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RESEARCH ARTICLE

A multiscale measure of spatial dependence based on 
a discrete Fourier transform
Hanchen Yua and A. Stewart Fotheringhamb

aCenter for Geographic Analysis, Harvard University, Cambridge, MA, USA; bSpatial Analysis Research Center, 
School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA

ABSTRACT
The measurement of spatial dependence within a set of observa
tions or the residuals from a regression is one of the most common 
operations within spatial analysis. However, there appears to be 
a lack of appreciation for the fact that these measurements are 
generally based on an a priori definition of a spatial weights matrix 
and hence are limited to detecting spatial dependence at a single 
spatial scale. This paper highlights the scale-dependence problem 
with current measures of spatial dependence and defines a new, 
multi-scale approach to defining a spatial weights matrix based on 
a discrete Fourier transform. This approach is shown to be able to 
detect statistically significant spatial dependence which other 
multi-scale approaches to measuring spatial dependence cannot. 
The paper thus serves as a warning not to rely on traditional 
measures of spatial dependence and offers a more comprehensive, 
and scale-free, approach to measuring such dependence.
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1. Background and introduction to the problem

Spatial dependence is an attribute of almost all spatial data; indeed it is quite difficult to 
conceive of real data which are distributed randomly over space. However, the degree to 
which similar values of a variable are located in close proximity to each other can vary 
from being very weak to very strong so that the measurement of spatial dependence is 
a common component of much spatial analysis. It is useful to be able to describe 
quantitatively the degree to which similar values are clustered together in space. This is 
not only important as a descriptive measure of a distribution but it also has implications 
for the calculation of the effective sample size in assessing inference and power in many 
statistics applied to spatial data. The measurement of spatial dependence is also impor
tant in assessing the degree to which residuals in a regression exhibit spatial autocorrela
tion because if the residuals exhibit sufficient dependence, this may invalidate the 
assumption that they are independent and invalidate the basis on which inference is 
made (Cliff and Ord 1972, Kelejian and Robinson 1992).

For these reasons, there is a vast literature on various types of statistical measures of 
spatial dependence although two measures have come to dominate the literature: 
Moran’s I and Geary’s C (Moran 1950, Geary 1954, Getis and Ord 1992, Anselin 1995, 
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2019, Ord and Getis 1995, Kelejian and Prucha 2001, Delgado and Robinson 2015). 
Arguably, the former has gained pre-eminence in the literature possibly because of its 
convenient scale between −1 (extreme negative spatial autocorrelation) and +1 (extreme 
positive autocorrelation) with a mid-point which is almost zero [−1/(N-1), where N is the 
number of points] indicating no spatial dependence. Consequently, in what follows we 
use Moran’s I as an exemplar of the standard type of spatial dependence measure which 
we show can have severe flaws if the data being examined result from multiple processes 
operating at different scales.

That measures of spatial dependence are scale-dependent is not new: the issue has 
been studied for decades and various solutions have been proposed involving the 
construction of local measures of spatial dependence (Getis and Ord 1992, Anselin 
1995, Ord and Getis 1995), using measures at different scales (Meisel and Turner 1998, 
Fauchald et al. 2000, Wu et al. 2000, 2020, Hay et al. 2001, Zhang and Zhang 2011, 
Westerholt et al. 2015, 2018, Oman and Mateu 2019), and optimizing the spatial 
weights matrix (Getis and Aldstadt 2004, Rogerson 2011, Rogerson and Kedron 2012, 
Bauman et al. 2018). Here, we propose a new measure of spatial dependence based on 
a Fourier transform of a spatial distribution (Fuentes 2007, Bandyopadhyay et al. 2015, 
Rao 2018, Guinness 2019). We first describe the problem that typical measures of 
dependence are usually arbitrary being sensitive to how spatial scale is defined. We 
then examine two methods that might provide a solution, a multiscale measure of 
Moran’s I and a spatial variogram, but find them lacking. We therefore propose a new 
multiscale measure of spatial dependence based on a Fourier transform and show how 
this can be used to define a scale-free spatial weights matrix for generic use in spatial 
analysis.

2. Single scale and multiscale measures of spatial dependence

Consider a variable x which is distributed over a set of N locations, each labeled i. Moran’s 
I is then defined as: 

I ¼
N

PN
i¼1

PN
j¼1 wij xi � �xð Þ xj � �x

� �

PN
i¼1

PN
j¼1 wij

PN
i¼1ðxi � �xÞ

(1) 

where N is the number of locations indexed by i and j; x
0:3em$�$

is the mean of x; and 

wij is a matrix of spatial weights. One immediate problem with the use of any measure 
of spatial dependence is the definition of the spatial scale over which dependence is 
defined as this can have a major impact on the determination of whether significant 
spatial dependence exists.1 In the formula above, for example, this scale definition 
problem manifests itself through the definition of the spatial weights matrix which 
can have many forms such as:

(i) wij = 1 if i and j share a common edge (if i and j represent polygons); 0 otherwise;
(ii) wij = 1 if i and j are the 1-kth nearest neighbors; 0 otherwise;
(iii) wij = 1 if i and j share a common point of contact (if i and j represent polygons); 0 

otherwise;
(iv) wij=1 if the distance between i and j is smaller than a threshold d; 0 otherwise;
(v) wij = 1/dβ

ij where dij is the distance between i and j.
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Each of these definitions will lead to a different value of I being calculated. Even where 
the weights exhibit a continuous decline as distance increases, as in (v), the scale problem 
exists because the weights will depend on β with the weights decreasing more rapidly as 
distance increases the larger is β.

The scale problem in measuring spatial dependence is shown clearly in the situation 
described in Figure 1. Figure 1(a) represents a distribution λ ¼ � þ η with a checkerboard 
pattern with maximum and minimum values of 1.5 and −1.5 η = � 1:5 overlaying a mean- 
stationary Gaussian random field �,N 0; �ð Þ, where � denotes the covariance matrix 
arising from a squared exponential spatial covariance function as follows: 

� k; hð Þ ¼ exp �0:5�
dij

2

b2

� �

(2) 

In this notation, b is the parameter controlling the surface’s dependence and is set to 4 to 
derive the surface in Figure 1(a), and dij is the distance between locations i and j. The 
distribution is one such that at a regional scale high values tend to cluster in the south and 
southeast with low values clustering in the north but at a local scale there is negative 
dependence with relatively high values being adjacent to relatively low values. Figure 1(b) 
represents the values of Moran’s I and associated β values for this distribution using 
a continuous distance-based weights matrix with different distance powers (effectively 
measuring spatial dependence at different scales) such that: 

wij ¼
1

dij
β (3) 

where β is a scaling factor. As β tends to 0, the weights tend to 1 and as β increases, spatial 
dependence is measured at an increasingly local scale. When β is low ( � 1.5), spatial 
dependence is measured regionally and Moran’s I is significantly positive. As β increases, 
dependence is measured increasingly locally and decreases to zero becoming insignif
icant when 1:5< β< 2. When β> 2, significant negative spatial dependence is detected. 
This demonstrates the problem with standard measures of spatial dependence – they are 

Figure 1. (a) A spatial distribution; (b) Moran’s I and associated β values calculated at different spatial 
scales.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 3



scale dependent and any particular measurement of spatial dependence will only be valid 
at one particular spatial scale. If a measure such as Moran’s I or Geary’s C is to be used, 
values should be reported at all spatial scales such as is done in Figure 1(b), unless of 
course a specific scale of analysis has meaning and in this case a single-scale measure of 
dependence is appropriate. Generally though the measurement of spatial dependence is 
undertaken at a purely arbitrary scale as defined by the definition of the spatial weights 
matrix.

However, a multi-scale description of Moran’s I, as shown in Figure 1(b), still has 
limitations when a spatial distribution results from a combination of processes operating 
at different spatial scales. Consider, for example, the three surfaces in Figure 2. The 
distributions shown in Figure 2(a) and 2(b) are derived from a Gaussian Random Field in 
which the parameter b in equation (2) equals 6 and 1 respectively. The distribution in 
Figure 2(a) has a high degree of spatial dependence; the distribution in Figure 2(b) has 
a low degree of spatial dependence. The distribution in Figure 2(c) is the cell-wise 
summation of the two distributions in Figure 2(a) and 2b. The multi-scale plots of 
Moran’s I, equivalent to that in Figure 1(b), for each of these three surfaces are shown in 
Figure 3.

In Figure 3(a) the value of Moran’s I is always significantly positive and rises rapidly as 
the value of I is calculated at increasingly local scales. In Figure 3(b) the value of Moran’s 
I is insignificant at a broad regional scale (when β< 0:25) and becomes significantly 
positive at more local scales of analysis (when β> 0:25). The increase in Moran’s I as β 

Figure 2. (a) Distribution with high spatial dependence; (b) Distribution with low spatial dependence; 
(c) A cell-wise summation of the two distributions.

Figure 3. Multi-scale Moran’s I plots with associated β values for the distributions shown in Figure 2 
(a-c).
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increases is less steep than for the distribution in Figure 2(a). The plot in Figure 2(c) is 
a compromise of the plots in Figure 2(a) and 2(b), which is to be expected given the 
distribution in Figure 2(c) is a combination of the two distributions in Figure 2(a) and 2(b). 
The problem is that if faced with Figure 2(c) alone, we have no way of identifying that the 
surface results from two different processes operating at different spatial scales. What is 
needed is a multi-scale measure of spatial dependence that can identify if a distribution 
results from two or more processes operating at different spatial scales. To this end, the 
spatial variogram was developed based on a measure of semivariance defined as: 

γij ¼ 1=2 � var Zi � Zj
� �

(4) 

where Zi is the value of an attribute at location i, Zj is the value at location j and var is 
a variance operator so that semivariance is a measure of the degree to which values of 
a distribution a certain distance apart are dissimilar. If a surface were constant, for 
example, the semivariance would be 0 for all distances. For a stationary isotropic process, 
the semivariance only depends on the distance h between locations (Cressie 1993) so that 
semivariance can be represented by γ hð Þ and a semivariogram can be constructed by 
plotting the value of γ hð Þ against h.

Figure 4(a-c) contains the variograms for the three distributions shown in Figure 2 with 
semivariance on the vertical axis plotted against h. In distributions with positive spatial 
dependence, as h tends to 0, γ hð Þ tends to 0 and as h increases, the semivariance 
increases. The slope of the variogram indicates the degree of dependence in the distribu
tion; the steeper the slope, the lower is the spatial dependence in the distribution. 
Comparing the results for the two distributions shown in Figure 2(a) and 2(b), the 
semivariogram corresponding to Figure 2(a) is less steep and reaches a plateau (the sill) 
at a value of h =9. In Figure 4(b) the slope is steeper indicating less spatial dependence 
and reaches its sill at around h =3. The semivariogram of the composite distribution in 
Figure 2(c) indicates the possibility that the distribution is comprised of two processes 
operating at different scales with a steeper slope (less dependence) from h = 0 to 3 and 
a gentler slope (greater dependence) between h =3 and h =9, at which point the sill is 
reached and there is no further dependence at this distance.

Although semivariograms can identify multi-scale processes and therefore appear to 
be superior to a multi-scale Moran’s I, they are not always reliable. For instance, consider 
the three distributions in Figure 5 which are similar to those in Figure 2 except that 

Figure 4. Semivariograms for the three distributions shown in (a) Figure 2(a); (b) Figure 2(b); (c) 
Figure 2(c).
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the second distribution now has a greater degree of spatial dependence. Figure 6 shows 
the semivariograms for the three distributions with Figure 6(c) highlighting the problem. 
In Figure 6(a) the semivariogram has a relatively gentle slope indicating strong depen
dence with a sill at around h =9. In Figure 6(b) the semivariogram has a slightly steeper 
slope indicating slightly weaker dependence with a sill around h =3. In Figure 6(c), 
however, there is no evidence of multi-scale processes generating the distribution with 
a single gradient indicating relatively weak dependence up to the sill which is reached 
around h =9. Hence, there is a need for a more sensitive multi-scale measure of spatial 
dependence and for this we turn to discrete Fourier transforms.

3. The discrete Fourier transform in 1-D and 2-D

There are two perspectives on a distribution. One is to regard it as a set of points in space, 
which is the traditional view and the one used exclusively so far in this paper. Another is to 
view a distribution as the combination of a set of waves, each having a frequency and an 
amplitude (Matsuda and Yajima 2009, Perraudin and Vandergheynst 2017, Deb and Wu 
2017). High-frequency waves represent rapid changes in space; low-frequency waves 
represent more gradual changes over space. The magnitudes of the changes across 
space are represented by the amplitudes of the waves; the direction of the wave 
determines the direction of these changes; and the phase of the wave describes the 
relative position of the wave within its cycle. A discrete Fourier transform is a method of 
expressing a spatial distribution as a set of waves.

Figure 5. Three spatial distributions (a) strong spatial dependence; (b) medium spatial dependence; (c) 
a combination of (a) and (b).

Figure 6. Semivariograms for the three distributions in Figure 5.
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To begin the discussion of the application of discrete Fourier transforms to 
measure multi-scale spatial dependence in spatial distributions, we begin by demon
strating the application of a discrete Fourier transform to a 1-dimensional distribu
tion. The discrete Fourier transform, F Xð Þ, of a vector X of length m is defined as 
follows: 

F Xð Þ ¼ Ypþ1 ¼
Xm

j¼1
ωjp

mXj (5) 

where Ypþ1 is the frequency spectrum, p is the frequency from 0 to m-1, ωm is the 
complex root of unity and ωm ¼ e�2πi=m, where i is the imaginary unit. As an 
example, consider the 1-dimensional distributions in Figure 7(a) and 7(b) which 
represent two sine waves of different frequencies with random noise having zero 
mean. Figure 7(c) is a composite of these two waves. Figure 8(a-c) represent the 
discrete Fourier transforms of these three distributions with Figure 8(a) and 8(b) 
clearly identifying the two sine waves with different frequencies and Figure 8(c) 
identifying that the distribution in Figure 7(c) results from a mixture of two 
processes.

Figure 7. Sine waves (a) frequency XX; (b) frequency YY; (c) a composite of (a) and (b).

Figure 8. Discrete Fourier transforms of the distributions in Figure 7(a-c).
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In two dimensions, the discrete Fourier transform projects a process from the space 
domain, (xc, yc), where xc and yc represent the geographic coordinates of a location on 
a spatial plane, to the frequency domain, (p, q), where p and q range from 0 to m-1 and 
represent the direction and frequency of a 2-D wave. Consider an m by n spatial process, 
X, whose autocorrelation function is defined as2: 

RX i; jð Þ ¼ E Xi � Xj
� �

(6) 

where RX i; jð Þ is the autocorrelation function between location i and j and E Xi � Xj
� �

is the 
expectation of the product of process X at locations i and j, Xi � Xj. The power spectral 
density of this process, SX p; qð Þ, is the discrete Fourier transform of the corresponding 
autocorrelation function and is an expression of dependence in the frequency domain. It 
indicates at which frequencies variations in autocorrelation are either strong or weak. The 
power spectral density is defined as the square modulus of the discrete Fourier transform 
of X as follows: 

SX p; qð Þ ¼ F Xð Þj j
2
= m�nð Þ ¼ F Xð Þ:�F Xð Þ= m�nð Þ (7) 

where p and q represent a location in the frequency domain which determine the 
direction and frequency of a 2-D wave. The period of each wave is p2 þ q2ð Þ

�1
2. In order 

to calculate SX ðp; q) we therefore need to calculate the discrete Fourier transform of the 
process X, F(X), and the conjugate transform, �F Xð Þ: The former is given by: 

F Xð Þ ¼ Ypþ1; qþ1 ¼
Xm

i¼1

Xn

j¼1
ω i�1ð Þp

m ω j�1ð Þq
n Xi; j (8) 

where Ypþ1;qþ1 is the frequency spectrum, ωm and ωn are the complex roots of unity, 
ωm ¼ e�2πi=m,ωn ¼ e�2πi=n and i is the imaginary unit. The latter is given by: 

�F Xð Þ ¼ �Ypþ1; qþ1 ¼
Xm

i¼1

Xn

j¼1
ω� i�1ð Þp

m ω� j�1ð Þq
n Xi; j (9) 

The Wiener-Khinchin theorem states that the power spectral density, SX p; qð Þ, of a wide- 
sense stationary random process is the Fourier transform of the corresponding autocor
relation function (Wiener 1930, Yao and Journel 1998, Ver et al. 2004, Perraudin and 
Vandergheynst 2017): 

SX p; qð Þ ¼ FðRX i; jð ÞÞ (10) 

For a realization of a process, the expectation RX i; jð Þ can be estimated by the convolution 
of data: 

CX i; jð Þ ¼
1

mn

Xm

k¼1

Xn

l¼1
Xk; lXkþi; lþj (11) 

which is a local measure of spatial dependence and which generally decreases with 
distance. For example, in Figure 9 we display the values of CX i; jð Þ relating to the three 
surfaces in Figure 2. In Figure 10 we show the corresponding power spectral densities, and 
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Figure 11 describes the inverse discrete Fourier transforms of the corresponding power 
spectral densities which also provide a means of estimating RX i; jð Þ according to equa
tion (12): 

RX i; jð Þ ¼ F�1 SX p; qð Þð Þ (12) 

where 

F�1 Xð Þ ¼
1

mn

Xm

i¼1

Xn

j¼1
ω� i�1ð Þp

m ω� j�1ð Þq
n Xi; j (13) 

Figure 9. The values of CX i; jð Þ corresponding to the three surfaces in Figure 2.

Figure 10. The power spectral densities corresponding to the three surfaces in Figure 2. The colors 
represent the average power (square of amplitude/m*n) of each wave. High values indicate strong 
spatial dependence.

Figure 11. Inverse discrete Fourier transform of the power spectral densities corresponding to the 
three surfaces in Figure 2.
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so that Figures 9 and 11 are equivalent. Both Figures 9 and 11 are shifted so that CX 0; 0ð Þ

is at the center of the plot because this represents the correlation of a value with itself and 
so is always 1. The value of each pixel in Figures 9 and 11 thus expresses the correlation 
between the two points of the process X whose relative positions are described by the 
distance and direction of the pixel to the center of the plot. The sign of the values in 
Figure 9 corresponds to positive/negative dependence with larger absolute values indi
cating higher dependence. These three figures show how the dependence in the original 
surfaces varies by distance and direction. For example, Figure 9(a) depicts a surface in 
which spatial dependence varies more slowly than in the surfaces represented in Figure 9 
(b) and 9(c) and also decreases more slowly in a northwest to southeast direction than in 
a northeast to southwest direction.

In Figure 10 the power spectral density is indicated by color with yellow pixels 
indicating large amplitude waves and blue pixels indicating small amplitude waves. The 
position of each pixel describes the frequency of the wave with pixels closer to the center 
indicating lower frequency waves. The pixel at (10, 10) in Figure 10(a), for example, 
corresponds to a large amplitude (yellow), low frequency (close to the center), wave 
and represents A main component of spatial dependence from the northwest to the 
southeast (orthogonal to the direction of the vector linking the pixel to the center of the 
figure). Similarly, the light blue pixel at (12, 10) corresponds to a medium amplitude, low 
frequency, wave in a northeasterly direction, suggesting a more gentle component of 
spatial dependence running northeast to southwest. These two main components of 
spatial dependence, a strong north-west to south-east dependenceand weaker north-east 
to south-west dependence are the main features of Figure 9(a) and 2(a).

In Figure 10(b) we see a large number of medium-amplitude waves suggesting that the 
pattern of spatial dependence in Figure 2(b) varies more rapidly over space but is 
generally weaker than in Figure 2(a). In Figure 10(c) we see a large amplitude wave at 
low frequency, similar to Figure 10(a), along with some medium amplitude waves at 
moderate frequency indicating that the original surface in Figure 2(c) has both strong 
dependence which varies slowly over space and weak dependence that varies rapidly 
over space. Figure 10(c) thus identifies that the distribution in Figure 2(c) results from 
a combination of two processes with different patterns of spatial dependence.

We now revisit the three distributions in Figure 5 and in particular the distribution in 
Figure 5(c) which results from a combination of processes which we were unable to 
identify with the spatial variogram. The power spectral densities corresponding to the 
three surfaces are shown in Figure 12 where Figure 12(a) indicates a spatial distribution 

Figure 12. The power spectral densities corresponding to the three surfaces in Figure 5.
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with strong dependence varying slowly from the north-west to the south-east. Figure 12 
(b), in contrast, is indicative of a distribution with strong dependence in a north-south 
direction mixed with a confused set of weaker dependencies in various other directions 
varying more rapidly over space. Figure 12(c) indicates a mixture of these two 
distributions.

Consequently, power spectral density analysis provides an alternative means of 
investigating multi-scale spatial dependence. The relative amplitude represents the 
strength of the dependence, the frequency represents the variation in the depen
dence across space, and the direction of the wave represents the direction of the 
dependence. Furthermore, half the wave period, which is determined by its fre
quency, can be thought of as the ‘scale’ of the dependence. Half the wave period 
is the maximum distance where the contribution of the wave to the autocorrela
tion function is all positive/negative in a certain direction. If a high-amplitude 
wave dominates the autocorrelation function, the half period of the wave is 
double the distance from the origin to where the autocorrelation function first 
drops to 0 in a given direction. If several high amplitude waves jointly determine 
the autocorrelation function, then the dependence is multi-scale. Each wave 
represents a different degree of dependence and since different waves have 
different directions, anisotropy in dependence can also be reflected by the 
power spectral density map.

The linkages between the power spectral densities and the degree and pattern 
of spatial dependencies exhibited by a distribution are derived from equation (12). 
However, another definition of the power spectral density shown in equation (7) 
links power spectral density to the processes that produced the data. A very 
simple surface, such as a pure 2D sinusoid, can be represented by a single wave; 
more complex surfaces need to be represented by more waves. Complex surfaces 
can be thought of as having a relatively small set of controlling high amplitude 
waves that describe the main components of spatial dependence in the data and 
a large number of low amplitude waves which describe local details and some of 
which can be treated as the trivial components of spatial dependence. 
Consequently, even complex surfaces can be represented accurately by 
a relatively small number of waves and the number of waves that can describe 
a surface accurately indicates the complexity of the surface (Horn et al. 1986, 
Gonzalez and Woods 2008, Solomon and Breckon 2011, Sonka et al. 2014). 
Further, we can compare the particular waves that describe two or more different 
surfaces to indicate any processes which are common to these surfaces. We now 
describe an example of this.

4. An example of the discrete Fourier transform applied to a 2-D surface

Figure 2 displays three different surfaces: Figure 2(a) and 2(b) describe surfaces derived 
from two independent spatial processes while Figure 2(c) describes a surface obtained 
from a mixture of these two processes. These three surfaces are repeated in row 1 of 
Figure 13. To demonstrate the application of a discrete Fourier transform to these 
surfaces, we first calculate the set of waves that represent these surfaces as described 
by equation (5) and then order these waves in terms of their amplitudes, highest to 
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(a) (b) (c)

(d) (e) (f)

(h) (i)

(j) (k) (l)

(m) (n) (o)

(g)

Figure 13. Surfaces constructed using various numbers of waves derived from the power spectral 
densities of Figure 2(a), 2(b) and 2(c). The first row contains the original three surfaces. The second row 
contains surfaces derived from the highest amplitude wave; the third row surfaces are generated from 
the highest two amplitude waves; the fourth row from the highest four amplitude waves; and the fifth 
row from the highest eight amplitude waves.
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lowest. In Figure 13 we describe how each of the three surfaces can be represented by the 
highest amplitude wave (second row), the highest two amplitude waves (third row), the 
highest four amplitude waves (fourth row) and the highest eight amplitude waves 
(fifth row).

The results in Figure 13 indicate that the original surfaces in Figure 2 cannot be 
represented accurately by either one or two waves although they do indicate that 
Figure 2(a) and 2(c) shares a common structure whereas the surface in Figure 2(b) is 
different. Recall that Figure 2(a) has strong regional spatial dependence, Figure 2(b) 
has weaker and more local spatial dependence and the distribution in Figure 2(c) is 
a composite of these two. The surface in Figure 2(a) is summarized accurately with four 
waves but those in Figure 2(b) and 3(c), having greater spatial variation, require at least 
eight waves. Figure 14 shows the mean squared error when each of the original 
surfaces in Figure 2 is represented by a surface generated with a limited number of 
the by the number of the highest amplitude waves related to Figure 13. The mean 
square error decreases very quickly when the first few waves with the largest ampli
tude are added, and then the error decreases gradually as the number of waves 
increases.

5. A new multiscale measure of spatial dependence based on a discrete 
Fourier transform

According to equation (12), the inverse Fourier transform of the power spectral density, 
F�1½SX p; qð Þ�, can be used as a multiscale estimate of the spatial dependence exhibited by 
a surface of values. However, if we include all the waves in the power spectral density, as 
was done to construct Figure 11, the estimate will have a large variance and be subject to 
overfitting. To overcome this, only a limited number of the highest amplitude waves from 
the power spectral density need be included in the estimate with all other waves to zero. 
The highest amplitude waves describe the main components of spatial dependence in the 

Figure 14. Mean squared error by the number of the highest amplitude waves related to Figure 13.
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data so the loss of the smaller amplitude waves in the estimation of the spatial depen
dence only ignores some local details and trivial components of spatial dependence. Here 
we define DX Kð Þ as the power spectral density containing only the top K amplitude waves 
from the original power spectral density SX p; qð Þ. We then define Ω(K) = F�1½DX Kð Þ]as 
a multiscale estimate of the spatial dependence in the original surface using K waves. For 
example, Ω(K) with K =1, K =4, K =50, and K =100 for the three surfaces in Figure 2 are 
shown in Figure 15. Again, the values in Figure 15 are shifted so that Ω(K) (0,0) is at the 
center of the plot.

Figure 15. Ω(K) with K =1 (first row), 4 (second row), 50 (third row), 100 (fourth row) corresponding to 
the three surfaces in Figure 2.
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The surfaces in Figure 15 are multiscale representations of the spatial dependence 
exhibited in the original three surfaces in Figure 2. To compute a single-scale dependence 
measure from one of these surfaces, in order to compare with traditional single-scale 
measures such as Moran’s I, it is necessary to compare the values in one cell with the 
values in neighboring cells. For example, consider calculating Moran’s I with a spatial 
weights matrix in which the weight is 1 if two cells share a common edge or point and 0 
otherwise, the ‘queen’s case’. To produce an equivalent value to that of Moran’s 
I calculated in this way, we use the same ‘queen’s case’ definition of neighboring cells 
in Figure 15 and define δ8 Kð Þ as the average value of the 8 adjacent locations around the 
center of the shifted Ω(K) map. To compare δ8 Kð Þ and Moran’s I as equivalent single-scale 
measures of spatial dependence, we use a mean-stationary Gaussian random field to 
generate 100 surfaces of data each with a unique dependence parameter h varying from 
0.1 to 10 in steps of 0.1. For each of these surfaces we calculate Moran’s I (queen’s case) 
and δ8 Kð Þ with K = 2, K =4, K =8, and K =16 and depict the relationships between these 
values in Figure 16. We can produce a value of δ Kð Þ corresponding to any definition of 
a spatial weights matrix used to compute Moran’s I by simply applying the same weights 
matrix to the way δ Kð Þ is derived.

Figure 16. Scatterplots of δ8 Kð Þ K =2,4,8,16 against Moran’s I for 100 distributions with different 
degrees of spatial dependence.
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The scatterplots show that Moran’s I and δ8 Kð Þ are highly correlated even when K is 
small, supporting the proposition that Ω(K) provides an alternative, but multiscale, 
measure of spatial dependence. The larger is K, obviously, the closer is the relationship 
between Moran’s I and δ8 Kð Þ but it is unnecessary to include all the waves in the power 
spectral density to represent spatial dependence. The advantages of Ω Kð Þ over Moran’s 
I are that: (i) the former is a multiscale measure of spatial dependence; and (ii) It is 
unnecessary to a priori decide on a specific form for the spatial weights matrix (how 
many neighbors to use) which can have a critical impact on the value of I computed. 
However, it should be recognized that Ω(K) is a more complex measure than Moran’s I and 
to be consistent, it would be fairer to compare Ω(K) to I(K) although the latter statistic has 
not yet been developed.

6. Inference about multiscale spatial dependence

To this point we have demonstrated that multiscale spatial dependence can be described 
by a surface of values we term Ω(K) as described in Figure 15. We have further shown that 
this surface can be used to obtain a single scale measure of spatial dependence, by using 
a spatial weights matrix applied to the values of Ω(K) and that this value would be 
equivalent to a value of Moran’s I computed from the original surface using the same 
spatial weights matrix. It now remains to be demonstrated how we can declare if there is 
any significant multiscale spatial dependence in the original surface using Ω(K).

Since the strength of any spatial dependence in the spatial domain is indicated by the 
amplitude of a wave in the Fourier domain, the statistical significance of an amplitude’s 
magnitude over that expected by noise can be used to determine the presence of 
significant spatial dependence. To demonstrate this, we employ a Monte Carlo simulation 
procedure to test the amplitudes of a set of waves derived in the Fourier transform of 
a spatial data set. The null hypothesis H0 is that there is no spatial dependence in terms of 
whatever processes produced the observed data – any observed level of spatial depen
dence is created by chance. We calculate the power spectral density related to the spatial 
data set and sort the waves from the highest amplitude to the lowest amplitude. Then we 
use a spatial random permutation on the data and repeat the previous step to obtain the 
sorted amplitude waves from this randomized distribution. We set the spatial position of 
the realization randomly, calculate the corresponding power spectral density and again 
sort the waves according to amplitude, highest to lowest. We repeat this randomization 
M times to obtain a distribution of the sorted amplitudes which yields M values of the 
amplitude for each order of amplitude. That is, we have M values of the amplitudes of the 
highest amplitude wave for each distribution, M values of the amplitude of the second 
highest amplitude waves and so forth. For each level of amplitude, we then compare the 
position of the amplitude for the observed distribution in a ranked list of all the ampli
tudes and the proportion of values lying above that of the observed distribution is the 
p-value associated with this wave. The p-values of all the waves corresponding to the 
three surfaces in Figure 10, which are the three power spectral densities related to 
Figure 2(a-c), are shown in Figure 17.

In Figure 17(a), there are three waves with p-values below 0.05 indicating that the 
spatial dependence present in the distribution in Figure 2(a) can be represented by 
these three waves; the rest are irrelevant. In Figure 17(b), there are 15 significant 
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waves and in Figure 17(c), there are 8 significant waves. Since waves in opposite 
directions depict the same wave, the power spectral densities in Figure 10 and their 
inference in Figure 17 are centrally symmetric. The yellow pixels in Figure 17 indicate 
the corresponding pixels in Figure 10 that are significant: any spatial dependence in 
the original surface is mainly determined by these waves. The dark blue pixels indicate 
the corresponding pixels in Figure 10 which are the trivial components of spatial 
dependence and which do not contribute any significant spatial dependence in the 
original surface. In Figure 17(a), for example, there are six yellow pixels which repre
sent three significant waves with p-values below 0.05 indicating that the spatial 
dependence present in Figure 2(a) can be represented by these three waves; the 
rest are irrelevant. In Figure 17(b) there are 15 significant waves and in Figure 17(c) 
there are 8 significant waves. The more complex the dependence structure in the 
original spatial distribution, the more significant waves will be identified through the 
analysis of the power density spectra. Identification of the significant waves in this 
manner allows us to discard the remaining waves and represent the multiscale spatial 
dependence structure in a distribution with a small number of waves which reduces 
the parameterization of the system and eliminates the trivial components of spatial 
dependence from the analysis. Of course, if the spatial dependence in the original 
surface was single scale, only one wave would be identified as significant in the power 
spectral density analysis.

7. Constructing an objective, multiscale spatial weights matrix

Spatial weights matrices are a foundation of many types of spatial analysis, such as 
calculating spatial dependence, spatial interpolation, cluster analysis, and spatial regres
sion models (Anselin 1988, Aldstadt and Getis 2006, Lu and Wong 2008, Getis 2009). The 
classical derivation of a spatial weights matrix is based on a subjective definition of either 
discrete neighbors or a rate of weighting decay as distance increases so that the results of 
any spatial analytical technique that uses a spatial weights matrix must also contain this 
same degree of subjectivity. Consequently, since a single spatial weights matrix can only 
reflect spatial relationships at a specific spatial scale, any results from the use of such 
a spatial weights matrix have limited application. For example, if a statistic used to 
measure spatial dependence containing a traditional spatial weights matrix indicates no 

Figure 17. P-values corresponding to the three power spectral density surfaces in .Figure 10, which, in 
turn, relate to the three spatial distributions in Figure 2.
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significant spatial dependence, this does not indicate that there is no spatial dependence 
in the data, only that there is none at the particular spatial scale defined by the spatial 
weights matrix.

Consequently, in this section we propose a method using the power spectral density 
to construct a spatial weights matrix which yields the maximum degree of spatial 
dependence that can be calculated from the data at all spatial scales. In essence, the 
elements of this new spatial weights matrix define the degree of connection between 
each pair of cells that maximizes the overall spatial dependence between the data 
values in those cells. Such a spatial weights matrix has the advantages that it is 
objective given that it always yields the maximum degree of spatial dependence that 
can be found at any spatial scale, it is scale-free, and it can identify spatial dependence 
in complex distributions where other multiscale techniques fail to identify any spatial 
dependence.

To demonstrate the derivation of this new spatial weights matrix, consider the complex 
spatial distribution shown in Figure 18(a). Figure 18(b) shows the multi-scale Moran’s I plot 
for this distribution which indicates that there is no significant spatial dependence in this 
distribution at any spatial scale: Moran’s I is always very low and the associated p-values 
are always in excess of 0.4. This is also the inference that would be drawn if we were to use 
discrete weights such as the ‘queen’s case’ and ‘rook’s case’ definitions of neighbours.

Now, consider the power spectral density of the data in Figure 18(a) which is shown in 
Figure 19(a) along with the associated p-values of each wave in Figure 19(b). If every wave 
in the power spectral density were insignificant, there would be no spatial dependence in 
the data in Figure 18(a) at any spatial scale. In this case, five waves are significant so there 
is some significant spatial dependence in the data. We now want to uncover the spatial 
scale of this dependence through calculating a spatial weights matrix that maximizes 
whatever dependence there is in the data.

To do this, the five significant waves are retained and all other waves are set to 0 to 
obtain a simplified power spectral density, DX Kð Þ; K ¼ 5, from which a spatial weights 
matrix, each element of which is wij, can be derived by using 

Figure 18. (a) A spatial data distribution and (b) Moran’s I and associated β values calculated at 
different spatial scales for this distribution.
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wij ¼
Ω Kð Þ xcj � xci þ 1; ycj � yci þ 1

� �
� min Ω Kð Þð Þ; i�j

0; i ¼ j

�

(13) 

where (xci,yci) is the coordinate of i. As each element in Ω Kð Þ represents the correlation 
between the data at two locations, the set of weights derived from equation (13) then 
allows the identification of any significant spatial dependence in the data at any spatial 
scale. Because the values in Ω Kð Þ can be negative, we subtract the minimum value in Ω Kð Þ

to ensure all the spatial weights are non-negative. The diagonal of the weights matrix is 
defined as zero. Following standard procedure with spatial weights matrices, we use row 
normalization on the matrix to make the sum of each row equal 1. This multiscale spatial 
weights matrix is shown in Figure 20(a) alongside an equivalent single-scale weights 
matrix derived from an inverse distance-squared weighting procedure.

Figure 20. (a) The weights matrix from equation (13); (b) Weights from an inverse distance squared 
procedure.

Figure 19. (a) The power spectral density for the distribution in Figure 18(a); (b) The corresponding for 
each wave.
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Both matrices have dimensions 400 × 400 showing the weights between every pixel 
and the remaining 399. In Figure 20(b) the weights are relatively large for neighboring 
east-west pixels (the center diagonal line) and are also relatively largely for pixels num
bered 20 above and 20 below as these are neighbors to the north and south (the other 
two diagonal lines). All other weights are close to zero because the inverse distance 
square weighting only assigns significant weights to pixels in very close proximity to each 
other. By contrast, the weights derived from equation (13) shown in Figure 20(a) are much 
less differentiated across space although the impact of neighboring cells can still be seen 
from the diagonal lines of similar color running northeast to southwest across the map. 
This new set of spatial weights also depicts multi-scale dependencies so that higher 
weights can be found between pixels not in close proximity to each other.

The value of Moran’s I using this new spatial weights matrix is .0075. To assess the 
significance of this value we derive an experimental distribution for I by rearranging the 
data in Figure 18(a) randomly over space and re-calculating I each time. This distribution is 
shown in Figure 21 where the observed value of I is shown as a red line to the right of the 
distribution indicating that there is significant spatial dependence in the original data that 
was not identified by the multiscale Moran’s I plot.

8. Summary and limitations

The measurement of spatial dependence is a common operation in the analysis of spatial 
data, either as a means of assessing the degree to which similar data values are clustered 
in space or as a means of detecting spatially autocorrelated residuals in a regression 
analysis. Both are critical operations that have important ramifications for other types of 
spatial analysis If significant spatial dependence is detected within a data set, for example, 
this would necessitate a recalculation of the effective sample size in any analysis of those 

Figure 21. Monte Carlo simulated distribution of Moran’s I. The red line is the Moran’s I based on the 
data in Figure 19(a).
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data; if significant spatial dependence is detected within set of residuals from a regression 
model, the inference about the parameter estimates from that model would be suspect 
and some type of spatial regression model may need to be employed. However, the 
problem with any measure of spatial dependence based on traditional spatial weights 
matrices (be they discrete or continuous) is that it can only detect spatial dependence at 
a single spatial scale. Consequently, significant spatial dependence might go undetected 
if such statistics are employed.

This paper describes this problem with a simulated data set and then highlights the 
limitation of two existing multi-scale measures of spatial dependence – a multi-scale Moran’s 
I and a spatial variogram. It then describes a novel approach to building a multi-scale spatial 
weights matrix based on a discrete Fourier transform. This new weights matrix is shown to 
be able to detect spatial dependence across any spatial scale and can detect significant 
dependence which other measures cannot. The approach is, however, not without its own 
limitations. The discrete Fourier transform approach to analysing spatial data, which involves 
viewing the resulting data as the product of a set of interacting waves, is arguably far less 
intuitive than the interpretation of spatial data as the manifestations of processes at discrete 
points in space. Also, the technique is limited to views of spatial data as distributed across 
regular-spaced grids; irregular distributions of data would need to be converted to rasters in 
order to apply the Fourier transform. That said, the technique is able to identify spatial 
dependence at whatever spatial scale it manifests itself and can also identify spatial depen
dence that other multiscale methods cannot. Given the prevalence of a priori defined spatial 
weights matrices as essential ingredients not only in measuring spatial dependence but also 
in many types of spatial analysis such as spatial interpolation, cluster analysis and spatial 
regression modeling, it should be of broad concern that such matrices are limited to a single 
scale of analysis. The replacement of single-scale weighting matrices by multiscale spatial 
weights matrices could therefore bring new insights into large areas of spatial analysis.

Notes

1. Note that although here we use Moran’s I as our measure of spatial dependence, our findings 
and comments would apply equally to other measures of spatial dependence such as Geory’s 
C which also depends on an a priori defined spatial weighting matrix.

2. Here, in accordance with the literature, we use ‘autocorrelation’ as a measure of spatial 
dependence.
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