2020;
Xu et al., 2015).

3.2 | Challenges and opportunities for
estimation of VWC from remote sensing

While applications of microwave vegetation remote sensing
are growing rapidly, some long-standing challenges remain. At
ecosystem-scale resolutions, VWC depends not only on water
stress but also on seasonal to interannual changes in biomass
(Brandt et al., 2018; Konings et al., 2021; Liu et al., 2015). Changes in
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FIGURE 3 Microwave remote sensing is able to observe water content in forests. The canopy layers represented in each measurement
(the penetration depth) varies across different microwave frequency bands (and thus different wavelengths), as show through different red
and blue electromagnetic waves. Observations represent deeper areas of the canopy as wavelengths increase (and frequencies decrease)
from Ku-band across X-, C-, and L-bands to P-band. Higher frequencies are most sensitive to leaves and branches while lower frequencies
also have increasing sensitivity to trunks and soils. Red waves represent transmissions on a radar system while blue waves represent the
returns, with dots at the end of each wave representing different magnitude backscatter coefficient measurements depending on the water
content (colorbar) of the different vegetation components each wavelength is sensitive to. If only the blue waves are considered and the
dots are interpreted as measurements of VOD, the figure is representative of a radiometer system instead

relative water content can be disentangled from changes in phenol-
ogy and biomass by considering diel or other short-term timescales,
as further discussed in Section 4. Nevertheless, this complicates in-
terpretation of VWC observations.

Because microwave remote sensing is sensitive to both VWC
and soil moisture, retrieval algorithms are needed to separate
these two factors. However, most operational retrieval algo-
rithms represent the VWC as consisting of a homogenous cloud
of water droplets, which neglects the roles of vertical and hor-
izontal variations in water content, canopy gaps, surface water
from dew and rainfall interception (Xu et al., 2021), etc. Not only
do these simplifications risk incurring retrieval or interpretation
errors for both existing datasets and future VOD retrievals, they
also cause a missed opportunity. Because the sensitivity of mi-
crowave observables to these factors varies based on frequency
and polarization (Baur et al., 2019), heterogeneity in water con-
tent across different heights in the canopy could in theory be
accounted for. If overlapping observations at multiple electro-
magnetic frequencies are available, these could then be com-
bined to determine water content across different heights in
the canopy. However, doing so will require more sophisticated
electromagnetic models (Saatchi & Moghaddam, 2000; Steele-
Dunne et al., 2017), which in turn require detailed information
about tree and forest structure. Recent progress in remote
sensing-derived vegetation structure information may be able to
help fill this gap (Dubayah et al., 2020; Quegan et al., 2019; Yu &
Saatchi, 2016). A more mechanistic understanding of microwave

observations will also offer more synergies with optical and
spectroscopic methods (Bohn et al., 2019), which are most sensi-
tive to the upper layers of the canopy and can therefore provide
complementary information to deeper microwave observations.
In the case of passive microwave observations, it may also enable
better accounting for changes in temperature across the canopy,
and associated improvements in retrieval accuracy (Parinussa
et al., 2016). However, further development of more advanced
retrieval approaches will require coordinated field campaigns
for calibration and validation, including non-destructive ground-
based samples of water content such as those in Section 2.3. If
the relationship between water content and (leaf or xylem) water
potential can be quantified (Section 5), existing water potential
measurements—while sparse—could also be used in validation
field campaigns. Indeed, given the sparsity of ecosystem VWC
measurements, additional validation field campaigns would also
be useful for validating existing VOD retrieval methods.

Lastly, existing satellite observations of VOD from radiome-
ters (Du et al., 2017; Konings et al., 2017; Moesinger et al., 2020;
Wigneron et al., 2021) and scatterometers (Frolking et al., 2006)
can be noisy when only individual measurements are considered.
Furthermore, they have coarse spatial resolution (25-50 km) and
cannot reliably separate changes of VWC from other disturbance
and recovery processes associated with canopy cover and biomass.
The applications of these measurements will improve substantially
if the spatial resolution of the observations reaches the landscape
scale (100-1000 m) (Martinez-Vilalta & Lloret, 2016).
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3.3 | Pastand future sensors for VWC
observations

Despite the challenges above, our ability to monitor VWC dynam-
ics with microwave remote sensing is currently constrained by sen-
sor availability, not by technology. Existing and planned passive
microwave observations (e.g., AMSR-E, SMAP, and CIMR) and scat-
terometers (e.g., QuikScat and ASCAT) at different electromagnetic
frequencies provide long-term coarse resolution observations to
monitor soil and vegetation water status regionally, while less fre-
quent but high-resolution synthetic aperture radar measurements
(e.g., Sentinel-1 (Torres et al., 2012), NISAR (Kumar et al., 2016)) help
to quantifying landscape-scale variations of VWC. However, the
greatest limitation of existing spaceborne measurements from sun-
synchronous orbits is the lack of diel observations of VWC that can
be directly linked to the plant physiology and to water and carbon ex-
change. At such timescales, there is minimal influence from changes
in phenology and forest structure on the total ecosystem-scale VWC
(Section 4). Microwave observations from RapidScat onboard the
International Space Station (van Emmerik et al., 2017; Konings, Yu,
et al., 2017) and from ground-based tower systems (Holtzman et al.,
2021; Monteith & Ulander, 2018; Schneebeli et al., 2011; Vermunt
et al., 2020) have demonstrated the feasibility of quantifying the
VWC dynamics throughout the day. Thus, the ability to monitor the
diel signal of VWC is driven by the orbital choices of the existing sen-
sors, not by limitations of the microwave observations’ intrinsic sen-
sitivity. Section 4 further discusses the ways different timescales of

analysis enable study of different aspects of forest drought response.

4 | DERIVING PROCESS UNDERSTANDING
FROM VWC

4.1 | VWCinformation depends on analysis
timescales

Remote measurements of VWC can extend process-level under-
standing in forests by leveraging variation in VWC in space and time.
VWoC integrates processes associated with water storage and fluxes
of different forest water reservoirs (leaf, wood, soil) at different
timescales. We therefore posit that measuring VWC dynamics can
be crucial for understanding, quantifying, and modeling ecological
and hydrological processes at roughly three timescales (Figure 4).
At the timescale of multiple years to decades (Figure 4e), VWC
patterns largely reflect forest biomass and structure (Konings et al.,
2019; Liu et al., 2013, 2015). Thus, spatial patterns in VWC can shed
light on variation in biomass, canopy structure, biome boundaries,
and species-level traits that influence water content (e.g., wood
density (Gentine et al., 2016; Araujo et al., 1999)). The sensitivity of
VWC to aboveground biomass can inform disturbance and land-use
change dynamics (Liu et al., 2015; Pugh et al., 2019) and potentially
slower, non-disturbance shifts in demographic rates such as succes-
sion or climate-driven increases in mortality that lead to changes in
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species composition (Anderegg et al., 2020; Trugman et al., 2020;
van Mantgem et al., 2009). Multi-year averaged measurements of
VWoC can therefore provide a powerful set of measurements for spa-
tial scaling and quantifying ecological dynamics—particularly those
related to biomass, rather than water content or physiology alone
per se—at biome, continent, and global scales.

At the timescale of multiple weeks to months (Figure 4a-c), VWC
dynamics may reflect progressive dehydration of multiple tissues
of trees associated with changes in soil water potential and xylem
function, as well as changes in forest leaf area index caused by leaf
shedding or leaf flushing (Frolking et al., 2011; Jones et al., 2011,
Konings et al., 2019; Tian et al., 2017). Assuming a threshold-type
response (Section 2.2), VWC may therefore be useful to assess the
risk of drought-induced forest mortality and flammability risk. The
slope of VWC curves during prolonged droughts and after post-
drought precipitation events may also be used as metrics to compare
community-level drought resistance and recovery capacity (Asefi-
Najafabady & Saatchi, 2013; Suding & Hobbs, 2009). More gradual
slopes likely means that the tree cover has more mechanisms that
minimize dehydration, indicating higher resistance.

At diel timescales (Figure 4d), changes in biomass are slow and
VWC dynamics reflect the balance of transpiration and root water
uptake, as well as redistribution of water through trees (van Emmerik
et al., 2017; Konings, Yu, et al., 2017). These timescales are thus
most closely affected by root, xylem, and stomatal responses to dry-
ing soil and air. As a result, VWC observations at diel timescales are
arguably best able to isolate the effects of water stress. VWC vari-
ations across the diel cycle are also closely related to belowground
processes, which are difficult to disentangle at other timescales (see
Section 6). The shape of the diel cycle of VWC can be used to de-
tect water stress (Nelson et al., 2018), before it is detectable through
other leaf properties. Therefore, the diel dynamics of VWC also hold

promise as an early warning signal for forest risks.

4.2 | Complementary measurements to improve
VWC interpretation

By combining VWC measurements with complementary field and
remote sensing data, we can vastly improve process-level under-
standing in forests across multiple timescales. At the timescales
of multiple years to decades, data on species composition, forest
structure and biomass, demography, and disturbance history could
be used to test for species-, age-, or disturbance-dependent re-
sponses to drought in forests (Hanson & Weltzin, 2000; Zhang et al.,
2018). Disentangling the sources of within- and cross-ecosystem
variability in patterns of VWC is facilitated by observations of fac-
tors such as soils and topography and canopy structural attributes
like leaf area index and vertical architecture. At the intermediate
timescales of multiple weeks to a month, soil moisture and meteoro-
logical conditions and phenology are the major constraints on VWC
dynamics. Additional measurements such as volumetric soil mois-

ture, temperature, precipitation, and vapor pressure deficit, along
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FIGURE 4 What can vegetation water content tell us about plant stress? The absolute value of VWC (panel a, shown as mid-day values)

is difficult to interpret without context about its maximum and critically limiting values (e.g., the VW(Ccritical). For example, while Ecosystem

B initially has higher absolute VWC than Ecosystem A, its VW(Ccritica is also higher. When VWC is expressed as a relative value compared to
the seasonal maximum (panel b), Ecosystem B emerges as consistently more stressed than A, with the difference between the two reflecting
traits, structure, as well as environmental states (soil water potential, VPD). The time derivative of relative VWC (panel C) illustrates that the
time change in VWC can be zero for both very stressed and very unstressed ecosystems, but the change in d|VWC]|/dt over periods of weeks

to months is highly informative of the ecosystem water status. On the right side, panel (d) shows differences in the diurnal amplitude of relative
VWC for ecosystems experiencing little stress (A), intermediate (A1), and more severe stress (B). Panel (e) shows long-term (interannual) changes
in absolute VWC attributable to succession, disturbance, and demographic shifts

with phenology-related data, can provide crucial context. At diel
timescales, complementary measurements related to canopy com-
position and biomass dynamics are less necessary and less useful.
Surface soil moisture dynamics and evapotranspiration estimates
(or more directly, thermal imagery sensitive to evapotranspiration)
may provide complementary information about the water distribu-
tion through the soil-plant-atmosphere continuum at remote sens-
ing scales. Observations and estimates of canopy water content
from dew or rainfall interception will also be useful, to remove these
signals from the observed VWC proxies (Binks et al., 2021; Vermunt
et al., 2020; Xu et al., 2021). Additionally, analyses based on diel
variations in VWC may be constrained based on functional trait data
(i.e., hydraulic traits), where available (Trugman et al., 2020).
Beyond complementary datasets, process models are a necessary
counterpart to VWC measurements to enable interpretation of VWC
patterns and its underlying mechanisms (Xu et al., 2021). Models can
also benefit from the constraints that VWC can place upon their inter-
pretation, and thus model-measurement integration is a win-win sit-
uation. The type of models that can integrate VWC information most
effectively are hydraulically enabled (e.g., Christoffersen et al., 2016;
Kennedy et al., 2019; Li et al., 2020; Mencuccini et al., 2019), and
would be able to simulate water pools (Martinez-Vilalta et al., 2019).

Such models can operate over a range of spatial scales and on times-
cales that span minutes to years, enabling process understanding of
VWOC over short to long timescales. Examples of model-data benefits
include the opportunity to examine the role of community-scale plant
water storage and capacitance (simulated via models) in regulating
the observed VWC variation, understanding how transpiration rates
may drive variation in observed VWC, or understanding belowground
controls on water uptake (as further discussed in Section 6). To link
models and data, an ecosystem-scale water release curve could be
generated in which VWC is the dependent variable and simulated
community-scale water potential is the independent variable. Such

curves are further discussed in the next section.

5 | SCALING WATER CONTENT TO
ECOSYSTEM SCALE

5.1 | An ecosystem-scale pressure-volume curve

In order to use VWC as a constraint on plant hydraulic models that

simulate the dynamics of water potential (¥), the relationship be-
tween ¥ and VWC must be known at the ecosystem scale. As a
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thermodynamic property of the water itself (i.e., its free energy), the
Y can be averaged at any scale and across media, enabling the con-
sideration of an instantaneous ¥ for a cell, a leaf, a shoot, a branch,
or a tree (Pallardy et al., 1991; Scholander et al., 1964), or potentially,
the whole ecosystem. Given the spatial scale of remote sensing ob-
servations, estimating ¥ from orbit would require ecosystem-scale
Y-WC curves (eco Y-WC; pronounced, ecopsych). Such curves can
be conceived as large-scale analogs of tissue-scale P-V curves:
graphical plots of the relationship between relative or absolute
water content and ¥, commonly constructed by dehydrating leaves
or stems (Richter, 1978; Scholander et al., 1964; Tyree & Hammel,
1972). They are also analogous to soil water retention curves (Hillel
2013). The earliest conceptualization of a P-V curve was applied to
twigs and leaves, and recognized the potentially large variability in
water retention properties of the constituent living cells, but showed
that cellular-level P-V curves follow a remarkably similar form to that
of the bulk P-V curve (Tyree & Hammel, 1972). We argue that the
scale jump from organ-level P-V curves to the canopy is no greater
than from cells to organs, and as such, the eco W¥-WC concept is more
than possible, it is inevitable.

Notably, even for one ecosystem at any moment in time, the
eco P-WC would consist of a family of curves, each dependent on
the spatial scale being used to average ¥ and VWC, and on fluxes
through the system that influence the relative distribution of water
among individual trees, and within trees, among cells and organs.
When modeled comprehensively and given enough spatial resolu-
tion, the eco ¥-WC could enable a full three-dimensional suite of
Y-WC relationships, at a range of scales (per leaf area, ground area,
volume, or mass; by canopy layers, plant organs, sizes or species;
scanning layers vertically vs. integrating across volume). Across the

suite of possible eco W-WC curves, some may be especially powerful

TABLE 1 Applications of remotely sensed vegetation water content, relative water content at ecosystem scale (VWC
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for particular applications, which there are potentially a wide range
of (Table 1, see also Section 2). Indeed, the fine-scale distribution
of canopy VWC and ¥ gained from eco ¥-WC curves would allow
assessing (1) the allocation of water throughout the forest includ-
ing shifts in storage (e.g., wood swelling (Pfautsch et al., 2015));
(2) water status thresholds for loss of function throughout the
ecosystem (Martinez-Vilalta et al., 2019; Sack et al., 2018; Trueba
et al.,, 2007), (3) the driving forces for water movement; and (4), with
knowledge of hydraulic conductances and capacitances, the water
flows throughout the ecosystem (Figure 5). Furthermore, there is
potential to extract parameters from eco W-WC curves, analogous to
those extracted from leaf P-V curves, to enable the consideration of
how whole ecosystem drought resilience and its determinants shift
over the course of the day and seasonally, and how ecosystem-level
drought responses vary across ecosystems of different diversity, cli-
mate, or soil type.

The time of day considered affects the utility of eco ¥-WC curves.
At predawn and midday or early afternoon, they may provide espe-
cially informative snapshots. Eco W-WC curves estimated at predawn
have the advantages of simplicity and stability because, at equilibrium,
flows through the system will not affect the distribution of water, and
the root-zone soil ¥ will also be indicated. Predawn ¥ may best yield
certain thresholds for determining ecosystem function (e.g., wood
growth, plant maximum hydraulic conductance) (Cabon et al., 2020).
By contrast, midday or early afternoon eco W-WC curves include the
near minimum ¥ and WC values, corresponding to the strongest diel
drought stress (with the exact time of greatest stress variable de-
pending on ecosystem type and meteorological conditions). Because
the ways in which eco W-WC curves can be used vary by time of day,
diurnally variable observations of VWC may be particularly useful for

forest drought stress studies analyzing ecosystem-scale ¥ variations.

«co» NOrmalized by its

maximum value), water potential (¥), and the ecosystem ¥-WC curve (eco ¥-WC)
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eco

- Thresholds for stomatal control,
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mortality, etc., for a given tree or
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distribution
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dynamics with time,
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- Can be directly
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- Transfer function for data assimilation
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FIGURE 5 Vertical distributions of tissue-specific water
retention properties (RWC - ¥ curves), biomass, and sensor
penetration depth all jointly determine remotely sensed water
content and its temporal variation. Several hypothesized curves
delineating gradients of capacitance, defined as the change

in relative water content relative to that of water potential

(C = ARWC/AY) are shown. Therefore, temporal variation in
remotely sensed metrics of VWC will be determined not only by
temporal variation in ¥, but by potentially large differences in
the exchangeability of water in response to changes in ¥ across
different plant tissues, and the response of sensor penetration
depth to changes in water content

5.2 | Determining eco ¥-WC curves

To derive the eco W-WC, one must apply a modeling approach to
the P-V curves of tree tissues at given times (considering each tis-
sue's water storage capacity and elastic properties), and scale these
up based on forest structure (tree volume; tree sizes; allometries
for roots, stems, and leaves; water content distribution) (Figure 5).
Furthermore, the model must be dynamic, as ¥ will depend on the
flow rate and hydraulic conductances and capacitances throughout
the soil-plant-atmosphere continuum. While VWC is usually meas-
ured as the mass of water in vegetation per unit ground area, the
relative water content (RWC), which normalizes tissue water content
by the maximum (i.e., turgid) water-holding capacity of vegetation,
better allows comparisons across organs, species, growth stages,
and scales, and may thus be the more useful quantity for use in an
eco W-WC curve. To determine relative water content from abso-
lute water content, a saturation water content must be estimated.
One approach to measuring canopy RWC is to normalize VWC by
its annual or seasonal maximum (resulting in a relative vegetation
Rao et al., 2019) while

accounting for changes in aboveground biomass, for example, from

water content at ecosystem-scale, VWC__;
leaf abscission during a drought event. This accounting requires
ancillary information on phenology. It is also important to consider
whether leaf surface water is included in the eco ¥-WC curve, or
separated during the remote sensing retrieval of VWC (see Section

3.2). Along with tissue-level scaling (including for components such
as bark or roots, for which P-V curves may not be as readily available
as for leaves, see Section 2.3), information about canopy structure
and diversity is needed to scale from trees to ecosystems. Structure
and diversity information may be derived from a combination of for-
est inventories and remote sensing, including from ground, airborne,
or space-based lidar.

In order to relate eco ¥Y-WC curves to microwave retrievals
of VWC, we need information on the vertical structure of the
canopy and the frequency-dependent penetration depth of VWC
observations (Figure 4e-h). Because, at a given electromagnetic
frequency, microwaves also pass farther through canopies with
less water (Section 3.1), the effective depth that a given VWC
measurement represents is likely to vary in space and time, par-
ticularly during a drought. To account for penetration depth vari-
ations, different eco ¥-WC curves be built to apply to specific
electromagnetic frequencies. Once created, eco ¥-WC curves
should then enable linking remotely sensed VWC to models,
leading to improved quantification of plant traits, belowground
variables (as further discussed below), and other factors affecting

ecosystem drought response.

6 | INFERRING BELOWGROUND
ACTIVITY FROM ABOVEGROUND VWC
OBSERVATIONS

A complete description of forest responses to drought requires ac-
counting for several belowground factors, including the regulation of
root water uptake, its three-dimensional distribution, or competition
among differing rooting systems, among others (Manoli et al., 2017).
However, remote sensing measurements are currently unable to
measure soil water or water fluxes in the root-zone directly. Instead,
belowground conditions must be inferred from aboveground infor-
mation, such as VWC observations. This can be achieved through an
inverse approach based on the analysis of aboveground conditions
linked to belowground processes. When doing so, the complexity
of the belowground mechanisms that are accounted for can span
a wide range (Figure 6). Conventional ecohydrological models that
seek to infer belowground conditions without considering VWC
(assuming a single land surface water pool, e.g., n=1 in Figure 6)
implicitly consider root water uptake to be in balance with transpira-
tion (Chitra-Tarak et al., 2018; Dralle et al., 2020; Fan et al., 2017;
Kleidon, 2004), and therefore cannot resolve root water uptake vari-
ations that deviate from transpirational demand (Chuang et al., 2006;
Hollinger et al., 1994; Phillips et al., 1997). Even non-linear models
that account for, for example, rooting depth changes with soil water
content or the influence of biomass are not able to separate out root
water uptake from transpiration if they do not account for VWC.
We therefore argue that accounting for VWC (n = 2 in Figure 6) is
a necessary first step in inferring belowground conditions. If VWC
observations across different vegetation layers are available (n =2 3 in
Figure 6), this will enable greater detail in the inferred belowground
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conditions, such as soil water content variations across different
depth layers and hydraulic redistribution.

Inferring belowground activity from VWC dynamics requires
solving the complex interactions between water pools and water
fluxes. One approach for doing so relies on building plant hydrau-
lic models and using data assimilation or optimization methods to
constrain the parameters and states of these models (Liu et al.,
2020; Mirfenderesgi et al., 2016). As with any data assimilation/
optimization method, innovations in the assimilation/optimization
technique and cost function specification (i.e., which mathematical
function is optimized) may further improve the ability to accurately
make belowground inferences (Dietze et al., 2011; Trudinger et al.,
2007). Ensuring a reasonable balance between model parsimony
(e.g., making sure the number of degrees of freedom of the model
is not much greater than that of the observations) and model com-
plexity (to ensure realistic dynamics can be captured) is also key
for accurate assimilation methods. Ultimately, the accuracy of such
inferences likely inherently depends on the relative sensitivity and
information content of different observations, including the VWC

estimates. Nevertheless, some early applications of data assimilation
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with remotely sensed VWC estimates show this approach has prom-
ise (Liu et al., 2021; Liu et al., 2021). In each of these studies, obser-
vations at two times a day were used, but a more complete diel cycle
may act as an even stronger constraint.

As an alternative to computationally expensive data assimila-
tion methods, additional information may be gained by considering
the phase dynamics of soil and VWC (Figure 6). At any given time,
the evolution of both soil and VWC is influenced by sap flow, plant
water storage (in particular VWC) and other factors (i.e., precipita-
tion, transpirational losses). The sap flow, in turn, depends on both
the soil and vegetation water content (both through the potential
gradient between each, and through VWC's influence on xylem con-
ductance). Thus, for each of soil water content and VWC, the evolu-
tion of one water pool depends on the value of the other pool at any
given amount of time. This state dependence inherently generates a
hysteresis across diel timescales, as illustrated in Figure 7 (Lin et al.,
2019; Zhang et al., 2014). With increasing data availability of VWC
and (surface) soil water dynamics from remote sensing products,
analysis of this hysteresis and the phase dynamics more generally

can be used for detecting lags and tipping points. A specific example
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allows for inference of vegetation water uptake based on the timing and magnitude of the hysteresis. Figure adapted from Strogatz (2015)
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of such a phase dynamical analysis is mathematically illustrated
through an analogy with the much-studied predator-prey (also
known as Lotka-Volterra) ecological model (Wangersky, 1978) in the
Data S1 (where VWC is the predator in the Lotka-Volterra analogy,
which preys on root-zone water content). Development of simplified
mathematical models such as these will enable more sophisticated
phase dynamics interpretations using VWC or even multi-layer VWC
datasets, if those become available (Section 3.2). Taken together in a
suite of work with data assimilation and inference approaches, VWC
analyses can therefore generate significant progress in determining
belowground hydrological activity with remote sensing at global
scale.

7 | THE NEED FOR SPACEBORNE DIEL
OBSERVATIONS

In this section, we reflect on the value of current satellite measure-
ments of VWC and then consider what satellite observational strat-
egy might be most useful for understanding how forest ecosystems
respond to drought in a changing climate. As discussed in Section 3,
existing observations of VWC from space are mainly based on op-
portunistic analyses of measurements originally designed and used
for other science applications. These datasets have been used for
many studies of forest drought responses. However, they are all lim-
ited by a particular set of measurement characteristics. For example,
most of these satellites are in sun-synchronous orbits, which results
in an overpass at each location on earth at a consistent time of the
day, which is usually around 6:00 AM and PM or around 1:30 AM
and PM, depending on the sensor. The sensor revisits every loca-
tion on earth every 2-3 days, but only two particular times of day
are ever observed. This prevents a full view of the diurnal cycle. In
terms of spatial scale, available microwave remote sensing datasets
of VWC exist at a range of resolutions (tens of meters to tens of
kilometers), depending on the sensor type (radiometers, scatterom-
eter, synthetic aperture radar (SAR)). However, a trade-off exists.
Relatively coarser datasets from radiometers and scatterometers
have spatial resolutions of tens of kilometers, but are designed
such that they revisit each location every few (2-3) days. By con-
trast, SAR sensors are able to obtain observations at scales of tens
of meters, but only revisit a given location infrequently, often in an
irregular fashion and usually averaging only a few (1-3) observa-
tions per month in any given location. Some sensor combinations
provide observations more frequently, but only over small areas
(e.g., Sentinel-1 over Europe (Torres et al., 2012)). Furthermore, not
all SAR instruments measure multiple polarizations in all observing
modes. Measurements of different polarizations are required to
disentangle the contributions of soil moisture and vegetation to ob-
served backscatter. Additional polarizations may also further be use-
ful to separate VWC from vegetation structural changes. Although
VWC has been successfully retrieved from different combinations
of possible polarizations (e.g., VV and VH from Sentinel-1 (Han et al.,
2019; Rao et al., 2020; Vreugdenhil et al., 2018), or VV and HH from

QuikScat (Oveisgharan et al., 2018)), more research is needed to bet-
ter understand the relative value of different polarizations and the
optimal design of retrieval algorithms.

We recommend, at a high level, alternative satellite observations
that can address several scientific measurement requirements to de-
tect forest water stress and response to droughts. First, to predict
how transpiration responds to droughts, it is necessary to quantify
the influence of vegetation water content on stomatal conductance.
This requires measurements of VWC throughout the day because
the time of maximum vegetation water stress varies significantly
from day to day, and because the shape of the diurnal cycle of VWC
allows differentiation between the effects of limitations in root water
uptake, transpiration, and redistribution of water storages through
the canopy. Therefore, frequent observations of VWC throughout
the day, at least every few hours, will allow for quantifying the re-
sponse of plant stomatal conductance to water stress. Moreover,
as discussed in Section 2.2, tree mortality and forest flammability
have been shown in a few studies to have a threshold-like response
to declines in VWC. Whether such threshold-like behavior holds
at ecosystem scale and how such thresholds vary across biomes is
unknown. Again, observations of the diel cycle will ensure that the
periods of maximum VWC stress—where VWC is most likely to de-
crease below any thresholds—are determined. Beyond capturing the
diel cycle, the revisit times between days of observations should also
be sufficiently small so as to ensure periods of maximum stress are
observed. Additionally, the temporal observations of VWC must ex-
tend across seasonal cycles of water availability to allow separation
of the impacts of long-term droughts from climatological seasonal-
ity, and must include multiple years of observations to capture both
episodic climate extremes, interannual variability of forest canopy
dynamics, and long-term gradual climate stress. A long enough inter-
annual observational record across large (e.g., continental to global)
scales would enable determination of the factors driving how well
and how fast biomes adapt to shifts in climate and seasonality.

The needs identified above—for diel observations with fre-
quent revisit and over an extended period of time—suggest that a
geostationary platform (rather than the typical sun-synchronous
orbits previously used for microwave satellites) would be needed to
better quantify forest responses to drought. Furthermore, for each
of the above applications, observational datasets would be partic-
ularly useful if they were able to distinguish landscape-scale (e.g.,
kilometer-scale) spatial variations, to allow detection of landscape-
scale variations of forest ecosystem response to water stress that
depend on edaphic conditions, topography, forest structure, and
land use history. At the high altitude of geostationary orbits, pas-
sive microwave radiometer systems cannot provide the required
spatial resolutions. However, recent developments in radar tech-
nology, particularly at X- and Ku-band frequencies (1-3 cm wave-
length) provide an excellent opportunity for relatively high-spatial
resolution observations from a geostationary platform (Rodriguez
et al., 2019; Xiao et al., 2020). Alternatively, a collection of small-
sats (cubesats or other similar size classes) with different daily
observation times could also potentially achieve the required
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FIGURE 7 Example phase diagram of simulated dynamics

of VWC and root-zone soil moisture content for a model test

bed site in an Amazon moist forest using a hydraulics-enabled
terrestrial biosphere model (ED-2.2-hydro, Xu et al., 2021). The
diurnal hysteresis (closed curves in black between VWC and soil
water cannot be captured with traditional ecohydrological models
that consider a single land surface water pool (n=1 in Figure 6).
Such hysteresis can only be explained with a two(or more)-pool
framework (n>=2 in Figure 6), which further allows for inference of
vegetation water uptake based on the timing and magnitude of the
hysteresis

temporal and spatial resolution (e.g., the Capella Space constel-
lation (Stringham et al., 2019)). Each individual satellite could be

placed in a sun-synchronous orbit, but combining observations
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from multiple instruments would still enable observations of the
full diurnal cycle. This approach has been successfully used to in-
crease observational frequency by the Cyclone Global Navigation
Satellite System (CYGNSS) (Ruf et al., 2019). Given the multiple
potential approaches for developing spaceborne observations
of VWC at diurnal cycles (although note the remaining technical
challenges associated with retrieval algorithms, see Section 3.2),
further research is needed to determine the best technological
solution. Using the relatively high X-band or Ku-band frequencies
will enable higher spatial resolution and reduce the effect of soil
moisture on the radar backscatter observations, increasing retrieval
accuracy. RapidScat radar observations at Ku-band have previously
been shown to successfully capture diel dynamics of VWC (van
Emmerik et al., 2017; Konings, Yu, et al., 2017). Furthermore, at
X-band, cross-comparison with existing sun-synchronous datasets
at times of near overlap (Du et al., 2017; Moesinger et al., 2020)
could be used for calibration of the VWC retrieval algorithm. If
technologically feasible, multiple electromagnetic frequencies
could also be combined in a single observing platform to enable de-
termination of VWC across multiple layers of the canopy (Section
3.2). We note that a geostationary platform would not be able to
observe the entire globe, but continental coverage can neverthe-
less probe forest behavior across a range of biomes. A focus on the
Americas may be particularly useful given the diversity of biomes
and vegetation types spanned by this region and the relatively
larger number of available field measurements compared to many

other regions. Diel microwave observations of the Americas could

TABLE 2 Relationship between science and application goals and instrument functional requirements (as driven by the measurement
requirements and science and application objectives necessary to meet the science and application goals) for a proposed set of new satellite

observations

Science and applications
hypotheses

Science and application
goals

There is a water content
threshold beyond which
tree mortality and
flammability increase and
productivity decline

Science question:How
do forest ecosystems
respond to droughts
in a changing climate?

Major resistance to water
flux in forests is
determined by changes
in top-canopy water
content and its link to
available soil water.

Measurement requirements

Landscape-scale VWC of
forest ecosystems at
16 < 1-kg/m? accuracy

Diel changes of VWC at
relative accuracy of 1o
< 10%

Instrument functional
requirements

Science requirements

Radar reflectivity at X-band, Ku-band, or multiple
spatial resolutions frequency (Ku- & L-band)
of 1-3 km scatterometer or SAR

Multiple polarization (HH,

Radar reflectivity VV, HV)

geostationary platform
or collection of
smallsats that provides

during day and
night at multiple
times throughout

Application
goal:Forecasting
wildfires in forests and
impacts of droughts
on agriculture systems

Available soil water and the
atmospheric environment
will drive how well and
how fast biomes adapt to
climate change and shifts
in seasonality

VWC determines fire
fuel risk and drought
resilience of crops

Seasonal changes of VWC
at 1o < 10% relative
accuracy

Application requirements

the day observations several
times a day
Radar reflectivity at Large swath to cover North
1-3 day repeat and South Americas
o (o}
cycle over (50°N - 50°S)

minimum 3-5 years

at 1-3 day repeat cycle

Daily to interstorm Radar reflectivity at X- or Ku-band
changes of VWC at 1-3 km spatial Multiple polarizations (HH,
16 < 10% relative resolution VV, HV)
accuracy 1-3 day repeat cycle

< 1-km spatial resolution
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also benefit from existing and future geostationary measurements
covering the same area, such as solar-induced fluorescence from
the Geostationary Carbon Cycle Observatory (GeoCARB, Moore
et al., 2018) and land surface temperature from the Geostationary
Operational Environmental Satellites (Khan et al., 2021). A satellite
mission with the above characteristics could be used not only to
address the specific hypotheses discussed in the previous para-
graph, but could also be used for a number of operational applica-
tions, such as predicting crop yields in the face of water stress, or
improving fire risk models. The satellite design proposals above are
summarized in Table 2.

8 | SUMMARY

We described the potential benefits of spatially extensive and fre-
guent microwave remote sensing-based VWC measurements for
studying forest responses to drought, including for prediction of mor-
tality and fire risk. Although such data have been increasingly used to
characterize forests and their water relations, we identified several
technical and scientific developments which could significantly ac-

celerate the utility of these data. Specific recommendations include:

1. Analysis methods that consider VWC at different timescales
depending on the ecosystem process of interest: multiple years
to decades for forest biomass and structure, multiple weeks
to months for changes in leaf area and multi-day trends of
relative water content, and diel for changes in relative water
content due to plant water uptake, redistribution, and loss.

2. Development of W-WC curves analogous to branch-scale
pressure-volume curves, to relate ecosystem-scale VWC to an
effective canopy-scale water potential

3. Dataassimilation and optimization methods that can use integrate
VWC into plant hydraulic models for determination of xylem and
stomatal traits as well as belowground activity

4. Investigation of phase dynamics for characterization of below-
ground activity

5. Development of retrieval algorithms that account for surface
water and vertical variations of VWC within the canopy, rather
than retrieving only the vertically integrated, average water
content.

The approaches above should greatly accelerate the use of VWC
for forest drought responses studies even with existing datasets.
Nevertheless, to make the most progress, additional field campaigns
are necessary for validating (multi-layer) VWC retrieval algorithms
in a wide range of data types, for testing eco ¥-WC curves, and
for improved understanding of how VWC-based thresholds for
fluxes, mortality, and fire risk scale across the ecosystem. Finally,
a new geostationary mission concept providing diurnally variable
measurements of VWC, which can be integrated with existing mea-
surements, would dramatically expand the scope of available forest
drought response studies.
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