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Abstract—Next-generation virtual radio access networks
(vRAN) will benefit from the flexibility provided by virtualization
in proposed Cloud-RAN configurations. These systems for 5G and
beyond may consist of commodity hardware such as GPUs in data
centers with multiple connected base stations (gNBs) flexibly re-
ceiving allocated resources depending on time-varying, real-time
demands. In this paper, parallel reconfigurable algorithms and
architectures for channel decoding are proposed. In particular,
flexible rate and block length LDPC decoders for the new radio
(NR) physical layer on GPU are characterized. We implement
these GPU decoders using reduced word lengths of 8-bits to
represent the log-likelihood ratios during decoding, and we utilize
multiple GPU streams to process multiple blocks of codewords
in parallel. These techniques allow our implementation to reduce
the device transfer overhead and achieve the low-latency or high-
throughput targets for 5G and beyond. Moreover, we integrate
our decoder into the Open Air Interface (OAI) NR software
stack to investigate virtualization capabilities when containerizing
vRAN functionality such as the LDPC decoder.

Index Terms—LDPC, SDR, GPU, OAI, vRAN

I. INTRODUCTION

A key challenge in 5G and beyond is the flexibility nec-
essary for the radio access network (RAN) to be able to
support the many possible applications ranging from 4K video
streaming, which requires high data rates, to high-precision
remote surgery, which requires ultra-low latency. The various
applications are typically described to fit into one of the fol-
lowing categories: enhanced mobile broadband (eMBB), ultra-
reliable low-latency communications (URLLC), and massive
machine-type communications (mMTC). These descriptions
are used to encapsulate the IMT-2020 5G requirements. eMBB
is designed to support peak downlink data throughputs of 20
Gbps. URLLC is designed to support end-to-end latencies of
1 ms. The mMTC category is designed to be able to support
connection densities of 1 million devices per km2 [1]. These
targets are 50 to 100× above the targets for 4G. To be able
to support the next 100× improvement for beyond 5G, the
systems will need to embrace the flexibility.

A. The need for software-based, vRAN systems

Software-based solutions excel at flexibility, and the devel-
opment of standards-compliant software-defined radio (SDR)
projects is an emerging theme that highlights this. For exam-
ple, Open Air Interface (OAI) is a software-defined platform
for 4G and 5G systems [2]. Completely on commodity CPUs,
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Fig. 1. Illustration of the flexible, multi-standard vRAN concept.

the entire 4G base station and core network can run and
support multiple user equipments (UEs). This sort of software-
based approach can be rapidly developed and tested and
provides an opportunity for researchers to experiment with
new algorithms for any task in the stack. Software is a more
natural fit to possible future deployments based on cloud
radio access network (C-RAN). In new C-RAN systems,
baseband processing may be done at a central data center
on enterprise-grade servers. More recently, virtualized radio
access networks (vRAN) systems have also been proposed
[3], [4] that virtualize the baseband, decoupling the hardware
resources from processing tasks to allow for more dynamic or-
chestration of resources based on real-time network demands.
This sort of consolidation, centralization, and virtualization of
baseband tasks allows for the flexibility to support multiple
standards and provide easier deployment of future standards.
C-RAN/vRAN systems can also be cheaper in that processing
can be done on enterprise grade servers and other commer-
cially available off-the-shelf (COTS) equipment that is already
widely available instead of on expensive, highly specialized
equipment. Moreover, centralized processing like what is seen
in C-RAN/vRAN is likely necessary for advanced algorithms
such as coordinated multipoint (CoMP) and cell-free systems
to be possible. However, performance is typically a concern
when considering a software based solution.

B. GPU-based high-performance baseband processing

This gap can be filled by graphics processing units (GPUs)
which provide high performance while maintaining flexibility.
GPUs have become commonplace in many high-performance
computing fields such as deep learning. They have also been
considered for many baseband processing tasks for 4G and 5G
implementations. For example, in [5] GPUs are used for de-
tection and beamforming in a multi-user (MU) multiple-input
multiple-output (MIMO) base station. Additionally, GPUs can
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be containerized via tools like NVIDIA-Docker to run on
vRAN systems.

1) LDPC for 5G: One particular task that is ideal for im-
plementations on a GPU in 5G is the low-density parity-check
(LDPC) error correction codes (ECC). ECCs add redundancy
to wirelessly transmitted bits so that the receiver can detect and
correct errors. LDPC was chosen to replace turbo codes from
4G for the data traffic in 5G [6]. Although LDPC codes have
near capacity-achieving decoding performance, the decoding
complexity is extreme. This puts a challenge for the 5G next-
generation NodeBs (gNBs), which need to potentially decode
many codewords (CWs) from multiple users at high data rates.

GPUs are a great platform for LDPC because LDPC de-
coding can cleanly map to the single-instruction multiple-
thread (SIMT) parallel architecture of GPUs. Decoding is an
iterative process where log-likelihood ratio (LLR) messages
are exchanged to correct any bits. Messages can easily be
computed in parallel on the thousands of processing elements
such as the compute unified device architecture (CUDA) cores
found in NVIDIA GPUs. Moreover, being software-based, a
GPU project can be rapidly developed and deployed. Scaling
to support more users and higher throughput can also be
trivial in that multiple GPUs can work together in parallel.
This lends itself to being a natural fit for data-center based
C-RAN systems. Moreover, as GPU hardware development
continues to progress rapidly, an operator could see throughput
and latency improvements by upgrading devices over time.

A new challenge in 5G for any LDPC implementation that
is not found in other radio access technologies (RATs) that
use LDPC such as Wi-Fi is the flexibility necessary. In eMBB
a high decoding throughput is necessary. For URLLC, being
able to quickly decode a CW will likely be one of the major
bottlenecks in round-trip time. For mMTC, it will be difficult
to decode CWs from many users simultaneously. However,
the scalability and reconfigurability of the GPU make this
possible. At runtime, we can reconfigure the GPU to change
configuration to prioritize latency or throughput.

2) Related works: GPUs have been used for a variety of
ECC. For example, in [7] they are used for turbo codes found
in 4G. LDPC codes were implemented in [8] and [9] with
the latter work also deploying multiple GPUs together to
increase total throughput. However, these works target Wi-
Fi and WiMAX. There are few reported architectures and
software realizations for the recent LDPC code for 5G New
Radio (NR) physical layers. In [10] LDPC is implemented on
a Xeon processor using AVX instructions. While the latency
results are exceptional at 31 µs, the throughput is limited to
270 Mbps. Xilinx and Intel offer FPGA based solutions, but
performance benchmarks are not publicly available.

In this work, we fill the gap and provide a GPU solution
for 5G NR LDPC targeting vRAN deployments. Our main
contributions are the development of a GPU-based solution for
LDPC with support for the 5G NR standard with the flexibility
necessary to become a research platform for beyond 5G.
We present throughput and latency numbers across multiple
GPU devices. In our implementation, we present multiple
optimizations to improve performance such as quantization to
shorter word lengths to save time on data transfers. We also
develop our GPU software as a library to run in a container
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Fig. 2. Illustration of a QC-LDPC parity check matrix, H. Red slashes
correspond to ones in the sub-matrices. This illustration is modeled after base
graph 1 in 5G NR with mb = 46 and nb = 68 and set index iLS = 1.

and use it in the “develop-nr” git branch of OAI [11] as part
of a vRAN testbed.

II. LDPC OVERVIEW

A binary LDPC code is defined by an M ×N sparse parity
check matrix, H, and an N×1 CW vector, x. For the vector x
to be a valid CW, Hx = 0 must be true. In a communications
system, we only transmit valid CWs. If we receive a CW that
is not valid, we assume that elements of x are incorrect and
attempt to find the valid CW that was most likely sent.

One common family of codes is quasi-cyclic (QC)-LDPC
codes. Here, each parity check matrix is constructed from an
mb × nb base matrix which is an array of shifted identity
matrices of size Z known as the lifting factor. An example
QC-LDPC parity check matrix is shown in Fig. 2.

From the parity check matrix, a bipartite Tanner graph can
be constructed with rows in H corresponding to check nodes
(CNs), columns corresponding to variable nodes (VNs), and
Hji = 1 corresponding to an edge connecting CN j and VN
i. The main idea behind most LDPC decoders is that we can
send messages back-and-forth from VNs to CNs to find and
correct any incorrect bits. Decoding is typically performed via
iterative message passing on the Tanner graph between CNs
and VNs. The calculation of a posteriori probabilities (APP)
is done through a sum-product algorithm (SPA). However, a
common simplification that we implement in this work is the
min-sum algorithm (MSA). When implemented with a scaling
parameter or an offset, it offers low complexity with minor loss
in bit error rate (BER) performance. For complete details on
SPA, MSA, and other LDPC algorithm details see [12].

A. LDPC for 5G NR
The LDPC encoding and decoding specification for 5G NR

is defined in TS.38.212 of Rel. 15. In 5G, LDPC is used for
the downlink shared channel (DL-SCH), uplink shared channel
(UL-SCH), and paging channel (PCH) transport channels,
which mostly carry data. In contrast, polar codes are used for
the broadcast channel (BCH), which mostly carries system
information. In the below section, we present a brief overview
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of the relevant parts of the specification for reference. See [13]
for the complete details and [14] for a discussion on the design
of LDPC for 5G.

There are two QC base graphs (BGs) used to derive the
parity check matrices. In general, BG 1 is used for larger,
higher rate data while BG 2 is reserved for short payload sizes
and code rates less than 0.25. For BG 1 there are mb = 46
rows and nb = 68 columns while BG 2 has mb = 42 and
nb = 52. The maximum length of a sequence of bits in a
code block, Kcb, to be encoded is 8448 bits for BG 1 and
3840 bits for BG 2. Each support a variety of lifting factors,
Z, from 2 up to 384. This makes the largest possible 5G NR
code an irregular (25344, 8448) rate 1/3 code which uses BG
1. Fig. 2 shows the parity check matrix corresponding to this
code.

To better understand LDPC for 5G, we discuss the encoding
procedure below. Given a sequence of input bits to be encoded,
represented by the vector a, we start by appending a cyclic
redundancy check (CRC) to make a new vector, b. For b with
length B and the code rate, R, provided by the modulation and
coding scheme (MCS), a BG is chosen according to the above
rules. If B > Kcb for the selected BG then the input sequence
is segmented into multiple code blocks, each with their own
CRC forming a new sequence, c. The size of the individual
code blocks is used to calculate the appropriate lifting factor,
Z. Based on the lifting factor, a table lookup provides the set
index, iLS , which is used to construct the final parity check
matrix, H. There are 8 set indices in total leading to eight
possible variations of each BG. In the process of encoding,
a vector in the nullspace of H is constructed in the form of[
c w

]T
where w is a vector of parity bits to be calculated

with length N+2Z−K where N = 66Z. After encoding, the
CW bits corresponding to the indices after 2Z undergo rate
matching via bit selection and interleaving. If segmentation
took place, the code blocks are concatenated together before
modulation and transmission.

A key insight in the above exploration of the 5G standard
is that the standard is broad and decoders should support 51
different lifting factors from Z = 2 to 384 giving rise to
8 reconfigurations of 2 separate parity check base graphs,
all derived from a wide range of possible code rates and
block lengths. Supporting all possible valid configurations
is challenging for hardware-based decoding implementations.
Moreover, being able to meet the various latency and through-
put targets based on the real-time demands is another serious
challenge. In contrast the flexible, software-based nature of
the GPU makes decoding straightforward without sacrificing
performance, as we will demonstrate in the remainder of the
paper.

III. IMPLEMENTATION DETAILS

A. GPU Overview
A GPU consists of an array of streaming multiprocessors

(SMs) which each often contain 32 or 64 vector processing
lanes. NVIDIA provides C++ language extensions, known
as CUDA, to write highly parallel applications that target
these devices. The developer writes kernels that will utilize
a certain number of blocks and threads which are roughly a
programming abstraction of the SMs and CUDA cores. There

are multiple tiers of memory on the GPU. Global memory
is typically a GDDR based memory that is available to all
kernels over the lifetime of the application. Threads in a block
all execute on the same SM and can have a shared memory
for the lifetime of the kernel. Each thread also has its own
local registers. There is also a constant memory that is globally
available to all threads, but it is read only. The global memory
is typically the slowest, so it is desirable to put data in constant
and shared memory whenever possible.

B. Mapping of LDPC to GPU

To efficiently map the LDPC decoding to a GPU, we create
two main kernels: a CN kernel and a VN kernel. Multiple CWs
are decoded in parallel via two main mechanisms. First, we
pack multiple CWs into what we refer to as a macro-codeword
(MCW). These CWs are evaluated concurrently within the
same CUDA block. Secondly, we copy multiple MCW to
the GPU in a batched transfer to execute on separate blocks.
Each block will work on 1 row of the base graph with the
individual threads working on the subrows after applying the
lifting factor. For more details on the architecture see [9].

1) Check node processing: In this kernel, each thread
operates on a row of H. Using the two-min algorithm for
the scaled MSA, messages are computed for each connected
variable node. The messages are stored in global memory.

2) Variable node processing: For the VN kernel, each
thread corresponds with a column of H and computes its
APP LLR based on the messages received from the CNs. The
updated LLR is stored in global memory. In the final decoding
iteration, a hard decision is made.

C. Optimizations Strategies:

1) Reduced word length: The main optimization that we
offer in this work compared to previous GPU-based solutions
is the reduction of the word lengths down to the 8 bit char
format. Using as few as six bits is known to be adequate [15]
and is common in many FPGA and ASIC implementations. We
use this reduced word length to save up to 4x on data transfer
times between host and device and for global memory accesses
while casting to and from floats for each thread’s computation.

2) Packing final hard decision: In many applications a hard
decision is made, and then each CW bit only needs to be
represented by a single bit. Past works often did not take
advantage of this and stored the result with unnecessary data
types. We implement a bit packing kernel before the final
transfer to the host and only copy the final information bits to
the host instead of the entire decoded CW.

3) Streams: To further alleviate the memory transfer be-
tween the host and device, we utilize multiple CUDA streams.
Each stream acts like a separate process on a CPU application
to be scheduled and executed in parallel. This allows for one
stream to be computing while another may be copying new
data to the GPU. This helps to ensure that the computational
resources are fully utilized most of the time.

4) Caching of H: Row-major and column-major compact
versions of the parity check matrices are loaded by the host
onto the GPU’s constant memory. The row or column major
version is used by the check or variable node, respectively, to
allow for fast, coalesced memory accesses.
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IV. RESULTS

a) Performance: We begin by evaluating the BER perfor-
mance as a function of energy per bit to noise power spectral
density (Eb/N0). This tests the LDPC decoding performance
and shows the performance for the various word lengths, as
shown in Fig. 3. The float and half precision data types offer
nearly identical performance while there is a minor increase in
BER when quantizing down to the 8-bit char for data storage.
For comparison, we also include the OAI implementation from
[11] which performs decoding on CPU using char formats
throughout the data storage and computation.

b) Throughput: For three different GPUs, we tested the
maximum throughput. For this test, we configured the GPU to
use 6 streams, 20 MCWs per transfer, and 2 CW per MCWs.
This configuration helped to ensure the GPU was always full
and the effect of the PCIe transfers to and from the CPU and
GPU was reduced. In Fig. 4, we see that with each generation
of GPU performance increases as the number of CUDA cores
also increases. The best performance was for the char data type
on the TITAN RTX with 3964 Mbps of decoding throughput,
including the transport time to-and-from the CPU and GPU.
For this configuration, the latency is increased and on the
order of 700 µs, though this can be acceptable for eMBB
applications.

c) Latency: The GPU can be reconfigured to target
URLLC to reduce the decoding times. To achieve lower
latency, we can reduce the number of MCWs, CWs per MCW,
and streams. In cases where there is a good signal-to-noise
ratio (SNR), the number of decoding iterations can be reduced
as well or early termination can be applied. When testing
across multiple GPUs as shown in Fig. 5, we see that the
TITAN RTX is able to achieve latencies as low as 87 µs,
including the transport time to-and-from the CPU and GPU.
For this configuration, the throughput is 290 Mbps.

d) Comparison to other works: Currently, there are few
published results available publicly for 5G LDPC decoders.
We compare and summarize them in Table I. In these works,
it is not always clear what the chosen code and rate are.
For each category, we report the best metric reported by the
work. Not all works reported both the lowest latency and the
highest throughput, which may occur for different code word
configurations.

TABLE I
COMPARISON OF NR LDPC DECODERS

Platform Latency (µs) Throughput (Mbps)

This work TITAN RTX 87 3964
[16] Intel i7-6700K 177.7 1 30
[10] Xeon Gold 6154 31.08 271.80
[17] i7-4770 240 NA
[18] FPGA NA 574

V. OAI INTEGRATION

Our GPU software is designed to be compiled into a
generic library that can accelerate SDR platforms for a vRAN.
We evaluated the performance of our GPU decoder in two
scenarios. First we tested with their standalone ldpctest. Then
we tested with their larger RFSimulator, which includes the
entire 5G NR protocol stack. The ldpctest evaluates BER
performance and latency. When testing OAI’s current C-based
LDPC decoder in the ldpctest, the best decoding latency
achieved was 178 µs In contrast, our GPU-based decoder had
a latency of 87 µs, a 51% reduction in latency. When testing
with the full 5G stack, we were able to integrate with OAI
and verify that the CRC passed as expected.

VI. CONCLUSIONS

In this work, we presented a flexible, 5G NR compliant
LDPC decoder for GPU that was targeted for enabling 5G and
beyond-5G vRAN. The GPU-based solution, being software
based, is shown to have the flexibility needed to support
all possible configurations of LDPC for 5G and beyond.
Moreover, by adjusting system parameters, the GPU can be
configured to target codeword throughput or latency depending
on the needs of the base station. For future work, we plan on
extending the vRAN testbed to include more UEs and gNBs
to explore hardware orchestration.

1The latency metric was measured locally using the “ldpctest” executable
from OAI’s “develop-nr” git branch [11].
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