PhaseCamouflage: Leveraging Adiabatic Operation
to Thwart Reverse Engineering

Ivan Miketic, Student Member, IEEE, and Emre Salman, Senior Member, IEEE

Abstract—This paper focuses on thwarting reverse engineering
attacks and IP theft by leveraging charge-recycling adiabatic
circuits. Adiabatic circuit operation has recently received atten-
tion for Internet-of-things (IoT) applications due to high energy
efficiency and enhanced security characteristics. Such applica-
tions typically consist of resource-constrained designs and are
often deployed in the field, making them particularly vulnerable
to malicious attacks. PhaseCamouflage is a circuit obfuscation
technique that leverages the inherent phase differences in power
supply voltage of adiabatic logic gates and exhibits strong resis-
tance against structural/removal attacks. The proposed method
relies on inserting camouflaged phase differences in the power
supply voltage of subsequent logic gates while still producing a
functional netlist. PhaseCamouflage is a unique logic obfuscation
technique with low overhead, particularly applicable to pervasive
computing applications where both efficiency and security are of
primary concern.

Index Terms—Logic obfuscation, camouflaging, layout-level,
logic locking, IP theft, reverse engineering, adiabatic logic,
charge-recycling logic, power-clock signals

I. INTRODUCTION

The recent exponential increase in wirelessly connected de-
vices has resulted in an urgent need for low overhead security
primitives. Counterfeiting and hardware Trojan insertion are
facilitated via reverse engineering attacks, thus raising signifi-
cant concern for integrated circuits (ICs). Reverse engineering
involves an attacker delayering a die and scanning the various
layers to rebuild a gate-level netlist [1]. Once a functional
netlist is generated, counterfeit designs that are potentially
insecure and unreliable can be fabricated. Not only does
reverse engineering pose a significant economic risk to the IC
industry in the form of lost profits and reputation, but it also
presents a significant risk to consumers and private data [2],
[3]. There are two major techniques that have been developed
to obstruct reverse engineers: camouflaging and logic locking.

IC camouflaging involves disguising a design through
layout-level techniques. For example, dummy contact based
camouflaging involves using a mix of dummy vias and real
vias to disguise a standard cell library. After reverse engineer-
ing, a camouflaged OR gate may look identical to an AND
gate [1]. This uncertainty leads to the reverse engineer guess-
ing the gate functionality and potentially leads to incorrect
extraction of the gate-level netlist. In order for camouflaging
schemes to be most effective, they should ensure that an
incorrect guess of logic gate results in an incorrect output.

*The authors are with the Department of Electrical and Computer En-
gineering, Stony Brook University, Stony Brook, NY 11794 USA (e-mail:
emre.salman @stonybrook.edu)

This research was supported in part by the National Science Foundation
under grant number 1717306 and in part by Semiconductor Research Corpo-
ration under contract number 2017-TS-2767.

There are also various other camouflaging methods that rely
on altering the doping of transistors [4] and intentional hot
carrier injection to affect threshold voltage of transistors [5].

Camouflaging causes significant overhead since each cam-
ouflaged gate should look as if it can produce multiple Boolean
logic functions; resulting in more nets and vias. Camouflaging
each gate within an IC leads to unreasonable increase in power
and area. As a result, various techniques were developed to
insert camouflaged gates that add the most ambiguity and be
most resistant to attacks [1].

Logic locking is another technique used to protect against
reverse engineering, IP theft, and counterfeiting. Logic locking
involves the addition of key gates into a design to affect the
functionality of the netlist. A secret key should be supplied
either from inputs or (preferably tamper-proof) memory to
those gates in order for the design to function correctly. Thus,
the entire scheme relies on the confidentiality of this key.
Furthermore, these key gates should be inserted in such a
manner where the key inputs are not easily attacked [6], [7].
In PhaseCamouflage, the camouflaged phase differences in the
power supply voltage of the subsequent adiabatic gates behave
similarly to a “key”.

PhaseCamouflage consists of two steps: 1) camouflaging
the power supply connections to an adiabatic gate with
dummy vias and 2) inserting obfuscated gates into the netlist,
where the phase difference in the power supply voltage of
the obfuscated gate and the previous gate is different than
the conventional phase difference (which is 90° for efficient
charge recovery logic, an adiabatic family that is considered
in this paper [8]). If an attacker attempts to reverse engineer
the hardened design and applies a 90° phase difference in the
power supply voltages of subsequent gates, it would result
in incorrect functionality, thus protecting the IP/design. If the
attacker then attempts to determine the correct phase difference
for all of the camouflaged gates, they would need to perform a
brute force attack on the design, guessing the phase difference
for each gate with camouflaged power supply connections.

It is important to note that unlike logic locking, PhaseCam-
ouflage does not protect against supply chain attacks [9] since
foundries are aware of which vias are dummy vias. As such,
PhaseCamouflage does not protect against overproduction of
counterfeit ICs. Instead, PhaseCamouflage provides a simi-
lar amount of security that camouflaging techniques provide
against reverse engineering and unauthorized modification of
an obfuscated netlist. Therefore, PhaseCamouflage is intro-
duced in this paper as a logic obfuscation technique (rather
than logic locking) as it does not need to be “unlocked” with
a secret key [9]. Since IoT devices are often left in sifu,
they are particularly vulnerable to attacks by users, making

PhaseCamouflage a promising approach for power-constrained
IoT applications. To the authors’ best knowledge, this work
represents the first study where inherent phase differences in
adiabatic logic are leveraged for logic obfuscation. The power
and area overhead are investigated. An analysis of output
corruptibility is performed by measuring Hamming distances.
The resistance of the proposed approach to modern attacks
against camouflaging and logic locking is also discussed.
The rest of this paper is organized as follows. Background
on charge-recycling adiabatic operation, logic locking, and
camouflaging is provided in Section II. The proposed method-
ology is detailed in Section IIl. Results are presented in
Section IV. Finally, the paper is concluded in Section V.

II. BACKGROUND AND RELATED WORK

The particular charge-recycling adiabatic logic family used
in this work is efficient charge recovery logic (ECRL), as
summarized in Section II-A. Background on logic locking and
camouflaging, various attacks and modern countermeasures
are covered in Section II-B.

A. Adiabatic/Charge-Recycling Logic

Adiabatic logic utilizes a time-varying (either a trapezoidal
or sinusoidal) power supply voltage rather than the conven-
tional DC voltage. Significant reduction in power consump-
tion is achieved via (a) minimizing resistive loss across the
transistors by ensuring that the voltage difference (therefore
current) across the transistor is very small during charging and
(b) the charge stored at the output node is partially recycled
back to the power supply when the supply voltage is reduced.
Since one full cycle of the time-varying power supply signal is
divided into multiple phases, the power supply signal also acts
as the global clock signal and typically referred to as power-
clock signal. Due to this multi-phase operation, adiabatic logic
is inherently pipelined.

ECRL is utilized in this work, where a 4-phase sinusoidal
power-clock signal is used, as illustrated in Figs. 1(a) and
(b) [10]. In this adiabatic logic family, the phase difference
between the power-clock signals of adjacent gates (i.e. among
pcl, pc2, pc3, and pc4) should be 90°. As such, each power-
clock signal is divided into four stages: evaluation (E), hold
(H), recovery (R), and wait (W). For example, during evalu-
ation (when the power-clock signal is rising), the logic gate
turns on and evaluates the input signal. Then, as the power-
clock signal reaches the hold stage, the following logic gate
uses the output of the first stage for evaluation (due to 90°
phase difference). The recovery stage is when the charge at
the output node of the gate is recycled back to the power-clock
signal (when the power-clock signal is decreasing). Finally, the
wait stage is for clock symmetry and for the time when inputs
are being prepared in the previous gate [8]. For example, in
Fig. 2, each shaded region represents a particular clock phase.
In the first stage, the AND and XOR gates are connected to pcl
(since both of these gates have the same logic depth) whereas,
in the next stage, the AND gate and OR gate are connected
to pc2 (which has 90° phase difference with respect to pcl).

-E:H:R:W 1
YIONL N N pa Pe
ERENG A/
2
//\V/\v/-\\pc VB—E P1 P2 E—VB
_//\\//\v/\p(ﬁ out outbar
DN N P i_n|'_N1 N2pinbar
() NN
pcl pc2 pc3 pcd

Fig. 1. Overview of efficient charge recovery logic (ECRL): (a) four required
power-clock signals with 90° phase difference. Each power-clock signal is
divided into 4 stages (evaluation, hold, recovery, wait), (b) four cascaded
inverters where the power-clock signal of each inverter has 90° phase
difference with respect to the adjacent inverters, (c) transistor-level schematic
of an inverter in ECRL.

pcl

Fig. 2. An example gate-level netlist in conventional ECRL, illustrating
inherent pipelining and the 90° phase difference among the gates.

An inverter designed with ECRL is illustrated in Fig. 1(c).
Each ECRL gate consists of a cross-coupled pMOS pair and
a pull-down network that uses complementary inputs and
outputs. The operation of an ECRL inverter is described as
follows: assume in is high and the power-clock signal is
connected to pcl. As pcl rises during the evaluation stage,
out goes to logic-low since N1 is turned on. Alternatively,
outbar remains at logic-high since P2 is turned on and N2 is
off. During the hold stage, the output of the inverter remains
constant as the input of the subsequent gate that is connected
to pc2. Once pcl enters the recovery stage, charge is recovered
from outbar back to pcl. As pcl reaches the wait stage, power
to the gate is turned off, resulting in logic-low at both out and
outbar.

Adiabatic logic has recently received interest in resource-
constrained security applications. For example, new charge-
recycling logic families have been developed to maximize
energy efficiency and increase resistance against power-based
side-channel attacks, where secret key bits are extracted
by analyzing power consumption for different input pat-
terns [11], [12]. It was demonstrated that charge-recycling
logic has relatively uniform current consumption, thus the
same power-based side channel attacks on CMOS designs are
not sufficiently successful on designs implemented in adiabatic
logic [12]. In [10], [13], adiabatic operation was leveraged in
an AC computing paradigm for wirelessly powered devices. In
this methodology, overhead related to AC-to-DC conversion
(required in traditional RF-powered devices) is eliminated

since harvested signal is sinusoidal, as needed by ECRL.
Recently, novel communication protocols have been developed
that are compatible with charge-recycling based AC computing
methodology [14], [15]. Unlike these existing studies that
focus on efficiency and side-channel resistance of adiabatic
logic, in this paper, the primary emphasis is on leveraging
adiabatic operation for lightweight circuit camouflaging.

B. Attacks and Countermeasures against Logic Locking and
Circuit Camouflaging

Early logic locking schemes used various forms of com-
binational logic such as XOR gates [16], look-up tables
(LUTs) [17], and MUXs [9] as key gates. Initially, these key
gates were inserted into a netlist at random points, but this was
found to be easily broken through sensitization attacks [18].
Since key gates were randomly inserted, large parts of the key
could easily be deciphered by using traditional automatic test
pattern generation (ATPG) tools where key values are propa-
gated to primary outputs of the design [19]. The computational
complexity of retrieving the key bits was reduced to linear
time, which is not a sufficient level of security [18]. This led
to key gates being inserted in such a way that they mutually
interfere with each other [19]. Similarly, a sensitization attack
against camouflaging involves producing a truth table of a
target camouflaged gate by justifying the output of the target
gate and sensitizing it to a primary output of the netlist [1].
As a result, the Boolean logic of the camouflaged gate would
no longer be ambiguous. A defense to this kind of attack is a
clique based selection method that inserts mutually interfering
camouflaged gates [1].

When SAT attack techniques on logic locking and circuit
camouflaging were developed, the security level of existing
logic locking and camouflaging methods was significantly
compromised [20], [21]. The SAT attack relies on running
various input patterns through a functional device, obtaining
the corresponding correct outputs, and using each input pattern
to remove potential key values (in the case of logic locking),
and sets of potential Boolean functionalities (in the case of
circuit camouflaging) of the locked/obfuscated netlist. Since
each input pattern is capable of removing multiple key guesses
and multiple sets of camouflaged gate functionalities from the
search space, it greatly reduces the theoretical exponential
difficulty that was thought to be needed to reverse engineer
locked and camouflaged netlists. Defense mechanisms against
SAT attacks of camouflaged circuits generally rely on flipping
output bits so that a distinguishing input pattern (DIP) does
not decipher multiple incorrect keys [22], [23].

Attackers can also perform removal attacks when they are
able to discern the actual locking hardware/logic used in
the netlist from the original circuit. This technique renders
the locking/camouflaging scheme useless since the attacker
can simply cut out those locked/camouflaged portions of the
netlist. It is therefore important that the locking/camouflaging
mechanism of designs is intertwined with the original netlist.
Examples of removal attacks are demonstrated in [24], where
modern SAT resilient locking schemes (such as anti-SAT) are
compromised [6].

Newer developments in camouflaging and logic locking
have introduced the idea that functionality can also rely on the
timing constraints of the design. For example, TimingCamou-
flage uses wave-pipelined paths that require attackers to guess
whether a path uses single period clocking or pipelining with
two data waves [25]. Delay locking introduces tunable key
gates, where the key value alters the delay of combinational
paths by introducing additional capacitance [26]. Reverse en-
gineers therefore must not only recreate a netlist, but also cor-
rectly guess the timing of the logical paths. PhaseCamouflage,
as introduced in this paper, alters the phase differences within
power-clock signal connections of adiabatic logic. Similar to
TimingCamouflage, PhaseCamouflage achieves combinational
obfuscation through non-combinational means.

III. PROPOSED METHODOLOGY: PHASECAMOUFLAGE

In the proposed methodology, dummy vias are used to
camouflage the power-clock connections of adiabatic gates. An
attacker needs to guess the correct phase difference among the
gates to obtain a functional netlist. By changing the number of
camouflaged gates, PhaseCamouflage can provide the desired
security level at significantly lower overhead as compared
to existing techniques, making it particularly applicable to
resource-constrained applications.

The concepts of camouflaged and obfuscated gates required
for PhaseCamouflage are introduced in Section III-A. In
Section III-B, circuit operation with non-standard power-clock
phase differences (different than 90°) is described. Methods
to insert obfuscated gates in a netlist are discussed in Sec-
tion III-C. Finally, in Section III-D, the equivalent security
level achieved via PhaseCamouflage is quantified.

A. Camouflaged vs. Obfuscated Gates in PhaseCamouflage

Dummy vias are the root of security in PhaseCamouflage
since an attacker needs to guess the correct power-clock
signal connections of the gates to obtain a functional netlist.
Referring to Fig. 3, in a camouflaged gate, there are four
power-clock signal connections to the gate (pcl to pc4) with
90° phase difference (see Fig. 1). Three of the four power-
clock connections are made with a dummy via/contact. From
an attacker’s perspective, the physically correct power-clock
connection could be any of the four possible power-clock
signals in ECRL operation.

It was demonstrated that it is very difficult for an attacker to
etch the fine geometries (tens of nanometers thick) necessary
to discern between a dummy via and a real via [1]. Further-
more, it is infeasible for an attacker to reverse engineer every
via in a design. Also, the bottom layers of a reverse engineered
die could potentially be partially eroded from the chemicals
used to etch through the upper metal layers, making it difficult
to distinguish a dummy via from a partially eroded one [27].

The gates that have camouflaged power-clock signal con-
nections, as depicted in Fig. 3, are referred to as camouflaged
gates. These camouflaged gates can be created by modifying
already existing gates within the original netlist or by inserting
new gates. The true power-clock signal of some of these
camouflaged gates can have a phase difference (with respect to

O =True vias
Bl =Dummy vias

pcl pc2 pe3 pcd pcl pe2 pe3 pcd

Fig. 3. Two adjacent ECRL gates with camouflaged power-clock connections.

pcl pcl pe2 pe3 ped

Fig. 4. Layout views of (a) a conventional ECRL gate with a single power-
clock connection, (b) camouflaged ECRL gate with four power-clock signals.

the power-clock signal of the previous gate) that is different
than the conventional 90° (either 0° or 180°, as described
later). These camouflaged gates where the phase difference
between the power-clock signals is not 90°, are referred to as
obfuscated gates. Note that by this definition, any obfuscated
gate also has to be a camouflaged gate (otherwise the reverse
engineer would not have to guess the correct power-clock
connection), but a camouflaged gate does not have to be
an obfuscated gate, since it is possible for the camouflaged
gates to have a 90° phase difference with respect to the
previous gate. Note that the phase difference here refers to
the difference in the phase between the power-clock signal of
the current gate and the gate immediately preceding it.

An attacker cannot distinguish an obfuscated and camou-
flaged gate. Thus, it is possible to introduce a varying degree
of security (and therefore overhead) by changing the number
of obfuscated and camouflaged gates that are introduced to the
netlist. More obfuscated gates may lead to more overhead than
simply changing existing gates in the netlist to camouflaged
gates. This is described more in detail in Section III-D.

A conventional ECRL buffer is compared with a camou-
flaged ECRL buffer in Fig. 4. Three of four power-clock
nets are connected to the sources of the cross-coupled pMOS
devices with dummy vias. The area overhead incurred by
camouflaging a single conventional gate is approximately 70%.
Note that PhaseCamouflage incurs much less overhead at the
chip-level than dummy-based camouflaging [28], [29] since
high level of security can be achieved with significantly less
number of camouflaged gates.

B. Obfuscating with Phase Differences

This section focuses on utilizing non-standard phase differ-
ences within the netlist and how a functional netlist can be
maintained despite these phase differences that normally do
not exist in ECRL operation. Note that in traditional ECRL
operation, the phase difference between any two consecutive
gates is 90°. In the following sections, two potential phase
differences (0° and 180°) in addition to the conventional
90° are introduced as viable options for producing functional
logic in an ECRL netlist. For clarity, the following convention
will be used in the figures detailing the methodology of
PhaseCamouflage:

« Red logic gates indicate obfuscated gates.

o Orange logic gates indicate camouflaged gates

o Red interconnect lines indicate a path that has been
obfuscated with a 180° or 0° obfuscated gate.

e Orange interconnect lines indicate a path that has been
altered or inserted as part of PhaseCamouflage technique.

o The combination of all these items form a camouflaged
path, referred to as a connected set/group of camouflaged
gates that mutually interfere with each other (details are
described in Section III-C).

1) 90° Phase Difference: This scenario represents the
conventional case in ECRL operation, as shown in Fig. 2,
where there is 90° phase difference between pcl and pc2. In
PhaseCamouflage with 90° phase difference, a camouflaged
gate is in the evaluation stage while the previous gate is
in the hold stage, resulting in expected logical computation.
Note that by definition, an obfuscated gate cannot have 90°
phase difference whereas a camouflaged gate could. Since an
attacker cannot tell the difference between camouflaged and
obfuscated gates, this ambiguity makes 90° phase difference
a viable/necessary guess from attacker’s perspective. Thus,
the conventional 90° phase difference can be used to make
the reverse engineering more difficult, as further described in
Section III-D.

2) 180° Phase Difference: In this section, the feasibility of
using a 180° phase difference between the power-clock signals
is demonstrated. Specifically, assume that there is 180° phase
difference between the power-clock signals of an obfuscated
gate and the previous gate (such as pcl and pc3). Then, when
the obfuscated gate is in evaluation stage, the previous gate is
in waztt stage [see Fig. 1(a)]. Due to the relationship between
evaluation and wait stages of a sinusoidal power-clock
signal, both inputs of the obfuscated gate are at logic-low, as
depicted in Fig. 5(a). This produces a race condition between
the two cross-coupled pMOS transistors of the obfuscated gate
because the nMOS transistors are off. This race condition
produces a constant output of either O or 1 for the obfuscated
gate, depending upon which pMOS within the cross-coupled
pair “wins” the race condition, as shown in Fig. 5(b) where
the output of the obfuscated gate goes to logic-high during
each ewvaluation stage. In PhaseCamouflage, this constant
output is utilized as a non-controlling value and strategically
inserted into the functional netlist to maintain correct opera-
tion. Thus, functionally correct operation is ensured despite a
non-standard 180° phase difference.

Evaluate Stage

— N,

A
180° Power Clock
Obfuscated gate input
Obfuscated gate input

Voltage (V)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time (pus) <100
(@)

Obfuscated gate output
Obfuscated gate oufput

Voltage (V)

0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 045 05
Time (us) <108

(b)

Fig. 5. Illustration of the effect of 180° phase difference on ECRL operation:
(a) input signals to an obfuscated gate being evaluated during the wait stage of
the previous gate, (b) corresponding constant output signal of the obfuscated
gate.

Fig. 6. Functional netlist with a camouflaged path using a 180° obfuscated
gate (shown in red) that outputs a constant logic-low. Physically correct power
supply connections are circled.

For example, if Fig. 2 represents the original netlist, Fig. 6
shows an obfuscated netlist of this circuit where the inserted
red buffer is the obfuscated gate with 180° phase difference
with respect to the previous gate (pc2 and pcd). The existing
OR gate is modified from 2 inputs to 3 inputs. Three existing
gates are modified into camouflaged gates (orange color).
This obfuscated netlist remains functionally correct provided
that the output of the obfuscated gate (red buffer) is at
logic-low. Furthermore, there is only a single set of valid
power-clock connections that results in correct functionality
(circled connections in the figure). Thus, the circuit produces
incorrect output if a conventional 90° phase difference is
applied between all of the gates. The combination of red
obfuscated gates and orange camouflaged gates represents the
camouflaged path. It should be noted that if the constant
output of the obfuscated gate were logic-high, then this non-
controlling value could be used with an existing AND gate.

To reliably use 180° phase difference for obfuscation, the
previously described race condition should result in a prede-
termined value (logic-low in the example shown in Fig. 6).

Time (;18)
(a)

T T T T T

So0s8
;fm 6
So4
0.2
0 LA A, A, i
8 85 9 95 10 10.5 1 11.5 12
Time (ys)
(b)
Fig. 7. Illustration of the mismatch on cross-coupled pMOS transistors to

ensure a constant output for 180° obfuscated gates: (a) both pMOS transistors
have the same size, (b) one of the pMOS transistor size is increased.

This objective can be achieved via introducing mismatch (in,
for example, size or threshold voltage) between the two cross-
coupled pMOS transistors. An example is shown in Fig. 7
where the output node of a 180° obfuscated gate is plotted
for different pMOS transistor sizes. Specifically, if the size of
both pMOS transistors is equal to 200 nm, the output voltage
varies between logic-high and logic-low. Alternatively, if one
of the pMOS size is increased to 450 nm (while maintaining
the size of the other pMOS), the output voltage is maintained
at logic-low, which can be used as a non-controlling value.
Since mismatch is intentionally inserted into the design, corner
simulations are performed on inserted 180° obfuscated gates
to ensure reliability. Correct functionality of the netlist and
the constant output of 180° gates is maintained at all process
corners, provided that sufficient mismatch is introduced.

An intentional mismatch in the two cross-coupled pMOS
transistors of an obfuscated gate, however, can leak infor-
mation to attackers about which gate is a 180° obfuscated
gate, thus exponentially decreasing the search space (explained
further in Section III-D). A countermeasure to this leakage
issue is to introduce mismatched pMOS pairs to other camou-
flaged gates, which are a very small percentage of the overall
number of gates in a design. Extending this mismatch to other
camouflaged gates does not affect functionality for 0° and 90°
gates since in those cases, the pull-down network of the gates
is not turned off.

It is important to note that any Boolean logic gate can
be used as an obfuscated gate with 180° phase difference
as long as there is intentional mismatch within the cross-
coupled pMOS pair. This freedom to choose any type of cell
as the obfuscated gate makes it highly challenging for reverse
engineers to narrow the valid search space and therefore
prevents removal attacks.

3) 0° Phase Difference: An obfuscated gate can also have
a phase difference of 0° with respect to the previous gate (i.e.
same power-clock signal is used for both gates). When there

E—

Fig. 8. Functional netlist with a camouflaged path that includes a 180°
obfuscated gate and a 0° obfuscated gate.

is no phase difference, the input data signal passes through
both consecutive gates during the same evaluation stage of
the power-clock signal. This scheme sacrifices the inherent
power savings of the adiabatic switching since the second gate
computes with a power-clock signal that does not start from
zero volt. The increase in overall power consumption, however,
is negligible for large circuits since the number of obfuscated
cells is sufficiently small, as further described in Section III-D.

0° obfuscated gates should be inserted in a way that they
cannot be simply substituted with a 90° phase difference
since that would reduce the search space for the attacker.
For example, in Fig. 8, the existing OR gate after the 180°
obfuscated gate has been modified to become a 0° obfuscated
gate. If an attacker guesses 90° phase difference (pcl), the
netlist would not function correctly because there would then
be a 180° phase difference between the OR gate and preceding
AND gate. Thus, for 0° obfuscation, it is important to choose
a multi-input gate where the preceding stage has 180° phase
difference.

Note that a phase difference of 270° is not a feasible option
for obfuscation in adiabatic ECRL circuits because in that
case, the obfuscated gate would be in the evaluation stage
while the previous gate would be in recovery stage. Since the
output of a gate during the recovery stage is input dependent,
it is not possible to use this output as a non-controlling value
(as proposed for 180°). Thus, 270° is not a viable guess for
an attacker and can be removed from the search space.

To summarize, an attacker should correctly guess the power-
clock connection of each camouflaged gate, of which there
are three viable options: 0°, 90°, and 180°. More discussion
is provided in the following section about how camouflaged
paths should be created to look like they are part of the origi-
nal netlist, thereby significantly strengthening the obfuscation
capability.

C. Selection Process Guidelines for Removal Attacks

The strength of PhaseCamouflage stems from the potential
for any logic cell to be used as an obfuscated gate. Thus, there
are many options of inserting obfuscated gates into a netlist
or transforming existing gates into obfuscated gates.

It is important to diversify camouflaged paths when obfus-
cating a netlist to ensure a sufficiently large search space. If
most of the camouflaged paths appear identical, the attacker

6

Fig. 9. Example of replacing a buffer in the original netlist with an XOR
gate and utilizing a constant 0 output from a 180° obfuscated buffer.

may “unlock” the entire netlist by guessing the same set of
phase differences for all of the camouflaged paths, or even
worse, the obfuscated gates within the camouflaged paths may
become blatant to the attacker and they could be susceptible
to removal attacks, as explained in Section II-B. The same
approach applies when inserting individual obfuscated gates.
These gates should be indistinguishable from normal logic so
that the method is not susceptible to removal/structural attacks.
The structural dependencies of 180° and 0° camouflaged
gates do not leak information to attackers because of the
variety of ways these gates can be inserted. For example,
180° camouflaged gates do not always have to be followed
by 3 input AND or OR gates. As illustrated in Fig. 9, an
existing buffer can be replaced with an XOR gate and be
routed to a constant O (output of a 180° obfuscated gate), thus
maintaining functionality. Additionally, the constant output
can be used as a controlling value on inserted logic and
used as a non-controlling value at a later stage within the
netlist, at the cost of additional overhead. Even though it is
true that a 0° camouflaged gate should be preceded by a
180° camouflaged gate, a 180° camouflaged gate does not
always have to be followed by a 0° camouflaged gate. These
options of using the constant output as a controlling value
for multiple stages; routing to multi-input OR/AND gates;
and changing an existing buffer/inverter to an OR/AND/XOR
gate represent sufficient variety to prevent information leakage
through structural dependencies of PhaseCamouflage.

To summarize, the following guidelines should be followed
when inserting camouflaged paths in order to thwart removal
and ATPG based sensitization attacks:

o 0° obfuscated gates should be used in combination with
180° obfuscated gates.

o Camouflaged and obfuscated gates should be used to form
non-resolvable gates using existing methods [1].

« Different camouflaged paths should consist of contrasting
logic cells.

« All of the proposed phase differences (0°, 90°, and 180°)
should be used throughout the design, however they do
not all have to be used within the same camouflaged path.

o Multiple fan-in gates should be used as obfuscated gates
to connect multiple camouflaged paths together.

e 180° and 0° obfuscated gates should be inserted in
diverse ways (as exemplified in Figs. 6, 8 and 9) so

SRR
FIFO_016X1

XY EEFY R X NEE) EETEN

FIFO_1 16X1

3
=%
=

i
o
§
15+
771!'
1 &‘jl

Camouflaged FHEATTIE 1 i

ower-clock =mpCHHTIY s
p lock — s St s
connections

[] = Camouflaged gates

(b)

Fig. 10. The layout view of camouflaged SIMON core: (a) full layout illustrating the primary blocks (black rectangles) and inserted camouflaged gates
(orange rectangles), (b) zoomed in view of a portion of the layout illustrating the camouflaged gates and corresponding power-clock connections.

that the correct phase difference is not revealed via the
physically observable structures within the netlist.

D. Equivalent Security Level

In the proposed methodology, an attacker needs to guess the
phase differences among camouflaged gates, where the phase
difference between two consecutive gates can be 0°, 90°, or
180°. If n is the number of camouflaged gates within a design,
3" is the overall complexity an attacker faces when attempting
to guess the phase differences in a brute force manner. This
exponential relationship is due to the independent characteris-
tic of the camouflaged gates. Thus, correctly guessing a phase
difference of a particular camouflaged gate does not provide
any hints for the phase differences of other camouflaged gates.

Compared to traditional logic locking techniques that rely
on a secret key, PhaseCamouflage has a larger base in the
complexity (3" vs 2™ where m is the number of key bits in
conventional logic locking). Thus, PhaseCamouflage requires
smaller number of camouflaged gates (compared to the number
of obfuscated gates) in order to realize the same security level.
Specifically, to achieve the same level of security as an m bit
key, the number of camouflaged gates n in PhaseCamouflage
should be equal to [log(2™)/log(3)]. For example, to achieve
a security level that is equivalent to a 128-bit key, a designer
should insert only 81 camouflaged gates into the design.

In PhaseCamouflage, output corruptibility (the likelihood
that an incorrect guess in a camouflaged netlist results in
an incorrect output) is sufficiently high due to the strong
dependence of functionality on phase difference of the power-
clock signals in ECRL circuits. For a 180° obfuscated gate,
any guess other than 180° produces an incorrect output, as
discussed in Section III-B2. For a 0° obfuscated gate, however,
either only a 0° guess or both a 0° and 90° guess can produce
a correct output, depending upon how the obfuscated gate is
inserted, as discussed in Section III-B3. Similar to existing
logical camouflaging schemes, there may be cases where
unintended combinations of phase differences for camouflaged
gates result in correct functionality. The guidelines described
in Section III-C should be followed to minimize the set of valid
power-clock connections. For example, in Fig. 8, the netlist

has only one set of valid power-clock connections, where the
search space consists of 243 different phase differences (3°
since there are 5 camouflaged gates). If PhaseCamouflage is
implemented as described in this paper, the attacker needs
to perform exhaustive simulations, equivalent of brute force,
in order to recover the functional and correct netlist. Thus,
depending upon the application, an appropriate security level
should be chosen to ensure that an exhaustive search is
computationally infeasible.

This discussion on equivalent security levels is based on
brute force attacks. In future work, once more sophisticated
attacks such as SAT and sensitization are formulated with
revised tools for adiabatic logic, quantitative metrics (such as
number of input patterns and overall time to break the cam-
ouflaged circuit) can be determined to have a more applicable
comparison. The transformations and discussion in Section V-
C serve as the preliminary investigation into such real-time
attacks.

IV. RESULTS

An 8-bit multiplier, a SIMON encryption core, and the
ISCAS-85 benchmark circuit c432 are implemented in static
CMOS, conventional adiabatic ECRL, and ECRL with the
PhaseCamouflage methodology in a 65 nm commercial tech-
nology node. The operating frequency is 13.56 MHz. The
circuits in this work are designed with a full custom method-
ology in Cadence Virtuoso, and results are obtained through
Spectre simulations [30] [31]. The SIMON encryption core
is designed to encrypt a 32-bit plaintext with a 64-bit key,
where one bit of plaintext goes through one round function in
one clock cycle, representing a bit-serial implementation [32].
In circuit camouflaging literature, the number of camouflaged
gates inserted to a design is either a constant number [33]-
[35] or a percentage of the total gates [1], [34], [36]. Both
designs are obfuscated with an equivalent security level of a
32-bit key, requiring 21 camouflaged gates. For the SIMON
core, 8 of the 21 camouflaged gates are obfuscated gates. For
the multiplier, there are 10 obfuscated gates. When inserting
these camouflaged gates into SIMON core and multiplier,
different strategies were adopted for evaluation. Specifically,

=) 1
[
(=]
S0.5 1
o
>
0 J . . .
425 43 435 44 44.5 45 45.5
Time (us)
_ (a)
2 1 1
[0}
g
= 0.50 u 1
>
0 1 1 1
515 52 52.5 53 535 54 54.5 55
Time (us)
R (b)
2 1 7
(9]
g
=0.5" i
o
>
L L L
51.5 52 52.5 53 53.5 54 54.5 55
Time (us)

(c)

Fig. 11. SIMON ciphertext serial output: (a) static CMOS, (b) unprotected
ECRL, (c) camouflaged ECRL using PhaseCamouflage with correct phase
differences.

for the SIMON core, the primary objective was to minimize
the overhead whereas for the multiplier, the design guidelines
described in Section III-C were followed to strengthen the
protected design against removal and sensitization attacks.
Note that PhaseCamouflage would be weaker if an attacker
could reverse engineer one set of obfuscated/camouflaged
gates and simply look for similar sets of gates within the
netlist. As an example, the camouflaged SIMON layout illus-
trating the camouflaged gates and camouflaged power-clock
signal connections is shown in Fig. 10.

Since the SIMON encryption core is implemented in a bit-
serial fashion, a large portion of the design consists of FIFOs.
Obfuscated gates were inserted into the round and the key
expansion blocks since the majority of the combinational logic
exists in these two blocks.

The obfuscation of the multiplier focused on demonstrating
the versatility of PhaseCamouflage by using multiple types of
logic gates (AND, OR, XOR) as obfuscated gates. Since the 8-
bit multiplier is an entirely combinational design, obfuscated
gates were inserted throughout the entire netlist. A variety
of 180° obfuscated gates (which require more overhead to
maintain functionality) were also used.

Correct functionality is demonstrated among the three im-
plementations (static CMOS, unprotected ECRL, protected
ECRL using PhaseCamouflage with correct phase differences)
of both the SIMON core and 8-bit multiplier. The serial output
for SIMON core and the most significant output bit of the 8-bit
multiplier are shown, respectively, in Figs. 11 and 12 for each
implementation. Note that the ECRL implementations of the
SIMON core exhibit slightly higher latency than static CMOS
due to synchronization overhead of charge-recycling logic.

An incorrect guess in the phase difference of only one
camouflaged gate (out of 21 camouflaged gates) produces a
wrong output in both the SIMON core and the multiplier, as
shown in Fig. 13. According to this figure, a single incorrect
guess drastically alters the functionality of the circuit, thereby

s *
S
0.5 1
o
>
0 1.5 2 2.5 3 3.5 4 4.5 5
Time (;LS)
(@
s]
(]
Sosl |
5
>
01.5 2 25 3 3.5 4 4.5 5
Time (us)
(b)
s *
(]
Sosl |
5
>
1.5 2 25 3 3.5 4 45 5
Time (us)
(c)
Fig. 12. Most significant bit of 8-bit multiplier: (a) static CMOS, (b)

unprotected ECRL, (c) camouflaged ECRL using PhaseCamouflage with
correct phase differences.

1.5
S 1f 1
(9]
(=]
8
© 05F i
>
0 I I ! .
15 2 2.5 3 3.5 4 4.5 5
Time (us)
(a)
1.5

Voltage (V)

51.5 52 52.5 53 53.5 54 54.5 55
Time (us)
(b)
Fig. 13. Tllustration of incorrect output when one of the phase difference

guesses (out of 21 camouflaged gates) is wrong: (a) most significant bit of
8-bit multiplier and (b) SIMON ciphertext serial output.

demonstrating that camouflaged gates can produce large output
corruptibility.

A. Power and Area Overhead

As mentioned in the previous section, the SIMON core
was camouflaged to minimize overhead whereas the multiplier
was camouflaged according to the guidelines described in
Section III-C to thwart removal attacks. This difference can
be observed in overhead results, even though both designs
achieve the same security level of a 32-bit key.

Area and power results are listed in Table I for three im-
plementations of the SIMON core. Compared to static CMOS
implementation, an ECRL based SIMON reduces power con-
sumption by 76.5%. The power savings slightly degrade to

75.9% for the protected ECRL via PhaseCamouflage. The
area of the unprotected ECRL and protected ECRL cores are,
respectively, 2.2% and 5.8% larger than the static CMOS core.
For the 8-bit multiplier, the overhead is greater, as listed in
Table II. The area of the camouflaged ECRL increases by
approximately 11% as compared to unprotected ECRL. The
power consumption increases by approximately 24%, thereby
decreasing the power savings (as compared to static CMOS)
from approximately 58% to 47%. It is important to note that
for larger designs, the area and power overhead is expected to
be much less since the required number of camouflaged gates
remains the same to achieve the same security level.

TABLE I
OVERHEAD IN AREA AND POWER FOR THE SIMON ENCRYPTION CORE.
Area Power
(pm?) pWw)
Static CMOS 4068 (N/A) 21.99 (N/A)

Unprotected ECRL
PhaseCamouflage ECRL

7159 (+2.2%)
7303 (+5.8%)

5.17 (-76.5%)
530 (-75.9%)

TABLE II
OVERHEAD IN AREA AND POWER FOR THE 8-BIT MULTIPLIER.
Area Power
(pm?) (BW)
Static CMOS 1275 (N/A) 3.35 (N/A)

Unprotected ECRL
PhaseCamouflage ECRL

1599 (+25.4%)
1780 (+39.6%)

1.42 (-57.6%)
1.76 (-47.5%)

B. Corruptibility Analysis

The output corruptibility of PhaseCamouflage is quantified
by measuring the Hamming distance between the outputs of
a correct netlist (i.e. correct phase differences) and incorrect
netlist (i.e. incorrect phase difference guesses). Hamming
distance was computed over 100 different input patterns, with
16 different sets of phase differences in random locations of
the ISCAS’85 ¢432 benchmark circuit, which consists of 160
gates and has 7 output bits [37]. The benchmark circuit is
obfuscated with an equivalent security level of a 32-bit key
(21 camouflaged gates, of which 8 are obfuscated gates).
Ten random camouflaged gates are given an incorrect phase
difference for the incorrect netlist. The Hamming distance
averaged 57% over the 16 phase difference sets, ranging from
14% to 86%, as shown in Fig. 14. Since the ideal Hamming
distance percentage is 50%, it is highly likely for an incorrect
phase difference guess to produce an incorrect output, which
means that utilizing a constant logic-low or logic-high as an
outcome (instead of a Boolean function as in traditional circuit
camouflaging schemes) is effective.

The average Hamming distance of 57% is largely due to
the high number of camouflaged gates in relation to the total
number of gates in the c432 benchmark circuit. Furthermore,
output corruptibility is highly dependent on circuit topology
and the location of camouflaged gates, since camouflaged
gate outputs can be masked by other converging paths. The
results reported in this section are based on random selection
of camouflaged gates within the netlist. The wide range of

100

Hamming Distance (%)

0
PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 14. Average Hamming distance percentages between the output bits
obtained with correct phase differences and output bits obtained with incorrect
phase differences. Hamming distance is calculated for 16 different sets of
phase differences (PDs) where each set is evaluated for 100 different inputs.

Hamming distances for different phase difference guesses
demonstrates that the location of camouflaged gates plays an
important role in output corruptibility. The high average output
corruptibility typically means that the camouflaged circuit is
more susceptible to SAT attacks (since less DIPs are needed to
prune away the wrong combinations of phase differences [38]).
This susceptibility can be mitigated by selecting camouflaged
gates such that these gates have logical paths that converge to
a smaller subset of the primary outputs.

C. Resistance of PhaseCamouflage to Existing Attacks

1) Threat Model: In the assumed threat model, attackers
have access to the following information:

1) A functional IC that can be used to give correct in-
put/output pairs as a black box

2) A camouflaged gate-level netlist, which can be obtained
through reverse engineering

3) Means to view the layout-level characteristics of the
netlist (most notably, the sizing of the cross-coupled
pairs needed for the mismatch of 180° obfuscated gates)

4) Boolean functionalities that the camouflaged gates per-
form (the functional behavior of 0°, 90°, and 180° phase
differences).

According to this threat model, attackers are assumed to have
the typical capability for conventional circuit camouflaging
scenarios (items 1, 2 and 4), and additionally are able to ob-
serve layout-level characteristics of the mismatch between the
cross-coupled pair (item 3). This threat model is considered so
that the attacker has additional reverse engineering capability
to discern 180° obfuscated gates via layout analysis. To thwart
removal/structural attacks of the 180° obfuscated gates, the
countermeasure discussed in Section III-B-2 should be used.
2) Sensitization Attack: Existing techniques for selecting
the camouflaging gates apply to PhaseCamouflage since these
techniques are independent of the particular camouflaging
methodology used. For example, the clique based selection
process introduced in [1] can be used to choose the location of
camouflaged gates in PhaseCamouflage. This technique makes

(a) (b)

(c)

Fig. 15. Transformation unit for a potential SAT attack on PhaseCamouflage: (a) first step of transformation with the three possible phase difference options,
(b) expanded transformation unit where 180° obfuscated gate outputs a constant logic-high or logic-low, and (c) final transformation unit that fully converts
the dependence of phase difference to Boolean functionality by also considering the timing differences between 0° and other obfuscated gates.

pcad I

>+

Fig. 16.
gate.

Insertion of a camouflaged path using a 2-input 180° obfuscated

it highly challenging to generate test vectors and determine
the functionality of camouflaged gates by creating mutual
interferences. Similar to existing techniques for dummy-based
camouflaging, the proposed camouflaged (including obfus-
cated) gates should be inserted to ensure that they mutually
interfere with each other and therefore result in non-resolvable
gates. In the proposed methodology, mutual interference is
realized via camouflaged paths that contain several intercon-
nected camouflaged gates. This can be achieved by using
multiple fan-in gates as obfuscated gates, as shown with the
180° obfuscated XOR gate in Fig. 16. Specifically, with a
multiple fan-in gate, camouflaged paths are connected to other
camouflaged paths. Thus, the number of gates that interferes
with each other (non-resolvable gates) is increased, making
sensitization attacks more difficult.

3) SAT Attack: To formulate an SAT attack, the netlist
in question should be reconstructed to a conjunctive nor-
mal form (CNF)-encoded SAT problem [39]. SAT attacks

work on existing camouflaging schemes by guessing possible
Boolean functionality, which would not be sufficient for the
proposed approach without significant effort. For example,
0° obfuscated gates in PhaseCamouflage affect the timing
characteristics by evaluating logic one phase (a quarter clock
cycle) sooner.

A specific SAT attack [40], TimingSAT, has been devel-
oped that works on both the camouflaged timing profile
and camouflaged functionality provided by the TimingCam-
ouflage scheme proposed in [25]. TimingSAT can detect
wave-pipelined paths by inserting “transformation units” (TU)
(which consist of a flip-flop and a MUX) into the camouflaged
netlist. The select line of the MUX acts as a 1-bit key where
one value represents a single-cycle path and the other value
represents a wave-pipelined path. TUs essentially convert the
locked timing profile to depend on Boolean logic functionality
through these new key bits. After TU insertion, TimingSAT
relies on unrolling these inserted flip-flops and converting the
netlist into a combinational circuit so that an SAT attack can
be performed.

Similar to TimingSAT [40], in order to perform an SAT
attack on a camouflaged adiabatic netlist, the obfuscation
should be transformed so that all of the dependencies are
represented in Boolean form instead of phase differences.
This is because a CNF representation of the circuit should be
generated as an input to the SAT solver. In order to achieve
this, the camouflaged ECRL design should be converted to
static CMOS with a transformation unit (TU), as illustrated
in Fig. 15. First, all possible phase differences are connected
to a multiplexor, as shown in Fig. 15(a). However, 180°
obfuscated gates can output a constant logic-low or logic-
high, so the transformation unit is edited as in Fig. 15(b).
Finally, Fig. 15(c) shows the complete transformation unit
without phase difference dependency. The constant logic-low
is represented with an AND gate that has an input connected to
ground, and the constant logic-high is represented with an OR
gate that has an input connected to VDD. Furthermore, flip-

flops are placed after the gates that represent 90° and 180°
obfuscation to accurately reflect the timing characteristic of
the 0° obfuscated gate (which achieves computation without
consuming any clock phase, unlike other obfuscated gates).
Thus, flip-flops ensure that the outputs along those paths
are delayed one cycle with respect to the output of the 0°
obfuscated gate.

However, some challenges exist when implementing the
SAT attack on the proposed method with adiabatic gates.
Even though non-camouflaged ECRL gates can be directly
replaced with static CMOS versions, each camouflaged gate
using the proposed method should be replaced with the
transformation unit shown in Fig. 15(c), while maintaining
correct functionality. It is difficult for an attacker to ensure
the correct functionality and timing of the netlist with the
additional flip-flops needed in the transformation unit. Attack-
ers would also need to consider that in camouflaged ECRL,
180° and 90° obfuscated gates consume a quarter of a cycle
(one phase) whereas in the transformed unit, they consume
one cycle since a quarter cycle cannot be represented in
static CMOS based circuits. In addition, current SAT solvers,
such as MiniSAT [41], do not currently have the capability
to represent the inputs tied to ground and VDD since the
inputs are in the form of propositional logic. Thus, while
it may be possible to successfully mount an SAT attack on
PhaseCamouflage, attackers would need to spend more effort
than the conventional Boolean-based camouflaging.

Recently a more powerful attack, the Satisfiability Mod-
ulo Theory (SMT) attack, was shown to break obfuscation
schemes that are not based on Boolean logic, such as delay
locking [26]. SMT attack is able to use theory solvers that
allow the attacker to express constraints that cannot be repre-
sented with CNF, such as power and delay [42]. Potentially, an
SMT attack can be formulated against PhaseCamouflage, but
SMT attacks are typically more complex because constraint
clauses that represent the non-Boolean functionality of the
phase differences must be formulated for the chosen theory
solver. The resistance against such attacks and the complexity
of these attacks for PhaseCamouflage in adiabatic gates require
additional investigation.

V. CONCLUSION

PhaseCamouflage is a logic obfuscation technique that pre-
vents reverse engineers from extracting a functional netlist
and protects against IP theft. The inherent phase difference
between gates in adiabatic/charge-recycling logic is lever-
aged for lightweight obfuscation that is particularly useful
for resource-constrained applications. Due to the exponential
complexity of the methodology, strong obfuscation can be
achieved with a relatively small number of camouflaged cells.
Design guidelines are also developed to ensure that Phase-
Camouflage is protected against modern removal attacks. The
proposed methodology is demonstrated in two circuits with
a security level equivalent to 32-bit key. The overhead in
power consumption and area is analyzed. The corruptibility
achieved with the proposed approach is also quantified. In fu-
ture work, PhaseCamouflage can be combined with traditional

circuit camouflaging methods to further enhance security.
Specifically, the dependence of adiabatic logic on both phase
and Boolean functionality can be leveraged to develop a
more secure camouflaging approach. Theoretically, an attacker
would have to guess the type of the Boolean gate and the
phase difference (90°, 180°, 0°), thereby increasing the base
complexity required to de-camouflage the circuit.

REFERENCES

[1] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security analysis
of integrated circuit camouflaging,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. ACM,
2013, pp. 709-720.

[2] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1283-1295, 2014.

[3] R. Torrance and D. James, “The state-of-the-art in semiconductor
reverse engineering,” in 2011 48th ACM/EDAC/IEEE Design Automation
Conference (DAC). 1EEE, 2011, pp. 333-338.

[4] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans: extended version,” Journal of Crypto-
graphic Engineering, vol. 4, no. 1, pp. 19-31, 2014.

[5] N. E. C. Akkaya, B. Erbagci, and K. Mai, “A secure camouflaged logic
family using post-manufacturing programming with a 3.6 ghz adder
prototype in 65nm cmos at 1v nominal v dd,” in 2018 IEEE International
Solid-State Circuits Conference-(ISSCC). 1EEE, 2018, pp. 128-130.

[6] Y. Xie and A. Srivastava, “Anti-sat: Mitigating sat attack on logic
locking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 2, pp. 199-207, 2018.

[71 M. Yasin, B. Mazumdar, J. J. Rajendran, and O. Sinanoglu, “Sarlock: Sat
attack resistant logic locking,” in 2016 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST). 1EEE, 2016, pp.
236-241.

[8] Y. Moon and D.-K. Jeong, “An efficient charge recovery logic circuit,”
IEICE transactions on electronics, vol. 79, no. 7, pp. 925-933, 1996.

[91 S. M. Plaza and I. L. Markov, “Solving the third-shift problem in ic

piracy with test-aware logic locking,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 34, no. 6, pp.

961-971, 2015.

T. Wan, Y. Karimi, M. Stanacevi¢, and E. Salman, “Ac computing

methodology for rf-powered iot devices,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 27, no. 5, pp. 1017-1028,

2019.

S. D. Kumar, H. Thapliyal, A. Mohammad, and K. S. Perumalla, “Design

exploration of a symmetric pass gate adiabatic logic for energy-efficient

and secure hardware,” Integration, vol. 58, pp. 369-377, 2017.

S. D. Kumar, H. Thapliyal, and A. Mohammad, “Finsal: Finfet-based

secure adiabatic logic for energy-efficient and dpa resistant iot devices,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 37, no. 1, pp. 110-122, 2017.

T. Wan, E. Salman, and M. Stanacevic, “A new circuit design framework

for iot devices: Charge-recycling with wireless power harvesting,” in

IEEE International Symposium on Circuits and Systems (ISCAS), 2016,

pp. 2046-2049.

H.-V. Tran and G. Kaddoum, “Robust design of ac computing-enabled

receiver architecture for swipt networks,” IEEE Wireless Communica-

tions Letters, 2019.

V.-D. Nguyen and O.-S. Shin, “An efficient design for noma-assisted

miso-swipt systems with ac computing,” IEEE Access, vol. 7, pp.

97094-97 105, 2019.

[16] J. A. Roy, F. Koushanfar, and I. L. Markov, “Epic: Ending piracy

of integrated circuits,” in Proceedings of the conference on Design,

automation and test in Europe. ACM, 2008, pp. 1069-1074.

A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing ic piracy

using reconfigurable logic barriers,” IEEE Design & Test of Computers,

vol. 27, no. 1, pp. 66-75, 2010.

[18] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of

logic obfuscation,” in Proceedings of the 49th Annual Design Automa-

tion Conference. ACM, 2012, pp. 83-89.

M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving

the security of logic locking,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 35, no. 9, pp. 1411-1424,

2015.

[10]

(11]

[12]

[13]

[14]

[15]

[17]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

[28]

[29]

(30]

[31]

(32]

(33]

(341

[35]

[36]

[37]

(38]

(391

[40]

[41]

P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of
logic encryption algorithms,” in 2015 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST). 1EEE, 2015, pp.
137-143.

M. El Massad, S. Garg, and M. V. Tripunitara, “Integrated circuit (ic)
decamouflaging: Reverse engineering camouflaged ics within minutes.”
in NDSS, 2015, pp. 1-14.

M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Camoperturb:
secure ic camouflaging for minterm protection,” in 2016 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). 1EEE,
2016, pp. 1-8.

M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z.
Pan, “Provably secure camouflaging strategy for ic protection,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2017.

M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal at-
tacks on logic locking and camouflaging techniques,” IEEE Transactions
on Emerging Topics in Computing, 2017.

G. L. Zhang, B. Li, B. Yu, D. Z. Pan, and U. Schlichtmann, “Tim-
ingcamouflage: Improving circuit security against counterfeiting by
unconventional timing,” in 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 1EEE, 2018, pp. 91-96.

Y. Xie and A. Srivastava, “Delay locking: Security enhancement of logic
locking against ic counterfeiting and overproduction,” in Proceedings of
the 54th Annual Design Automation Conference 2017. ACM, 2017,
p- 9.

L. W. Chow, J. P. Baukus, B. J. Wang, and R. P. Cocchi, “Camouflaging a
standard cell based integrated circuit,” Apr. 3 2012, uS Patent 8,151,235.
C. Yan, J. Dofe, S. Kontak, Q. Yu, and E. Salman, “Hardware-efficient
logic camouflaging for monolithic 3-d ics,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 65, no. 6, pp. 799-803,
2017.

L.-W. Chow, J. P. Baukus, and W. M. Clark Jr, “Integrated circuits
protected against reverse engineering and method for fabricating the
same using an apparent metal contact line terminating on field oxide,”
Nov. 13 2007, uS Patent 7,294,935.

“Cadence virtuoso layout suite

) https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-
design/layout-design/virtuoso-layout-suite.html, accessed: 2021-01-09.
“Cadence spectre simulation platform,”
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-
design/circuit-simulation/spectre-simulation-platform.html, accessed:
2021-01-09.

T. Wan and E. Salman, “Ultra low power simon core for lightweight
encryption,” in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS). 1IEEE, 2018, pp. 1-5.

M. Yasin, O. Sinanoglu, and J. Rajendran, “Testing the trustworthiness of
ic testing: An oracle-less attack on ic camouflaging,” IEEE Transactions
on Information Forensics and Security, vol. 12, no. 11, pp. 2668-2682,
2017.

N. Rangarajan, S. Patnaik, J. Knechtel, R. Karri, O. Sinanoglu, and
S. Rakheja, “Opening the doors to dynamic camouflaging: Harnessing
the power of polymorphic devices,” arXiv preprint arXiv:1811.06012,
2018.

M. El Massad, S. Garg, and M. V. Tripunitara, “The sat attack on ic
camouflaging: Impact and potential countermeasures,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 39, no. 8, pp. 1577-1590, 2019.

V. C. Patil and S. Kundu, “On leveraging multi-threshold finfets for
design obfuscation,” in 2020 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI). 1EEE, 2020, pp. 108-113.

“Iscas benchmark circuits,” http://web.eecs.umich.edu/ jhayes /is-
cas.restore/benchmark.html, accessed: 2021-01-09.

K. Juretus and I. Savidis, “Characterization of in-cone logic locking
resiliency against the sat attack,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 8, pp. 1607-1620,
2019.

C. Yu, X. Zhang, D. Liu, M. Ciesielski, and D. Holcomb, “Incremental
sat-based reverse engineering of camouflaged logic circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 36, no. 10, pp. 1647-1659, 2017.

M. Li, K. Shamsi, Y. Jin, and D. Z. Pan, “Timingsat: Decamouflag-
ing timing-based logic obfuscation,” in 2018 IEEE International Test
Conference (ITC). 1EEE, 2018, pp. 1-10.

N. Sorensson and N. Een, “Minisat v1. 13-a sat solver with conflict-
clause minimization,” SAT, vol. 2005, no. 53, pp. 1-2, 2005.

[42] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “Smt attack:
Next generation attack on obfuscated circuits with capabilities and per-
formance beyond the sat attacks,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 97-122, 2019.

Ivan Miketic Ivan received the B.Sc. degree in
physics from Adelphi University, Garden City, NY,
USA in 2017. He is currently working toward the
Ph.D. degree in the Department of Electrical and
Computer Engineering at Stony Brook University,
Stony Brook, NY, USA. His research interests are in
hardware security specifically emerging applications
and devices.

Emre Salman (S’03-M’10-SM’17) received the
B.S. degree in microelectronics engineering from
Sabanci University, Istanbul, Turkey, in 2004, and
the M.S. and Ph.D. degrees in electrical engineering
from the University of Rochester, NY, USA, in 2006
and 2009, respectively.

He was previously with STMicroelectronics, Syn-
opsys, and Freescale Semicondutor (now NXP Semi-
conductors), where he was involved in research in
the fields of custom circuit design, timing, and
noise analysis. Since 2010, he has been with the
Department of Electrical and Computer Engineering, Stony Brook University
(SUNY), NY, USA, where he is currently an Associate Professor and the
Director of the Nanoscale Circuits and Systems Laboratory. He is the
leading author of a comprehensive tutorial book High Performance Integrated
Circuit Design (McGraw-Hill, 2012, Chinese translation, 2015). His broad
research interests include analysis, modeling, and design methodologies for
integrated circuits and VLSI systems with applications to low power and
secure computing, Internet of things with energy harvesting, and implantable
devices.

Dr. Salman was a recipient of the National Science Foundation Faculty
Early Career Development Award in 2013, the Outstanding Young Engineer
Award from IEEE Long Island, NY, USA, in 2014, and the Technological
Innovation Award from IEEE Region 1 in 2018. He also received multiple
outreach initiative awards from the IEEE Circuits and Systems Society. He
served on the Editorial Board of the IEEE TRANSACTIONS ON VERY
LARGE SCALE INTEGRATION SYSTEMS. He currently serves as the
Americas Regional Editor for the Journal of Circuits, Systems and Computers,
on the Editorial Board of IEEE TRANSACTIONS ON EMERGING TOPICS
IN COMPUTING, on the organizational/technical committees of various
IEEE and ACM conferences, and as the Chair for the VLSI Systems and
Applications Technical Committee (VSA-TC) of the IEEE Circuits and
Systems Society.

