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Abstract—In this paper, we present a graphics processing unit
(GPU)-based implementation for linearizing the power amplifiers
(PAs) in massive multiple-input multiple-output (MIMO) arrays
leading to lower error vector magnitude for the users and lower
adjacent channel leakage ratio at the output of each antenna.
In wireless transmitters, the nonlinearities of PAs can cause
undesired spectral regrowth into the adjacent channels. For
single antenna communications, this is corrected by digitally
predistorting the transmit signal with the inverse nonlinearities
of the power amplifier. However, in 5G and beyond, MIMO
systems may have over one-hundred antennas and PAs that
need to be linearized. Scaling up digital predistortion so that
it can be performed on every transmit chain in large antenna
arrays creates a significant computational burden for the base
station. The parallel processing structure of GPUs provides a
commercially available off-the-shelf solution that can be used to
efficiently implement digital predistortion across many PAs in
a massive MIMO basestation. Such a software-based solution is
particularly attractive in virtual radio access networks or other
software-defined radio scenarios. In this paper, we examine how
the widely used memory polynomial scales on a GPU as the
number of antennas scales up to 128, the number of memory
taps scales up to four, and the polynomial degree scales up to
nine. We find that a mid-range GPU can support predistortion
for a sample rate of 100 MSps for up to thirty-two antennas
while using a seventh-order polynomial with two memory taps.

Index Terms—DPD, GPGPU, Massive MIMO

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO), where
basestations may have more than 32 transmit antennas, is the
most exciting physical layer (PHY) technology trend in 5G
and beyond. With massive MIMO comes lofty promises and
expectations of improved spectral efficiency, network capacity,
and even energy efficiency [1]. However, the energy efficiency
of the components that may consume the most power in the
basestation, power amplifiers (PAs), is often overlooked in
these discussions.

When operating in a linear region, many PAs will have
efficiencies near 20%. While in saturation, many PAs may
have energy efficiency as high as 60% [2]. However, the
nonlinearities experienced in this region of operation may
be severe, which leads to decreased error vector magnitude
(EVM) and increased adjacent channel leakage ratio (ACLR),
which can violate standards’ requirements [3]. The power
overhead when accounting for the PA efficiency can quickly
become a problem as the number of PAs scales up, creating
further design challenges such as heat management.

To better achieve the desired energy efficiency claims for
massive MIMO, it is necessary to operate each PA near satura-

tion. Hence, it is also necessary to perform digital predistortion
(DPD) to linearize each PA and maintain spectral require-
ments. However, the computation to perform DPD scales
poorly for a massive MIMO basestation making computational
efficient implementations a necessity in that one basestation
has to linearize all transmit chains and potentially compensate
for crosstalk in the array [4]. Moreover, bandwidths as wide as
100 MHz may be utilized in sub-6 GHz 5G, leading to more
memory effects to account for in DPD processing and hence
more complexity.

PAs and their linearization in massive MIMO have recently
received attention in the literature. [4] showed the effects of
crosstalk and presented an algorithm to compensate for it
though that analysis, being early in the field, was done for 4x4
MIMO. The presented crossover DPD algorithm does not scale
well for many antennas. In [2], Doherty PAs are presented as
a good candidate for MIMO basestations due to their high
energy efficiency. However, they also have poor nonlinearity,
and the author discusses the need for power-efficient lineariza-
tion schemes. [5] discusses linearizing a virtual PA along the
main beam. However, it is unclear how this method scales
for orthogonal frequency-division multiplexing (OFDM) data
where there may be separate precoding for each subcarrier.
Moreover, it is unclear how it scales for multiple users.

Although there are a few works with algorithmic contri-
butions, there is currently no, to the best of the authors’
knowledge, implementation results. In this paper, we present a
novel graphics processing unit (GPU)-based implementation,
where we linearize each transmit chain using memory polyno-
mials (MPs) [6]. This implementation is intended to provide
a baseline for complexity and achievable rates for MP-based
DPDs in a massive MIMO scenario.

GPUs are attractive for implementation due to their high
degree of parallelism and ease of programming when com-
pared to other high-performance computing devices like field-
programmable gate arrays (FPGAs). GPUs are also considered
in other areas of software-defined radio (SDR) physical layers,
including for MIMO processing. For example, in [7], GPUs
are used for detection and beamforming in a multi-user (MU)
MIMO base station. In [8], GPUs are used for LDPC decoding.
They have also previously been used for DPD [9] [10]. By
porting more functionality into GPUs, the benefits of the GPU
can be further realized as the data can stay on the GPU longer,
avoiding time-consuming memory transfers into and out of the
device.
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Figure 1. System Diagram. Within the GPU-based massive MIMO SDR baseband processing unit, computation for each TX chain is performed in parallel
on the GPUs, allowing for predistortion and improved spectral containment for wide bandwidths and large antenna arrays.

II. GPU COMPUTATION

A GPU consists of an array of streaming multiprocessors
(SMs), which each often contain 32 or 64 vector processing
lanes. NVIDIA provides C++ language extensions, known
as CUDA, to write highly parallel applications that target
these devices. The developer writes kernels that will utilize
a certain number of blocks and threads, which are roughly
a programming abstraction of the SMs and compute unified
device architecture (CUDA) cores. There are multiple tiers of
memory on the GPU. Global memory is typically a GDDR
based memory that is available to all kernels over the lifetime
of the application. Threads in a block all execute on the same
SM and can have a shared memory for the lifetime of the
kernel. Each thread also has local registers for intermediate
results. There is also a constant memory that is globally
available to all threads, but it is read-only. The global memory
is typically the slowest, so it is desirable to put data in constant
and shared memory whenever possible.

III. MEMORY POLYNOMIAL IMPLEMENTATION OVERVIEW

We implement a memory polynomial for each PA [6],

x̂(i)(n) =
P∑

p=1

M∑
m=0

β(i)
p,mx(i)(n−m)

∣∣∣x(i)(n−m)
∣∣∣p−1

, (1)

where x(i)(n) is the original baseband input signal for the ith
PA, x̂(i)(n) is its predistorted input calculated by the MP, P
is the highest polynomial order considered, M is the highest
memory depth considered, and β

(i)
p,m ∈ C represents the scalar

coefficients that are used to tune the DPD for the ith PA.
(1) can be expanded into a matrix-vector product for a block

ofN samples, as shown in (2) – (5). When formulated as many
independent matrix-vector products, the mapping to the GPU
becomes clear, as will be discussed in the next section.

A. Architecture of the massive MIMO GPU-DPD
An overview of our architecture for the massive MIMO

GPU-DPD is shown in Fig. 1. This figure shows how input
samples are supplied into the GPU kernel, where each thread
works on one output element in parallel while threads within
a block work on data for the same PA.
1) Memory System: Effective memory management is crit-

ical for GPU software design to reduce unnecessary data
movement. In our architecture, we place the DPD coefficients,
β(i), in a 2D array in constant memory. This use of constant
memory allows for fast access to the coefficients during
computation.
The input and output data is placed in global memory. To

improve any transfers into global memory from the host, we
pin any of the corresponding arrays in host memory.
2) Computation: The primary strategy taken in our GPU

architecture is that each thread computes one element of the
output. We use one kernel, outlined in Kernel 1, to perform all
computation. When a thread is created, it will get its thread
and block index and use this to identify which element, n,
in the output data it will compute and which PA, i, it will
be predistorting. Using these indexes it will access multiple
elements of the input array depending on the memory depth,
M .
For each input sample into a thread, the thread will perform

the polynomial expansion through an unrolled for loop. It
begins by computing the magnitude of the complex envelope,
|x(n − m)|2. As it moves onto higher polynomial orders, it
reuses previous calculations from lower orders to fill out an
array corresponding to a row of X(i) in (5).
The primary advantage of this method is that by using a

single kernel, we do not need to store intermediate data inside
the slower global memory. Each intermediate computation
exists in a thread’s fast, local memory. This method does
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x(i)
p,m =

[
01×m x(i)(0)|x(i)(0)|p−1 x(i)(1)|x(i)(1)|p−1 . . . x(i)(N − 1)|x(i)(N − 1)|p−1 01×M−m

]T
(2)

β(i) =
[
β1,0 . . . β

(i)
1,M−1 β

(i)
3,0 . . . β

(i)
P,M−1

]T
(3)

X(i) =
[
x
(i)
1,0 . . . x

(i)
1,M−1 x

(i)
3,0 . . . x

(i)
P,M−1

]
(4)

x̂(i) = X(i)β(i) (5)
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Figure 2. GPU Architecture Diagram. Each thread computes one output
sample. Each block computes the result for one PA in the array.

result in adjacent threads within a window of M computing
the same intermediate steps. However, by not sharing results,
the threads do not need to synchronize which results in higher
performance for polynomials with a short memory depth.

IV. RESULTS

A. Memory transfer

A critical part of any GPU system is getting data to and from
the device. Most commercial off-the-shelf GPUs use PCIe3,
which is limited to 16 GBps in each direction. This constraint
can be alleviated by using multiple CUDA “streams” to

Kernel 1 DPD Processing Thread
1: i← Block Index
2: n← Thread Index
3: load β(i) from constant memory
4: m = 0; p = 1; // Memory and polynomial indexes
5: for m < M do // Loop over memory depth
6: y ← x(i)(n−m) // Loaded from global memory
7: z[m] = y
8: a = |y|2
9: b = y · a

10: for p <= P do
11: z[pM +m] = b
12: b = b · a
13: end for
14: end for
15: x̂(i)(n) = z · β(i)

16: return x̂(i)(n)

perform memory transfers at the same time as computation.
However, this technique can only help to keep the bus fully
utilized over time and does not change the fundamental IO
limit of PCIe. Nonconsumer GPUs may use a higher speed
bus such as Infiniband, which increase the IO throughput.
In the case of DPD, we ideally would immediately stream
the upsampled, predistorted signals through a digital-to-analog
converter (DAC) for each PA. To the best of the authors’
knowledge, such a platform does not currently exist. However,
a system could use the GPU-direct RDMA for a direct network
interface controller (NIC) connection streaming to an FPGA to
handle sending data to a DAC. With the appropriate hardware,
such RDMA systems have IO capabilities on the order of 100
Gbps[11].
In this work, we omit the data-transfer time to-and-from the

GPU in our results as the PCIe bus available on our GPUs is
not sufficient for moving upsampled IQ data for multiple PAs
at large sampling rates. Instead we provide an examination of
the on-device time. Alternatively, if the number of antennas is
limited to be fewer than 16, predistortion could be done for
reasonable bandwidths with limited IO buses such as PCIe.
This option could be viable for decentralized massive MIMO,
such as in [7].

B. DPD Coefficients

To collect DPD coefficients, β(i), we use a standard indirect
learning architecture and least-squares fit to solve for a variety
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Figure 3. Example DPD result from RFWebLab. By applying DPD, the
spectral regrowth around the main carrier can be reduced.

of polynomials using RFWeblab [12]. An example DPD result
is shown in Fig. 3. For the trained DPD, we then made
N copies and added random variability into the coefficients
to mimic the variations that could occur between PAs in a
massive MIMO array. This set of coefficients was stored as a
binary to be read at the start of the GPU testbed experiment
and loaded into constant memory.

a) Throughput vs number of antennas: In Fig. 4, we
show the performance as a function of the number of antennas
on a log-log plot. The results show that as we double the
number of PAs that we are performing DPD computations
for, we get a halving in the maximum sample rate that can be
linearized per PA. This trend is due to the memory bandwidth
constraint between the GDDR5 memory and the computational
units. For this test, an Nvidia 1080 GPU was used, which has
a memory bandwidth of 320 GB/s. Newer GPUs such as the
Nvidia 2060 and Titan RTX have memory bandwidths as high
as 672 GB/s and could likely be used to nearly double these
measurements. Moreover, by using smaller width data types
such as half-precision, the amount of data moving could be
halved, potentially doubling performance.

For DPD with nonlinear order P = 3, the max throughput
when computing only for 1 PA is 7252 MSps. For 5G signal
bandwidths of 100 MHz, it may be necessary to linearize per
PA at a rate of 500 MSps. This sample rate can be supported
for up to B = 16 antennas. For the maximum LTE bandwidth
of 20 MHz, it may be necessary to linearize per PA at a rate
of 100 MSps. This rate can be supported for up to B = 64
antennas.

b) Throughput vs. degree of polynomial: In Fig. 4, we
also show the performance as a function of the nonlinearity
order P . This does not increase data movement to and from
the SMs. Instead, it adds to the computation of the kernel.
As we increase the degree of the polynomial, the increased
computation in Kernel 1 is one additional real multiply when
expanding the polynomial and an additional term when com-
puting the dot product.
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Figure 4. Throughput versus the number of PAs for varying DPD nonlinearity
order. For this test, M = 2, and we use floating-point data types. The GPU
under test was an Nvidia 1080.
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Figure 5. Throughput versus the number of memory taps, M on the Nvidia
1080. Here we fix P = 3 and use floating-point data types throughout.

For P = 3 and B = 1, we see a max throughput of 7252
MSps. By going to P = 5, we drop to 3822 MSps which is
nearly a 50% reduction in lienarization rate. At P = 7 we see
2776 MSps throughput per PA, a 27% drop in linearization
rate. This trend stays consistent for more PAs and higher
polynomial orders. In most PA platforms, the third-order
nonlinearity is dominant and linearizing it may be sufficient
to reach ACLR requirements.

c) Throughput vs. number of memory taps: In Fig. 5,
we present the measurements as the number of memory taps
are varied from M = 1 to M = 4. More memory is used in
practice to help linearize wider bandwidths. We fix P = 3 for
this test and continue to use the Nvidia 1080 GPU.
For this test, we again see that the max possible linearization

rate per PA is halved for every doubling in the number of
PAs. As we increase M , each thread accesses one more data
element and performs the corresponding polynomial expan-
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Table I
GPU SPECIFICATION AND RESULT COMPARISON

P = 3,M = 1 P = 7,M = 4
GPU Year Released Architecture Number of

CUDA Cores
Memory Speed
(Gbps)

1 PA 128 PA 1 PA 128 PA

GTX 1080 2016 Pascal 2560 10 13168 162 1066 8.6
RTX 2060 2019 Turing 1920 14 11860 286 1839 15.3
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Figure 6. Throughput versus the GPU model. We fix P = 5, M = 2, and
use floating point data types throughout.

sion. Hence, increasing M increases the computational load
per thread and the amount of memory movement. For large
number of M , it may be desirable to re-architect the kernel to
avoid the duplication of computation, storing intermediates in
shared memory.

For the memoryless case, M = 1, the max achievable
linearization rate for 128 antennas was 168 MSps, which is
more than sufficient for 20 MHz signal bandwidths. For each
additional memory tap, there is a consistent 40% reduction in
the maximum achievable linearization rate.

d) Throughput vs. GPU: In Fig. 6, we present the
performance for various GPUs. We fix the MP to M = 2
and P = 5. We consider an Nvidia 2060 and 1080 whose key
technical specifications are shown in Table I. In general, the
newer series, 20xx, has faster memory while the higher model
numbers, i.e xx80, have higher compute capability.

In the case of DPD, the system is largely memory bound.
Hence, in Fig. 6 we see that the RTX 2060 outperforms the
1080 by a factor of 1.7 to 2.9. The gap increases as the number
of PA increases due to the increase in memory transfers and
better specifications regarding memory in the 2060.

Table 1 also shows the performance for each GPU at each
extreme of DPD operation. We show the case of a P = 3,M =
1 and P = 7,M = 4 memory polynomials. The RTX 2060
outperforms in all tests except where for the smaller memory
polynomial with only 1 PA. In that case, the ratio of memory
movement to computation is not favorable, and the GPU with
a higher number of CUDA cores outperforms.

V. CONCLUSIONS

In this paper, we present an MP-based predistorter for
SDR implementations of massive MIMO. We show that GPU
platforms can effectively perform the many parallel com-
putations for each transmit chain and could make flexible
solutions for MIMO basestations. However, this work also
highlights the enormous IO challenges in massive MIMO
and the need for algorithmic innovation for linearization of
arrays. For cases where canceling the third-order nonlinearity
is sufficient, memory effects are not a concern, and the
expected signal bandwidths are around 20 MHz, the GPU
solution can linearize for up to 128 antennas. For future work,
we will consider reduced precision computation, crosstalk
impairments, and larger memory polynomial structures such
as the generalized memory polynomial.
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