Hadjimichael A, et al. 2020 Rhodium: Python Library for Many-Objective
Robust Decision Making and Exploratory Modeling. Journal of Open
Research Software, 8: 12. DOI: https://doi.org/10.5334/jors.293

Journal of

open research software

SOFTWARE METAPAPER

Rhodium: Python Library for Many-Objective Robust
Decision Making and Exploratory Modeling

Antonia Hadjimichael’, David Gold', David Hadka? and Patrick Reed’
1 School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, US

2 Microsoft, US

Corresponding author: Antonia Hadjimichael (ah986@cornell.edu)

Rhodium is an open source Python library for robust decision making (RDM), many-objective robust
decision making (MORDM), and exploratory modeling. These decision-support frameworks enable the
identification of robust strategies for the management of complex environmental systems, by evaluating
the tradeoffs among candidate strategies, and characterizing their vulnerabilities. Robust strategies refer
to management options that perform sufficiently well or acceptably under a range of potential system
conditions, rather than optimally in a single, nominal state of the world. Exploratory modeling allows for
the simulation of the system under an ensemble of states of the world, so as to discover the ones with
consequential effects on the system [1]. Rhodium facilitates rapid application of the RDM and MORDM
frameworks by providing a suite of optimization, visualization, scenario discovery, and sensitivity analysis
functions. Rhodium is written in Python and can interface with models written in Python, C and C++,
Fortran, R, and Excel. The source code is freely available at https:/github.com/Project-Platypus/Rhodium.

Keywords: many-objective optimization; exploratory modelling; robust decision making; deep uncertainty;
Python; visual analytics; sensitivity analysis; SALib; environmental systems; Project Platypus

Funding statement: This work was partially supported by the National Science Foundation under Grant
No. (1639268). Any opinions, findings, and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

(1) Overview

Introduction

Managing complex environmental systems necessitates
identifying management strategies that are robust across
many potential future states of the world (SOWs). This task
is further complicated by the presence of deep uncertainty,
the case where planners or experts cannot agree on prior
probability density functions for the parameters of the
system model, or even on the model representation
itself [2, 3]. In such cases, it is often desirable to search
for management strategies that perform sufficiently well
under a range of possible system representations and
conditions (or SOWs) [4]. This is in contrast to canonical
decision making approaches that seek to find the ‘optimal’
solution for a nominal SOW or a set of SOWs with well-
described probabilities of occurrence [5, 6]. These issues
have sparked the development of several “bottom-up”
decision support frameworks (for recent reviews see [4,
7]). Robust Decision Making (RDM) [8, 9] is one of the
seminal bottom-up approaches, which seeks to support
in the identification of robust solutions (out of a set
of pre-specified candidates) that result in satisfactory
performance across a broad ensemble of plausible future

SOWs [10, 3]. RDM uses several “satisficing” or “regret”
criteria to rank alternative strategies on their performance
across candidate SOWs, rather than identifying those with
optimal performance in a single system instantiation
[3]. As a result, robust solutions often have to trade
optimal performance for reduced sensitivity to incorrect
assumptions [3]. RDM also seeks to determine which
uncertain parameters are most likely to result in
consequential failures for the candidate management
strategies in a process termed “scenario discovery” [11].
Several authors have argued that analyzing a set of pre-
specified alternatives may potentially overlook innovative
sets of candidate actions as well as their inherent
performance trade-offs across conflicting stakeholder
objectives [12, 13, 14]. The many-objective robust decision
making (MORDM) framework overcomes this challenge
by combining many-objective evolutionary optimization,
RDM, and interactive visual analytics to discover
performance tradeoffs, vulnerabilities, and dependencies
[12]. The main steps of the MORDM framework are: (1)
problem formulation, including the identification of
uncertainties, possible actions to be taken by the decision
maker, relationships mapping actions to outcomes, and

https://doi.org/10.5334/jors.293
mailto:ah986@cornell.edu
https://github.com/Project-Platypus/Rhodium

Art. 12, page2 of 10

performance measures to gauge success; (2) generating
alternative management actions using multi-objective
evolutionary algoriths (MOEAs); (3) using exploratory
modeling to broadly sample possible SOWs, perform
uncertainty analysis and identify robust solutions; and (4)
performing sensitivity analysis and/or scenario discovery
to find the key factors that most strongly affect the
robustness of candidate strategies. MORDM empbhasizes
the importance of treating the problem formulation as a
learning process, with multiple feedbacks across the four
stages of the framework application. This constructive
decision aiding approach, allows decision makers to
explore what is attainable with regards to performance,
as well as how this is shaped by the choice of objectives,
constraintsand decision variables used in the optimization,
and the choice of uncertainty representation [15].

As the aim of MORDM and other decision making
under deep uncertainty frameworks is to provide decision
support for complex problems, there has been a need for
software tools guiding and facilitating the application
of these frameworks. The most prominent examples of
such tools already available are the EMA Workbench [16]
(an open source Python library) and OpenMORDM [14]
(an open source R library). The two toolkits facilitate the
generation of alternative strategies, exploratory modeling,
and the application of sensitivity analysis and scenario
discovery methods for complex environmental systems.
Both also provide interfaces to existing simulation models,
with OpenMORDM able to evaluate R-based models, and
EMA Workbench able to analyze simulation models in
Python, Vensim, NetLogo, and Excel. This paper introduces
Rhodium, an open source Python library, complementing

Hadjimichael et al: Rhodium

these two software tools in supporting rapid and
iterative application of MORDM for models written
in Python, C and C++, Fortran, R, and Excel. Figure 1
formally illustrates the four main steps of the MORDM
framework and their application through the Rhodium
library. Furthermore, Rhodium introduces a unified and
extensible way to describe models across all the languages
(C, C++, Fortran, R and Excel) and handles the invocation
of the underlying model, with the use of several wrappers
available in the library. All three toolkits allow for the
exploration of alternatives by loading external datasets
generated as multi-objective optimization outputs.
The toolkits also support multi-objective optimization;
as with the EMA Workbench, Rhodium employs the
Platypus library (https://github.com/Project-Platypus/
Platypus), a framework for evolutionary computing in
Python supporting multiple multi-objective evolutionary
algorithms (MOEAs). OpenMORDM only supports multi-
objective optimization using the Borg MOEA [17]. As
with the other two toolkits, Rhodium also allows for the
application of scenario discovery methods, specifically
the Patient Rule Induction Method (PRIM) [18] and
Classification and Regression Trees (CART) [19]. Multiple
sensitivity analysis techniques can also be applied on a
Rhodium model through SALib [20]. Finally, Rhodium
simplifies MORDM analysis by allowing the user to use
expressive language. For example, when “brushing” (i.e.,
limiting the values of a certain parameter to a specific
range to indicate potential preference), one can provide
simply input an expression (e.g., “reliability > 0.95").
Rhodium interprets that expression and applies the
brushing as well as shows the relevant expression in the

Platypus

Generating Alternatives
- Use of Multiobjective Evolutionary
Algorithms (MOEAs) through

Problem Formulation
- Formulate Model with Levers,
Parameters, Uncertainties,
Responses, and Constraints

¥ Collaborative

application of
Rhodium

o

Uncertainty Analysis
- Genenate ensemble of
uncertain parameters

- Simulate outcomes for
ensemble

Scenario Discovery and
Tradeoff Analysis

- Identify scenarios that illuminate
vulnerabilities through PRIM and CART

- Identify factors controling vulnerabilities
using sensitivity analysis through SALib

- Examine tradeoffs with policies that reduce
vulnerabilities using visualization tools

Figure 1: The four steps of the many objective robust decision making (MORDM) framework, as applied using the
Rhodium library. The process typically begins with problem formulation. Each step facilitates stakeholder collaboration
using the generated visual analytics. Figure adapted from [12].

https://github.com/Project-Platypus/Platypus
https://github.com/Project-Platypus/Platypus

Hadjimichael et al: Rhodium

legend. The parallel development and cross-fertilization
between Rhodium and EMA Workbench enable seamless
functionality between the two libraries for users that
would like to use a mixture of the tools available in each.

Implementation and architecture

Rhodium has been developed as a Python library
containing data structures and classes necessary to
perform MORDM analysis. It is part of Project Platypus
(https://github.com/Project-Platypus/), which is a
collection of libraries for optimization, data analysis, and
decision making, to be used with Python 3.5. The Platypus
library (within Project Platypus) supports multi-objective
optimization using a variety of MOEAs: NSGA-1I, NSGA-II],
MOEA/D, IBEA, Epsilon-MOEA, SPEA2, GDE3, OMOPSO,
SMPSO, and Epsilon-NSGA-II. J3 is a desktop application
written in JavaScript, for producing and sharing high-
dimensional, interactive scientific visualizations. It allows
the user to visualize and explore thousands of data points
by leveraging hardware accelerated graphics, while
simultaneously supporting animations and interactivity.
J3 is paired with J3Py, a Python module that allows the
user to launch J3 from within the Python environment
and use it to analyze data output from the other Project
Platypus libraries. Finally, the PRIM library can be used
to apply the Patient Rule Induction Method [18] for the
purposes of scenario discovery, explained in more detail
in the following sections.

Rhodium employs these and other scientific computing
libraries to support a variety of MORDM tasks, as described
in more detail below, and presented in Figure 2. The core
classes used by Rhodium are:

- Model and filemodel: these two classes enable the
definition of the simulation model to be analyzed

Art. 12, page 3 of 10

ten as Python functions and can be used directly; the
latter enables the import of an externally produced
file containing the model description in various file
formats.

- Parameter: This class can be used to define model
parameters that can either be constant, controlled by
a lever (see below), or subject to uncertainty. Uncer-
tain model parameters can be used to perform explor-
atory modeling and scenario discovery, during which
the parameters are sampled to be then used for strat-
egy reevaluation.

- Response: Responses represent model outputs. They
can be of type MINIMIZE, MAXIMIZE, or INFO. If
the type is set to MINIMIZE or MAXIMIZE, then the
response may be used during optimization. If the
model response if of type INFO, the default, then
the response is purely for informative purposes (e.g.,
exploring how alternative strategies affect the system
beyond its objectives) and does not participate in
optimization.

- Constraint: This class is used to set “hard constraints”
that must be satisfied in order for a candidate solu-
tion to be considered feasible. Constraints can be set
on any parameter or response. To define a constraint,
one can use a valid Python expression that references
said parameter or response, or a function using a dic-
tionary of parameters and responses.

- Lever: Defines an adjustable lever that controls
a model parameter, to be used during optimiza-
tion. Five different types of lever are distinguished
within the library: RealLever, IntegerLever, Categori-
calLever, PermutationLever, SubsetLever. When defin-
ing a model lever, the number of decision variables
required to represent this lever need to be set by the
user to be passed by Rhodium to Platypus for optimi-

using Rhodium. The former represents models writ- zation.
rhodium.model. rhodium.model. rhodium.model. rhodium.model.
namedObjectMap Constraint Model NamedObject
| H il H rrr ot
rhodium. rhodium. rhodium. rhodium. rhodium. rhodium. rhodium. rhodium. rhodium.
model. model. model. model. model. model. model. model. model.
LeverMap UncertaintyMap ParemeterMap ResponseMap _FileModel Uncertainty Parameter Lever Response
i) T T T A A
e
rhodium. rhodium. rhodium. rhodium.
model. model. model. model.
NormalUncertainty CategoricalUncertainty LogNormalUncertainty UniformUncertainty
Exception List ‘
4 A rhodium. rhodium. rhodium. rhodium.
model. model. model. model.
ReallLever CategoricalLever IntegerLever PermutatoinLever
rhodium.model. rhodium.model.
rhodiumError DataSet

Figure 2: Core classes of the Rhodium library.

https://github.com/Project-Platypus/

Art. 12, page4 of 10

- Uncertainty: This class is used to set the uncertainty
of a model parameter, for the purposes of exploratory
modeling and scenario discovery. There are five dif-
ferent types of uncertainty defined in Rhodium:
UniformUncertainty, NormalUncertainty, LogNor-
malUncertainty, IntegerUncertainty, and Categori-
calUncertainty. Depending on the type, minimum and
maximum parameter values, distribution parameters,
and other arguments might need to be provided.

By using these classes the user can formulate and define a
Rhodium model for optimization, scenario discovery, and
sensitivity analysis. The library is written in a declarative
manner, so all these processes are hidden from the user
and handled internally by the library itself. The user only
needs to describe the operation to be performed, without
needing to specify all the details of how that should be
done. For externally built models, several helper classes
(wrappers) have been defined, that allow Rhodium to
connect to models written in other languages. To perform
optimization and generate alternatives, the built-in
optimize function employs the Platypus library within
Project Platypus. To return the optimization results (i.e.,
the Pareto-approximate set) use is made of the Dataset
class.

To explore candidate solutions and tradeoffs across
objectives, several tools are available for visualization
of performance in two- and three- dimensional space,
pairwise plots, kernel density plots, and in parallel
coordinates. The library uses model input to make
educated guesses on how to generate figures and legends.
The plotting functions also allow for user interaction as
well as brushing.

The next stage of the MORDM framework is Uncertainty
Analysis, where the performance of candidate solutions is
explored under more relaxed best-estimate assumptions
for the parameter values. To do so, each solution in the
Pareto-approximate set is reevaluated in a large number
of alternative SOWs. This step can guide the identification
of solutions that have acceptable performance across a
wide range of plausible future scenarios and alternative
system states. There are two sampling functions available
in Rhodium, one for Uniform Random Sampling
(sample_uniform) and one for Latin Hypercube Sampling
(sample_lhs) [21]. Several other sampling methods are
available through SALib, which can be used to generate
other kinds of samples to analyze using Rhodium, should
the user be interested. The built-in evaluate function
then allows the analyst to re-simulate any and all
candidate solutions in all sampled SOWs, and output a
Dataset containing the performance of each solution in
each SOW.

Scenario discovery typically employs statistical cluster
analysis on databases of simulation model outputs to
identify simple descriptions of parameter combinations
that best predict the SOWs where robust strategies
perform poorly [22]. Rhodium provides two methods
by which the user can perform scenario discovery: PRIM
[18] and Cart [19]. For either method, the user first
needs to set thresholds for each of the performance

Hadjimichael et al: Rhodium

measures, defined so as to reflect stakeholder preferences.
Sampled SOWs that violate these defined thresholds
are considered “vulnerable” or “unreliable” [12]. Cart is
defined in Rhodium as a class of functions that takes a
set of independent variables and a dependent variable
in a binary classification (e.g., “reliable” and “unreliable”),
and produces a decision tree for classification. To apply
PRIM, Rhodium employs the PRIM module included in
Project Platypus, which is a standalone version of the
PRIM algorithm as implemented in the EMA Workbench,
and needs to be installed separately. This version of PRIM
allows for user interaction within Matplotlib’s native
viewer and can handle a variety of inputs, such as Pandas
dataframes, Numpy matrices, or other list-like objects.
The algorithm takes a set of independent variables and a
dependent variable and produces a set of “PRIM boxes” in
the parametric space. Each PRIM box represents different
combinations of “coverage” and “density” of reliable SOWs
(i.e., boxes containing varying numbers of false-positive
and false-negative classifications according to stakeholder
preference). Both classification methods (Cart and PRIM)
can be used by the analyst to identify easy-to-interpret
orthogonal parameter ranges that produce undesirable
performance for the candidate policies. Compared to the
PRIM functionality within the EMA Workbench, the EMA
Workbench implementation also allows for the discovery
of multiple “PRIM boxes" instead of a single orthogonal
region.

An alternative analysis method available to the
Rhodium user is global sensitivity analysis, which can
be performed to prioritize the factors (parameters) most
significantly affecting the output, and, if desired, fix the
factors that appear not to affect the output. The SALib
Python Library [20] contains implementations of some
of the most commonly used sensitivity analysis methods,
including Sobol, Method of Morris, Fourier Amplitude
Sensitivity Test (FAST), and Delta Moment-Independent
Measure, among others. Rhodium makes use of SALib to
allow its user to apply SALib tools to a Rhodium model, by
defining the specific output of interest, a candidate policy
to study, and the sensitivity analysis method to apply.
Internal Rhodium functions then handle the sampling
necessary for each sensitivity analysis method and the
model evaluations necessary to return sensitivity indices
for the Rhodium model. SALib is installed automatically
during the Rhodium installation. Rhodium also contains
several plotting options for sensitivity analysis results.

Lastly, Rhodium supports parallelization which reduces
runtime during analysis. Similar to other components
within Rhodium, thisis designed to be extensible. Rhodium
itself provides support for single-threaded evaluation and
multi-process evaluation on a single computer using
the ProcessPoolEvaluator. This is powered by Python's
built-in multiprocessing module. It also integrates with
other Python libraries, including MPIPool and JobLib,
for scaling out to cloud or high-performance computing
architectures. Since the optimization and re-evaluation
tasks are typically embarrassingly parallel, substantial
speedup can be achieved, significantly reducing the time
to run experiments.

Hadjimichael et al: Rhodium

Quality control

Rhodium has been successfully tested on Linux Ubuntu
and CentOS, MacOS Maverics and El Capitan, and
Windows 7 and 10, with Python versions 3.5 and higher.
Before using Rhodium to one’s unique case study, users
are advised to first execute the example Lake Problem
application provided in the examples directory (under
master/examples/Basic/example.py). The Lake Problem
is a model of lake nutrient dynamics developed by [23],
representing a pollution control problem in which a
theoretical town needs to develop an emissions policy
that balances its economic benefits and the quality of
the lake. The system used in this example is presented
and analyzed extensively by [24], and is included in the
Rhodium repository for the purposes of framework
illustration and verification. We present the dynamics of
the system and how it can be analyzed using Rhodium
below.

The lake water quality in this system can transition
between an oligotrophic (healthy) equilibrium and a
eutrophic (unhealthy) equilibrium, as determined by the
following dimensionless equation:

X
Xt+1:Xt+at+Yz+]+t —bX,

xi K (1)

where X is the concentration of phosphorus in the lake,
a are anthropogenic phosphorus inputs (controlled by
emissions policy), Y~LN(u,0?) are natural phosphorus
inputs (uncontrolled), g is the phosphorus recycling rate
in the lake, and b is the rate of phosphorus loss in the
lake. Finally, this discrete-time model is using t € {0,1,2,..}

Art.12, page5 of 10

as the time index. As detailed by [24], the term 1fi(q
represents phosphorus recycling by the lake sediment, as
a function of the current phosphorus level and the term
bX represents the losses of phosphorus due to sediment
adsorption. As g increases, the change in recycling rate
as a function of the phosphorus concentration is more
precipitous, whereas as b increases, phosphorus losses
become larger. The system dynamics without natural
and anthropogenic inputs are presented in Figure 3,
where the rates of phosphorus recycling (in orange) and
leaving the lake (in black) are plotted as a function of
the phosphorus concentration. Including the natural
and anthropogenic inputs would move the curved line
upwards. The points where the recycling rate equals
the sinking rate (the intersections of the two lines) are
considered equilibria (denoted in black and white points),
two of which are stable and one is unstable. The stable
equilibrium with low phosphorus concentration (bottom
left) is an oligotrophic equilibrium, considered attractive.
Therefore, even with higher phosphorus concentrations
(moving rightward), as long as the sink flux is higher than
the recycling flux, the lake concentration will return to
the equilibrium. If anthropogenic emissions increase the
phosphorus concentration enough to cross the unstable
equilibrium (white point), then the lake concentration is
irreversibly attracted to the eutrophic stable equilibrium
(upper right). Management needs to therefore identify
a policy that maximizes profits derived from emissions,
while keeping phosphorus concentration low enough
so as to not cross this tipping point to a permanently
polluted lake.

1.0

e Stable Equilibrium
o Unstable Equilibrium

0.8+

Fluxes of P
o
o

o
>

0.2

0.5 1.0

Lake P Concentration, X;

15 2.0 2.5

Figure 3: Non-linear dynamics of the irreversible lake model, with the phosphorus recycling in orange and phosphorus
sink in black. The equilibria of this system are presented as points, with black denoting the stable equilibria and white
denoting the unstable equilibrium, i.e., the tipping point of this system. Increasing the phosphorus concentration
and crossing this tipping point puts the system at an irreversible eutrophic state.

Art. 12, page6 of 10

To analyze this system using Rhodium, the user needs
to execute the file in a Python environment. The script
performs multi-objective optimization on the simulation
model, trying to identify emissions policies that maximize
utility (profits), minimize the maximum phosphorus
concentration over the time horizon, maximize policy
inertia, and maximize reliability (time below tipping
point). The formulation of this problem follows that
of [24] (referred to therein as “Intertemporal”), which
also elaborates on the objective equations chosen. The
optimization is performed in the example using the
NSGAIl MOEA for 10,000 NFE (number of function
evaluations). The generated alternatives (management
policies) are stored and can be visualized using a suite of
visualization options presented in Figure 4.

Figure 4 (a) and (b) present the generated alternatives
in two-dimensional scatter plots; Figure 4 (a) shows each
point (candidate strategy) colored by its performance
on a third objective, whereas Figure 4 (b) displays
the “brushing” functionality allowing users to indicate
preference on one or more model responses. In this
particular example, Figure 4 (b) presents solutions
meeting preference criteria of reliability >=0.5 and utility
>0.5, with solutions not meeting either criterion set to
grey color. Figure 4 (a) and (b) show that with increasing
profits (utility), the phosphorus concentration in the lake
must also increase, indicating a strong tradeoff between
the two. When the phosphorus concentration increases

Hadjimichael et al: Rhodium

so as to cross the tipping point (left side of the figures),
higher utility values are achieved by those solutions, albeit
in a eutrophic lake. In Figure 4 (b), one can see that those
solutions actually achieve very low values in the reliability
objective (shown in grey on the right). The solutions in
grey on the left side of the figure are those failing to meet
the brushing criterion of utility >0.5. These results are in
general agreement with those reported by [24].

Figure 4 (c) displays the performance of each alternative
in a three-dimensional scatter plot and Figure 4 (d)
shows the performance of the solutions in a parallel axis
plot. This style of plot represents the performance on
each objective by a vertical axis. The points where each
line (candidate solution) crosses a vertical axis indicate
the performance value for that objective. The figure
is oriented so an upward shift in one of the vertical
axes indicates increased preference in the equivalent
objective performance. Brushing can also be applied here,
indicating, in this case a stakeholder preference for the
reliability objective to only have values above 0.2. All
solutions not meeting that criterion are then set to grey.
Even though there is a stochastic component to both the
system equations and the optimization, if the installation
was performed successfully, analysts testing the library
using this example should be able to generate figures that
look very similar without errors.

To test the library’s scenario discovery functionality,
the example guides the user on how to perform a

a b
1.4 14
1.2 & . 1.2
° -09 reliability >= 0.5
1.0 1.0 " and utility >0.5
= and utili .
=y § -0sE £ Y
Sos .' o g Sos
) - Unassigned
0.6 o6 0.6 J
@ e . ~0®O 0 0500 © 00 0 B g0pn 0B
04 '3 0.4
02 ! 0.2
05 1.0 15 2.0 05
max_P
c d
T 10
. £3%0 M &. \
.. S35, .. - 09
R \
T 08 T
g \ Unassigned
S 07 = \ —— reliability > 0.2
06 §ﬂ.
. ~— —
205 7L s 0402 -
Mayx 1 o0s Ca12100800 7
- 14 1 i
~P utility 227 0.19 057 0.08
- ® reliability (0.075 - 1.0) max_P utility inertia reliability

Figure 4: Four alternative visualization options available in the Rhodium library. Each panel presents the performance
of each candidate solution in: (a) a two-dimensional scatter plot with the color of each point set by the performance
of each solution on one of the objectives; (b) a two-dimensional scatter plot with the color of each point set by
whether it meets user-set preference criteria; (c) a three-dimensional scatter plot with the size of each point set by
the performance of each solution on one of the objectives; (d) a parallel axis plot, where each objective is represented
by a vertical axis and the performance of each solution (each line) is indicated by the point where it crosses each axis.

Hadjimichael et al: Rhodium

Latin Hypercube Sample on the uncertain parameters,
generating 100 alternative SOWs. For the illustrative
purposes of this example, one of the candidate policies is
selectedandre-evaluated inallsampled SOWs. The criterion
used to evaluate success and failure in the sampled SOWs
is whether the reliability of the policy (time below tipping
point) is >=0.9. Users can then perform scenario discovery
through PRIM and Cart by executing the respective
commands. Output figures from executing these two
scenario discovery methods are presented in Figure 5.
Figure 5 (a) presents one of the PRIM boxes identified,
representing parameter ranges where the policy chosen
is meets the stakeholder-set criteria (the SOWs indicated
in red). The user can interact with this figure and navigate
to different PRIM boxes representing parameter ranges
that capture more of the reliable parameter combinations

Art.12, page 7 of 10

but also introduce some less reliable combinations. As
explained above, this functionality allows stakeholders
to explore how many false-positives and false-negatives
they are willing to accept in their classification of reliable
SOWs. Figure 5 (b) shows the classification tree produced
by the application of Cart. This method produces similar
orthogonal divisions of the parametric space, with easy-
to-interpret “larger than” and “smaller than” conditions
on the parameters. Stakeholders can navigate the tree
by moving downward, which represents additional splits
on the parameter values. Users replicating this example
should be able to easily generate these figures following
the script provided. The results in Figure 5 show that the
most important parameters controlling the success or
failure of the selected policy are band g, also in agreement
with the findings by [24]. This is explained by the fact that

stdev = 0.003
gini = 0444
s=3

value =1, 2]
class = Unreliable

a
Box Coverage Plot Restricted Dimensions
0 = s 1.0 7
. ° L] ° ° L]
0.4 1, o o
. . ° ° ° q 087
L] Py .. .
% L] L] .
% L] L]
0.3 1% o o 0.6
Q b o oo %o .
L]
[PO 0.4 4
0.2 O o. . o' o .-.
L]
d $ o ¢ 0.2 1
° % ° . L
0.1+ T T r 7 ~ — —
0.0 T
... . : K . ® e b a
o o
404 ,* o« o, Statistics
.
¢ T LAY Coverage 70.6%
35, R SR Density 100.0%
- ° e e e q Mass 48.0%
1° ce] ° Res Dim 2
30 A ER Mean 1.00
. % °
2540 " % =
. o ° o o
° ® % °
20422 : -
0.1 0.2 0.3 0.4 2 3 a4 Prev Next
b q
b < 0.209
gini = 0435
b samples = 100
value =[68, 32]
class = Reliable

q=3.514
gini =0.383
samples =31
value = [8, 23]
class = Unreliable

mean < 0.029
gini = 0.42
samples =10
value = [7, 3]
class = Reliable

mean < 0.03
gini = 0485
samples =12
value =[5, 7]
class = Unreliable

q=3.618

Figure 5: Scenario discovery results as produced by PRIM and Cart, using the Rhodium library. (a) One of the identified
PRIM boxes, representing parameter ranges where the policy chosen is always reliable. The “Prev” and “Next”
buttons allow the user to navigate to other PRIM boxes with different coverage and density of reliable SOWs. (b) The
classification tree produced by Cart. Each node in the tree represents an orthogonal split on the range of one of the
parameters. Moving downward on the tree indicates additional divisions of the parametric space.

Art. 12, page 8 of 10

the values of b and g determine the tipping point of this
system, which is intrinsically related to the criterion set
(time below tipping point).

To test the sensitivity analysis functionality, new users
are guided to the sensitivity_analysis.py example script.
This script uses the same model to demonstrate four
sensitivity analysis methods available in the SALib library
[20]. SALib is a Python library containing implementations
of multiple global sensitivity analysis methods. This
library can be used in simulation, optimization, and
modeling applications to calculate the influence of model
inputs or parameters on outputs of interest. This example
applies the Fourier Amplitude Sensitivity Test (FAST)
[25], the Delta Moment-Independent Method [26], Sobol
Sensitivity Analysis [27], and the Method of Morris [28].
Executing the script correctly should produce sensitivity
indices resulting from each method as well as their
confidence intervals.

(2) Availability

Operating system

Rhodium can run on Linux Ubuntu and CentOS, MacOS
Maverics and El Capitan, and Windows 7 and 10, with
Python versions 3.5 and higher installed.

Programming language
Python 3.5+

Additional system requirements
None.

Dependencies
Platypus

PRIM

The following dependencies
installation:
matplotlib
mpldatacursor
numpy
pandas

pydot

SALib

scipy

seaborn

six

sklearn

are handled during

List of contributors
David Hadka

Software location

Archive
Name: GitHub
Persistent identifier: https://github.com/Project-

Platypus/Rhodium/

Licence: GNU General Public License v3.0
Publisher: David Hadka

Version published: 1.0

Date published: 25/10/2015

Hadjimichael et al: Rhodium

Code repository
Name: GitHub
Persistent identifier:
Platypus/Rhodium/
Licence: GNU General Public License v3.0
Date published: 25/10/2015

https://github.com/Project-

Language
English.

(3) Reuse potential

Rhodium is a flexible library of functions that can be
applied in any RDM, MORDM, and exploratory modeling
application, where robust management strategies need
to be identified. The library can be used as an interface
with existing simulation models, define computational
experiments to be performed with such models
through optimization, and visualize and analyze the
optimization outputs. The functionality also supports
exploratory modeling, as well as scenario discovery and
sensitivity analysis methods. Users interested only in
the investigation of externally obtained multi-objective
optimization results can simply import the data and make
use of functionality provided for analysis. Even though its
presentation in this paper and the illustrative example
were focused on complex environmental systems,
Rhodium (as with the MORDM framework) is applicable
to any decision-making problem with many objectives
in the presence of deep uncertainties. The library has
been applied and tested on multiple examples that can
be found in the examples directory of the repository,
including the lake problem example, as elaborated in the
Quality control section.

Acknowledgements
We would like to thank Jan Kwakkel (TU Delft) for
his valuable feedback during the development of the
Rhodium framework.

Competing Interests
The authors have no competing interests to declare.

References

1. Bankes S. Exploratory Modeling for Policy Analysis.
Operations Research. 1993; 41(3): 435-449. DOI:
https://doi.org/10.1287 /opre.41.3.435

2. Knight FH. Risk, Uncertainty and Profit. Courier Dover
Publications; 1921.

3. Lempert RJ, Collins MT. Managing the Risk of
Uncertain Threshold Responses: Comparison of
Robust, Optimum, and Precautionary Approaches.
Risk Analysis. 2007; 27(4): 1009-1026. DOI: https://
doi.org/10.1111/j.1539-6924.2007.00940.x

4. Herman JD, Reed PM, Zeff HB, Characklis GW.
How Should Robustness Be Defined for Water Systems
Planning under Change? journal of Water Resources
Planning and Management. 2015; 141(10): 04015012.
DOI: https://doi.org/10.1061/(ASCE)WR.1943-
5452.0000509

https://github.com/Project-Platypus/Rhodium/
https://github.com/Project-Platypus/Rhodium/
https://github.com/Project-Platypus/Rhodium/
https://github.com/Project-Platypus/Rhodium/
https://doi.org/10.1287/opre.41.3.435
https://doi.org/10.1111/j.1539-6924.2007.00940.x
https://doi.org/10.1111/j.1539-6924.2007.00940.x
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000509
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000509

Hadjimichael et al: Rhodium

5. Borgomeo E, Mortazavi-Naeini M, Hall JW, Guillod
BP. Risk, Robustness and Water Resources Planning
Under Uncertainty. Earth’s Future. 2018; 6(3): 468—487.
DOI: https://doi.org/10.1002/2017EF000730

6. Herman JD, Quinn JD, Steinschneider S, Giuliani
M, Fletcher S. Climate Adaptation as a Control
Problem: Review and Perspectives on Dynamic
Water Resources Planning Under Uncertainty. Water
Resources Research. 2020; 56(2): €24389. DOL: https://
doi.org/10.1029/2019WR025502

7. Dittrich R, Wreford A, Moran D. A survey of
decision-making approaches for climate change
adaptation: Are robust methods the way forward?
Ecological Economics. 2016; 122: 79-89. DOL: https://
doi.org/10.1016/j.ecolecon.2015.12.006

8. Lempert RJ, Groves DG, Popper SW, Bankes SC.
A general, analytic method for generating robust
strategies and narrative scenarios. Management science.
2006; 52(4): 514-528. DOI: https://doi.org/10.1287/
mnsc.1050.0472

9. Lempert RJ, Popper SW, Bankes SC. Robust decision
making: coping with uncertainty. The Futurist. 2010;
44(1): 47.

10. Lempert RJ. A new decision sciences for complex
systems. Proceedings of the National Academy of
Sciences. 2002; 99(suppl 3): 7309-7313. DOL: https://
doi.org/10.1073/pnas.082081699

11. Bryant BP, Lempert RJ. Thinking inside the box: A
participatory, computer-assisted approach to scenario
discovery. Technological Forecasting and Social Change.
2010; 77(1): 34-49. DOI: https://doi.org/10.1016/].
techfore.2009.08.002

12.Kasprzyk JR, Nataraj S, Reed PM, Lempert RJ.
Many objective robust decision making for complex
environmental systems under-going change.
Environmental Modelling & Software. 2013; 42: 55-71.
DOI: https://doi.org/10.1016/j.envsoft.2012.12.007

13.Herman JD, Zeff HB, Reed PM, Characklis GW.
Beyond optimality: Multistakeholder robustness
tradeoffs for regional water portfolio planning
under deep uncertainty. Water Resources Research.
2014; 50(10): 7692-7713. DOL: https://doi.
org/10.1002/2014WR015338

14.Hadka D, Herman J, Reed P, Keller K. An open
source framework for many-objective robust decision
making. Environmental Modelling & Software.
2015; 74: 114-129. DOIL: https://doi.org/10.1016/].
envsoft.2015.07.014

15. Kasprzyk J, Reed PM, Kirsch BR, Characklis GW.
Managing population and drought risks using many-
objective water portfolio planning under uncertainty.
Water Resources Research. 2009; 45(12). DOI: https://
doi.org/10.1029/2009WR008121

16. Kwakkel JH. The Exploratory Modeling Workbench:
An open source toolkit for exploratory modeling,
scenario discovery, and (multi-objective) robust

Art.12, page9 of 10

decision making. Environmental Modelling & Software.
2017; 96: 239-250. DOI: https://doi.org/10.1016/].
envsoft.2017.06.054

17. Hadka D, Reed P. Borg: An Auto-Adaptive Many-
Objective Evolutionary Computing Framework.
Evolutionary Computation. 2013; 21(2): 231-259. DOI:
https://doi.org/10.1162/EVCO_a_00075

18. Friedman JH, Fisher NI. Bump hunting in high-
dimensional data. Statistics and Computing.
1999; 9(2): 123-143. DOI: https://doi.
org/10.1023/A:1008894516817

19.Breiman L. Classification and Regression Trees.
New York: Routledge; 1984. DOI: https://doi.
org/10.1201/9781315139470

20.Herman JD, Usher W. SALib: An open-source Python
library for Sensitivity Analysis. J Open Source Software.
2017; 2(9): 97. DOL https://doi.org/10.21105/
joss.00097

21. McKay MD, Beckman R}, Conover WJ. A Comparison
of Three Methods for Selecting Values of Input
Variables in the Analysis of Output from a Computer
Code. Technometrics. 1979; 21(2): 239-245. DO
https://doi.org/10.2307/1268522

22.Lempert R. Scenarios that illuminate vulnerabilities
and robust responses. Climatic Change. 2013; 117(4):
627-646. DOI: https://doi.org/10.1007 /s10584-012-
0574-6

23.Carpenter SR, Ludwig D, Brock WA. Management
of Eutrophication for Lakes Subject to Potentially
Irreversible Change. Ecological Applications. 1999;
9(3): 751-771. DOI: https://doi.org/10.1890/1051-
0761(1999)009[0751:MOEFLS]2.0.CO;2

24.Quinn JD, Reed PM, Keller K. Direct policy search for
robustmulti-objectivemanagementofdeeplyuncertain
socio-ecological tipping points. Environmental
Modelling & Software. 2017;92: 125-141. DOL: https://
doi.org/10.1016/].envsoft.2017.02.017

25.Cukier RI, Fortuin CM, Shuler KE, Petschek
AG, Schaibly JH. Study of the sensitivity of
coupled reaction systems to uncertainties in rate
coefficients. [Theory. The Journal of chemical
physics. 1973; 59(8): 3873-3878. DOI: https://doi.
org/10.1063/1.1680571

26.Borgonovo E. A new uncertainty importance
measure. Reliability Engineering & System Safety.
2007;92(6): 771-784. DOL: https://doi.org/10.1016/].
ress.2006.04.015

27.Sobol IM. Global sensitivity indices for nonlinear
mathematical models and their Monte Carlo estimates.
Mathematics and computers in simulation. 2001;
55(1-3): 271-280. DOI: https://doi.org/10.1016/
S0378-4754(00)00270-6

28.Morris MD. Factorial sampling plans for preliminary
computational experiments. Technometrics. 1991;
33(2): 161-174. DOLI: https://doi.org/10.1080/00401
706.1991.10484804

https://doi.org/10.1002/2017EF000730
https://doi.org/10.1029/2019WR025502
https://doi.org/10.1029/2019WR025502
https://doi.org/10.1016/j.ecolecon.2015.12.006
https://doi.org/10.1016/j.ecolecon.2015.12.006
https://doi.org/10.1287/mnsc.1050.0472
https://doi.org/10.1287/mnsc.1050.0472
https://doi.org/10.1073/pnas.082081699
https://doi.org/10.1073/pnas.082081699
https://doi.org/10.1016/j.techfore.2009.08.002
https://doi.org/10.1016/j.techfore.2009.08.002
https://doi.org/10.1016/j.envsoft.2012.12.007
https://doi.org/10.1002/2014WR015338
https://doi.org/10.1002/2014WR015338
https://doi.org/10.1016/j.envsoft.2015.07.014
https://doi.org/10.1016/j.envsoft.2015.07.014
https://doi.org/10.1029/2009WR008121
https://doi.org/10.1029/2009WR008121
https://doi.org/10.1016/j.envsoft.2017.06.054
https://doi.org/10.1016/j.envsoft.2017.06.054
https://doi.org/10.1162/EVCO_a_00075
https://doi.org/10.1023/A:1008894516817
https://doi.org/10.1023/A:1008894516817
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.21105/joss.00097
https://doi.org/10.21105/joss.00097
https://doi.org/10.2307/1268522
https://doi.org/10.1007/s10584-012-0574-6
https://doi.org/10.1007/s10584-012-0574-6
https://doi.org/10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2
https://doi.org/10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2
https://doi.org/10.1016/j.envsoft.2017.02.017
https://doi.org/10.1016/j.envsoft.2017.02.017
https://doi.org/10.1063/1.1680571
https://doi.org/10.1063/1.1680571
https://doi.org/10.1016/j.ress.2006.04.015
https://doi.org/10.1016/j.ress.2006.04.015
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1080/00401706.1991.10484804
https://doi.org/10.1080/00401706.1991.10484804

Art.12, page 10 of 10 Hadjimichael et al: Rhodium

How to cite this article: Hadjimichael A, Gold D, Hadka D, Reed P 2020 Rhodium: Python Library for Many-Objective Robust
Decision Making and Exploratory Modeling. Journal of Open Research Software, 8: 12. DOI: https://doi.org/10.5334/jors.293

Submitted: 23 August 2019 Accepted: 30 April 2020 Published: 09 June 2020
Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
]U[Ubiquity Press. OPEN ACCESS a

https://doi.org/10.5334/jors.293
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

