
Adaptation of Multiobjective Reservoir Operations to
Snowpack Decline in the Western United States

Jonathan S. Cohen, S.M.ASCE1; Harrison B. Zeff2; and Jonathan D. Herman3

Abstract: Long-term snowpack decline is among the best-understood impacts of climate change on water resources systems. This trend has
been observed for decades and is projected to continue even in climate projections in which total runoff volumes do not change significantly.
For basins in which snowpack has historically provided intra-annual water storage, snowpack decline creates several issues that may require
adaptation to infrastructure, operations, or both. This study develops an approach to analyze vulnerabilities and adaptations specifically
focused on the challenge of snowpack decline, using the northern California reservoir system as a case study. We first introduce an
open-source daily time-step simulation model of this system, which is validated against historical observations of operations. Multiobjective
vulnerabilities to snowpack decline are then examined using a set of downscaled climate scenarios to capture the physically based effects of
rising temperatures. A statistical analysis shows that the primary impacts include water supply shortage and lower reservoir storage resulting
from the seasonal shift in runoff timing. These challenges identified from the vulnerability assessment inform proposed adaptations to oper-
ations to maintain multiobjective performance across the ensemble of plausible future scenarios, which include other uncertain hydrologic
changes. To adapt seasonal reservoir management without the cost of additional infrastructure, we specifically propose and test adaptations
that parameterize the structure of existing operating policies: a dynamic flood control rule curve and revised snowpack-to-streamflow fore-
casting methods to improve seasonal runoff predictability given declining snowpack. These adaptations are shown to mitigate the majority of
vulnerabilities caused by snowpack decline across the scenario ensemble, with remaining opportunities for improvement using formal policy
search and dynamic adaptation techniques. The coupled approach to vulnerability assessment and adaptation is generalizable to other
snowmelt-dominated water resources systems facing the loss of seasonal storage due to rising temperatures. DOI: 10.1061/(ASCE)
WR.1943-5452.0001300. © 2020 American Society of Civil Engineers.

Introduction

In many mountainous regions, snowpack provides valuable intra-
annual water storage to support summer irrigation, urban uses,
and environmental flows (Sturm et al. 2017; Rhoades et al. 2018).
Rising temperatures due to climate change have led to long-term
declines in mountain snowpack, resulting from both changes in pre-
cipitation phase (Cayan et al. 2001; Klos et al. 2014) as well as
earlier spring melt timing (Cayan 1996). These trends have been
observed in records dating back to the mid-20th century (Mote
et al. 2005; Stewart et al. 2005; Barnett et al. 2008; Donat et al.
2013; Belmecheri et al. 2016) and are projected to continue with
high confidence (Hayhoe et al. 2004; Leung et al. 2004), making
snowpack decline one of the best-predicted impacts of climate
change (McCabe et al. 2007; Huang et al. 2018) [Figs. 1(b and d)],
despite substantial uncertainty in total runoff volumes in many river
basins. The primary impact is an intra-annual shift in the hydrologic
regime, moving streamflows earlier in the water year (Knowles
et al. 2006; Kapnick and Hall 2010) [Figs. 1(a and c)]. As this shift

continues, river basins historically reliant on snowpack storage may
require additional infrastructure; for those with existing downstream
storage infrastructure, reservoir operating policies must be adapted to
mitigate vulnerabilities associated with snowpack decline.

In the absence of adaptation, snowpack decline will lead to sev-
eral potentially severe consequences for water resources manage-
ment (Barnett et al. 2005). First, inflows concentrated in the winter
and early spring will likely lead to lower reservoir storage levels
later in the water year, eliminating flexibility for water deliveries
given fixed storage capacities (Christensen et al. 2004). This lost
storage would decrease system performance in other objectives, in-
cluding environmental flows and hydropower generation (Vicuna
and Dracup 2007). Additionally, the loss of snowmelt and resulting
seasonal streamflow shift will be detrimental to agriculture, given
conflicting intra-annual timing with irrigation demands (Qin et al.
2020). Second, an increase in rain-on-snow events, potentially
combined with more intense precipitation events, may amplify
flood risk (McCabe et al. 2007; Surfleet and Tullos 2013; Huang
et al. 2018). When coupled with the loss of snowpack storage, this
will increase the tension between flood control and water supply
operations (Knowles et al. 2006; Lee et al. 2009; Mateus and
Tullos 2017). Finally, snowpack decline will reduce or eliminate
the seasonal hydrologic predictability offered by snowpack-to-
streamflow forecasts, which historically have been quite accurate
(Koster et al. 2010; Mahanama et al. 2012; Livneh and Badger
2020). This loss of seasonal predictability may cause substantial
economic losses in the future, particularly in the agricultural sector
(Simpson et al. 2004; Pederson et al. 2011).

Vulnerability assessments are meant to evaluate the potential
impacts of long-term hydrological changes, including snowpack
decline, on water resources systems. These often involve the re-
sponse of a simulation model to an ensemble of downscaled global
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circulation model (GCM) scenarios that capture a portion of the
future uncertainty in hydroclimate variability (Christensen and
Lettenmaier 2006; Knowles et al. 2018). This type of top-down
approach is particularly relevant when climate models show broad
agreement on the direction of future change, and where the impacts
under consideration can be directly linked to physical processes, as
is the case with snowpack decline. The ensemble simulation can be
accompanied by a statistical analysis to quantify risk across the cli-
mate models and scenario definitions (Brekke et al. 2009; Goharian
et al. 2016; Mateus and Tullos 2017). Several studies have used
top-down vulnerability assessments to explore the impacts of
uncertainty across ensembles of climate models and emission sce-
narios (e.g., Hamlet and Lettenmaier 1999; Minville et al. 2010;
Karamouz et al. 2013). Conversely, bottom-up approaches (Weaver
et al. 2013) generate synthetic sequences representing potential
changes in variability and magnitude of regional hydrologic and
atmospheric variables to bypass the inherent structural and para-
metric uncertainties that propagate through climate projections,
also known as the cascade of uncertainty (Wilby and Dessai 2010).
While bottom-up scenario generation methods can parameterize the
causes of change across a range of scenarios for vulnerability as-
sessment, they may not capture long-term transient trends and com-
plex physical processes that are present in climate projections
(Herman et al. 2020). Therefore, significant opportunity exists
within top-down approaches to isolate the impacts of a particular
long-term transient change, such as snowpack decline, on the dy-
namics of reservoir systems from the broader uncertainty in total
runoff magnitude.

For river basins with downstream reservoir storage, adapting to
the hydrologic impacts of climate change will require revised

operating policies to increase efficiency before investing in new in-
frastructure (Gleick 2002; Culley et al. 2016). A subset of robust
planning studies explores adaptations to system operations under cli-
mate change, combining simulation or optimization models with
downscaled runoff projections or synthetic scenarios (Wilby and
Dessai 2010; Herman et al. 2015). Unlike vulnerability assessments,
these studies rely on designing new policies for adaptation—a
change in operations that has the potential to mitigate climate vul-
nerabilities or the impacts of uncertainty. We group adaptation stud-
ies into three subsets: first, those that adapt to future exogenous
hydrologic uncertainty associated with transient climate change in
projection ensembles (e.g., Georgakakos et al. 2012; Steinschneider
et al. 2015); second, studies that propose adaptations to climate
change scenarios with specific isolated properties (i.e., drier scenar-
ios, increases in floods) (e.g., Medellín-Azuara et al. 2008; Wilby
and Keenan 2012); and lastly, studies that aim to mitigate impacts
of thermodynamic climate change (i.e., due to rising temperatures)
including sea-level rise and seasonal streamflow shifts (e.g., Willis
et al. 2011; Mateus and Tullos 2017; Sterle et al. 2020). An oppor-
tunity exists to synthesize these three approaches. Given the high
confidence in predicting thermodynamic changes and their conse-
quences, adaptations specific to those changes can be proposed after
formally isolating their impacts on system objectives. This would be
followed by an assessment of adaptation performance with respect to
both exogenous dynamic uncertainty across an ensemble, as well as
to specific transient properties of individual scenarios.

This study develops this synthesized adaptation approach in
order to isolate and mitigate system vulnerabilities that result from
a specific physical impact of climate change projected with
confidence—in this case, snowpack decline. An ensemble of

(a) (b)

(c) (d)

Fig. 1. (a) Daily streamflow displaying an intra-annual streamflow shift; and (b) monthly basin-averaged snow water equivalent (SWE) showing
snowpack decline in a single downscaled hydrologic scenario (NOAA GFDL-CM3, RCP 8.5). Historical (1996–2018) and climate projection en-
semble averages over time of (c) average monthly streamflow; and (d) monthly basin-averaged (SWE). (Data from Brekke et al. 2014.)
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downscaled GCM scenarios represents uncertainty in transient
streamflow and precipitation trends while also containing varying
magnitudes of temperature rise and physical snowpack decline
trajectories. We use a new daily time-step model of the northern
California reservoir system to produce a top-down system response
to these scenarios. By isolating the impacts of individual hydrologic
variables on system vulnerabilities through a statistical analysis, this
top-down assessment attains the focus on specific uncertainties de-
fined a priori in bottom-up approaches, while also benefiting from
the detailed physical properties and long-term transient trends in cli-
mate projection outputs. Noting the isolated effects of snowpack
decline on specific system objectives found in the vulnerability as-
sessment, we propose two adaptations to specifically mitigate the
impacts of snowpack decline and its resulting intra-annual stream-
flow shifts. These include an alteration of the dynamic flood control
curve and a revised snowpack-to-streamflow forecasting method.We
analyze how these adaptations dynamically reduce vulnerabilities di-
rectly related to snowpack decline, considering the magnitude of
these changes across scenarios. To then synthesize the three adapta-
tion study approaches, we consider how these adaptations hold up
against more uncertain changes across the ensemble, such as those in
total annual streamflow. This coupled vulnerability assessment-
adaptation study approach will be broadly transferable to river basins
facing snowpack decline, where operating policies for upstream and
downstream infrastructure can be redesigned to compensate for the
loss of this critical natural water storage.

Model and Study Area

Northern California Reservoir System

To accommodate its Mediterranean climate and high interannual
variability, California has built a vast and complex system of water
supply and flood control infrastructure. Reservoirs at the foothills
of the Sierra Nevada Range store high flows during the winter and
spring to be delivered for agriculture and municipal supply, while
also managing flood events. Historically, reservoir inflows in the
early irrigation season have been driven by snowmelt, suggesting
that the management of downstream reservoir storage will become
even more crucial under climate change (e.g., Fig. 1). Storage and
conveyance infrastructure include both the State Water Project
(SWP) and federal Central Valley Project (CVP), which consist of
a number of reservoirs and aqueducts throughout the Sacramento–
San Joaquin river basin. The terminal Delta of this system is the site
of pumped water exports from north to south to support agriculture
and municipal supply, delivering annual averages of 2.7 and
3.2 million-acre feet (MAF) for the CVP and SWP, respectively
(Table 1). These exports are constrained by critical environmental
flow requirements related to the salinity of Delta outflows. Delta
exports are a key metric for water supply reliability in the state and
have been found vulnerable to climate change, due to combined

changes in precipitation and seasonal runoff timing (Anderson
et al. 2008; Ray et al. 2020).

In the northern Sacramento basin, three of the largest Sierra
foothill reservoirs by volume (Shasta, Oroville, and Folsom) pro-
vide a combined 9 MAF (11.1 km3) of storage (Table 2), and play a
key role in balancing human and environmental water needs. Their
releases satisfy demands for deliveries north of the Delta, Delta out-
flows, and south of Delta exports (see Table 2 for demand values),
while also maintaining downstream environmental flow targets.
Additionally, these reservoirs are crucial for flood control, while
also providing an ancillary benefit of hydropower production.
Carryover storage in these reservoirs, measured at the end of the
water year on September 30th, is a strong indicator of system
performance and economic vulnerability (Draper and Lund 2004).
Potential warmer, drier climate change has the possibility of being
most detrimental to these economic benefits (Medellín-Azuara
et al. 2008).

The impacts of climate change on California water resources is a
topic that has been studied extensively (Vicuna and Dracup 2007),
with several studies concluding that hydrologic changes have high
potential to reduce Delta exports and reservoir carryover storage
(e.g., Lettenmaier and Sheer 1991; VanRheenen et al. 2004;
Vicuna et al. 2007; Brekke et al. 2009). These studies have pri-
marily used planning models on monthly time steps, inhibiting
the ability to analyze vulnerabilities to flooding, while also focus-
ing on vulnerability rather than adaptation. Those that have consid-
ered adaptive operations (e.g., Yao and Georgakakos 2001; Tanaka
et al. 2006; Georgakakos et al. 2012) have considered only a few
climate scenarios, potentially not capturing the range of outcomes
using an ensemble approach. Under the many projected changes to
the hydrologic regime, operational adaptations are needed to main-
tain storage levels to support multiple objectives and yield adequate
water supply, while continuing to provide flood control benefits.
Additionally, adaptations can be targeted to specific hydrologic
changes, such as snowpack decline, that are projected with higher
certainty while remaining robust to other uncertain changes in total
water availability.

Simulation Model (ORCA)

To analyze this problem, we construct an open source simulation
model of the northern portion of the California water system,
named Operation of Reservoirs in California (ORCA) (Cohen
2020). ORCA simulates several major components of northern
California’s water resource system, including the interaction of
snowpack-to-streamflow forecasting, Shasta, Oroville, and Folsom
Reservoirs, and management of the Sacramento–San Joaquin Delta
[Figs. 2(a and b)]. While not as spatially comprehensive as other
existing statewide models, ORCA is a pure simulation model that
runs on a daily time step, which allows flexible adjustments to op-
erating rules and straightforward testing of alternate scenarios. The
model demonstrates accuracy in simulating historical daily system
operations [Figs. 2(c–e)], including reservoir releases and Delta ex-
ports. See Section S4 in the Supplemental Materials for further
model accuracy results.

Data Sources
ORCA relies on several hydroclimatic time series as inputs. These
include daily streamflows, precipitation, and air temperature, along
with monthly snow water equivalent (SWE). For simulating histori-
cal operations, these data are obtained from the California Data
Exchange Center (CDEC) (DWR 2018). CDEC provides stream-
flows for the Sacramento River, many of its tributaries, and several
other rivers in the Sacramento–San Joaquin basin. Historical obser-
vations of approximate basin-averaged precipitation and SWE are

Table 1. Characteristics of the Delta pumping plants modeled in ORCA.
Attributes that are followed by notation correspond to parameters and
constraints that are included in the simulation model

Pumping plants
Tracy
(CVP)

Banks
(SWP)

Average annual demand (MAF=year) 2.7 3.2
Maximum pumping capacity Tmax;Pmax (cfs) 4,300 8,500
Maximum target TT;BT (cfs) 4,300 6,000
Minimum target TT;BT (cfs) 1,000 1,000
Maximum intake limit TP;BP (cfs) 4,300 6,680
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drawn from several CDEC stations upstream of each reservoir. The
CDEC database also provides historical reservoir releases, storage,
and Delta pumping time series used to test the accuracy of the
model. While data availability varies slightly between locations,
daily time-step data is generally available from 1997 to the present.

After confirming the ability of the model to reproduce historical
operations, the observed hydroclimatic inputs are substituted with
downscaled climate change projections. We use the downscaled
CMIP5 Climate and Hydrology Projections from the United States
Bureau of Reclamation (USBR) (Brekke et al. 2013). These consist
of 31 GCMs run for various emissions scenarios to generate 97
scenarios of precipitation and temperature on a daily time step
through 2100 (see Section S6 in the Supplemental Materials for
GCM modeling center information). In the USBR study, outputs
from these GCM simulations were routed through the variable in-
filtration capacity (VIC) model (Liang et al. 1994) calibrated for
each basin, yielding additional streamflow and SWE projections
to serve as model inputs. In cases where model inputs, such as
SWE and precipitation, were averaged across multiple stations,
the relevant information was extracted from the gridded VIC output
to produce basin-wide spatial averages.

Visualizing these ensemble projections provides insight into
what future hydrologic scenarios might entail. Fig. 3 shows 50-year
moving averages of (1) spatially averaged snowpack across the
northern Sierra Nevada; (2) streamflow in the four tributaries of
the Sacramento River, (3) the water year centroid, defined as the
day of the water year at which half of the total annual streamflow
has occurred; and (4) streamflow during the flood season. All sce-
narios in the ensemble show a decline in snowpack, ranging from
20% to 90% of the historical average, which leads the water year
centroid to shift earlier in the year. However, in several scenarios,
the severity of snowpack decline and intra-annual shifts does not
correspond directly to a decrease in overall flow [Fig. 3(b)]. Addi-
tionally, the seasonal shift leads to increased flood season stream-
flow in the majority of scenarios [Fig. 3(d)], which even occurs in
many scenarios that show some decrease in overall annual stream-
flow. This is indicated by the several scenarios with higher water
availability that also have relatively low snowpack levels [Fig. 3(b)].
The end-of-century average annual flows range from �50% of
historical values, indicating significant uncertainty in whether future
scenarios will be wetter or drier. This uncertainty is shown in a very
coarse statistic (the 50-year moving average), and an even higher
degree of uncertainty would likely be seen in estimates of flood
and drought frequency and severity that would cause system
vulnerabilities.

Snowpack-to-Streamflow Forecasts
At each time step of the simulation model, the first component to
be evaluated is a seasonal snowpack-to-streamflow forecast. The
expected cumulative inflow for the rest of the water year drives
a number of key decisions in the system. ORCA uses a linear
regression method to estimate this forecast value, aiming to repro-
duce the forecasting method developed by California state agencies
(Rizzardo 2016). The regression is computed for each of the k res-
ervoirs based on a basin average of the SWE. For a given day of the
water year dwt, historical data are used to formulate a linear regres-
sion to predict the total volume of streamflow occurring through the
rest of the water year, Qrt, using the maximum to-date snow water
equivalent, SWEk

t , as the independent variable. An exceedance
parameter Z̄k

wyt is multiplied by the standard deviation of the regres-
sion residuals σk

dwt
to perturb a forecast exceedance level, which

varies based on the water year type (WYT) and reservoir. The
exceedance level determines how conservative or aggressive the
forecast will be. Historical operations use negative Z̄k

wyt values cor-
responding to high exceedance levels, representing conservative
operations to balance water supply and flood control. This regres-
sion is represented by

Qrt ¼ βk
dwt

SWEk
t þ αk

dwt
þ Z̄k

wytσk
dwt

ð1Þ

In simulating historical operations, values for the parameters
βk
dwt

, αk
dwt

, and σk
dwt

are determined using the 22 years of historical
SWE and streamflow data. When running the climate projections,
these parameters are recalibrated each water year using a 40-year
trailing moving window. The choice of a 40-year window enables a
sufficient sample size while also capturing the nonstationary rela-
tionship between the predictor and the predictand over time due to
changes in precipitation phase patterns.

A similar forecasting technique is used to determine the Sacra-
mento Valley WYT, classified as either wet (W), above normal
(AN), below normal (BN), dry (D), or critical (C). The water year
index (WYI) used to determine these classifications is based on
observed flows to date in the Sacramento River and its tributaries

WYIy ¼ 0.4 ×QApr−Jul þ 0.3 ×QOct−Mar þ 0.3 ×WYIy−1 ð2Þ

The WYI is first determined in December and updated through
May. Thus, much of the flows used to determine the index must be
forecasted, following a similar approach to the snowpack-to-
streamflow forecasts. Section S1 in the Supplemental Materials

Table 2. Characteristics of the reservoirs modeled in ORCA. Attributes that are followed by notation correspond to parameters and constraints that are
included in the simulation model

Reservoir Shasta Oroville Folsom

Storage capacity Skmax (TAF) 4,552 3,537 975
Deadpool Skmin (TAF) 550 852 90
Minimum winter flood control storage fktocs (TAF) 3,252 2,837 375
Downstream levee capacity DQk (cfs) 79,000 150,000 115,000
Maximum environmental flow demands Ek

min (cfs) 3,250 1,700 1,750
Minimum environmental flow demands Ek

min (cfs) 2,000 1,000 250
Maximum south of Delta demands SODk (TAF=day) 6.82 16.86 1.71
Minimum south of Delta demands SODk (TAF=day) 1.19 1.98 0.3
Average annual south of Delta demand (MAF=year) 2.2 3.2 0.48
Maximum north of Delta demands NODk (TAF=day) 9.84 0 2.16
Minimum north of Delta demands NODk (TAF=day) 1.64 0 0.36
Average annual north of Delta demand (MAF=year) 1.5 0 0.3
Average Delta outflow demand (MAF=year) 6.0 2.0 2.0
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gives further detail on this forecasting method, along with the clas-
sification rules to determine the WYT based on the WYI.

Reservoir and Delta Simulation
The mass balance simulation occurs after forecasts are processed.
The model has six main components: Shasta, Oroville, and Folsom
Reservoirs; the Delta; and Banks and Tracy pumping plants

[Figs. 2(a and b)]. Feedbacks between these components drive res-
ervoir and pumping operations. For each daily time step t, storage
Skt in reservoir k is updated based on inflowsQt

k, evaporative losses
Lk
t , and a release ukt

Skt ¼ Skt−1 þQk
t − ukt − Lk

t ð3Þ

(a) (b)

(c)

(d)

(e)

Fig. 2. (a) Map of Northern California Water Resource System modeled in ORCA; (b) schematic of ORCA (c, d, e) comparisons of ORCA output and
historical observations for (c) daily Shasta Reservoir storage; (d) total monthly Delta exports; and (e) daily Delta outflow, with performance measured
by Nash-Sutcliffe efficiency (NSE).
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The release is dependent on both a release target RTk
t and re-

lease curtailment ckt . The release target is the maximum of three
required release requirements: flood control, environmental flow,
and a water demand target

RTk
t ¼ maxðukt;environment; u

k
t;flood; u

k
t;demandÞ ð4Þ

The environmental flow requirement is based on a predeter-
mined value for each month of the forecasted WYT

ukt;environmental ¼ Ek
minðmt;wytÞ ð5Þ

Flood control release requirements are based on seasonal flood
pool curves (USACE 1970, 1977, 1987). A flood control index
FCIkt is computed each day based on the previous day’s FCI, in-
flow, and basin-averaged precipitation It. The flood control reser-
vation target is then chosen using the dynamic top of conservation
flood rule curve fktocs and the flood control index. The flood control
release is empirically determined as 20% of the difference between
the current storage and the flood control reservation target fktocs

ukt;flood ¼ 0.2ðSkt−1 þQk
t − fktocsfdwt; hk;FCIkt ðQk

t−1; Ikt−1; Skt−1ÞgÞ
ð6Þ

The demand requirement is based on the sum of north of Delta
irrigation and municipal demands NODk

t , Delta outflow demands

Dk
out;t, as well as demands for south of Delta pumping exports

SODk
t . The general locations for each of these three demands in

the model are depicted in Fig. 2(b). These demands, which are
shared by the three reservoirs, depend on several states of the sys-
tem, including the month, WYT, storage in each of the three res-
ervoirs, and gains Gt from other inflows to the Delta, which are
estimated empirically. See Sections S2.2 and S3.2 in the Supple-
mental Materials for further explanation of this process. The total
demand calculation for each reservoir is represented as

ukt;demand ¼ NODkðwyt;mtÞ þ SODkðmt;Gt; Sk¼1
t−1 ; Sk¼2

t−1 ; Sk¼3
t−1 Þ

þDk
outðwyt;mtÞ ð7Þ

Delta export volumes depend on a complex combination of
environmental requirements and water demands, which we aim
to replicate to the extent possible in the simulation model. The
first goal is achieving a target Delta outflow Dk

out;t to maintain
adequate salinity levels in the Delta. The second objective is to
pump exports south of the Delta: HROt for Banks pumping plant
and TRPt for Tracy pumping plant. Pumping targets and limits
depend on storage in each projects’ reservoirs, forecasted reser-
voir inflows, and river flows throughout the Delta (SWRCP
2000; NMFS 2009). Overall, the Delta management interacts with
reservoir releases in a feedback loop between pumping HROt and
TRPt, and demands SODkðmt;Gt; Sk¼1

t−1 ; Sk¼2
t−1 ; Sk¼3

t−1 Þ to balance all

(a) (b)

(c) (d)

Fig. 3. 50-year moving averages of CMIP5 scenarios for (a) snowpack in the northern Sierra Nevada; (b) streamflow in the four tributaries of the
Sacramento River; (c) the water year centroid, defined as the day of the water year at which half of the total annual streamflow has been observed; and
(d) the annual flood season flow (November–April) in the same four tributaries. The highlighted scenarios represent those given in Figs. 1 (RCP 8.5)
and 8. (RCP 4.5).
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of these requirements. The pumps will export as much of the tar-
get demand SODk function output as is allowed, given Delta out-
flow constraints.

A carryover storage target Ck
wyt at the end of the water year is set

both for water supply and cold-pool storage to allow adequate re-
lease temperatures and storage through water years (DWR 2017). If
forecasted inflows for the rest of the year will not meet the carry-
over target Ck

wyt given projected rest-of-year releases

Xtþ365−dwt

d¼t

RTd

then releases are curtailed by a fraction ckt in order to meet this
carryover target based on the available forecast. This process serves
as another integration of reservoir operations and snowpack-to-
streamflow forecasts

ckt;5≤m<10 ¼ min

�
1;max

�ðβk
dwt

SWEk
t þ αk

dwt
þ Z̄k

wytσk
dwt

Þ þ Skt−1 −
Ptþ365−dwt

d¼t RTd

Ck
wyt

; ckmax;wyt

��
ð8Þ

where the term (βk
dwt

SWEk
t þ αk

dwt
þ Z̄k

wytσk
dwt

) represents the rest-
of-year inflow forecast. In the case that a perfect forecast is used,
this term is replaced by the actual remaining rest-of-year inflow,
enabling maximum available deliveries for water supply and Delta
outflow given carryover target constraints.

The release for each reservoir is equal to the target release RTk
t

times the curtailment factor ckt

ukt ¼ RTk
t × ckt ð9Þ

See Sections S2 and S3 in the Supplemental Materials for a
more detailed description of Reservoir and Delta management pol-
icies used in ORCA.

Computational Experiment

Vulnerability Assessment

ORCA is evaluated in parallel with each of the 97 downscaled cli-
mate scenarios in the USBR CMIP5 ensemble over the simulated
period 1950–2099 as inputs. These initial runs include the same
policies and parameters in the model uses to replicate historical op-
erations. The outputs from these model runs serve as a baseline to
highlight vulnerabilities that occur to many objectives in the sys-
tem. These experiments are summarized in Table 3.

The analysis of these top-down model runs isolates potential vul-
nerabilities that occur as snowpack decline levels become more se-
vere. These vulnerabilities are thus separated from those that are
more correlated with changes in streamflow levels. We compare roll-
ing averages of carryover storage, minimum annual storage, water
supply shortages, and Delta outflow with rolling averages in total
annual streamflow and maximum annual SWE to find correlations
between vulnerabilities to system objectives and hydrologic changes.

Through this, we are able to separate which vulnerabilities are asso-
ciated with snowpack decline and which are correlated with changes
in streamflow. This influences the adaptation study by assigning the
objectives to target in design of adaptations and objectives to analyze
as the adaptations are implemented.

Along with system objective outputs, vulnerabilities in
snowpack-to-streamflow forecasting are explored. Given a novel
proposed adaptation directly related to changes in these forecasts,
this becomes a necessary analysis. We compare perfect WYT fore-
casts with actual forecasts using snowpack and streamflow trends in
climate scenarios to examine trends in WYT forecasting error
through the century. By analyzing the changes in patterns of
mis-forecasts between WYTs through time, the vulnerabilities to
accurate forecasts are pinpointed. This allows insight into potential
alterations to forecasts as part of the adaptation study. These adap-
tations and their targeted impacts are summarized in Table 4.

Targeted Adaptation

Two primary operational adaptations are considered in this study
based on results of the vulnerability assessment: modifying the sea-
sonal flood pool curve and the snowpack-to-streamflow forecasting
method. These adaptations are hypothesized to directly address
the challenges of seasonal reservoir management resulting from

Table 3. Summary of experiments performed for the vulnerability assessment. See Supplemental Materials for more detailed explanation of variables

Vulnerability Symbol Aggregation

Carryover storage Skdwt¼365 End of water year

Minimum reservoir storage minðSkdwt¼1; S
k
dwt¼2; : : : S

k
dwt¼365Þ Annual minimum

Water supply shortage maxðBmaxt − SODcvt; 0Þ Net annual
maxðTmaxt − SODswt; 0Þ Net annual

Delta outflow Doutt Net annual
Flood risk/maximum outflow maxðukdwt¼1; u

k
dwt¼2; : : : u

k
dwt¼365Þ Maximum annual

Water year type forecast error WYTðZ̄WYIÞ Cumulative classifications, perfect versus actual

Table 4. Summary of experiments performed for the adaptation study

Adaptation Symbol Impacts on

Floodpool shift hk Carryover storage,
shortage reductions

Inflow forecast exceedance Z̄k
wyt Reliability
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snowpack decline. We enumerate over parameters of these adapta-
tions to explore their ability to mitigate vulnerabilities.

Flood Pool Adaptation
As snowpack declines later in the century, current seasonal flood
pool regulations may prevent refilling reservoir storage at the start
of the irrigation season [Fig. 1(a)]. This adaptation proposes shift-
ing the allowed refill period earlier in the year to increase reservoir
storage in the absence of snowpack. Specifically, we shift the refill
period earlier in 10-day increments, ranging from 10 to 60 days
[Fig. 4(a)]. This is denoted by hk, now an input to the flood control
function in Eq. (6). For each increment, we run each scenario of the
ensemble through the model in parallel. The drawdown period and
dynamic depth of the flood pool remain unchanged in this experi-
ment. In the enumeration step, this results in six separate parallel
runs of ORCA with the input ensemble. We then compare results
from the adaptation runs to the benchmark case to investigate
whether the altered policies improve carryover storage and agricul-
tural water supply without increasing flood risk.

Forecast Adaptation
We consider adaptations for the statistically based seasonal forecasts,
whose trends in errors to possibly impact system performance were
examined in terms of WYT forecasting. The improvements created
by these adaptations are compared to perfect forecasts, where water
year indices and rest-of-year inflows are assumed to be known with
certainty. Simulations are run using the perfect forecasts of WYTs
along with perfect forecast of the rest-of-year inflow. To do this, we
first consider benefits of using a perfect forecast in simulations. We
then compare system outputs with a 99% exceedance level to those
with a perfect forecast across all scenarios. These results are then
used to observe the benefits of a perfect forecast for mitigating water
supply shortages, and how these benefits differ between the first and
second half of the century.

After determining the benefits of a perfect WYT and perfect in-
flow forecast across the ensemble, adaptations to the forecasting
methods are explored. This is done to examine whether changing
the forecast exceedance levels, Z̄k

wyt, can approximate the benefits
from the perfect forecast. We first enumerate over several values of
this parameter ranging from 50% to 95% [Fig. 4(b)], holding them
equal for each reservoir and each WYT. This is done separately for
the first and second half of the century, to explore how patterns in
agricultural water supply reliability by adaptations to seasonal fore-
casting methods will change as hydrology changes in the future.

Results

Vulnerability Assessment

For the vulnerability assessment, results of reservoir carryover
storage, minimum annual storage, water supply shortage, Delta out-
flow, flood risk, and forecast error are analyzed, assuming that op-
erational rules remain unchanged in the future.

System Objectives
Time series of the 50-year moving average of four system objec-
tives for each scenario are displayed in Fig. 5. The snowpack de-
cline levels, in percent of historical average by end-of-century, are
displayed for each scenario by color gradients. This indicates
whether trends in objective values are significantly correlated with
long-term snowpack decline in order to isolate this effect from
other more uncertain hydrologic impacts of climate change. Table 5
presents these correlations and P-values to analyze if each specific
system response is more correlated with streamflow or snowpack
changes.

In Fig. 5(a), scenarios with greater snowpack decline will tend to
have lower carryover storage progressing through the century. This
is a key indicator that reduced snowmelt-driven spring and summer
inflows will inhibit the abilities of reservoirs to refill after the flood
season under current operating constraints. As reservoir releases
occur during the summer season for irrigation and environmental
purposes, the lack of snowmelt-fed inflows will cause relatively
low storage by the end of the water year. This is further confirmed
by the significant correlation between snowpack decline and res-
ervoir carryover storage loss (Table 5). Interestingly, there is no
significant correlation between long-term streamflow changes and
carryover storage, suggesting that snowpack decline is the primary
driver of this vulnerability, which is independent from changes in
total runoff. The same pattern is present for minimum reservoir
storage, which typically occurs near the end of the water year and
thus aligns with carryover storage.

We quantify flood risk using the maximum annual daily reservoir
outflow. Flood risk has a high positive correlation with streamflow,
as it would be expected that futures with higher water availability
also have higher peak flows in the flood season. However, there
is little correlation with snowpack, denoting that streamflow is
the major driver for this vulnerability. Not shown in Table 3 is that
flood risk has a high Pearson correlation with water supply short-
ages, 0.74 (P ¼ 0). This is due to the fact that earlier streamflows

(a) (b)

Fig. 4. (a) Illustrative description of the flood pool shift adaptation method. The refill period is shifted earlier in the season by 10-day increments to
enumeratively test the adaptation’s effects on carryover storage and water supply; and (b) exceedance adaptation method for seasonal snowpack-to-
streamflow forecasts.
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will induce larger reservoir releases and during the beginning of the
flood season, causing less storage available for deliveries into the
irrigation season. This relationship highlights the projected increas-
ing conflict between water supply and flood control.

Water supply shortages are more strongly correlated with
streamflow changes than snowpack. As would be expected, futures
with lower overall water availability will yield the greatest short-
ages in water supply. However, their correlation with snowpack de-
cline is also statistically significant. The time series in Fig. 5(c)
show that, in general, shortages increase throughout the ensemble
as the time horizon moves forward. Snowpack decline may have
some effect on this, as it has been shown to be one of the climate
change outcomes that is more prevalent throughout the majority of
scenarios. For net annual Delta outflow, there is no correlation with
snowpack decline. As expected, it is highly correlated with

streamflows, as the majority of water entering the system flows
out of the Delta to meet environmental and salinity requirements,
and often includes flood pulses that exceed reservoir storage capac-
ity. Lastly, not shown in Table 5 is that carryover storage is signifi-
cantly correlated with water supply shortages, with a correlation
coefficient of −0.73 and P-value of 0. This denotes that as carry-
over shortages decrease in scenarios in the ensemble, water supply
shortages will increase, an important operational tradeoff that may
be partially mitigated with revised policies.

Forecast Errors
We also analyze WYT forecasting errors as part of the vulnerability
assessment. The accuracy of these WYT forecasts—made on
April 1st of each year—can be visualized with a confusion matrix
[Figs. 6(a–c)]. These initial matrices represent all 150 years across
each of the 97 scenarios in the ensemble, yielding a total of
14,550WYT forecasts. The scenarios are divided into three 50-year
periods, where each cell of the confusion matrix represents the per-
centage of years in which the combination of actual and perfect
forecasts occurred. The distribution of correct WYTs within each
of the 50-year segments is presented in Table 6. In general, the ex-
treme WYTs (critical and wet) tend to be the most prevalent in the
future climate projections. Over time, the percentage of critical
years increases, while the remaining WYTs decrease slightly.
These findings are consistent with those found in Null and Viers
(2013). Based on their frequency as well as their impact to system
operations, critical and wet years remain the most important to pre-
dict. For the confusion matrices, correct predictions on the diagonal
tend to increase progressively over the three periods [Figs. 6(a–c)].

(a) (b)

(c) (d) (e)

Fig. 5. Time series of system objectives for each scenario in the ensemble used in the vulnerability assessment. These are displayed as 50-year moving
averages of various transformations of these system outputs. This includes (a) Shasta storage on the last day of the water year; (b) Shasta minimum
daily shortage in a water year; (c) total water supply shortages in a water year; (d) total Delta outflow for a water year; and (e) maximum annual
outflow, a metric to quantify flood risk. The highlighted scenarios represent those presented in Figs. 1 (RCP 8.5) and 8 (RCP 4.5).

Table 5. Pearson-r correlation coefficients and P-values for each of the
four objectives in the vulnerability assessment compared with snowpack
and streamflow trends

Objective
Snowpack
Pearson’s R

Snowpack
P-value

Streamflow
Pearson’s R

Streamflow
P-value

Carryover storage 0.72 0 0.066 0.53
Minimum storage 0.69 0 0.017 0.87
Shortage −0.35 5 × 10−4 −0.63 0
Delta outflow 0.32 1.3 × 10−3 0.96 0
Flood risk/maximum
outflow

0.21 0.43 0.81 0
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This can be attributed to two aspects of the forecasts. First, the
40-year moving window preserves the relationship between the
predictor and predictand, which prevents forecasts accuracy from
deteriorating. Second, the seasonal streamflow shift actually im-
proves the accuracy of WYTs. This occurs because a large pro-
portion of the WYI calculation relies on the streamflow from
October through March. The fraction of annual flow during this
period rises as streamflow shifts earlier in the year. Thus, the in-
fluence of streamflow already observed will increase, while the
impact of inaccurate forecasts made in April is minimized. This
leads to an overall increase in the April WYT forecast accuracy
over time. However, the result in Fig. 6 only applies to April fore-
casts, and it is expected that forecasts made earlier in the water

year will degrade due to the loss of snowpack (Livneh and
Badger 2020).

While the confusion matrices show the trends in forecast error
through time in terms of fractions of the ensemble, the distribution
of each cell across the 97 scenarios should also be examined. Con-
fusion matrices represent forecasts across the ensemble as group
of cumulative distribution functions (CDFs) each containing 97
values [Figs. 6(d–f)]. The x-axis represents the percentage of time
that the specific correct forecasts or mis-forecast occurs. CDFs are
assigned colors corresponding to correct predictions, slight over-
predictions (light green), severe overpredictions (light red), slight
underpredictions (light yellow), and severe underpredictions (light
blue) [Fig. 6(g)]. This allows for visualization of the confusion

(a) (b) (c)

(d) (e) (f)

Fig. 6. (a, b, c) Confusion matrices showing the distribution of average forecast performance for the full ensemble. (d, e, f) Forecast accuracy trends
across climate ensemble and through time as group of CDFs, each containing 97 values normalized on the y-axis. Water year type abbreviations
correspond to Critical, Dry, Below Normal, Above Normal, and Wet, respectively.
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matrices through both time and across the ensemble. In the ensem-
ble from 1950 to 1999, correct forecasts occur for them, where only
rarely does a scenario fall below 20% accuracy for any of the
WYTs. Of the mis-forecasted WYTs, slight overpredictions are
the most common during this time period, followed by slight under-
predictions and severe overpredictions. Severe underpredictions are
the least common of the mis-forecasted cases.

Progressing through the century [Figs. 6(e–f)], the percentage of
correct WYTs still increases, but a small portion of scenarios may
have more severe incorrect forecasts. This is seen by the elongation
of the bottom tails of the correct forecast CDFs in the 2000–2049
and 2050–2099 periods. Despite overall increases in correct fore-
casts, there may be increasing uncertainty in forecast performance
across scenarios caused by nonstationary snowpack and streamflow
hydrology. Percentages of incorrect forecast CDFs also exhibit
greater spread through time [Figs. 6(e and f)], despite increasing
averages [Figs. 6(a–c)]. Overall, this indicates that WYT forecasts
by April 1 will generally improve over time using the 40-year mov-
ing window, but there is still uncertainty as to whether this occurs
for forecasts made earlier in the water year. Thus, there still exists a
potential need for forecast adaptations.

Adaptation Study

Flood Pool Adaptation
The results of the enumeration experiment for different levels of
seasonal shifts in the flood pool refill period for various objectives
are displayed in Fig. 7. In the majority of scenarios, shifting the

refill period earlier in the year benefits both carryover storage and
agricultural water supply. Throughout the century, the ensemble
mean and upper standard deviation level of the 50-year moving
average of carryover storage increase in all three reservoirs
[Figs. 7(a–c)]. This denotes that as streamflow shifts earlier in
the year due to declining snowpack, shifting the flood pool in-
creases the potential for carryover storage benefits. Additionally,
larger shifts show more potential for carryover storage benefits in
the mean and upper standard deviation, while only slightly decreas-
ing the lower standard deviation level. The wide range of outcomes
across the ensemble scenarios—with few showing reductions in
carryover storage—suggests complex interactions between the intra-
annual streamflow timing due to snowpack decline, and the broader
trends in water availability in these downscaled scenarios, only some
of which can be mitigated by shifting the refill period.

The same effect is also present for mitigating agricultural water
supply shortages [Fig. 7(d)]. Again, the mean and upper standard
deviation of the ensemble increase throughout the century as snow-
melt loss becomes more severe, with greater benefits associated
with larger flood pool shifts. Some compromise would have to
be made between the benefits to water supply and potential flood
risk brought about by a more extreme flood pool shift, which would
result in more moderate shifts being implemented.

It is also crucial to examine the effects of the flood pool shift
adaptation on dynamics of the system. The behavior or these dy-
namics is viewed most easily through time series of reservoir stor-
age and top of conservation targets over a single scenario (Fig. 8). It
is clear that shifting Shasta’s flood pool refill period forward will
increase reservoir storage throughout the water year, since dynamic
top of conservation targets will become higher as the flood pool is
shifted earlier in the year. This is especially evident during the refill
period at the end of the flood season and during the drawdown
period through the irrigation season. The differences in this trend
between years is also of importance, to see how the updated flood
rule curve causes storage to respond to varying flow magnitudes
and timing between water years.

The flood pool shift yields the greatest mitigation in shortages in
years where runoff arrives earlier, a direct result of earlier melt and

(a) (b) (c) (d)

Fig. 7. 50-year moving averages of additional carryover storage in ensemble resulting from flood pool shift for (a) Shasta; (b) Oroville; (c) Folsom;
and (d) mitigated Delta export shortages from flood pool shift. Solid lines represent the ensemble mean, and dashed lines represent �1 standard
deviation.

Table 6. Distribution of water year types over the full ensemble for the
three 50-year time periods

Water year type
Critical
(%)

Dry
(%)

Below
normal (%)

Above
normal (%)

Wet
(%)

1950–1999 19 16 17 21 27
2000–2050 25 15 18 16 26
2050–2099 29 15 16 15 25
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the shift in precipitation phase. In this particular scenario and time
period, these include the majority of years in the decade shown.
Even though these years have high flood peaks, the majority of
precipitation is most likely in the form of rain rather than snowmelt,
as evident by little or no flow present after April. The flood pool
shift allows the reservoir to store more inflows before April, mak-
ing up for these lost spring and early summer flows. This benefits
other objectives of the system, as seen by the decrease in water
supply shortages from flood pool shifts [Fig. 7(d)]. More extreme
shifts may send reservoirs to full storage during these years, with
the tradeoff of increasing flood risks. However, more moderate
shifts will send reservoirs back to desired levels at the end of
the flood season, improving carryover storage and water deliveries
while maintaining adequate flood control in the system.

In a few years in this time series, flow is more spread out in the
winter and early spring seasons (specifically, these include the
2052, 2053, and 2055 water years). In these years, either too little
precipitation occurs throughout the year to refill the reservoir, or
more snowmelt-driven flow later in the flood season would result
in higher storage regardless of flood pool shift. This shows that
shifting the flood pool will not lead to large increases in flood risk
in years with relatively higher snowpack, but it will also not provide
much benefit of increased storage during these years.

Forecast Adaptation
We investigate the impacts of changing the exceedance level (Z̄k

wyt)
of the snowpack-to-streamflow forecasts, rather than the WYI fore-
casts, where higher values represent a more conservative forecast.
This conservative forecast is chosen as a baseline because the ma-
jority of mis-forecasts are shown to occur as overpredictions in
WYT classifications. The perfect forecast enables the maximum

available volume to be delivered for water supply through the irri-
gation season, given the constraint of meeting the carryover target.
Benefits to water supply reliability from using a perfect forecast
can range from 0.045 to 0.24 [Fig. 9(a)]. In the second half of
the century, these reliability benefits decrease significantly for dry
scenarios, and to a lesser degree for average and wetter scenarios
[Fig. 9(c)]. The largest forecast benefit value occurs in average sce-
narios, where there is sufficient water available to meet demands,
but only if it is managed well using the forecast. The perfect fore-
casts also give less improvement in the scenarios with high snow-
pack decline, regardless of the change in streamflow magnitudes
[Figs. 9(a and c)]. This highlights the fact that reliability of the sys-
tem is quite vulnerable to snowpack decline, and that perfect fore-
casts may have less potential to improve performance in the most
extreme scenarios in terms of reduced snowpack.

Given that the perfect forecast provides advantages to water sup-
ply in all scenarios, we enumerate over the exceedance levels used
in the forecasting method in an attempt to approach these benefits
[Figs. 9(b and d)]. We then examine reliability changes as the ex-
ceedance level decreases (i.e., forecasts become less conservative).
For the first half of the century, the effect of lowering forecast ex-
ceedance shows no clear pattern across the ensemble [Fig. 9(b)],
and the mean reliability change stays near zero. However, in the
second half the century, lower exceedance levels tend to increase
reliability in agricultural water supply [Fig. 9(d)]. This shows that
with further hydrologic changes, there may be some possible ben-
efits to water supply by making less conservative (low exceedance)
reservoir inflow forecasts. This would cause higher projections of
end-of-year carryover storage, eliminating unnecessary curtailments
and providing flexibility in the system to allow excess releases to the
Delta for water supply. However, the spread tends to increase as the

Oct 2049 Oct 2050 Oct 2051 Oct 2052 Oct 2053 Oct 2054 Oct 2055 Oct 2056 Oct 2057 Oct 2058 Oct 2059

1000

2000

3000

4000
TA

F

shift 0 days shift 10 days shift 20 days shift 30 days shift 40 days shift 50 days shift 60 days

Oct 2049 Oct 2050 Oct 2051 Oct 2052 Oct 2053 Oct 2054 Oct 2055 Oct 2056 Oct 2057 Oct 2058 Oct 2059

3500
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F
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0
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F
S

(a)

(b)

(c)

Fig. 8. Time series of (a) Shasta storage; (b) Shasta dynamic top of conservation storage target; and (c) Shasta inflow, considering the flood pool shift
adaptation for the former two. These time series come from ORCA outputs to the 2049–2059 time period in the NOAA GFDL-CM3, RCP 8.5
scenario.
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exceedance is lowered, leading to more uncertainty in reliability as
forecasts become less conservative. Fortunately, this increasing
spread and increasing mean suggest a tendency toward larger deliv-
eries in crucial months for water supply and irrigation.

While uncertainty does exist in the outcomes of forecast adap-
tations through the ensemble, analyzing the intra-annual dynamics
of the altered forecasts provides insight into the timing of how fore-
cast alterations impact system objectives, specifically water supply
deliveries. Figs. 10(a–c) show the average monthly shortage change
across three time periods: 1950–1999, 2000–2049, and 2050–2099.
Progressing through the time periods, the mean shortage change for
each month becomes more extreme across all exceedance levels. In
all three time periods, shortages decrease in the months of May
through July. In these months, having a less conservative forecast
will result in less curtailments, thus increasing water supply deliv-
eries. Along with this, large storage in reservoirs increases signifi-
cantly in February as more inflows must be captured, rather than
released for flood control, to make up for the larger storage losses
in the irrigation season. In the 1950–2000 time period, a more
conservative forecast is potentially detrimental as it can increase
shortages in August and September [Fig. 10(a)]. In this case, the

overly conservative forecast will cause an unnecessary increase in
summer curtailments regardless of reservoir storage while snowmelt-
fed inflows are still present. However, this adaptation is shown to be
beneficial later in the century as the hydrology changes. Overall,
each of the discussed patterns become more prevalent as forecasts
become less conservative. In conclusion, this denotes that raising
the forecast exceedance level (more conservative forecasts) will mit-
igate some of the intra-annual shifts in water supply shortage caused
by snowpack loss further into the 21st century.

While these patterns are explained through the mean of the en-
semble, there still exists significant variability in shortage changes
across scenarios. Months with the largest change in mean shortage
also show the greatest variability in changes [Figs. 10(e–g)]. This
denotes uncertainty in the magnitude of these monthly changes
across scenarios. The variability decreases in later time periods
due to the lower snowpack, which will make patterns in forecast
results more similar across scenarios. For the months with large
changes (irrigation season and February), the standard deviations
are less than the absolute value of the mean for their respective ex-
ceedance levels in all three time periods. Thus, for the majority of
scenarios, the direction of change in shortage will remain the same

(a) (b)

(c) (d)

Fig. 9. (a and c) Benefits to agricultural water supply reliability when using a perfect forecast compared to a 99% exceedance forecast. Each point
represents the reliability increase for an individual scenario in the CMIP5 ensemble (y-axis). The x-axis represents the difference over the century in
the 50-year moving average of the Sacramento River and its three largest tributaries. This statistic is shown in Fig. 5(b) as well. (b and d) Reliability
increase from lowering exceedance levels, displayed as a boxplot for the whole ensemble.
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as that shown in the mean changes. In the last two time periods,
irrigation season shortages will mostly decrease, while February
shortages will generally increase across scenarios.

While much uncertainty exists in the net changes of annual
shortages and reliability from the forecast adaptation (Fig. 9),
the effects of the forecast on intra-annual shortage changes is clear
(Fig. 10). Shortages in the irrigation season can have much more of
a negative impact on system performance. Therefore, adapting fore-
cast methods leads to reservoir operations that shift shortages from
the irrigation season to the flood season. Even if the effect of this on
overall annual shortages would be uncertain, significant decrease in
summer shortages would have benefits to the system objectives,
especially water supply.

Discussion and Conclusion

This paper contributes an approach to couple a top-down climate
vulnerability assessment and adaptation study to isolate and adapt
to specific physical impacts of climate change projected with con-
fidence, namely snowpack decline, while also designing adaptations
that respond to more uncertain impacts in total water availability.
These methods contribute to the literature on top-down climate
change adaptation in water resources systems while also providing
adaptation policies generalizable to snowmelt-dominated systems in

the Western United States and elsewhere. While this study focuses
on the effects of snowpack decline, the approaches can be extended
to isolate and adapt to impacts of many well-predicted aspects of
climate change on water resources systems.

In a top-down approach, an analysis of the response of a reser-
voir model to an ensemble of downscaled climate scenarios cannot
link vulnerabilities to specific hydrologic parameters unless these
relationships are identified explicitly. While the relationships can
be extrapolated from perturbed uncertainties in bottom-up studies,
top-down approaches must discover them by leveraging physical
processes and transient trends present in climate projections.
Through a statistical analysis, we accomplish this given the re-
sponse of a model simulating the northern California reservoir sys-
tem to an ensemble of climate scenarios. Considering snowpack
and annual streamflows, results show that reservoir storage vulner-
abilities are significantly correlated with snowpack decline, while
environmental flows are significantly correlated with streamflow
changes. Water supply shortages are correlated with both—more
so with total streamflow changes, but also linked to snowpack de-
cline due to the influence from reservoir operations. The transient
trends in climate scenarios also indicate how these vulnerabilities
change through time.

After analyzing vulnerabilities, the proposed adaptations are tar-
geted to the specific impacts of snowpack decline, including sea-
sonal streamflow shifts. This provides insight into which system

(a) (b) (c)

(d) (e) (f)

Fig. 10. Top row: mean of scenario changes in shortage by month for exceedance level adaptation for the simulated time periods: (a) 1950–1999;
(b) 2000–2049; and (c) 2050–2099. Bottom row: Standard deviations of these changes across the ensemble scenarios for (d) 1950–1999; (e) 2000–
2049; and (f) 2050–2099.
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outputs to monitor to identify the most significant changes caused
by adapting system operations. The detailed long-term dynamics of
the simulation outputs under climate change allow for further
analysis of adaptations. For example, the upward trends in carry-
over storage from the flood pool adaptation through the end of the
century in the majority of scenarios, as snowpack decline becomes
more severe. The analysis of perfect forecasts benefits from isola-
tion of snowpack decline levels and annual streamflow changes in
each scenario. This utilizes the many hydrologic outputs from
climate projections to show the adaptation’s general performance
related to both more widely predicted changes and to those that
are more uncertain. The analysis gives insight for breaking down
the uncertainty related to the adaptation’s performance across an
uncertain ensemble. Transient trends in climate projection output
allow for the adaptations to be analyzed over multiple time horizons
given varying extents in magnitudes of hydrologic changes. Lastly,
we show that the intra-annual system dynamics of adaptations must
be analyzed to gain better understanding of their effects on system
objectives and vulnerabilities.

Going forward, this study can be extended in two ways. The first
involves combining adaptations to forecasts and operations to im-
prove robustness to uncertainty across the climate ensemble using
formal policy search techniques to generate near-optimal adapta-
tions in multiple objectives. This is the subject of ongoing work.
Second, the transient trends in these climate scenarios, particularly
in streamflow, snowpack, and seasonal streamflow shifts, present
an opportunity for dynamic adaptation. While this study analyzed
the effects of these adaptations in different time periods throughout
the century, there exists an opportunity to identify the conditions
under which adaptations to operating rules should be implemented.
This problem lends itself to a dynamic adaptation study considering
multiple reversible operating policies, recognizing that certain
hydrologic impacts are projected with higher certainty than others.
Furthermore, there may be additional policies that can mitigate
vulnerabilities to climate change beyond just snowpack decline.
Examples of these adaptations include optimal combinations of
the individual adaptations considered in this study, flood control
operations utilizing short-term precipitation forecasts (e.g., Nayak
et al. 2018), and increased conjunctive use (e.g., Kourakos et al.
2019). Overall, this study contributes an approach to targeting
water system adaptations to specific physically based impacts of
climate change identified in a vulnerability assessment. The
coupled approach to vulnerability assessment and adaptation is
generalizable to other snowmelt-dominated water resources sys-
tems facing the loss of seasonal storage due to rising temperatures.
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