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Abstract—This paper focuses on thwarting reverse engineering
attacks and IP theft by leveraging charge-recycling adiabatic
circuits. Adiabatic circuit operation has recently received atten-
tion for Internet-of-things (IoT) applications due to high energy
efficiency and enhanced security characteristics. Such applica-
tions typically consist of resource-constrained designs and are
often deployed in the field, making them particularly vulnerable
to malicious attacks. PhaseCamouflage is a circuit obfuscation
technique that leverages the inherent phase differences in power
supply voltage of adiabatic logic gates and exhibits strong resis-
tance against structural/removal attacks. The proposed method
relies on inserting camouflaged phase differences in the power
supply voltage of subsequent logic gates while still producing a
functional netlist. PhaseCamouflage is a unique logic obfuscation
technique with low overhead, particularly applicable to pervasive
computing applications where both efficiency and security are of
primary concern.

Index Terms—Logic obfuscation, camouflaging, layout-level,
logic locking, IP theft, reverse engineering, adiabatic logic,
charge-recycling logic, power-clock signals

I. INTRODUCTION

The recent exponential increase in wirelessly connected de-

vices has resulted in an urgent need for low overhead security

primitives. Counterfeiting and hardware Trojan insertion are

facilitated via reverse engineering attacks, thus raising signifi-

cant concern for integrated circuits (ICs). Reverse engineering

involves an attacker delayering a die and scanning the various

layers to rebuild a gate-level netlist [1]. Once a functional

netlist is generated, counterfeit designs that are potentially

insecure and unreliable can be fabricated. Not only does

reverse engineering pose a significant economic risk to the IC

industry in the form of lost profits and reputation, but it also

presents a significant risk to consumers and private data [2],

[3]. There are two major techniques that have been developed

to obstruct reverse engineers: camouflaging and logic locking.

IC camouflaging involves disguising a design through

layout-level techniques. For example, dummy contact based

camouflaging involves using a mix of dummy vias and real

vias to disguise a standard cell library. After reverse engineer-

ing, a camouflaged OR gate may look identical to an AND

gate [1]. This uncertainty leads to the reverse engineer guess-

ing the gate functionality and potentially leads to incorrect

extraction of the gate-level netlist. In order for camouflaging

schemes to be most effective, they should ensure that an

incorrect guess of logic gate results in an incorrect output.
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There are also various other camouflaging methods that rely

on altering the doping of transistors [4] and intentional hot

carrier injection to affect threshold voltage of transistors [5].

Camouflaging causes significant overhead since each cam-

ouflaged gate should look as if it can produce multiple Boolean

logic functions; resulting in more nets and vias. Camouflaging

each gate within an IC leads to unreasonable increase in power

and area. As a result, various techniques were developed to

insert camouflaged gates that add the most ambiguity and be

most resistant to attacks [1].

Logic locking is another technique used to protect against

reverse engineering, IP theft, and counterfeiting. Logic locking

involves the addition of key gates into a design to affect the

functionality of the netlist. A secret key should be supplied

either from inputs or (preferably tamper-proof) memory to

those gates in order for the design to function correctly. Thus,

the entire scheme relies on the confidentiality of this key.

Furthermore, these key gates should be inserted in such a

manner where the key inputs are not easily attacked [6], [7].

In PhaseCamouflage, the camouflaged phase differences in the

power supply voltage of the subsequent adiabatic gates behave

similarly to a “key”.

PhaseCamouflage consists of two steps: 1) camouflaging

the power supply connections to an adiabatic gate with

dummy vias and 2) inserting obfuscated gates into the netlist,

where the phase difference in the power supply voltage of

the obfuscated gate and the previous gate is different than

the conventional phase difference (which is 90◦ for efficient

charge recovery logic, an adiabatic family that is considered

in this paper [8]). If an attacker attempts to reverse engineer

the hardened design and applies a 90◦ phase difference in the

power supply voltages of subsequent gates, it would result

in incorrect functionality, thus protecting the IP/design. If the

attacker then attempts to determine the correct phase difference

for all of the camouflaged gates, they would need to perform a

brute force attack on the design, guessing the phase difference

for each gate with camouflaged power supply connections.

It is important to note that unlike logic locking, PhaseCam-

ouflage does not protect against supply chain attacks [9] since

foundries are aware of which vias are dummy vias. As such,

PhaseCamouflage does not protect against overproduction of

counterfeit ICs. Instead, PhaseCamouflage provides a simi-

lar amount of security that camouflaging techniques provide

against reverse engineering and unauthorized modification of

an obfuscated netlist. Therefore, PhaseCamouflage is intro-

duced in this paper as a logic obfuscation technique (rather

than logic locking) as it does not need to be “unlocked” with

a secret key [9]. Since IoT devices are often left in situ,

they are particularly vulnerable to attacks by users, making
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PhaseCamouflage a promising approach for power-constrained

IoT applications. To the authors’ best knowledge, this work

represents the first study where inherent phase differences in

adiabatic logic are leveraged for logic obfuscation. The power

and area overhead are investigated. An analysis of output

corruptibility is performed by measuring Hamming distances.

The resistance of the proposed approach to modern attacks

against camouflaging and logic locking is also discussed.

The rest of this paper is organized as follows. Background

on charge-recycling adiabatic operation, logic locking, and

camouflaging is provided in Section II. The proposed method-

ology is detailed in Section III. Results are presented in

Section IV. Finally, the paper is concluded in Section V.

II. BACKGROUND AND RELATED WORK

The particular charge-recycling adiabatic logic family used

in this work is efficient charge recovery logic (ECRL), as

summarized in Section II-A. Background on logic locking and

camouflaging, various attacks and modern countermeasures

are covered in Section II-B.

A. Adiabatic/Charge-Recycling Logic

Adiabatic logic utilizes a time-varying (either a trapezoidal

or sinusoidal) power supply voltage rather than the conven-

tional DC voltage. Significant reduction in power consump-

tion is achieved via (a) minimizing resistive loss across the

transistors by ensuring that the voltage difference (therefore

current) across the transistor is very small during charging and

(b) the charge stored at the output node is partially recycled

back to the power supply when the supply voltage is reduced.

Since one full cycle of the time-varying power supply signal is

divided into multiple phases, the power supply signal also acts

as the global clock signal and typically referred to as power-

clock signal. Due to this multi-phase operation, adiabatic logic

is inherently pipelined.

ECRL is utilized in this work, where a 4-phase sinusoidal

power-clock signal is used, as illustrated in Figs. 1(a) and

(b) [10]. In this adiabatic logic family, the phase difference

between the power-clock signals of adjacent gates (i.e. among

pc1, pc2, pc3, and pc4) should be 90◦. As such, each power-

clock signal is divided into four stages: evaluation (E), hold

(H), recovery (R), and wait (W). For example, during evalu-

ation (when the power-clock signal is rising), the logic gate

turns on and evaluates the input signal. Then, as the power-

clock signal reaches the hold stage, the following logic gate

uses the output of the first stage for evaluation (due to 90◦

phase difference). The recovery stage is when the charge at

the output node of the gate is recycled back to the power-clock

signal (when the power-clock signal is decreasing). Finally, the

wait stage is for clock symmetry and for the time when inputs

are being prepared in the previous gate [8]. For example, in

Fig. 2, each shaded region represents a particular clock phase.

In the first stage, the AND and XOR gates are connected to pc1
(since both of these gates have the same logic depth) whereas,

in the next stage, the AND gate and OR gate are connected

to pc2 (which has 90◦ phase difference with respect to pc1).

Fig. 1. Overview of efficient charge recovery logic (ECRL): (a) four required
power-clock signals with 90◦ phase difference. Each power-clock signal is
divided into 4 stages (evaluation, hold, recovery, wait), (b) four cascaded
inverters where the power-clock signal of each inverter has 90◦ phase
difference with respect to the adjacent inverters, (c) transistor-level schematic
of an inverter in ECRL.

Fig. 2. An example gate-level netlist in conventional ECRL, illustrating
inherent pipelining and the 90◦ phase difference among the gates.

An inverter designed with ECRL is illustrated in Fig. 1(c).

Each ECRL gate consists of a cross-coupled pMOS pair and

a pull-down network that uses complementary inputs and

outputs. The operation of an ECRL inverter is described as

follows: assume in is high and the power-clock signal is

connected to pc1. As pc1 rises during the evaluation stage,

out goes to logic-low since N1 is turned on. Alternatively,

outbar remains at logic-high since P2 is turned on and N2 is

off. During the hold stage, the output of the inverter remains

constant as the input of the subsequent gate that is connected

to pc2. Once pc1 enters the recovery stage, charge is recovered

from outbar back to pc1. As pc1 reaches the wait stage, power

to the gate is turned off, resulting in logic-low at both out and

outbar.

Adiabatic logic has recently received interest in resource-

constrained security applications. For example, new charge-

recycling logic families have been developed to maximize

energy efficiency and increase resistance against power-based

side-channel attacks, where secret key bits are extracted

by analyzing power consumption for different input pat-

terns [11], [12]. It was demonstrated that charge-recycling

logic has relatively uniform current consumption, thus the

same power-based side channel attacks on CMOS designs are

not sufficiently successful on designs implemented in adiabatic

logic [12]. In [10], [13], adiabatic operation was leveraged in

an AC computing paradigm for wirelessly powered devices. In

this methodology, overhead related to AC-to-DC conversion

(required in traditional RF-powered devices) is eliminated



3

since harvested signal is sinusoidal, as needed by ECRL.

Recently, novel communication protocols have been developed

that are compatible with charge-recycling based AC computing

methodology [14], [15]. Unlike these existing studies that

focus on efficiency and side-channel resistance of adiabatic

logic, in this paper, the primary emphasis is on leveraging

adiabatic operation for lightweight circuit camouflaging.

B. Attacks and Countermeasures against Logic Locking and

Circuit Camouflaging

Early logic locking schemes used various forms of com-

binational logic such as XOR gates [16], look-up tables

(LUTs) [17], and MUXs [9] as key gates. Initially, these key

gates were inserted into a netlist at random points, but this was

found to be easily broken through sensitization attacks [18].

Since key gates were randomly inserted, large parts of the key

could easily be deciphered by using traditional automatic test

pattern generation (ATPG) tools where key values are propa-

gated to primary outputs of the design [19]. The computational

complexity of retrieving the key bits was reduced to linear

time, which is not a sufficient level of security [18]. This led

to key gates being inserted in such a way that they mutually

interfere with each other [19]. Similarly, a sensitization attack

against camouflaging involves producing a truth table of a

target camouflaged gate by justifying the output of the target

gate and sensitizing it to a primary output of the netlist [1].

As a result, the Boolean logic of the camouflaged gate would

no longer be ambiguous. A defense to this kind of attack is a

clique based selection method that inserts mutually interfering

camouflaged gates [1].

When SAT attack techniques on logic locking and circuit

camouflaging were developed, the security level of existing

logic locking and camouflaging methods was significantly

compromised [20], [21]. The SAT attack relies on running

various input patterns through a functional device, obtaining

the corresponding correct outputs, and using each input pattern

to remove potential key values (in the case of logic locking),

and sets of potential Boolean functionalities (in the case of

circuit camouflaging) of the locked/obfuscated netlist. Since

each input pattern is capable of removing multiple key guesses

and multiple sets of camouflaged gate functionalities from the

search space, it greatly reduces the theoretical exponential

difficulty that was thought to be needed to reverse engineer

locked and camouflaged netlists. Defense mechanisms against

SAT attacks of camouflaged circuits generally rely on flipping

output bits so that a distinguishing input pattern (DIP) does

not decipher multiple incorrect keys [22], [23].

Attackers can also perform removal attacks when they are

able to discern the actual locking hardware/logic used in

the netlist from the original circuit. This technique renders

the locking/camouflaging scheme useless since the attacker

can simply cut out those locked/camouflaged portions of the

netlist. It is therefore important that the locking/camouflaging

mechanism of designs is intertwined with the original netlist.

Examples of removal attacks are demonstrated in [24], where

modern SAT resilient locking schemes (such as anti-SAT) are

compromised [6].

Newer developments in camouflaging and logic locking

have introduced the idea that functionality can also rely on the

timing constraints of the design. For example, TimingCamou-

flage uses wave-pipelined paths that require attackers to guess

whether a path uses single period clocking or pipelining with

two data waves [25]. Delay locking introduces tunable key

gates, where the key value alters the delay of combinational

paths by introducing additional capacitance [26]. Reverse en-

gineers therefore must not only recreate a netlist, but also cor-

rectly guess the timing of the logical paths. PhaseCamouflage,

as introduced in this paper, alters the phase differences within

power-clock signal connections of adiabatic logic. Similar to

TimingCamouflage, PhaseCamouflage achieves combinational

obfuscation through non-combinational means.

III. PROPOSED METHODOLOGY: PHASECAMOUFLAGE

In the proposed methodology, dummy vias are used to

camouflage the power-clock connections of adiabatic gates. An

attacker needs to guess the correct phase difference among the

gates to obtain a functional netlist. By changing the number of

camouflaged gates, PhaseCamouflage can provide the desired

security level at significantly lower overhead as compared

to existing techniques, making it particularly applicable to

resource-constrained applications.

The concepts of camouflaged and obfuscated gates required

for PhaseCamouflage are introduced in Section III-A. In

Section III-B, circuit operation with non-standard power-clock

phase differences (different than 90◦) is described. Methods

to insert obfuscated gates in a netlist are discussed in Sec-

tion III-C. Finally, in Section III-D, the equivalent security

level achieved via PhaseCamouflage is quantified.

A. Camouflaged vs. Obfuscated Gates in PhaseCamouflage

Dummy vias are the root of security in PhaseCamouflage

since an attacker needs to guess the correct power-clock

signal connections of the gates to obtain a functional netlist.

Referring to Fig. 3, in a camouflaged gate, there are four

power-clock signal connections to the gate (pc1 to pc4) with

90◦ phase difference (see Fig. 1). Three of the four power-

clock connections are made with a dummy via/contact. From

an attacker’s perspective, the physically correct power-clock

connection could be any of the four possible power-clock

signals in ECRL operation.

It was demonstrated that it is very difficult for an attacker to

etch the fine geometries (tens of nanometers thick) necessary

to discern between a dummy via and a real via [1]. Further-

more, it is infeasible for an attacker to reverse engineer every

via in a design. Also, the bottom layers of a reverse engineered

die could potentially be partially eroded from the chemicals

used to etch through the upper metal layers, making it difficult

to distinguish a dummy via from a partially eroded one [27].

The gates that have camouflaged power-clock signal con-

nections, as depicted in Fig. 3, are referred to as camouflaged

gates. These camouflaged gates can be created by modifying

already existing gates within the original netlist or by inserting

new gates. The true power-clock signal of some of these

camouflaged gates can have a phase difference (with respect to
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Fig. 3. Two adjacent ECRL gates with camouflaged power-clock connections.

Fig. 4. Layout views of (a) a conventional ECRL gate with a single power-
clock connection, (b) camouflaged ECRL gate with four power-clock signals.

the power-clock signal of the previous gate) that is different

than the conventional 90◦ (either 0◦ or 180◦, as described

later). These camouflaged gates where the phase difference

between the power-clock signals is not 90◦, are referred to as

obfuscated gates. Note that by this definition, any obfuscated

gate also has to be a camouflaged gate (otherwise the reverse

engineer would not have to guess the correct power-clock

connection), but a camouflaged gate does not have to be

an obfuscated gate, since it is possible for the camouflaged

gates to have a 90◦ phase difference with respect to the

previous gate. Note that the phase difference here refers to

the difference in the phase between the power-clock signal of

the current gate and the gate immediately preceding it.

An attacker cannot distinguish an obfuscated and camou-

flaged gate. Thus, it is possible to introduce a varying degree

of security (and therefore overhead) by changing the number

of obfuscated and camouflaged gates that are introduced to the

netlist. More obfuscated gates may lead to more overhead than

simply changing existing gates in the netlist to camouflaged

gates. This is described more in detail in Section III-D.

A conventional ECRL buffer is compared with a camou-

flaged ECRL buffer in Fig. 4. Three of four power-clock

nets are connected to the sources of the cross-coupled pMOS

devices with dummy vias. The area overhead incurred by

camouflaging a single conventional gate is approximately 70%.

Note that PhaseCamouflage incurs much less overhead at the

chip-level than dummy-based camouflaging [28], [29] since

high level of security can be achieved with significantly less

number of camouflaged gates.

B. Obfuscating with Phase Differences

This section focuses on utilizing non-standard phase differ-

ences within the netlist and how a functional netlist can be

maintained despite these phase differences that normally do

not exist in ECRL operation. Note that in traditional ECRL

operation, the phase difference between any two consecutive

gates is 90◦. In the following sections, two potential phase

differences (0◦ and 180◦) in addition to the conventional

90◦ are introduced as viable options for producing functional

logic in an ECRL netlist. For clarity, the following convention

will be used in the figures detailing the methodology of

PhaseCamouflage:

• Red logic gates indicate obfuscated gates.

• Orange logic gates indicate camouflaged gates

• Red interconnect lines indicate a path that has been

obfuscated with a 180◦ or 0◦ obfuscated gate.

• Orange interconnect lines indicate a path that has been

altered or inserted as part of PhaseCamouflage technique.

• The combination of all these items form a camouflaged

path, referred to as a connected set/group of camouflaged

gates that mutually interfere with each other (details are

described in Section III-C).

1) 90◦ Phase Difference: This scenario represents the

conventional case in ECRL operation, as shown in Fig. 2,

where there is 90◦ phase difference between pc1 and pc2. In

PhaseCamouflage with 90◦ phase difference, a camouflaged

gate is in the evaluation stage while the previous gate is

in the hold stage, resulting in expected logical computation.

Note that by definition, an obfuscated gate cannot have 90◦

phase difference whereas a camouflaged gate could. Since an

attacker cannot tell the difference between camouflaged and

obfuscated gates, this ambiguity makes 90◦ phase difference

a viable/necessary guess from attacker’s perspective. Thus,

the conventional 90◦ phase difference can be used to make

the reverse engineering more difficult, as further described in

Section III-D.

2) 180◦ Phase Difference: In this section, the feasibility of

using a 180◦ phase difference between the power-clock signals

is demonstrated. Specifically, assume that there is 180◦ phase

difference between the power-clock signals of an obfuscated

gate and the previous gate (such as pc1 and pc3). Then, when

the obfuscated gate is in evaluation stage, the previous gate is

in wait stage [see Fig. 1(a)]. Due to the relationship between

evaluation and wait stages of a sinusoidal power-clock

signal, both inputs of the obfuscated gate are at logic-low, as

depicted in Fig. 5(a). This produces a race condition between

the two cross-coupled pMOS transistors of the obfuscated gate

because the nMOS transistors are off. This race condition

produces a constant output of either 0 or 1 for the obfuscated

gate, depending upon which pMOS within the cross-coupled

pair “wins” the race condition, as shown in Fig. 5(b) where

the output of the obfuscated gate goes to logic-high during

each evaluation stage. In PhaseCamouflage, this constant

output is utilized as a non-controlling value and strategically

inserted into the functional netlist to maintain correct opera-

tion. Thus, functionally correct operation is ensured despite a

non-standard 180◦ phase difference.
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Fig. 8. Functional netlist with a camouflaged path that includes a 180◦

obfuscated gate and a 0◦ obfuscated gate.

is no phase difference, the input data signal passes through

both consecutive gates during the same evaluation stage of

the power-clock signal. This scheme sacrifices the inherent

power savings of the adiabatic switching since the second gate

computes with a power-clock signal that does not start from

zero volt. The increase in overall power consumption, however,

is negligible for large circuits since the number of obfuscated

cells is sufficiently small, as further described in Section III-D.

0◦ obfuscated gates should be inserted in a way that they

cannot be simply substituted with a 90◦ phase difference

since that would reduce the search space for the attacker.

For example, in Fig. 8, the existing OR gate after the 180◦

obfuscated gate has been modified to become a 0◦ obfuscated

gate. If an attacker guesses 90◦ phase difference (pc1), the

netlist would not function correctly because there would then

be a 180◦ phase difference between the OR gate and preceding

AND gate. Thus, for 0◦ obfuscation, it is important to choose

a multi-input gate where the preceding stage has 180◦ phase

difference.

Note that a phase difference of 270◦ is not a feasible option

for obfuscation in adiabatic ECRL circuits because in that

case, the obfuscated gate would be in the evaluation stage

while the previous gate would be in recovery stage. Since the

output of a gate during the recovery stage is input dependent,

it is not possible to use this output as a non-controlling value

(as proposed for 180◦). Thus, 270◦ is not a viable guess for

an attacker and can be removed from the search space.

To summarize, an attacker should correctly guess the power-

clock connection of each camouflaged gate, of which there

are three viable options: 0◦, 90◦, and 180◦. More discussion

is provided in the following section about how camouflaged

paths should be created to look like they are part of the origi-

nal netlist, thereby significantly strengthening the obfuscation

capability.

C. Selection Process Guidelines for Removal Attacks

The strength of PhaseCamouflage stems from the potential

for any logic cell to be used as an obfuscated gate. Thus, there

are many options of inserting obfuscated gates into a netlist

or transforming existing gates into obfuscated gates.

It is important to diversify camouflaged paths when obfus-

cating a netlist to ensure a sufficiently large search space. If

most of the camouflaged paths appear identical, the attacker

Fig. 9. Example of replacing a buffer in the original netlist with an XOR
gate and utilizing a constant 0 output from a 180◦ obfuscated buffer.

may “unlock” the entire netlist by guessing the same set of

phase differences for all of the camouflaged paths, or even

worse, the obfuscated gates within the camouflaged paths may

become blatant to the attacker and they could be susceptible

to removal attacks, as explained in Section II-B. The same

approach applies when inserting individual obfuscated gates.

These gates should be indistinguishable from normal logic so

that the method is not susceptible to removal/structural attacks.

The structural dependencies of 180◦ and 0◦ camouflaged

gates do not leak information to attackers because of the

variety of ways these gates can be inserted. For example,

180◦ camouflaged gates do not always have to be followed

by 3 input AND or OR gates. As illustrated in Fig. 9, an

existing buffer can be replaced with an XOR gate and be

routed to a constant 0 (output of a 180◦ obfuscated gate), thus

maintaining functionality. Additionally, the constant output

can be used as a controlling value on inserted logic and

used as a non-controlling value at a later stage within the

netlist, at the cost of additional overhead. Even though it is

true that a 0◦ camouflaged gate should be preceded by a

180◦ camouflaged gate, a 180◦ camouflaged gate does not

always have to be followed by a 0◦ camouflaged gate. These

options of using the constant output as a controlling value

for multiple stages; routing to multi-input OR/AND gates;

and changing an existing buffer/inverter to an OR/AND/XOR

gate represent sufficient variety to prevent information leakage

through structural dependencies of PhaseCamouflage.

To summarize, the following guidelines should be followed

when inserting camouflaged paths in order to thwart removal

and ATPG based sensitization attacks:

• 0◦ obfuscated gates should be used in combination with

180◦ obfuscated gates.

• Camouflaged and obfuscated gates should be used to form

non-resolvable gates using existing methods [1].

• Different camouflaged paths should consist of contrasting

logic cells.

• All of the proposed phase differences (0◦, 90◦, and 180◦)

should be used throughout the design, however they do

not all have to be used within the same camouflaged path.

• Multiple fan-in gates should be used as obfuscated gates

to connect multiple camouflaged paths together.

• 180◦ and 0◦ obfuscated gates should be inserted in

diverse ways (as exemplified in Figs. 6, 8 and 9) so
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Fig. 10. The layout view of camouflaged SIMON core: (a) full layout illustrating the primary blocks (black rectangles) and inserted camouflaged gates
(orange rectangles), (b) zoomed in view of a portion of the layout illustrating the camouflaged gates and corresponding power-clock connections.

that the correct phase difference is not revealed via the

physically observable structures within the netlist.

D. Equivalent Security Level

In the proposed methodology, an attacker needs to guess the

phase differences among camouflaged gates, where the phase

difference between two consecutive gates can be 0◦, 90◦, or

180◦. If n is the number of camouflaged gates within a design,

3n is the overall complexity an attacker faces when attempting

to guess the phase differences in a brute force manner. This

exponential relationship is due to the independent characteris-

tic of the camouflaged gates. Thus, correctly guessing a phase

difference of a particular camouflaged gate does not provide

any hints for the phase differences of other camouflaged gates.

Compared to traditional logic locking techniques that rely

on a secret key, PhaseCamouflage has a larger base in the

complexity (3n vs 2m where m is the number of key bits in

conventional logic locking). Thus, PhaseCamouflage requires

smaller number of camouflaged gates (compared to the number

of obfuscated gates) in order to realize the same security level.

Specifically, to achieve the same level of security as an m bit

key, the number of camouflaged gates n in PhaseCamouflage

should be equal to dlog(2m)/ log(3)e. For example, to achieve

a security level that is equivalent to a 128-bit key, a designer

should insert only 81 camouflaged gates into the design.

In PhaseCamouflage, output corruptibility (the likelihood

that an incorrect guess in a camouflaged netlist results in

an incorrect output) is sufficiently high due to the strong

dependence of functionality on phase difference of the power-

clock signals in ECRL circuits. For a 180◦ obfuscated gate,

any guess other than 180◦ produces an incorrect output, as

discussed in Section III-B2. For a 0◦ obfuscated gate, however,

either only a 0◦ guess or both a 0◦ and 90◦ guess can produce

a correct output, depending upon how the obfuscated gate is

inserted, as discussed in Section III-B3. Similar to existing

logical camouflaging schemes, there may be cases where

unintended combinations of phase differences for camouflaged

gates result in correct functionality. The guidelines described

in Section III-C should be followed to minimize the set of valid

power-clock connections. For example, in Fig. 8, the netlist

has only one set of valid power-clock connections, where the

search space consists of 243 different phase differences (35

since there are 5 camouflaged gates). If PhaseCamouflage is

implemented as described in this paper, the attacker needs

to perform exhaustive simulations, equivalent of brute force,

in order to recover the functional and correct netlist. Thus,

depending upon the application, an appropriate security level

should be chosen to ensure that an exhaustive search is

computationally infeasible.

This discussion on equivalent security levels is based on

brute force attacks. In future work, once more sophisticated

attacks such as SAT and sensitization are formulated with

revised tools for adiabatic logic, quantitative metrics (such as

number of input patterns and overall time to break the cam-

ouflaged circuit) can be determined to have a more applicable

comparison. The transformations and discussion in Section IV-

C serve as the preliminary investigation into such real-time

attacks.

IV. RESULTS

An 8-bit multiplier, a SIMON encryption core, and the

ISCAS-85 benchmark circuit c432 are implemented in static

CMOS, conventional adiabatic ECRL, and ECRL with the

PhaseCamouflage methodology in a 65 nm commercial tech-

nology node. The operating frequency is 13.56 MHz. The

circuits in this work are designed with a full custom method-

ology in Cadence Virtuoso, and results are obtained through

Spectre simulations [30] [31]. The SIMON encryption core

is designed to encrypt a 32-bit plaintext with a 64-bit key,

where one bit of plaintext goes through one round function in

one clock cycle, representing a bit-serial implementation [32].

In circuit camouflaging literature, the number of camouflaged

gates inserted to a design is either a constant number [33]–

[35] or a percentage of the total gates [1], [34], [36]. Both

designs are obfuscated with an equivalent security level of a

32-bit key, requiring 21 camouflaged gates. For the SIMON

core, 8 of the 21 camouflaged gates are obfuscated gates. For

the multiplier, there are 10 obfuscated gates. When inserting

these camouflaged gates into SIMON core and multiplier,

different strategies were adopted for evaluation. Specifically,
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Fig. 11. SIMON ciphertext serial output: (a) static CMOS, (b) unprotected
ECRL, (c) camouflaged ECRL using PhaseCamouflage with correct phase
differences.

for the SIMON core, the primary objective was to minimize

the overhead whereas for the multiplier, the design guidelines

described in Section III-C were followed to strengthen the

protected design against removal and sensitization attacks.

Note that PhaseCamouflage would be weaker if an attacker

could reverse engineer one set of obfuscated/camouflaged

gates and simply look for similar sets of gates within the

netlist. As an example, the camouflaged SIMON layout illus-

trating the camouflaged gates and camouflaged power-clock

signal connections is shown in Fig. 10.

Since the SIMON encryption core is implemented in a bit-

serial fashion, a large portion of the design consists of FIFOs.

Obfuscated gates were inserted into the round and the key

expansion blocks since the majority of the combinational logic

exists in these two blocks.

The obfuscation of the multiplier focused on demonstrating

the versatility of PhaseCamouflage by using multiple types of

logic gates (AND, OR, XOR) as obfuscated gates. Since the 8-

bit multiplier is an entirely combinational design, obfuscated

gates were inserted throughout the entire netlist. A variety

of 180◦ obfuscated gates (which require more overhead to

maintain functionality) were also used.

Correct functionality is demonstrated among the three im-

plementations (static CMOS, unprotected ECRL, protected

ECRL using PhaseCamouflage with correct phase differences)

of both the SIMON core and 8-bit multiplier. The serial output

for SIMON core and the most significant output bit of the 8-bit

multiplier are shown, respectively, in Figs. 11 and 12 for each

implementation. Note that the ECRL implementations of the

SIMON core exhibit slightly higher latency than static CMOS

due to synchronization overhead of charge-recycling logic.

An incorrect guess in the phase difference of only one

camouflaged gate (out of 21 camouflaged gates) produces a

wrong output in both the SIMON core and the multiplier, as

shown in Fig. 13. According to this figure, a single incorrect

guess drastically alters the functionality of the circuit, thereby
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Fig. 12. Most significant bit of 8-bit multiplier: (a) static CMOS, (b)
unprotected ECRL, (c) camouflaged ECRL using PhaseCamouflage with
correct phase differences.

1.5 2 2.5 3 3.5 4 4.5 5
Time ( s)

0

0.5

1

1.5

V
o
lt
a
g
e
 (

V
)

(a)

51.5 52 52.5 53 53.5 54 54.5 55

Time ( s)

0

0.5

1

1.5

V
o
lt
a
g
e
 (

V
)

(b)

Fig. 13. Illustration of incorrect output when one of the phase difference
guesses (out of 21 camouflaged gates) is wrong: (a) most significant bit of
8-bit multiplier and (b) SIMON ciphertext serial output.

demonstrating that camouflaged gates can produce large output

corruptibility.

A. Power and Area Overhead

As mentioned in the previous section, the SIMON core

was camouflaged to minimize overhead whereas the multiplier

was camouflaged according to the guidelines described in

Section III-C to thwart removal attacks. This difference can

be observed in overhead results, even though both designs

achieve the same security level of a 32-bit key.

Area and power results are listed in Table I for three im-

plementations of the SIMON core. Compared to static CMOS

implementation, an ECRL based SIMON reduces power con-

sumption by 76.5%. The power savings slightly degrade to
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Fig. 15. Transformation unit for a potential SAT attack on PhaseCamouflage: (a) first step of transformation with the three possible phase difference options,
(b) expanded transformation unit where 180◦ obfuscated gate outputs a constant logic-high or logic-low, and (c) final transformation unit that fully converts
the dependence of phase difference to Boolean functionality by also considering the timing differences between 0◦ and other obfuscated gates.

Fig. 16. Insertion of a camouflaged path using a 2-input 180◦ obfuscated
gate.

it highly challenging to generate test vectors and determine

the functionality of camouflaged gates by creating mutual

interferences. Similar to existing techniques for dummy-based

camouflaging, the proposed camouflaged (including obfus-

cated) gates should be inserted to ensure that they mutually

interfere with each other and therefore result in non-resolvable

gates. In the proposed methodology, mutual interference is

realized via camouflaged paths that contain several intercon-

nected camouflaged gates. This can be achieved by using

multiple fan-in gates as obfuscated gates, as shown with the

180◦ obfuscated XOR gate in Fig. 16. Specifically, with a

multiple fan-in gate, camouflaged paths are connected to other

camouflaged paths. Thus, the number of gates that interferes

with each other (non-resolvable gates) is increased, making

sensitization attacks more difficult.

3) SAT Attack: To formulate an SAT attack, the netlist

in question should be reconstructed to a conjunctive nor-

mal form (CNF)-encoded SAT problem [39]. SAT attacks

work on existing camouflaging schemes by guessing possible

Boolean functionality, which would not be sufficient for the

proposed approach without significant effort. For example,

0◦ obfuscated gates in PhaseCamouflage affect the timing

characteristics by evaluating logic one phase (a quarter clock

cycle) sooner.

A specific SAT attack [40], TimingSAT, has been devel-

oped that works on both the camouflaged timing profile

and camouflaged functionality provided by the TimingCam-

ouflage scheme proposed in [25]. TimingSAT can detect

wave-pipelined paths by inserting “transformation units” (TU)

(which consist of a flip-flop and a MUX) into the camouflaged

netlist. The select line of the MUX acts as a 1-bit key where

one value represents a single-cycle path and the other value

represents a wave-pipelined path. TUs essentially convert the

locked timing profile to depend on Boolean logic functionality

through these new key bits. After TU insertion, TimingSAT

relies on unrolling these inserted flip-flops and converting the

netlist into a combinational circuit so that an SAT attack can

be performed.

Similar to TimingSAT [40], in order to perform an SAT

attack on a camouflaged adiabatic netlist, the obfuscation

should be transformed so that all of the dependencies are

represented in Boolean form instead of phase differences.

This is because a CNF representation of the circuit should be

generated as an input to the SAT solver. In order to achieve

this, the camouflaged ECRL design should be converted to

static CMOS with a transformation unit (TU), as illustrated

in Fig. 15. First, all possible phase differences are connected

to a multiplexor, as shown in Fig. 15(a). However, 180◦

obfuscated gates can output a constant logic-low or logic-

high, so the transformation unit is edited as in Fig. 15(b).

Finally, Fig. 15(c) shows the complete transformation unit

without phase difference dependency. The constant logic-low

is represented with an AND gate that has an input connected to

ground, and the constant logic-high is represented with an OR

gate that has an input connected to VDD. Furthermore, flip-
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flops are placed after the gates that represent 90◦ and 180◦

obfuscation to accurately reflect the timing characteristic of

the 0◦ obfuscated gate (which achieves computation without

consuming any clock phase, unlike other obfuscated gates).

Thus, flip-flops ensure that the outputs along those paths

are delayed one cycle with respect to the output of the 0◦

obfuscated gate.

However, some challenges exist when implementing the

SAT attack on the proposed method with adiabatic gates.

Even though non-camouflaged ECRL gates can be directly

replaced with static CMOS versions, each camouflaged gate

using the proposed method should be replaced with the

transformation unit shown in Fig. 15(c), while maintaining

correct functionality. It is difficult for an attacker to ensure

the correct functionality and timing of the netlist with the

additional flip-flops needed in the transformation unit. Attack-

ers would also need to consider that in camouflaged ECRL,

180◦ and 90◦ obfuscated gates consume a quarter of a cycle

(one phase) whereas in the transformed unit, they consume

one cycle since a quarter cycle cannot be represented in

static CMOS based circuits. In addition, current SAT solvers,

such as MiniSAT [41], do not currently have the capability

to represent the inputs tied to ground and VDD since the

inputs are in the form of propositional logic. Thus, while

it may be possible to successfully mount an SAT attack on

PhaseCamouflage, attackers would need to spend more effort

than the conventional Boolean-based camouflaging.

Recently a more powerful attack, the Satisfiability Mod-

ulo Theory (SMT) attack, was shown to break obfuscation

schemes that are not based on Boolean logic, such as delay

locking [26]. SMT attack is able to use theory solvers that

allow the attacker to express constraints that cannot be repre-

sented with CNF, such as power and delay [42]. Potentially, an

SMT attack can be formulated against PhaseCamouflage, but

SMT attacks are typically more complex because constraint

clauses that represent the non-Boolean functionality of the

phase differences must be formulated for the chosen theory

solver. The resistance against such attacks and the complexity

of these attacks for PhaseCamouflage in adiabatic gates require

additional investigation.

V. CONCLUSION

PhaseCamouflage is a logic obfuscation technique that pre-

vents reverse engineers from extracting a functional netlist

and protects against IP theft. The inherent phase difference

between gates in adiabatic/charge-recycling logic is lever-

aged for lightweight obfuscation that is particularly useful

for resource-constrained applications. Due to the exponential

complexity of the methodology, strong obfuscation can be

achieved with a relatively small number of camouflaged cells.

Design guidelines are also developed to ensure that Phase-

Camouflage is protected against modern removal attacks. The

proposed methodology is demonstrated in two circuits with

a security level equivalent to 32-bit key. The overhead in

power consumption and area is analyzed. The corruptibility

achieved with the proposed approach is also quantified. In fu-

ture work, PhaseCamouflage can be combined with traditional

circuit camouflaging methods to further enhance security.

Specifically, the dependence of adiabatic logic on both phase

and Boolean functionality can be leveraged to develop a

more secure camouflaging approach. Theoretically, an attacker

would have to guess the type of the Boolean gate and the

phase difference (90◦, 180◦, 0◦), thereby increasing the base

complexity required to de-camouflage the circuit.
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